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Abstract

Background: Influenza infections induce considerable disease burden in young children. Biomarkers for the monitoring of
disease activity at the point-of-care (POC) are currently lacking. Recent methodologies for fluorescence-based rapid testing
have been developed to provide improved sensitivities with the initial diagnosis. The present study aims to explore the
utility of second-generation rapid testing during longitudinal follow-up of influenza patients (Rapid Influenza Follow-up
Testing = RIFT). Signal/control fluorescent readouts (Quantitative Influenza Follow-up Testing = QIFT) are evaluated as a
potential biomarker for the monitoring of disease activity at the POC.

Methods and Findings: RIFT (SOFIA) and QIFT were performed at the POC and compared to blinded RT-PCR at the National
Reference Centre for Influenza. From 10/2011-4/2013, a total of 2048 paediatric cases were studied prospectively; 273 cases
were PCR-confirmed for influenza. During follow-up, RIFT results turned negative either prior to PCR (68%), or
simultaneously (30%). The first negative RIFT occurred after a median of 8 days with a median virus load (VL) of 5.6610‘3
copies/ml and cycle threshold of 37, with no evidence of viral rebound. Binning analysis revealed that QIFT differentiated
accurately between patients with low, medium and high viral titres. QIFT increase/decrease showed 88% agreement
(sensitivity = 52%, specificity = 95%) with VL increase/decrease, respectively. QIFT-based viral clearance estimates showed
similar values compared to PCR-based estimates. Variations in viral clearance rates were lower in treated compared to
untreated patients. The study was limited by use of non-invasive, semi-quantitative nasopharyngeal samples. VL
measurements below the limit of detection could not be quantified reliably.

Conclusions: During follow-up, RIFT provides a first surrogate measure for influenza disease activity. A ‘‘switch’’ from
positive to negative values may indicate a drop in viral load below a critical threshold, where rebound is no longer expected.
QIFT may provide a useful tool for the monitoring of disease burden and viral clearance at the POC.
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Introduction

Influenza may cause significant morbidity and mortality,

especially in infants and children [1–3], who tend to exhibit high

viral loads and prolonged viral shedding [2,4,5]. In paediatric

patients, influenza may also evoke a wide range of nonspecific

symptoms, which are often difficult to predict or quantify [4,6].

Much progress has been made with respect to rapid influenza

diagnostic testing (RIDT), but standardized assessments for the

longitudinal monitoring of influenza infections are currently

lacking.

Ideally, influenza infections would be monitored in real-time, at

the point-of-care (POC). Immediate assessments would be

particularly important in the inpatient setting and during the

peak of flu season, when infection control measures are

increasingly challenging and many different physicians may be

assessing the patient over time. In influenza patients receiving

antiviral therapy, an objective POC measure of viral load should

be able to discriminate treatment success from virologic failure,

which may contribute to the emergence of drug resistance [7].

WHO and CDC guidelines recommend extending the duration of

antiviral therapy beyond five days in influenza patients with
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evidence of ongoing viral replication, immuno-compromise or

severe illness (i.e. ICU-level care) [8,9]. Considering the possibility

of antiviral resistance and viral rebound with premature termina-

tion of treatment, simple means of estimating viral clearance in

high-risk patients are needed [7,10–13]. Furthermore, clinical

trials evaluating newly developed antivirals will require objective

parameters to evaluate antiviral efficacy compared to, or in

combination with, currently available drugs [12,14].

Molecular methods and viral culture are the most commonly

used methods for the assessment of viral shedding in influenza

patients [15,16]. These assays usually require considerable

laboratory equipment and staff, and test results may take several

days to become available to the physician [6,15]. RIDT has been

developed for the immediate diagnosis of influenza infections in

the acute care setting [16–20]. RIDT are most sensitive with CT

values ,30 [21]. Second-generation RIDT (such as the SOFIA)

use fluorescence-labelled antigens combined with POC readers,

providing the advantage of standardized readouts. Evaluations in

the US, Asia and Germany revealed improved sensitivities of up to

88% compared to RT-PCR with specificities close to 100% [21–

24]. Rapid antigen tests reflect the actual amount of viral particles

in a given sample, and tend to correlate well with viral culture

results [22,25]. PCR-based methods on the other hand, include an

amplification step and are highly sensitive to the presence of

nucleic acid. With the exception of capped m-RNA PCR,

standard RT-PCR methods are not as specific for the presence

of fully intact and infectious virus particles. An ideal POC test for

the longitudinal follow-up of laboratory-confirmed influenza

infections should therefore measure disease activity based on a

critical amount of infective virus, even at the expense of lower

sensitivities compared to PCR. Rapid antigen test may be able to

fill this gap. During the process of viral clearance, the loss of

antigen-positivity may indicate successful treatment or ‘‘overcom-

ing’’ of natural infection, whereas RT-PCR results tend to remain

positive for extended periods of time, even beyond resolution of

clinical symptoms [7].

We hypothesized that qualitative (‘‘positive’’/‘‘negative’’) as well

as quantitative (‘‘signal over control’’) luminescent readouts from

second-generation rapid antigen tests may prove to be useful as an

immediate estimate of virus burden and disease activity. We used

SOFIA as an example of a simple rapid antigen test that can be

performed by nurses or doctors at the bedside.

The present study aims to evaluate the utility of:

i) ‘‘Rapid Influenza Follow-up Testing’’ (RIFT) for the (quali-

tative) monitoring of influenza infections over time as well as

ii) ‘‘Quantitative Influenza Follow-up Testing’’ (QIFT) as a

potential biomarker for the monitoring of influenza disease

activity (virus burden) at the POC.

Methods

Ethics Statement
Ethical approval was obtained from the Charité Institutional

Review Board (EA 24/008/10). Informed consent procedures

were waived for enhanced patient monitoring in the context of a

quality management (QM) program.

Study design and data collection
This prospective evaluation study was performed in the context

of a QM program at the Charité Department of Paediatrics in

collaboration with the National Reference Centre for Influenza at

the Robert Koch Institute (RKI). From October 1, 2011 to April

30, 2013, all patients fulfilling pre-defined criteria for influenza-

like illness (fever $38uC and $ one respiratory sign or symptom)

were assessed consecutively by a specifically trained QM team

[7,21]. Cases were included if i) the patient was 0–18 years of age,

and ii) influenza infection was confirmed by RT-PCR in the

national reference laboratory. Cases were excluded from this

analysis in case of: i) simultaneous infection with more than one

influenza type or subtype [26], or ii) inability to obtain

nasopharyngeal samples.

Follow-up Testing
Members of a specifically trained QM team obtained nasopha-

ryngeal samples, with rapid antigen tests (SOFIA) performed at the

bedside. Patients with laboratory-confirmed influenza were

scheduled for follow-up testing every two to three days, until at

least one negative RIFT result was obtained or longer, if indicated.

Basic clinical parameters and treatment with neuraminidase

inhibitors were recorded. The respective clinician on duty made

antiviral treatment decisions independently. With each rapid

antigen test, blinded RT-PCR was performed in parallel at the

RKI.

RIFT. Fluorescence-based RIFT was performed immediately

at the POC and according to the manufacturer’s protocol for the

SOFIA Influenza A+B FIA test kit (Quidel Inc., San Diego, CA,

USA). With each test, the SOFIA luminescent reader provided

print-outs with qualitative test results (influenza A or B positive/

negative), which were recorded and communicated without delay

to the patient or parent as well as to the physician on duty.

QIFT. QIFT-values were calculated for each rapid antigen

test based on the relationship between the influenza A and B test

lines’ fluorescence intensities and the cut-offs for each analyte with

the SOFIA test. The resulting signal over control values (SCo)

generated by the SOFIA POC reader ranged from 0 to 400. The

limit of detection (LOD) with QIFT is 1; values .1 were

considered positive.

RT-PCR and Viral Load (VL) Determination. Qualitative

and quantitative RT-PCR were performed as described recently

[7]. Briefly, nasopharyngeal swabs were washed out in cell culture

medium and RNA was extracted either by using the MagAttract

Viral RNA 48 Kit (Qiagen), the RTP RNA/DNA Virus Minikit

(Invitek), or the MagnaPure 96 DNA and viral NA small volume

kit (Roche). After random reverse transcription complementary

DNA, primer and probes targeting the M, HA and NA genes were

used for detection and further subtyping of influenza [27]. The

RT-PCR cycle threshold (CT) values obtained for each influenza

positive sample were analysed comparatively with serially diluted

plasmid standards. All reactions were performed using the Light

Cycler 480 real-time PCR system (Roche). CT values obtained

with influenza negative samples were defined as 45 for mathe-

matical analyses. The limit of detection for RT-PCR (LODPCR)

depends on the targeting gene and was determined to be 2–15

genome equivalents per reaction (95% detection probability) [27].

Regarding dilution factors due to sample preparation, RNA

extraction, cDNA synthesis, and PCR performing, the limit of

viral load quantitation (LOQ) was estimated to be 1000 copies/

ml. This value was defined as LODVL, below which the calibration

curve is no longer valid and quantitative values are not reliable.

Comparison of virus load assessments based on CT versus

quantitative PCR at the National Reference Centre showed a

correlation of 0.95 (Spearman, p-value,0.0001; Figure S1). With

a high correlation between the two methods of VL assessment in

the reference laboratory, it was decided to use CT for the QIFT/

PCR correlation analyses, with the advantage of a lower LODPCR

compared to LODVL.

Rapid Follow-Up Testing for Influenza at the POC
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Data Analysis
Data analysis and reporting were conducted in accordance with

the STARD guidelines [28], wherever applicable. The STARD

checklist is provided in the Supplementary Materials (Text S1).

The STARD was chosen as the most appropriate standard

available, even though the reported study pertains to longitudinal

follow-up of patients with established diagnoses rather than

diagnostic accuracy. The diagnostic accuracy including sensitivi-

ties and specificities of SOFIA RIDT in relation to PCR in the

same setting has been published elsewhere [21].

RIFT compared to longitudinal PCR results. All patients

with at least one positive RIFT and completed follow-up series

were included in the analysis. Qualitative RIFT data for each

patient during follow-up were compared to the corresponding CT

value in the RT-PCR.

Three key time points were determined for each disease

episode:

i) TMV = Time point of maximum viral load/ lowest CT

ii) TLP = Time point of last positive RIFT

iii) TFN = Time point of first negative RIFT.

The respective time points TMV, TLP, and TFN were plotted

against the respective CT values at TMV, TLP, and TFN. The y-axis

was inserted at the time point where the switch from TLP to TFN

occurred ( = ‘‘Switch Day’’).

RIFT compared to viral culture. Overall rates of agree-

ment and kappa scores were calculated (Stata Version 11.2),

comparing the time period required for RIFT and viral culture to

become negative, respectively.

QIFT and clinical parameters. For correlation analysis

between QIFT and clinical presentation, the following clinical

parameters were chosen: a) maximum body temperature, b) CRP

and c) presence of tachypnea (according to age-adjusted WHO

criteria).

Correlation analyses for a) and b) were conducted using the

Spearman rank correlation test. For analysis of c), a non-

parametric test (Mann Whitney) was used.

QIFT /PCR Correlation Analysis. For QIFT/PCR corre-

lation analysis, two correlation plots were generated:

i) First, all values were included. Any QIFT values , LODQIFT

were set equal to the LODQIFT as the most conservative

estimate. Values = 0 (i.e. virus not detectable by either

method) were set to 0.

ii) A second analysis was performed excluding any values ,

LOD.

Correlation analyses between continuous variables were con-

ducted using the Spearman rank correlation test.

Categorizing viral load based on QIFT. Binning analyses

were performed for the categorization (‘‘binning’’) of median virus

load in relation to different QIFT categories (negative, low,

moderate, and high QIFT). Continuous variables were compared

between different categories (‘‘bins’’) using non-parametric tests

(Mann Whitney, Kruskal Wallis).

For comparison between QIFT and CT values, a ‘‘sliding

window plot’’ was generated using MATLAB 7.14 (MathWorks

Inc., Natick, MA): All simultaneous measurements of QIFT vs.

CT were sorted by the respective QIFT in ascending order. Every

30 consecutive QIFT values denote a sliding window.

Estimating viral load kinetics based on QIFT and

PCR. Lacking a reference standard for the assessment of viral

shedding/antigen clearance over time, overall rates of agreement

and kappa scores were calculated comparing QIFT increase or

decrease to PCR increase or decrease over time [29–32]. Each

sequence of 2 consecutive samples from the same patient was

included in the analysis. A trend in viral load was defined as

increase or decrease if rates of change in relation to the previous

measurement in the same patient exceeded 10%.

Viral clearance dynamics with and without

treatment. Viral clearance dynamics with and without treat-

ment were computed for VL (CLVL) and QIFT (CLQIFT). All cases

with at least two positive samples with both VL and QIFT

measurements available ( = QIFT population) were included. In

patients receiving antivirals, treatment had to be completed and

baseline swabs had to be obtained within 24 hours of treatment

initiation. Patient-specific CLVL and CLQIFT were estimated with

calculated quantitative values even below LOD, using the

optimization routine lsqcurvefit in MATLAB version 7.10 (Math-

Works Inc., Natick, MA) and a weighted least-square criterion to

minimize residual error. Details are provided in the Text S2.

Results

Study population
From October 1, 2011 to April 30, 2013, a total number of

2048 disease episodes were assessed and documented prospective-

ly; of these, 278 (13.6%) cases were laboratory-confirmed for

influenza by PCR. Three cases with dual influenza infection (A/A,

A/B and B/B) and two patients unable to provide nasopharyngeal

samples were excluded, leaving for analysis 273 cases of

laboratory-confirmed influenza with serial swabs available. (Two

patients experienced two independent disease episodes due to

different influenza viruses, both were included as separate cases in

the analysis.)

Case characteristics at the time of enrolment with each disease

episode are displayed in Table 1. Among 273 influenza cases

( = total population) 55 were ‘‘late presenters’’, i.e. patients who

appeared in the emergency room late in the course of illness, after

loss of their antigen-positive status in the RIFT, which usually

requires intact viral particles (as opposed to nucleic acid) and

higher viral loads compared to PCR. Overall, 178 patients

completed the full follow-up program until at least one negative

RIFT was obtained (RIFT population), resulting in an overall

completion rate of 85%. For QIFT/PCR correlation and binning

analyses, all 669 quantitative antigen measurements were includ-

ed. A total of 210 cases fulfilled QIFT population criteria

(availability of . = 2 positive samples with both, VL and QIFT

measurements). Among these, 183 patients were without antiviral

therapy, and 27 completed oseltamivir therapy. There was no

significant correlation between the decision to use antivirals and

either the number of symptoms, the duration of illness, or the

presence of underlying conditions (p = 0.595, p = 0.781 and

p = 0.797, respectively).

Data Analysis
RIFT results tend to turn negative prior to PCR. The

qualitative results obtained with rapid influenza follow-up testing

(RIFT) were compared to cycle thresholds with RT-PCR. The key

follow-up time points TMV, TLP, and TFN were determined for

each disease episode and plotted against the corresponding CT

values, as depicted in Figure 1.

During follow-up visits, the first negative RIFT was observed at

a median of 8 days (range 2; 19) with a median CT of 37 (range

45; 23) and a median VL of 5.6610‘3 (range 0; 78.4610‘3). The

first negative RIFT result was consistently observed prior to (68%)

or simultaneous with (30%) a first negative RT-PCR result. There

Rapid Follow-Up Testing for Influenza at the POC
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were only 4 instances (2%) where a positive RIFT was not

confirmed by PCR, which was attributed to contamination of

infant samples with RNAses. No cases of viral rebound were

observed. The ‘‘Switch Day’’ from positive to negative RIFT,

illustrated by insertion of the y-axis between TLP and TFN,

corresponded to a CT value of 33.

RIFT results correlate well with virus culture
In 118 cases, at least two swabs with viral culture data in

addition to RIFT were available, with a ‘‘switch’’ from positive

RIFT and/or culture to negative RIFT and/or culture. Time

required for RIFT to become negative from a previously positive

value was 5.9763.16 days; (range 2; 18).Time required for viral

culture to become negative was 5.3162.67 days (range 2; 14).

We observed an overall rate of agreement of 77.97% between

the time period required for RIFT to become negative and time

period required for viral culture to become negative (kappa = 0.75;

p-value,0.0001). With respect to correlation analysis between

time periods, we observed a Spearman’s correlation of 0.803

between the two time periods (p-value,0.0001).

No significant correlation between QIFT values and

clinical parameters. QIFT showed no significant correlation

or association to the following clinical parameters: a) maximum

body temperature (Spearman Rho = 20.027, p = 0.667), b) CRP

(Spearman Rho = 20.087, p = 0.338) and c) presence of tachy-

pnea (Mann Whitney, p = 0.154).

QIFT values close to the LOD correlate poorly with

PCR. All quantitative measurements obtained during longitudi-

nal follow-up amounted to 669 measurements with QIFT and

matching CT values. QIFT/PCR correlations are depicted in

Figure 2. QIFT showed a significant correlation with CT of 0.69

(Spearman, p-value,0.0001) with QIFT values , LOD set to

LOD = 1 as the most conservative estimate. Following the RIFT

observations illustrated above, it is expected that during longitu-

dinal follow-up (of which all values are included in this plot), RIFT

Table 1. Characteristics of eligible PCR- confirmed influenza cases.

Category Subcategory Total cases Age ,2 years Age 2–5 years Age .5 years

(%) (%) (%) (%)

Total N 273 82 96 95

Gender male 152 47 49 56

(55.7) (58.3) (51.0) (58.9)

female 121 35 47 39

(44.3) (42.7) (49.0) (41.1)

Underlying condition pulmonary 26 7 7 12

(9.5) (8.5) (7.3) (12.6)

cardiac 20 4 7 9

(7.3) (4.9) (7.3) (9.5)

endocrine 13 1 4 8

(4.8) (1.2) (4.2) (8.4)

hepatorenal 4 1 0 3

(1.5) (1.2) (0) (3.2)

neurologic 19 3 6 10

(7.0) (3.7) (6.3) (10.5)

immuno- suppression 9 0 2 7

(3.3) (0) (2.1) (7.4)

hematologic 2 1 0 1

(0.7) (1.2) (0) (1.1)

Prematuritya 33 13 13 7

(12.1) (15.9) (13.5) (7.4)

Treatment with Oseltamivir treated 33 16 11 6

(12.1) (19.5) (11.5) (6.3)

untreated 240 66 85 89

(87.9) (80.5) (88.5) (93.7)

Influenza type/ subtype A(H1N1)pdm09 70 27 23 20

(25.6) (32.9) (24.0) (21.1)

A(H3N2) 112 38 47 27

(41.0) (46.3) (49.0) (28.4)

B 91 17 26 48

(33.3) (20.7) (27.1) (50.5)

a,37 gestation weeks.
doi:10.1371/journal.pone.0092500.t001
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will turn negative prior to PCR. Figure 2 illustrates that QIFT

values near or below the LODQIFT correlated poorly with PCR,

compared to higher QIFT values.

Categorization based on QIFT provides useful estimate of

virus burden. For the categorization of virus load based on

low, moderate and high QIFT values, binning analyses were

performed: QIFT readings were categorized into the following

‘‘bins’’: ‘‘negative’’ (0–1), ‘‘low’’ (i.e. .1–100), ‘‘moderate’’ (.100–

199), and ‘‘high’’ (.199–400). Median CT values differed

Figure 1. Comparison of CT values over time in relation to RIFT. The insertion of y-axis reflects the ‘‘switch’’ from positive to negative RIFT.
doi:10.1371/journal.pone.0092500.g001

Figure 2. Comparison of CT versus QIFT. LODQIFT was defined as QIFT = 1.
doi:10.1371/journal.pone.0092500.g002

Rapid Follow-Up Testing for Influenza at the POC
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significantly with respect to the four QIFT categories (Mann

Whitney, Kruskal Wallis, p-value,0.0001), see Figure 3.

A Sliding Window Plot was generated to evaluate the

performance of any particular QIFT in predicting CT values

(Figure 4). The resulting graph illustrates a percentiles curve for

the estimation of CT based on QIFT, including medians for the

respective QIFT value. Please note that with 669 samples, there is

a relatively broad coefficient of variation of approximately 20%.

Up- and downward trends in virus load are reflected

similarly by PCR and QIFT. To determine trends in virus

burden based on quantitative PCR versus QIFT, rates of

agreement between ‘‘QIFT-increase’’, ‘‘QIFT-decrease’’, ‘‘VL-

increase’’, and ‘‘VL-decrease’’ were calculated. Overall agreement

was 88% (kappa = 0.49; p-value,0.0001), see Table 2.

Viral clearance rates in treated and untreated patients
may be monitored using QIFT

Median clearance rates CLVL and CLQIFT in QIFT patients

with and without antiviral treatment are depicted in Figure 5.

Overall, CLQIFT showed slightly lower, but similar values

compared to CLVL. In treated patients, median clearance rates

were 1.02/day when determined by PCR (CLVL), and 0.56/day

when measured by QIFT (CLQIFT) (Spearman: 0.26; p = 0.1912).

In untreated cases, the median CLVL was 0.97/day and median

CLQIFT was 0.76/day (Spearman: 0.24; p = 0.0013). In patients

receiving antiviral therapy, viral clearance rates based on PCR

(CLVL) showed less variability (range 0.08; 2.49) compared to

untreated patients (range 24.70; 4.84). The same observation held

true with respect to viral clearance rates based on antigen testing

Figure 3. Binning analysis: Estimation of CT, median values based on categorized QIFT readouts. The following QIFT categories were
used: ‘‘Negative QIFT’’: 0 to 1 (n = 333). ‘‘Low QIFT’’: .1 to 100 (n = 254). ‘‘Moderate QIFT’’: .100 to 199 (n = 56). ‘‘High QIFT’’: .199 (n = 26).
doi:10.1371/journal.pone.0092500.g003

Figure 4. Sliding Window Graph: Binning of median CT values
and ranges/percentiles based on median QIFT.
doi:10.1371/journal.pone.0092500.g004

Table 2. Rates of agreement between QIFT and VL increase/
decrease.

QIFT q QIFT Q

VL q 29 31

VL Q 16 320

Rate of Agreement 64% 91% 88%

doi:10.1371/journal.pone.0092500.t002

Rapid Follow-Up Testing for Influenza at the POC
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(CLQIFT) ranging from 20.07 to 1.62 and from 22.36 to 5.03 in

treated versus untreated patients, respectively.

Discussion

Statement of Principal Findings
We report a first prospective study investigating ‘‘loss of antigen

positivity’’ as a POC parameter for the longitudinal monitoring of

influenza patients. During follow-up, rapid antigen testing using

fluorescence-based laminar flow tests (RIFT) may provide a

practical surrogate measure for influenza disease activity. ‘‘Loss of

antigen positivity’’ in RIFT may indicate a drop in viral load

below a critical threshold, where viral rebound is no longer

expected. It may also indicate loss of infectivity as reflected by viral

culture turning negative simultaneously with RIFT in most cases.

Quantitative readouts from the same rapid test (QIFT) show

potential as a valuable biomarker for the monitoring of virus

burden over time, with the advantage of obtaining results

immediately at the POC. QIFT may also be able to discriminate

between disease progression (VL increase) and resolution (VL

decrease). In patients receiving antiviral therapy, QIFT can be

used to monitor treatment success versus failure and/or risk of

antiviral drug resistance by estimating viral clearance rates under

therapy [7].

Rapid Follow-up Testing in Context
For effective infection control measures and to reduce morbidity

and mortality, isolation precautions are imminent. Antiviral

treatment when indicated needs to be initiated as timely as

possible [9,33]. The need to diagnose treatable conditions with

high disease burden has driven the development of diagnostic

assays to be used at the POC. In contrast to first-generation

RIDT, where sensitivities were still relatively low and user-

dependent [34], second-generation RIDT combine improved

sensitivities with objective automated read-outs [21,22,24].

Recent fluorescent-based RIDT such as SOFIA issue qualitative

(positive/negative) results based on qualitative signal over control

measurements. While RIDT have been licensed for the initial

diagnosis of influenza at the POC [1,6,17], this pilot study

demonstrates that qualitative (RIFT) and quantitative (QIFT)

fluorescence-based antigen testing may both be useful for the

longitudinal monitoring of influenza infections over time.

Strengths and Limitations of the Study
The retention rate in this study was .85%, which is very high

for an observational setting. For the evaluation of rapid influenza

testing as a follow-up tool (RIFT) and QIFT-based clearance rates

however, a sufficient number of follow-up time points was

required. Hence, smaller subsets of patients were included in

Figure 5. Comparison of viral clearance rates for CLVL versus CLQIFT and for treated versus untreated patients. Variance in viral
clearance rates for quantitative is smaller in treated than in untreated patients, for both VL and QIFT.
doi:10.1371/journal.pone.0092500.g005

Rapid Follow-Up Testing for Influenza at the POC
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these analyses, representing 65% in RIFT and 80% in QIFT

clearance rate calculations.

During longitudinal follow-up, RIFT turned negative consis-

tently with, or after the PCR. It has to be borne in mind, that PCR

and antigen tests measure different aspects of the same disease.

While PCR-based (amplification) methodologies may be sensitive

enough to detect even small amounts of nucleic acid over extended

periods of time, direct antigen testing may provide an immediate

(linear) estimate of virus burden during the acute phase of the

disease only. It has been known that RIDT correlate better with

viral culture than with PCR. It was therefore expected that the

agreement between RIFT and PCR would decline during

longitudinal follow-up (until both test are negative), whereas the

duration of viral culture positivity may correlate well with antigen

positivity [22,25]. It is also to be expected that the lower sensitivity

of rapid antigen testing compared to PCR would affect the QIFT/

PCR correlation, especially later during the course of illness, when

‘‘loss of antigen positivity‘‘ has already occurred and RIFT has

turned negative ( = QIFT,1). VL measurements from PCR-

positive samples below the LODQIFT could however not be

quantified reliably. For utmost transparency, values below the

LODQIFT were included in the analyses, but set to equal the

highest possible value ( = LOD) as the most conservative estimate.

Reversely, negative QIFT corresponded well with negative PCR

results.

QIFT and PCR both rely on the semi-quantitative measure-

ment of virus load in nasopharyngeal samples – unlike in the case

of HIV and hepatitis VL monitoring, where plasma virus loads are

followed. To minimize variability with nasopharyngeal sampling,

all RIFT/QIFT assays were performed immediately at the POC,

and by a specifically trained QM team. Samples were delivered

immediately to the RKI for blinded PCR analyses. The value of

optimized sampling procedures has been demonstrated in previous

evaluations establishing the sensitivity and specificity of the same

assay (SOFIA for influenza A and B) in the same QM setting [21].

Use of QIFT and RIFT in less controlled settings may yield

different results. Even if sampling has been optimized however, it

must be noted that nasopharyngeal samples may not always reflect

the virus burden present in the lower respiratory tract in critically

ill patients, where VL may be elevated in patients infected with

influenza viruses [11,35]. Also, viral shedding in the lower airways

is known to be prolonged in adult patients with pneumonia or

immuno-compromise. In these patients, relapse of disease can

occur if therapy is stopped based on cessation of upper airway

replication alone [11]. This however, would require broncho-

alveolar lavage procedures, which would neither be ethical nor

feasible for the routine follow-up of paediatric influenza patients

(unless intubated and critically ill). The present study does not

allow for comparison of specific patient subpopulations. Further

research in specific risk groups is needed.

Future analyses in specific subpopulations may compare the 3-

way relationship between of PCR-positivity, antigen-positivity and

viral culture in influenza patients with extreme disease presenta-

tions or different levels of immunosuppression.

Future Perspectives
The results of the binning analyses demonstrate the practical

value of QIFT for the monitoring of influenza disease activity at

the POC. For QIFT to be used in clinical practice in the future,

quantitative readings should be issued as four categories: negative,

low, moderate, and high virus burden. QIFT as a follow-up tool

could be optimized further, if the fluorescent reader provided a

standardized display of trends in virus burden in relation to

previous measurements in the same patient, or VL estimates as

demonstrated in the binning and sliding window plots. Having

immediate estimates of virus burden available at the POC will be

of great value to support a personalized approach to the

management of infants and immuno-compromised individuals

with influenza infection who often exhibit elevated virus titres and

prolonged virus shedding [2,4,5]. Previous studies have shown that

virus burden cannot be estimated based on clinical appearance

alone. It has further been reported that viral shedding may persist

beyond cessation of clinical symptoms [4,36]. Objective param-

eters such as RIFT and QIFT may facilitate individualized

therapy of influenza with estimates of virus burden available

immediately at the POC.

The decision whether or not to treat with antivirals in this QM

setting, was left up to the clinician in charge. Interestingly, only a

small proportion (12.1%) of patients with laboratory–confirmed

influenza received neuraminidase inhibitor therapy. For all treated

patients oseltamivir was prescribed. In the described setting,

zanamivir is restricted to antiviral therapy in ICU patients or

patients unable to take p.o. medicine. There was no evidence of

correlation between treatment decision and patients’ clinical

symptoms, underlying conditions or late appearance to the

hospital. With new antivirals under development, it might be of

value to pursue QIFT as a follow-up tool in randomized controlled

clinical trials.

Current recommendations by health authorities regarding

established neuraminidase inhibitor therapies include a standard

five-day course of treatment with a possible extension to ten days

in cases of ‘‘ongoing viral replication’’ [8,9]. Once antiviral

therapy has been terminated, it should not be restarted. This

implies that the decision whether to stop or adjust antiviral therapy

has to be made on day five, at the POC. Relative under-dosing

and/or premature treatment termination harbour the risk of

promoting antiviral drug resistance [10,13].

Previous studies have indicated that during antiviral therapy, a

less-than-expected slope of decline in VL might indicate resistance

development [7]. QIFT shows potential as a simple tool for the

real-time monitoring of treatment success at the POC: QIFT-

based viral clearance estimates (CLQIFT) showed similar ranges

and percentiles compared to PCR-based VL estimates (CLVL).

CLVL however may be more accurate in lower ranges and with

prolonged treatment. Further analyses in larger cohorts of treated

influenza patients may be required to determine the exact

relationship between CLQIFT and CLVL. The interesting observa-

tion that antiviral treatment may reduce intra-individual variation

in viral clearance rates with both CLQIFT and CLVL warrants

further investigation.

Additional studies may be undertaken to investigate the cost-

effectiveness of individualized antiviral therapy as well as the

longitudinal monitoring of virus burden in infants, high risk and

immuno-compromised individuals. The high retention rate in this

QM program indicates that the availability follow-up data at the

POC and the immediate feedback and reassurance to concerned

patients and families may have a positive impact on patient

satisfaction.

Conclusions

RIFT and QIFT show promise as simple and objective tools for

the real-time monitoring of influenza infections over time. RIFT

may be used as an objective measure for ‘‘loss of antigen

positivity’’, whereas QIFT provides a useful estimate of viral

clearance over time. The ability to monitor disease activity at the

POC may have important implications for infection control. It

may also facilitate the individualized management of infants and
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young children as well as immuno-compromised patients under

antiviral therapy. Future studies in larger cohorts of patients will

explore the practical implications of RIFT and QIFT in different

clinical and demographic settings.
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