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Multivalent display of minimal Clostridium difficile
glycan epitopes mimics antigenic properties of
larger glycans
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Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile.

The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge.

Less complex antigens providing similar immune responses are desirable for vaccine

development. Based on molecular-level glycan–antibody interaction analyses, we here

demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by

multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not

participate in binding. We show that antibody avidity as a measure of antigenicity increases

by about five orders of magnitude when disaccharides are compared with constructs

containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a

peptide T-cell epitope elicits weak but highly specific antibody responses to larger

PS-I glycans in mice. This study highlights the potential of multivalently displaying small

oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may

result in more cost-efficient carbohydrate vaccines with reduced synthetic effort.
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I
mmunologically active surface glycans expressed on
bacterial, viral and parasitic pathogens are attractive vaccine
targets1,2. Glycoconjugate vaccines consisting of isolated

bacterial polysaccharides from Streptococcus pneumoniae,
Neisseria meningitidis and Haemophilus influenzae linked to
immunogenic carrier proteins save millions of lives each year2.
However, isolated polysaccharides are heterogeneous, vary from
batch to batch and can be obtained only for culturable
pathogens2,3. Synthetic glycans provide an appealing alternative,
as they are not limited to fermentable pathogens3–6 and allow for
structure-based epitope design and refinement7–10. Still, the
features of glycans that govern the production of protective
and strong binding antibodies remain poorly understood9.
Conventional glycan antigen design is a time-consuming
trial-and-error process. Synthetic targets are selected based on
biological repeating units of natural polysaccharides and
immunologically evaluated in animal models10–12. If the
resulting antibodies do not target the pathogen, different
antigens are synthesized and tested. Vaccine antigens have to
elicit antibodies of high affinity and/or avidity that are associated
with disease protection2,13,14. Insights into the interactions of
glycan antigens and antibodies are key for the rational design of
synthetic carbohydrate vaccines8,9,15. Identifying minimal glycan
epitopes, the smallest oligosaccharides recognized by antibodies,
helps to reduce synthetic complexity en route to cost-efficient
vaccines7,16. In recent times, a minimal tetrasaccharide epitope of
the N. meningitidis serogroup W135 capsule was identified by
chemical synthesis in conjunction with immunization studies17.
The question whether multivalent display of minimal glycan
epitopes of C. difficile may induce immune responses
characteristic of larger glycans has not yet been answered.

We recently identified the minimal disaccharide a-L-Rha-(1-3)-
b-D-Glc glycan epitope of the C. difficile polysaccharide-I (PS-I)
surface polysaccharide, a promising vaccine target, by screening
patient antibodies and murine immunization studies7. A vaccine
against C. difficile is not yet available18 and limited expression of
PS-I polysaccharide in bacterial cultures requires chemical
synthesis to obtain glycan quantities sufficient for immunologic
studies7,19–22. The synthetic repeating unit of PS-I, a branched
pentasaccharide containing glucose and rhamnose19, is highly
immunogenic, but its synthesis is laborious7,21,22. The
disaccharide minimal epitope is easier to synthesize and can
induce antibodies binding to larger PS-I structures, but is less
immunogenic7. If linking of minimal disaccharides can mimic

larger glycans, a new class of synthetic vaccine against C. difficile
may result.

Here we show that disaccharides multivalently linked on a
synthetic OAA scaffold23–25 are highly antigenic and induce
antibodies to larger PS-I glycans in mice. Molecular-level insights
into interactions of mono- and multivalent glycans with
monoclonal antibodies (mAbs) were gained by combining
glycan microarray, surface plasmon resonance (SPR),
Interaction Map (IM), saturation transfer difference (STD)-
NMR and isothermal titration calorimetry (ITC) experiments.
The mAbs mainly interacted with the terminal rhamnose and the
adjacent glucose of the disaccharide. In the pentasaccharide, two
disaccharides are connected by a glycosidic bond. This linkage
does not directly participate in antibody binding, but increases
the affinity from micromolar (disaccharide) to nanomolar
(pentasaccharide), probably due to an entropy-driven process.
Pentavalent display of disaccharides on an OAA scaffold lead to
enhanced affinity to mAbs compared with monovalent glycans
mainly through avidity effects. The pentavalent OAA equipped
with a peptide T-cell epitope of the CRM197 immunogenic carrier
protein26 was able to induce antibodies in mice that recognized
larger PS-I glycans.

Our findings provide experimental proof that artificially
connecting minimal glycan epitopes can mimic larger glycan
structures (Fig. 1). This is a crucial step towards simplified
synthesis of rationally designed antigens for vaccines against
C. difficile and other pathogens expressing repetitive polysacchar-
ide antigens.

Results
Pentasaccharide 1 elicits mAbs in mice. We recently described
the syntheses of the C. difficile PS-I pentasaccharide repeating
unit and oligosaccharide substructures7,22. The oligosaccharides
were equipped with a reducing-end aminopentyl linker allowing
for conjugation to carrier proteins and microarrays to study their
immunologic properties (Fig. 2). Pentasaccharide 1 is the
complete repeating unit of PS-I and disaccharide 3 is the
minimal glycan epitope7.

To understand the structural determinants that mediate
glycan–antibody interactions, we generated mAbs to PS-I with
the hybridoma technique27 using a pentasaccharide 1-CRM197

glycoconjugate7, to immunize mice (Fig. 3a). Custom microarrays
presenting 1, control oligosaccharides 7 and 8, the carrier protein
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Figure 1 | Identifying and connecting minimal glycan epitopes to mimic larger glycans. During C. difficile infections (CDIs), patients mount antibodies

to the PS-I polysaccharide. In efforts towards rationally designed vaccines, various PS-I glycan epitopes were synthesized7. A disaccharide minimal

epitope (dashed lines) was identified from recognition patterns of human and mouse anti-PS-I antibodies7. (a) Mice immunized with a semi-synthetic

glycoconjugate vaccine candidate of CRM197 and the disaccharide produce antibodies to the pentasaccharide repeating unit and smaller substructures.

(b) A fully synthetic pentavalent glycan mimic with increased antigenicity compared with monovalent disaccharides elicits antibodies to the

pentasaccharide only. It comprises an OAA backbone23–25 and a T-cell epitope, amino acids 366–383 of the CRM197 protein26.
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CRM197 and a dummy conjugate representing the immunogenic
spacer moiety of the glycoconjugate7 (Fig. 3b) were used to follow
serum IgG responses. The mice produced IgG antibodies to 1,
CRM197 and the spacer (Fig. 3c). Splenocytes of one selected
mouse were used to obtain antibody-producing hybridomas27.
Individual clones secreted IgG to either 1, CRM197 or the spacer
moiety without apparent cross-reaction (Fig. 3d).

Three hybridoma clones termed 2C5, 10A1 and 10D6
produced IgG exclusively binding to 1. SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) of the purified mAbs showed
expected light and heavy IgG chains, and no apparent protein
impurities (Fig. 4a). The three mAbs were of the IgG1 subtype
(Fig. 4b). Microarrays with PS-I oligosaccharide substructures
were used to determine their binding specificities (Fig. 4c).
Highest binding signals to 1 and weaker signals to rhamnose-
containing substructures 2 and 3 were observed. mAb 10A1 also
weakly bound to mono-rhamnose 4. No binding to oligoglucoses
5 and 6, or unrelated glycans 7 or 8 was seen (Fig. 4c,d). Based on
these findings, we concluded that the requirements for anti-PS-I

antibody binding were a terminal rhamnose that is 1-3 linked to
a glucose, as present in glycans 1–3.

mAbs bind to 1 with nanomolar affinity. Kinetic SPR experi-
ments were performed to determine the binding strengths of the
mAbs to PS-I glycans expressed as dissociation constants (KD)8

(Fig. 5a). KD values to 1 were in the nanomolar (163–245 nM)
(Fig. 5b) and those to 2 (13.3–18.8 mM) and 3 (5.9–37.5 mM) in
the micromolar range (Fig. 5c). Weak or no binding was observed
for mono-rhamnose 4 and oligoglucose 6. Overall, the SPR
measurements (summarized in Table 1) confirmed results
obtained by glycan microarray presented above.

mAbs bind via terminal Rha and adjacent Glc. The glycan
microarray and SPR data suggested the necessity of a terminal
rhamnose and the adjacent glucose for antibody binding, whereas
glucose moieties per se were immunologically inert. To under-
stand antibody binding at molecular-level detail and to identify
the functional groups involved in antibody binding, we per-
formed STD-NMR measurements28. STD effects imposed by
antibody binding to disaccharide 3 suggested that the main
contact surface area was located within the terminal rhamnose,
with highest STD effects at the indistinguishable methyl protons
H6, H’6 and H’’6 (100% normalized STD effect), as well as H3
(99%) and H2 (78%) (Fig. 6a,b). The glucose moiety in 3
contributed weakly to antibody binding around H3 (11%).
Despite the low saturation transfer, this interaction appears to
be important for antibody binding, as mono-rhamnose 4 was not
or only weakly bound by the mAbs in glycan microarray and SPR
experiments. Comparison of STD-NMR spectra with 3 at a fixed
saturation time indicated that all mAbs recognized a similar
epitope (Fig. 6c). In addition, trisaccharide 2, which contains 3
and an additional glucose at the reducing end, showed
comparable STD effects with mAb 10A1. This indicated that
the additional glucose did not participate in binding and may
explain similar binding affinities to 2 and 3 in SPR experiments
described above.

NH2

α
3

β 4

α
3

α 2 α

1

NH2

α
3

β 4 α

2

NH2

α
3

β

3

NH2β 4 α 2 α

6

NH2α 2 α

5

NH2α

4

NH2β 3 β 4 α

7

4
3
β

αβ 3
NH2α 2

4
α 2 α

8
β

Control oligosaccharides

C. difficile PS-I-related oligosaccharides

Glc

Rha

Gal

GalNAc

Man

Figure 2 | Oligosaccharides used in this study. The synthesis of C. difficile

PS-I-related oligosaccharides 1–6 has been described previously7,22.

C. difficile PS-II hexasaccharide66 7 and the lipophosphoglycan capping

tetrasaccharide from Leishmania67–69 8 served as controls.
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the spacer and 2C5 producing antibodies to PS-I.
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Owing to the slow off-rates of 1 with all three mAbs, we were
unable to determine any STD effects for the pentasaccharide.
However, competition experiments of trisaccharide 2 with 1
completely diminished any STD effects imposed by 2 (Fig. 6d).
This indicated identical binding sites and confirmed high-affinity
binding of 1. Overall, STD-NMR data confirmed antibody
binding to 1–3 and showed that interactions were mainly
mediated by terminal rhamnoses with weak but essential
participation of adjacent glucoses. This suggested that strong
binding to 1 was proably achieved by linking two disaccharide 3

subunits via a glycosidic bond that does not interact directly with
the antibodies.

mAb binding to 1 is entropically favoured. Pentasaccharide 1
was bound with about 100-fold lower KD values than the minimal
glycan epitope 3. This stronger binding may have been due to
avidity (re-binding) effects, as 3 is contained twice in 1, or by
higher affinity. To address this question, we compared the
binding properties by IM analysis based on SPR traces29. This
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Figure 4 | Characterization and epitope recognition patterns of anti-PS-I mAbs. (a) SDS–PAGE analysis of the purified mAbs showing bands
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data indicated that stronger antibody binding to 1 was mainly due
to a higher on-rate of 126,000 M� 1 s� 1 compared with
250 M� 1 s� 1 for 3, whereas both off-rates were in the same
range (Fig. 7a). Both antigens interacted with mAb 2C5 in a
1:1-like manner, indicated by one dominant peak in the IM plots.
Therefore, stronger antibody binding to 1 was due to increased
affinity, not avidity, which would be characterized by differences
in off-rates and additional peaks29. This suggested that the
binding pockets of anti-PS-I mAbs accommodated the entire
pentasaccharide 1 and not just disaccharide 3, which could
explain higher affinity to 1.

Assuming that 1 had more interactions with the binding
pockets, association with 1 would liberate more water molecules
during complex formation than 3, thereby producing a
more favourable entropy30. To investigate this, thermodynamic
parameters of mAb interactions with 1 and 3 were measured by
ITC (Fig. 7b). The binding stoichiometries for 1 were about two
for mAbs 2C5 (2.2) and 10A1 (2.6), as expected for antibodies
with two similar antigen-binding sites. For 3, the binding
stoichiometry was set constant to 2, to fit the data points. Both

1–antibody and 3–antibody interactions were mainly enthalpi-
cally driven (Fig. 7c). Entropic contributions were favourable for
1, but considerably lower or slightly unfavourable for 3. The
favourable entropic term of the 1–mAb 2C5 interaction was
confirmed by SPR analysis that yielded similar thermodynamic
parameters as ITC (Supplementary Fig. 6b,c). Therefore,
entropically favoured binding was probably responsible for the
increased affinity to 1, possibly because it provides more
hydrophobic interactions through methyl groups of rhamnoses.
The favourable entropic terms supported the notion that 1 fills
the binding pocket of the mAbs.

IM analysis indicated that binding stoichiometries for 1 and 3
were identical, despite the fact that 1 contains two copies of 3.
Therefore, the mAb binding pockets probably do not provide two
identical binding sites for 3, but one binding site for 1 that may
adopt a more complex conformation. To obtain structural insight
into the conformation of 1, two-dimensional (2D) NMR
spectroscopy was employed (Fig. 7d). Inter-residue nuclear
Overhauser effects (NOEs) were all in agreement with a model
of the solution structure of 1 based on calculations using the
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Table 1 | SPR-inferred KD values of anti-PS-I mAbs to PS-I oligosaccharide antigens.

KD values to oligosaccharide antigens

mAb 1 2 3 4 6

2C5 163±23 nM 14.1 (10.3;17.8) mM 18.0 (16.3;19.6) mM 44160mM 44160mM
10A1 245 (211;280) nM 13.3 (13.0;13.6) mM 5.9 (5.3;6.4) mM 44160mM 44160mM
10D6 169 (128;209) nM 18.8 (17.2;20.3) mM 37.5±0.4mM 44160mM 44160mM

mAb, monoclonal antibody; PS-I, polysaccharide-I; SPR, surface plasmon resonance.
See Supplementary Figs 3–5 for details. All values are mean±s.e.m. of n¼ 3 or mean with minimum and maximum values in parentheses of n¼ 2 independent experiments.
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GLYCAM06 force field31 (Fig. 7e). These data suggested that 1
adopts a conformation in which the two units of 3 are oriented in
an angled position relative to each other. Taken together, IM, ITC
and 2D NMR experiments indicated that the mAb binding
pockets accommodate 1, whereas 3 made fewer contacts, resulting
in lower binding affinity.

Compound 11 shows high-avidity mAb binding. The results
indicated that high-affinity antibody binding to PS-I was achieved
by covalently linking two disaccharides 3 that together adopt a
specific conformation fitting into the mAb binding pockets. As
the connecting glycosidic bond is not directly involved in anti-
body binding, this linker may be replaced with a synthetic

scaffold to mimic larger PS-I structures. To investigate this, a
synthetic oligomer displaying five disaccharide units was syn-
thesized using a derivative of 3 with a reducing end thioethyl
linker 9 (see Supplementary Note 1 and Supplementary Fig. 8 for
the synthesis). Two disaccharide-functionalized OAAs25 were
prepared: monovalent 10 and pentavalent 11 (Supplementary
Fig. 7a).

First, we tested whether the thiol group influenced antibody
binding using SPR. In line with the STD-NMR observations that
the linker at the reducing end of 3 did not participate in antibody
binding, 9 bound to mAb 2C5 with comparable kinetics and
affinity (Supplementary Fig. 7b). The KD values for
9 and 3 were highly similar (15.1 and 18 mM, respectively).
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10 was also detected (Supplementary Fig. 7c). Owing to slow
on-rates, perhaps resulting from steric constraints, binding curves
did not reach equilibrium states, impeding KD value calculation
for 10. However, the off-rates were similarly fast as observed for 3
and 9. Slow on-rates were also seen for the pentavalent construct
11–mAb interaction, but off-rates were considerably lower
(Fig. 8a), indicating increased avidity to 11 compared with 10.

To compare avidities, we used SPR to estimate the off-rates,
which are the major determinants of antibody binding
strength13,32–37. The off-rate of the 11–mAb 2C5 interaction
was 2.8� 10� 8 s� 1 (Fig. 8a), whereas off-rates of 1, 3 and 10
(Supplementary Fig. 7c) were about five orders of magnitude
faster (1.9, 1.6 and 1.4� 10� 3 s� 1, respectively). This
demonstrated increased avidity to the pentameric compared
with the monomeric construct. Tight antibody binding to OAA
11 demonstrated that antigenicity of larger PS-I structures could
be mimicked by covalent linking of minimal glycan epitopes 3 on
a synthetic scaffold.

Compound 11 elicits antibodies to larger glycans. We next
sought to investigate the ability of 11 to induce antibodies in
mice. A group of mice was immunized with 11 three times in
2-week intervals (Fig. 8b). To be able to recruit T-cell helpers,
11 was equipped with a T-cell epitope encompassing amino
acid residues 366–383 of the CRM197 protein26. Thereby,
11 represents a fully synthetic, multivalent vaccine candidate.
For comparison, another group of mice was subjected to an
identical immunization regime with glycoconjugate 12 composed
of 3 and CRM197 (Supplementary Fig. 10a and Supplementary
Note 2) that represents a semi-synthetic vaccine candidate. Serum
IgG responses to the disaccharide 3 and pentasaccharide 1 were
followed by glycan microarray (Fig. 8c) and SPR measurements
(Fig. 8d). Most interestingly, 11 elicited IgG exclusively to 1,
whereas antibodies induced by 12 recognized both 3 and 1. The
latter observation confirmed previous results obtained with a
comparable glycoconjugate of 3 and the CRM197 protein7. Both
groups of mice also produced IgGs to mono-rhamnose 4, as seen
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Figure 8 | Antigenicity of multivalently displayed minimal glycan epitopes of PS-I. (a) SPR sensorgrams of mAb 2C5 binding to construct 11 that

pentavalently presents the minimal disaccharide glycan epitope. For comparison, sensorgrams of the same antibody to disaccharide 3 and pentasaccharide

1 are shown. Avidities were estimated by fitting off-rate curves with a dissociation model (black dashed lines). The off-rate values koff are mean±s.e.m.

of n¼ 3 or mean with minimum and maximum values in parentheses of n¼ 2 independent measurements. (b) Mice were immunized with 11 (group 1) or

glycoconjugate 12 (group 2) at the indicated time points. (c) Glycan microarray-inferred serum IgG levels to 1 (upper) and 3 (lower) of immunized mice

expressed as mean fluorescence intensity (MFI) values. Bars represent meanþ s.d. of three mice. Values of individual mice are shown as black dots.

(d) SPR-inferred serum antibody responses to 1 (upper) and 3 (lower) in immunized mice. The experimental set-up is shown to the left. Average

sensorgrams (two independent measurements) of pooled sera at week 5 post immunization subtracted by week 0 signals are shown in the centre.

The bar graphs on the right show response unit signals at t¼ 290 s (meanþ s.e.m. of two independent measurements). See Supplementary Note 2 and

Supplementary Figs 11–13 for details on the data presented in b–d.
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in our previous immunization studies with PS-I-CRM197

glycoconjugates7, and to CRM197, confirming the functionality
of the synthetic CRM197 peptide in 11 (Supplementary Fig. 11).
Although antibodies to CRM197 were detected in all mice after
immunization, glycan-specific IgGs were only detected in one or
two mice per group, indicating limited antigenicity of the glycan
antigens (Fig. 8c). Next, we investigated whether the ability of
11 to elicit glycan-specific IgGs could be increased through
its conjugation to CRM197, to furnish glycoconjugate 13
(Supplementary Fig. 10b and Supplementary Note 2). Although
immunization of mice with 13 lead to glycan-specific IgGs to
mono-rhamnose 4 only, an existing IgG response to 1 and 3
elicited by two immunizations of 12 could be boosted with 13.
Collectively, the immunization experiments showed that fully
synthetic 11 was able to elicit IgGs to pentasaccharide 1 in mice at
comparable levels to the semi-synthetic glycoconjugate 12.

Discussion
PS-I surface glycans are promising immunogens for
vaccines against C. difficile7,18–22. We recently identified PS-I
oligosaccharides that are recognized by antibodies of patients
and therefore represent natural epitopes7. The disaccharide
Rha-(1-3)-Glc 3 emerged as the smallest antigenic glycan and
consequently provided a useful template for vaccines with low
synthetic effort. However, its ability to raise antibodies in a
conventional semi-synthetic glycoconjugate was limited7,
calling for alternative means of presentation. Previous studies
have shown that the multivalent display of small glycan
antigens can yield highly immunogenic structures38. For
instance, multivalently presented Tn monosaccharide antigens
(a-N-acetylgalactosamine-serine) on dendrimeric39 or cyclic40

peptides were able to elicit high levels of anti-Tn antibodies in
mice. This suggested that the multivalent display of PS-I
disaccharides may lead to enhanced capability of inducing
glycan-specific antibodies.

The feasibility of this approach required an understanding of
how PS-I glycans interact with mammalian antibodies. Therefore,
we studied glycan interactions with anti-PS-I mAbs using various
biochemical and biophysical methods. Glycan microarray and
SPR studies confirmed that disaccharide 3 is the minimal epitope
of the PS-I glycan7. However, mAb binding to the more antigenic
pentasaccharide 1 was stronger with nanomolar KD values
compared with 3 with micromolar KD values. STD-NMR
measurements revealed that mAb binding to PS-I glycans was
primarily mediated by terminal rhamnoses and adjacent glucoses,
but did not extend further into the antigens. The glycosidic bond
that links two units of 3 in the pentasaccharide 1 does not directly
participate in binding events. It may therefore be replaced by a
linker to furnish structures that can mimic the immunologic
properties of larger PS-I glycans. Molecular interaction studies
indicated that stronger mAb binding to 1 was due to higher
affinity, not avidity, despite the presence of two units of 3 in the
pentasaccharide. ITC studies suggested that the entire
pentasaccharide is accommodated by the binding pockets of the
mAbs, leading to entropically favoured interactions. 2D NMR
experiments showed that the pentasaccharide probably adopts a
conformation with two disaccharide units in an angled position.
Multivalently displayed disaccharides 3 might therefore lead to
enhanced antibody binding through increased affinity (faster on-
rates) when two adjacent disaccharides adopt a conformation
similar to the pentasaccharide, through increased avidity (slower
off-rates) by re-binding events, or a combination of both.

To investigate this, we synthesized OAAs multivalently
presenting 3. The OAA backbone has been shown to be
non-toxic, non-immunogenic and suitable for the multivalent

presentation of oligosaccharides with comparably low
synthetic effort23–25. Straightforward solid-phase synthesis of
OAAs furnished the PS-I glycan mimic 11 displaying five
disaccharides 3. This corresponds to 2.5 generic copies of the
pentasaccharide, thereby enabling a combination of potential
affinity- and avidity-enhancing effects. A comparably large
construct was also chosen, as larger PS-I glycans tend to be more
capable of eliciting antibodies than smaller ones7. Tight mAb
binding to 11 was shown by SPR. Owing to slow on-rates that were
outside of the measurable range, we were unable to detect whether
affinity was increased. However, the off-rates were about five
orders of magnitude slower than for monovalent disaccharides,
indicating strong avidity effects. Thereby, we successfully created a
PS-I glycan mimic showing high-avidity antibody binding. This is
reminiscent of natural repetitive polysaccharides that enable strong
antibody binding through avidity effects despite usually low
affinities to individual epitopes2.

To investigate the ability of 11 to induce PS-I-specific
antibodies, we performed immunization studies in mice.
Compound 11 was equipped with a peptide epitope of CRM197

to recruit T-cell helpers, similar to previous immunization efforts
with multivalent Tn antigens that included synthetic T-cell
epitopes39,40. Antibody responses were compared with the semi-
synthetic glycoconjugates 12 and 13 obtained by covalently
linking 3 and 11, respectively, to CRM197. The glycoconjugates
were synthesized using a di-p-Nitrophenyl adipate ester spacer
molecule41, to facilitate the challenging conjugation of 11 to
CRM197, as this chemistry is more efficient than the previously7

used di-N-succinimidyl adipate ester.
Immunization of mice with fully synthetic OAA 11 induced

IgGs to pentasaccharide 1 at low but comparable levels to semi-
synthetic glycoconjugate 12. Interestingly, in contrast to 12, IgGs
to disaccharide 3 were not detectable after immunization with 11.
Therefore, the IgG response to 11 was more specific to larger PS-I
glycans, which is desirable for a vaccine to limit cross-reaction
with structurally related glycans. This also indicated that two
adjacent disaccharides in 11 may have adopted a conformation
that resembles the pentasaccharide to some degree.

To investigate whether the ability of 11 to induce PS-I-specific
antibodies could be enhanced, we conjugated the pentavalent
construct to CRM197. The resulting glycoconjugate 13, however,
was unable to generate PS-I glycan-specific IgGs in mice,
probably due to the low antigen loading of 1.3 mol of 11 per
mole of CRM197. It has been noted previously that low antigen
loading of glycoconjugates is associated with weaker antibody
responses42. Glycoconjugate 13, however, was able to boost
existing IgG responses to PS-I glycans elicited by 12, suggesting
limited ability to raise antibodies that may be increased by higher
antigen loading.

It has to be mentioned that the PS-I-specific IgG responses
induced by 12, displaying antigens at a high density (20 mol 3 per
mole of CRM197) were relatively weak and only detectable at low
serum dilutions (1:20) by glycan microarray. A comparable
glycoconjugate with lower antigen density (10 mol 3 per mole
of CRM197) investigated previously7 elicited higher levels of
PS-I-specific IgGs in mice than 12 that were detectable at higher
dilutions (1:100). It has been suggested previously that too high
glycan loading of glycoconjugates may limit T-cell stimulation,
resulting in weak antibody responses42. Higher antigen loading
and therefore weaker IgG levels in the present study probably
resulted from the employed conjugation chemistry. Still,
glycoconjugate 12 was suitable to compare antigen recognition
patterns to mice immunized with 11, as 12 elicited IgGs
cross-reacting to 1 and 3, similar to our previous immunization
studies7. Further studies are required to increase the ability of
multivalently displayed disaccharides to elicit antibodies. As the
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linker itself is not involved in antibody binding, it may be
replaced to alter the distance of disaccharide units, the
biocompatibility and/or the flexibility of the construct.
Comparative studies with constructs of different valencies may
help to differentiate affinity from avidity effects. The antibody
response to multivalent glycan mimics on immunization may also
benefit from incorporation of immune stimulatory molecules
such as glycosphingolipids, as we have shown recently43.
Furthermore, the ability of the anti-PS-I antibodies to
confer functional immunity requires investigation. Both active
immunization and passive antibody transfer regimes are currently
being tested for their ability to limit C. difficile-induced colitis in a
murine challenge model. Chimerized and humanized versions of
the mAbs will be designed that may be of potential therapeutic use.

In a broader sense, our findings provide insights into the
nature of glycan–antibody interactions. Similar to lectins, anti-
body binding to glycan antigens is mainly an enthalpically driven
process often of low millimolar to micromolar affinities44–50

and, in most cases, characterized by unfavourable entropic
contributions45,46,51–58. Enthalpy–entropy compensation usually
impedes high-affinity binding. Nanomolar affinities of antibodies
against oligosaccharides are typically attributed to strong ionic
interactions as in the case of a trisaccharide antigen of
Chlamydia59,60 or to the conformational rigidity of larger
polysaccharides that leads to favourable entropic contributions
due to the lower entropic penalty during antibody binding61. In
contrast, we here demonstrated antibodies binding with
nanomolar affinity to a comparably small oligosaccharide
antigen, pentasaccharide 1, without charged residues. Details on
these interactions were obtained by STD-NMR. This technique
has been used to explain glycan selectivity of lectins at the
molecular level62 and is also useful to decipher glycan–antibody
interactions8. High-affinity binding to 1 could be due to antibody
interactions with hydrophobic methyl groups, as shown by
STD-NMR, which result in a favourable entropy by solvent
displacement. Interestingly, although the number of mAbs in this
study was limited, all three recognized the similar molecular
epitope of PS-I mainly involving rhamnose. The notion that
antibody affinity benefits from recognition of hydrophobic
methyl groups in bacterial sugars is further supported by our
recent observation that methyl groups of anthrose and rhamnose
contribute significantly to nanomolar affinity antibody binding to
a tetrasaccharide antigen of Bacillus anthracis9. The avidity-
enhancing effect of presenting minimal glycan epitopes on a
scaffold may also explain how repetitive bacterial polysaccharides
can induce strongly binding antibodies, despite usually low
affinities against single epitopes.

Overall, this study shows that the identification and multi-
valent presentation of minimal glycan epitopes can result in fully
synthetic, highly antigenic glycan mimics that are able to elicit
antibody responses specific for larger glycans. More generally,
the findings advance our understanding of glycan–antibody
interactions that are the basis for epitope-focused rational antigen
design en route towards improved glycan-based vaccines against
C. difficile and other pathogens expressing repetitive glycan
antigens.

Methods
Preparation of glycan microarrays. Oligosaccharides bearing an amine-terminal
linker, or proteins, were immobilized on N-hydroxyl succinimide ester-activated
slides (CodeLink Activated Slides by SurModics, Inc., Eden Prairie, MN, USA) with
a piezoelectric spotting device (S3; Scienion, Berlin, Germany) in such a way that
64 individual subarrays were contained each slide27. Microarray slides were
incubated in a humid chamber for 24 h at room temperature (RT) to complete
coupling reactions. Next, the remaining N-hydroxyl succinimide ester groups were
quenched with 50 mM aminoethanol solution pH 9 for 1 h at 50 �C, washed three
times with deionized water and stored desiccated until use, as described27.

Generation of mAbs. mAbs to immunogen 1 were obtained by the hybridoma
technique27 from mouse splenocytes immunized with a glycoconjugate composed
of the CRM197 carrier protein (Pfénex, Inc., San Diego, CA, USA) and 1
synthesized with di-N-succinimidyl adipate as cross-linking reagent7. Six 6–8
weeks old female C57BL/6 mice (purchased from Charles River, Sulzfeld,
Germany) were immunized with this glycoconjugate via the subcutaneous route in
the presence of aluminium hydroxide adjuvant (Alum Alhydrogel, Brenntag) three
times in 2-week intervals. Each immunization contained 3 mg of CRM197-bound
immunogen 1. The immune response was followed weekly by glycan microarray-
assisted analysis of sera for IgG antibodies to 1, CRM197 and the generic spacer
moiety composed of aminopentyl and adipoyl moieties, and control
oligosaccharides. For serum IgG analysis, printed and quenched microarray slides
were blocked for 1 h with 1% (w/v) BSA in PBS, washed three times with PBS and
dried by centrifugation (300 g, 5 min). Slides were then equipped with 64-well
incubation chambers (FlexWell 64, Grace Bio-Labs, Bend, OR, USA) and incubated
with mouse sera diluted 1:100 (v/v) in PBS for 1 h in a humid chamber. After
washing three times with 0.1% Tween-20 in PBS (v/v) and drying by
centrifugation, the microarray slides were incubated for 1 h with anti-mouse IgG
Alexa Fluor 647 antibody (Life Technologies, catalogue number A-31574) diluted
1:400 in 1% BSA in PBS (w/v) in a humid chamber. After washing three times with
0.1% Tween-20 in PBS (v/v) and once with deionized water, microarray slides were
dried by centrifugation and scanned with a GenePix 4300A microarray scanner
(Molecular Devices, Sunnyvale, CA, USA). Of the six mice, the one with highest
IgG response to 1 was selected for splenocyte isolation 1 week after the third
immunization and splenocytes were fused with P3X63Ag8.653 myeloma cells
(purchased from the American Type Culture Collection, Manassas, VA, USA), to
obtain hybridomas. Hybridoma clones were selected by glycan microarray-assisted
analysis27. After three subsequent subcloning steps, three hybridoma clones, 2C5,
10A1 and 10D6, producing IgGs exclusively to 1 were recovered.

Purification and isotype analysis of mAbs. Hybridoma clones 2C5, 10A1 and
10D6 were expanded in serum-free medium as described27. Cell culture
supernatants were concentrated tenfold using centrifugal filter devices with 50 kDa
exclusion volume (Amicon Ultra-15 Ultracel, Millipore). Concentrated
supernatants were subjected to IgG purification using the Proteus Protein G
Antibody Purification Midi Kit (AbD Serotec) following the manufacturer’s
recommendations. Purified mAbs were stored in PBS with 0.02% (w/v) sodium
azide at 4 �C. Protein concentrations were determined with the Pierce Micro BCA
Protein Assay Kit (Thermo Scientific) and IgG isotypes were determined with the
AbD Serotec Mouse Isotyping Kit MMT1 according to the manufacturer’s
recommendations.

SDS-PAGE. Samples were dissolved in Lämmli buffer (0.125 M Tris, 20% (v/v)
glycerol, 4% (w/v) SDS, 5% (v/v) b-mercaptoethanol and bromophenol blue pH
6.8) and boiled at 95 �C for 5 min. Samples were run in a 10% polyacrylamide gel
and stained with 0.025% Coomassie Brilliant Blue R-250 in an aqueous solution
containing 40% (v/v) methanol and 7% (v/v) acetic acid. Gel was destained with
50% (v/v) methanol and 10% (v/v) acetic acid in H2O. PageRuler Plus Prestained
Protein Ladder (Thermo Scientific, catalogue number 26619) served as size marker.

Glycan microarray binding assays. Microarray slides were blocked with 1%
BSA in PBS (w/v) for 1 h at RT, washed three times with PBS and dried by
centrifugation (300 g, 5 min). FlexWell 64 incubation chambers (Grace Bio-Labs)
were applied to microarray slides. Slides were incubated with mouse sera diluted
1:100 with PBS unless mentioned otherwise, in a humid chamber for 1 h at RT,
washed three times with 0.1% Tween-20 in PBS (v/v) and dried by centrifugation
(300 g, 5 min). Slides were incubated with fluorescence-labelled secondary anti-
bodies diluted 1:400 in 1% BSA in PBS (w/v) in a humid chamber for 1 h at RT,
washed three times with 0.1% Tween-20 in PBS (v/v), rinsed once with deionized
water and dried by centrifugation (300 g, 5 min) before scanning with a GenePix
4300A microarray scanner (Molecular Devices). Image analysis was carried out
with the GenePix Pro 7 software (Molecular Devices). The photomultiplier
tube voltage was adjusted such that scans were free of saturation signals.
Background-subtracted mean fluorescence intensity values were exported to
Microsoft Excel, for further analyses. Secondary antibodies used were as
follows: Alexa Fluor 647 Goat Anti-Mouse IgG (Hþ L) (Life Technologies,
catalogue number A-31574) and Alexa Fluor 594 Goat Anti-Mouse IgG1 (g1)
(Life Technologies, catalogue number A-21125).

SPR and IM analysis. Binding analyses were carried out on a Biacore T100
instrument (GE Healthcare). CM5 sensor chips were functionalized with about
10,000 RUs of a-mouse IgG capture antibody, using the Mouse Antibody Capture
Kit and the Amine Coupling Kit (GE Healthcare) according to the manufacturer’s
recommendations. A blank-immobilized flow cell was used as reference, to com-
pensate for nonspecific binding of antibodies or oligosaccharides to the sensor chip
surface. Kinetic measurements were performed with the Biacore T100 Control
software using the ‘Kinetics’ function. PBS was used as running buffer and all
measurements were performed at 25 �C and a flow rate of 30 ml min� 1. About
500 RUs of mAbs were captured at a concentration of 50 mg ml� 1 diluted in PBS
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and oligosaccharides or OAAs (in PBS) at the indicated concentrations were passed
through, using the standard parameters for association and dissociation times
unless mentioned otherwise. Flow cells were regenerated with 10 mM glycine-HCl
pH 1.7 for 30 s. Kinetic evaluation of binding responses was performed with the
Biacore T100 Evaluation software, using reference-subtracted sensorgrams. Two
different kinetic models, a 1:1 binding Langmuir model and a two-state reaction
model, which assumes a conformational change in the antibody–analyte complex,
were used to fit the data. The fitting quality was evaluated by investigating
respective residual plots, w2 and s.e. values for on- and off-rates. Both models
yielded similar good fittings. We chose the 1:1 binding model over the
two-state reaction model to calculate on- and off-rates, as well as KD values, as this
model makes fewer assumptions. When on-rates and/or off-rates were outside of
the measurable ranges of the instrument, the steady-state affinity model was used
instead to determine KD values. The 1:1 binding model was generally preferred over
the steady-state affinity model in cases where both could be applied. In these cases,
the two models yielded roughly similar KD values. Thermodynamic parameters
were inferred by using the ‘Thermodynamics’ function of the Biacore T100 Control
software with the same experimental set-up described above. Temperatures from
13 to 37 �C were chosen. Values for DG, DH and DS were inferred by van’t Hoff
analysis. IM analysis was carried out by Ridgeview Diagnostics AB, Uppsala,
Sweden.

STD-NMR. Before the STD-NMR studies, proton resonances of oligosaccharides
1–3 were assigned using standard one-dimensional proton spectra, as well as 2D
total correlation spectroscopy (2D-TOCSY), correlation spectroscopy, 1H–13C
heteronuclear single quantum coherence and 1H–13C heteronuclear multiple bond
correlation spectra at concentrations varying between 5 and 20 mM in D2O. All
NMR studies were measured at 298 K on a Varian PremiumCOMPACT 600 MHz
spectrometer equipped with a OneNMR probe. For STD-NMR, samples contained
200mM ligand and 2 mM antibody in 40 mM phosphate buffer (pH 7.0, uncor-
rected). On-resonance irradiation was set to � 0.5 p.p.m. and off-resonance irra-
diation was set to 80 p.p.m. A 35-ms T1r spin-lock filter and a W5 WATERGATE
for solvent suppression were applied. The saturation pulse train consisted of a
series of Gaussian shaped pulses of 50 ms duration and 1 ms interpulse delay with
an irradiation power of 85 Hz. A total of 2,048 scans were recorded. STD-NMR
spectra of carbohydrates in the absence of antibody and spectra of antibody only
served as negative controls. Here, saturation and relaxation times were set to 2 and
6 s, respectively. STD build-up curves for mAb 10A1 were recorded at saturation
transfer times of 0.5, 1, 2, 4 and 6 s, adjusting the prescan delay accordingly.
Epitopes for mAbs 2C5 and 10D6 were recorded with a saturation transfer time of
2 s. NMR spectra were processed in MestReNova 9.1 (MestreLab) and data were
analysed in OriginPro9 (OriginLab) to obtain the binding epitopes according to
Mayer and James28. For the competition experiments, 1 was added to samples of 3
or 2 to a final concentration of 200mM applying a saturation transfer time of 2 s.

ITC. All measurements were performed in a MicroCal ITC200 system (GE
Healthcare) at 25 �C. Oligosaccharides 1 and 3 (in PBS) at either 250 mM or 3 mM
were titrated into the measurement cell containing 7 mM of mAb 2C5 or 10A1 in
PBS (injection volume 2 ml). Data analysis was performed with the OriginPro 8.6G
software (MicroCal) provided with the instrument, using the one set of site model
to fit the data points to infer thermodynamic parameters and stoichiometry values.
For the low c-value measurements for 3, the stoichiometry was set constant to 2.

Conformation of 1 as determined by NMR and modelling. Solution con-
formation of 1 was investigated by 2D-TOCSY and NOE spectroscopy NMR
experiments. Compound 1 was dissolved in D2O at 5.7 mM and spectra were
obtained at 298 K. The NOE spectroscopy spectrum was acquired at 500 ms mixing
time, 512 increments in f1 at 16 scans per increment with an acquisition time of
0.57 s, an inter-scan delay of 2 s and a zero-quantum filter. The corresponding
zTOCSY was acquired with the same settings as above using four scans and a
DIPSI2 spinlock with a mixing time of 120 ms. Data were processed in MestreNova
9.0 (MestreLab). Solution structure of 1 was calculated using GLYCAM06 force
field31 and analysed with UCSF Chimera package63.

Synthesis of oligosaccharide-functionalized OAAs. OAA building block
synthesis and solid phase assembly of the oligomeric backbone was performed
following previously established protocols25. Conjugation of 9 was performed in
batch starting from a solution of acetonitrile, water, acetic acid, radical initiator and
tris(2-carboxyethyl)phosphine, which was carefully degassed and added to
lyophilized oligomer precursors and 9. Conjugation reactions were performed in a
standard transparent HPLC vial (1.5 ml) and were irradiated for 18 h using an
ExoTerra ReptiGlo 5.0 UVB 26 W terrarium lamp (compound 10, radical initiator:
benzophenone) or a Heraeus TQ 150, 150 W medium-pressure mercury lamp
(compound 11, radical initiator: 4,4-Azobis(4-cyanovaleric acid))64. After
ultraviolet irradiation, the reaction mixture was purified by reversed-phase HPLC
(compound 10) or size-exclusion chromatography using Sephadex G-25
(compound 11). The resulting conjugates were obtained as partially or fully
oxidized sulfoxide-linked products (Supplementary Fig. 9). Reversed-phase HPLC
chromatograms of 10, 11 and their precursors are shown in Supplementary Fig. 14.

Matrix-assisted laser desorption/ionization–time of flight mass spectra of both
precursors are shown in Supplementary Fig. 15. A short peptide sequence
comprising amino acids 366–383 of the CRM197 protein26 was introduced to
recruit T-cell helpers for immunization experiments.

Preparation of glycoconjugates 12 and 13. Conjugation reactions followed a
protocol modified from Wu et al.41 In brief, to obtain 12, 2.2 mg of disaccharide 3
(5.3 mmol) were reacted with sixfold molar excess of homobifunctional adipic acid
p-nitrophenyl ester (see Supplementary Fig. 10a) in dimethyl sulfoxide/pyridine
(2:1) in the presence of Et3N for 2 h at RT. Excess linker was removed by washing
with dichloromethane/diethylether (1:1). This yielded 2.6 mg the half ester shown
in Supplementary Fig. 10a (74% yield). A quantity of 1.4 mg (2.1 mmol) of half ester
were reacted with 2 mg (34.2 nmol) of CRM197 (Pfénex) in 100 mM sodium
phosphate pH 8 for 24 h at RT. To obtain 13, 380 mg of construct 11 (71.3 nmol)
were reacted with sixfold molar excess of spacer in dimethyl sulfoxide/pyridine
(2:1) in the presence of Et3N for 2 h at RT. Excess linker was removed by washing
with dichloromethane/diethylether (1:1). This yielded 230 mg of the half ester
shown in Supplementary Fig. 10b (58% yield). Two hundred and thirty
micrograms of this half ester were reacted with 0.5 mg (8.6 nmol) of CRM197

in 100 mM sodium phosphate pH 8 for 24 h at RT. After the reactions, both
glycoconjugates were desalted and concentrated with ddH2O, using centrifugal
filter devices with an exclusion volume of 10,000 Da (Amicon Ultracel, Millipore).
Protein concentrations were determined by measuring the absorbance at a
wavelength of 280 nm in a Nanodrop ND-1000 spectrophotometer (Thermo Fisher
Scientific), employing an extinction coefficient of 54,320 M� 1 cm� 1.

Western blottings. Proteins were separated by SDS–PAGE as described above
and electroblotted onto polyvinylidene difluoride membranes. Ponceau S staining
was performed to confirm successful transfer. After washing to remove the
Ponceau stain, polyvinylidene difluoride membranes were blocked with TBS-T
(Tris-buffered saline with 0.05% (v/v) Tween-20) supplemented with 5% (w/v)
skimmed milk powder. The CRM197 protein was immunolabelled with goat
anti-diphtheria toxin antibody (Abcam, catalogue number ab19950) diluted 1:2,500
in TBS-T with 1% (w/v) BSA and detected with anti-goat IgG horseradish
peroxidase conjugate antibody (Sigma-Aldrich, catalogue number A4174) diluted
1:5,000 in TBS-T with 1% (w/v) BSA after three washing steps with TBS-T. PS-I
glycans were immunolabelled with a mixture of mAbs 2C5, 10A1 and 10D6, each
at 2.5 mg ml� 1 in TBS-T with 1% (w/v) BSA and detected with anti-mouse IgG
horseradish peroxidase conjugate antibody (Dianova, catalogue number 115-035-
062) diluted 1:10,000 in TBS-T with 1% (w/v) BSA after three washing steps with
TBS-T. Chemoluminescence was detected using the Amersham ECL Western
Blotting Detection Reagent (GE Healthcare) according to the
manufacturer’s recommendations, in a LAS-4000 imager (Fujifilm).

Carbohydrate concentration determination by anthrone assay. Anthrone
reactions followed a modified protocol by Turula et al.65 To 35ml of a 0.1% (w/v)
solution of anthrone reagent (Sigma) in concentrated (98%) sulfuric acid, 5 ml of
desalted solutions of 12, 13 or CRM197 were added in 96-well round-bottom
microtitre plates. Absorbance at 579 nm was determined in a spectrophotometric
plate reader and compared with standard curves using equimolar amounts of
D-glucose and L-rhamnose. Such, average antigen-to-CRM197 molar ratios were
calculated. For 12 and 13, this yielded 20 mol of 3 and 1.3 mol
of 11 (equal to 6.5 mol of 9) per mole of CRM197, respectively.

Immunizations. Six- to eight-week-old female C57BL/6 mice were purchased
from Charles River. Mice were immunized subcutaneously with different
immunization regimes three times in 2-week intervals with an amount of construct
11 corresponding to 5 mg glycan antigen or glycoconjugates 12 and 13 (1 mg glycan
antigen). Three mice per group were chosen, as this study aimed to qualitatively
assess whether compounds 11–13 were capable of eliciting antibodies, without
intention of quantitatively comparing antibody levels. Therefore, no randomization
or blinding was required. Freund’s Adjuvant (Sigma) was used for all
immunizations according to the manufacturer’s recommendations. Complete
Freund’s Adjuvant was used for initial immunizations at week 0 and Incomplete
Freund’s Adjuvant was used for subsequent immunizations at weeks 2 and 4.
Animal experiments were approved by the Landesamt für Gesundheit und Soziales,
Berlin, and performed in strict accordance with the German regulations of the
Society for Laboratory Animal Science and the European Health Law of the
Federation of Laboratory Animal Science Associations. All efforts were made to
minimize suffering.

Determination of serum antibody responses by SPR. Antibody binding analyses
were carried out on a Biacore T100 instrument (GE Healthcare). Flow cells of a
CM5 sensor chip were immobilized with 1 mM solutions of pentasaccharide 1
(final response 390.5 RU) or disaccharide 3 (247.5 RU) in 100 mM sodium
phosphate buffer pH 8.5, using the Amine Coupling Kit (GE Healthcare) according
to the manufacturer’s recommendations. Flow cells immobilized with about
10,000 RU of BSA served as reference. Kinetic measurements with mouse sera
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diluted 1:100 in PBS were performed with the Biacore T100 Control software, using
the standard parameters of the ‘Kinetics’ function but with extended contact and
dissociation times of 300 s. PBS was used as running buffer and all measurements
were performed at 25 �C and a flow rate of 30ml min� 1. Binding signals of
pooled (n¼ 3 mice) post-immunization (week 5) sera were subtracted by pre-
immunization (week 0) sera signals. Binding curves were extracted for further
analysis in Microsoft Excel. The binding signals at t¼ 290 s contact time served as
antibody binding signal.
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