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We derive a Lieb-Robinson bound for the propagation of spin correlations in a model of spins

interacting through a bosonic lattice field, which satisfies a Lieb-Robinson bound in the absence of

spin-boson couplings. We apply these bounds to a system of trapped ions and find that the propagation of

spin correlations, as mediated by the phonons of the ion crystal, can be faster than the regimes currently

explored in experiments. We propose a scheme to test the bounds by measuring retarded correlation

functions via the crystal fluorescence.
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The possibility of designing or simulating many-body
systems in quantum-optical setups, such as ultracold atoms
[1–4] or large ion crystals [5], is stimulating considerable
progress in our understanding of nonequilibrium quantum
many-body phenomena. However, the interpretation of
these experiments demands powerful theoretical tools,
including the Lieb-Robinson bounds (LRBs) [6] developed
in this work. On the surface, LRBs show that nonrelativ-
istic quantum many-body systems, under certain condi-
tions, display a causal structure analogous to relativistic
quantum field theories. More deeply, LRBs are essential to
prove fundamental quantummany-body properties, such as
the exponential decay of correlations in the ground state of
gapped local Hamiltonians—the so-called ‘‘clustering of
correlations’’ [7], scaling laws for entanglement entropy
[8]—the ‘‘area laws’’ [9], or the robustness of topological
order under local perturbations [10].

Causality limits how local measurements and perturba-
tions, described by an operator OX in region X, affect later
measurements of another operator OY in a separate region
Y [11]. In analogy to Heisenberg’s principle [12], this
uncertainty is quantified by a commutator CY;XðtÞ ¼
h½OYðtÞ; OXð0Þ�i. Lorentz invariance and the mathematical
structure of relativistic theories guarantee causality [11].
Thus, CY;XðtÞ ¼ 0 when the distance dXY > ct places both
regions outside the light cone defined by the speed of light
c. In nonrelativistic quantum mechanics, causality is vio-
lated at the few particle level [11]. Remarkably, in the
many-body regime, an approximate light cone emerges,
outside of which such correlations are vanishingly
small. This phenomenon, first demonstrated by Lieb and
Robinson [6] for a lattice of locally interacting spins, has
been generalized to finite-dimensional models, anhar-
monic oscillators, and master equations [7,13–16].

In this Letter, we address the role of bosons as mediators
of interactions between particles in the light of LRBs. This
is done for a general model of finite-dimensional systems
interacting through a bosonic field that satisfies a LRB

itself. New bounds are derived, which are then applied to
a crystal of trapped atomic ions, where the spins and the
bosons map to the ions’ internal states and the crystal’s
phonons, respectively. These LRBs work for all spin-boson
lattice models of any dimensionality and geometry realized
with state-of-the-art technology [5,17–19]. Comparing
with LRBs for the effective spin models [20,21] in quan-
tum simulations [5,17], we show that correlations can
spread much faster in the nonperturbative regime. We
note that the correlation spread in the perturbative regime
has received considerable attention [22] and also remark
that our results immediately extend to a variety of other
fields, such as superconducting quantum circuits and quan-
tum dots or NV centers interacting with coupled cavities or
photonic crystals.
The model.—We consider a lattice model of bosons

interacting locally with a collection of finite-dimensional
quantum systems. The lattice is an undirected graph, where
each of the N vertices forms a Hilbert space that groups a
boson with a system of finite dimension d, i.e., ‘‘spin.’’ The
Hamiltonian is

H ¼ 1

2

XN
i;j¼1

RT
i QijðtÞRj þ

XN
i¼1

BiðtÞTSi þ
XN
i¼1

RT
i GiðtÞSi:

(1)

Here, the bosons are represented by adimensionalized
harmonic oscillators with positions and momenta RT

i ¼
ðxi; piÞ satisfying ½Ri;R

T
j � ¼ ��i;j�

y, with the Kronecker

delta �i;j and the Pauli matrix �y. The spins Si ¼
ðS1i ; . . . ; Smi Þ are dimensionless operators forming a Lie
algebra with structure constants f��� [23]. The dynamics
of this spin-boson lattice is given by Eq. (1), where bosons
at different vertices are coupled by a matrix QijðtÞ ¼
QjiðtÞ 2 R2�2, and spins precess under a general magnetic

field BT
i ðtÞ ¼ ðB1

i ðtÞ; B2
i ðtÞ; B3

i ðtÞÞ. Finally, the spin-boson
coupling is strictly local, taking place exclusively at the
vertices through matrices GiðtÞ 2 R2�3.
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Whereas the first part of this Letter introduces the proof
of the LRB for the very general spin-boson Hamiltonian
of Eq. (1), the second part shows how this model applies
to trapped ions. We estimate correlation speeds and time
scales, suggesting concrete experimental protocols to
assert these bounds. As an aid to the reader, in the
Supplemental Material [24] we provide additional back-
ground material, a step-by-step version of the proof, and
alternative experimental setups or considerations.

Spin-boson LRB.—Let us assume that the propagator W
of the free bosonic lattice without spins (Gi ¼ 0) satisfies a
LRB

k½RjðtÞ;Rkð0Þ�k � kWjkðt; 0Þk � �e�LRtfðdjkÞ (2)

characterized by a LR speed vLR, a normalization �> 0,
and a function of the lattice distance such that

a0 :¼ max
ik

�
fðdikÞ�1

X
j

fðdijÞfðdjkÞ
�
<þ1: (3)

Under these conditions, assuming bounded interactions
kGjðtÞk � g and spins kSk � S, a LRB emerges for the

spin correlations ZjkðtÞ :¼ ½SjðtÞ; S�k ð0Þ�, � 2 f1; 2; 3g

kZjkðtÞk � �e�LRtfðdjkÞ � 2S2

a0
ðeðg2=vLRÞ2S�a0t � 1Þ: (4)

Intuitively, since bosons mediate interactions, the
bosonic velocity vLR limits the propagation speed of spin
correlations. This is precisely the first term of the above
expression, which duplicates the bosonic LRB.
Additionally, the efficiency with which distant spins excite
and reabsorb a propagating boson affects the LRB. This is
the second term in Eq. (4), which depends on the rate
�g2=vLR at which bosons are emitted or absorbed by
spins. This nonperturbative correction shows that the
buildup of correlations is suppressed if bosons are much
faster than spins g � vLR, an adiabatic-type argument.

Note that Eqs. (2) and (3) include a very large family of
bounds

e�LRtfðdjkÞ ¼ e�LRt��djkð1þ djkÞ�	; (5)

with appropriate � � 0 and 	> 0. For nearest-neighbor
or short-range interactions �> 0 yields a light cone,
�djk � vLRt� 0, outside of which correlations are expo-

nentially suppressed. For algebraically decaying interac-
tions, � ¼ 0, and the lines of constant correlation are only
straight at short distances and times.

The proof.—We will sketch the technical steps to
recover this result (see the Supplemental Material [24]).
The Heisenberg equations of motion are _Rj ¼
�P

kJQjkðtÞRk � JGjðtÞSj and _Sj ¼ iKjðtÞSj, with a

Hermitian matrix KjðtÞ that depends on the couplings,

boson operators, and spin structure constants. The
first equation is formally integrated RjðtÞ ¼P

kWjkðt; 0ÞRkð0Þ �
R
t
0 d


P
kWjkðt; 
ÞJGkð
ÞSkð
Þ. In this

notation, the free boson propagator W is an N � N block
matrix, where each block Wjkðt1; t2Þ 2 R2�2 spreads cor-

relations between sites j and k.
The bosonic bound (2) influences the spin-spin

correlations through the spin-boson correlators

CjkðtÞ :¼ ½RjðtÞ; S�k ð0Þ�. This is seen in _Zjk ¼
i
P

n2fx;pgCn
jkA

n
j ðtÞSj þ iKjðtÞZjk, where the matrices

An
j ðtÞ are defined in terms of the spin-boson couplings

(Supplemental Material [24]). To eliminate the local pre-
cession of the spins, we change variables DjkðtÞ :¼
O�1

j ðtÞZjkðtÞ with a unitary OjðtÞ obtained by solving
_OjðtÞ ¼ iKjðtÞOjðtÞ. Thus,

_C jk ¼ �X
l

JQjlðtÞClk � JGjðtÞOjðtÞDjk; (6)

_D jk ¼ iO�1
j ðtÞX

n

Cn
jkA

n
j ðtÞSj (7)

describe the buildup of spin-boson correlations (6) and the
conversion of spin-boson into spin-spin correlations (7).
Some remarks are in order: (i) the equation for Cjk is

solved formally in terms of Djk, creating a recursion;

(ii) the operator Oi absorbing the unbounded local rota-
tions does not influence the LRB because (iii) Djk and Zjk

have the same operator norms.
Equations (6) and (7), with the upper bounds kGjðtÞk,

kAn
j ðtÞk � g, kSjðtÞk � S, the bosonic LRB (2), and the

geometric factor a0, provide a Dyson-type recursion for the
commutators norms

kDjkðtÞk � kDjkð0Þk þ 2g2S�
X
l

Z t

0
d
1

�
Z 
1

0
d
2fðdjl; vLRð
1 � 
2ÞÞkDlkð
2Þk: (8)

After summing this recursion to infinite order, the desired
LRB (4) for the spin-boson lattice is recovered. j
Bosonic LRB.—For the previous results to be useful, the

bound of Eq. (2) must be sufficiently tight. Whereas the
bosonic LR speed has been studied for nearest-neighbor
[14] and algebraically decaying [15] time-independent
couplings Q, we have developed a tighter bound for such
models (Supplemental Material [24]). Our LR speed only
relies on the off-diagonal couplings, using a recursion
similar to that in Ref. [15], but eliminating the diagonal
terms with unitary transformations. The case relevant for
trapped ions involves long-range interactions

kQjkðtÞkj�k � �ð1þ djkÞ�	 (9)

with a strength � that bounds the couplings and a decay
power 	 � 0. We then recover Eq. (2) with fðdÞ ¼
ð1þ dÞ�	, � ¼ ð1þ a0Þ=a0, and a bosonic LR speed
vLR ¼ �a0.
Trapped-ion implementation.—Equation (4) applies to a

great variety of systems. In particular, we show below that
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the case of trapped ions, a prominent architecture for
quantum information [25], is an ideal setup to experimen-
tally test our LRB.

Laser-cooled ions in radio-frequency or Penning traps
form crystals of tunable dimensionality and geometry. The
spin-boson model of Eq. (1) can be implemented on top of
this state-of-the-art technology. The ‘‘bosonic lattice’’
describes the small transverse displacements R of the ions
from their equilibrium positions in the crystal. The spins
S ¼ ~� are encoded in two levels of the atomic structure
fj"i; j#ig with long coherence times [26]. The spin-boson
coupling is provided by dipole forces that push the atoms
depending on their internal state [27]. Without loss of
generality [28], we assume that near-field microwaves or
lasers induce a uniform force in the �z basis. In Eq. (1) this

maps to Gn�
i ðtÞ ¼ FzðtÞ�n;x��;3, where the strength Fz ¼ffiffiffi

2
p

~�� depends on the field intensity orRabi frequency ~�ðtÞ
and the Lamb-Dicke parameter � � 1.

For this trapped-ion implementation of the spin-boson
lattice, we can evaluate the LRB (4), obtaining a power-law
behavior (5). We start by considering the bosonic part of
the evolution. The phonon coupling Qij ¼ diagf!t�i;j þ
Vijðm!tÞ�1; !t�i;jg contains the ions’ mass m, the trans-

verse trap frequency !t, and a dipolar interaction [29].
The off-diagonal couplings thus satisfy Eq. (9) with alge-
braic decay 	 ¼ 3, dij being the lattice distance of the ions

in the crystal. The interaction strength � ¼ 4�!t is
defined in terms of the stiffness parameter [20], � ¼
e2=4�
0m!2

t d
3
m, which measures the ratio of the

Coulomb repulsion to the trapping energy and depends
on the minimal separation between two ions in the crystal
dm. Introducing the maximum force g ¼ maxtjFzðtÞj and
S ¼ 1, the bound reads

k½�iðtÞ; ��
j ð0Þ�k1 � 2

a0ð1þ dijÞ3
e�1ð�!tÞtðe�2ð�!tÞt � 1Þ;

(10)

where we define �1¼8a0 and �2 ¼ ð1=4Þð1þ a�1
0 Þ�

ðg=�!tÞ2. As anticipated in the proof, the LRB depends
fundamentally on the maximum group velocity of the
phonon branch, given by �!t, and on the efficiency of
the force in exciting and absorbing a propagating phonon,
(g2=�!t).

To evaluate Eq. (10) in a realistic experimental situation,
we focus on 9Beþ ions in a Penning trap [5] and refer the
reader to the Supplemental Material [24] for other setups.
These ions, confined with a transverse trap frequency
of !t=2� � 0:8 MHz, form a triangular crystal of N �
100–300 lattice sites characterized by a minimal distance
dm � 20 �m. In such experiments, the maximum phonon
group velocity is currently �!t=2� � 60 kHz, and oscil-
lating state-dependent forces with g=2� � 0:6 kHz have
been obtained from two noncopropagating laser beams in a
Raman configuration. As discussed in the Supplemental
Material [24], by employing larger angles of the incident

beams and short pulses that relieve the need for compen-
sating ac-Stark shifts and resolving sidebands, the strength
of the forces can be increased to g=2� � 0:3 MHz. Still
higher forces can be achieved with counterpropagating
pairs of ultrafast laser pulses [30].
The last piece of information to evaluate (10) is the

parameter a0. A crude approximation is to use an infinite
lattice with uniform geometry (triangular or one-
dimensional) and obtain a0 from the convolution defined
above (3). This leads to a0 � 8:5 and would set the corre-
lation time scale at �0:1–1 �s.
Impulsive regime.—Wewill now discuss a regime where

the correlation time scale can approach the optimal predic-
tion of the LRB (10). The impulsive regime relies on strong
forces g 	 �!t during a short lapse �t� g�1. In particu-
lar, we assume that a pulsed force is applied at t ¼ 0 to the
jth ion to create a bosonic excitation correlated to the spin.
After propagation of the bosonic field, another pulsed force
is applied at the distant ith ion to create the spin-spin
correlations. The evolution operator is obtained analytically
(Supplemental Material [24]), without approximations

k½�x
i ðtÞ; �x

jð0Þ�k1 � 8ð1þ a0Þ
a0ð1þ dijÞ3

e�1ð�!tÞt � j�i�jj; (11)

where �1 ¼ 8a0. The pulse area �l ¼
R
t
0 d
Fz;lð
Þ gives a

measure of the number of phonons excited �nt � j�lj2. As
argued above, forces can be as large as g=2� � 0:3 MHz
for 9Beþ ions in a Penning trap so that�!t=g � 0:2 andwe
achieve the impulsive regime. Note that the pulsed forces
should be switched on-off in �t� 0:1–1 �s. In Fig. 1, we
numerically solve the impulsive time evolution (see
Supplemental Material [24]). The spread of correlations is
much faster (�10 �s) than experimental decoherence
(without reaching the theoretical maximum).
Perturbative regime.—Whereas our LRB (10) gives the

fastest time scale of correlation, many experiments for the
simulation of quantum magnetism [5,17] are implemented
in the so-called perturbative regime, which leads to sig-
nificantly slower correlation speeds. The perturbative

FIG. 1 (color online). Spin correlation spread in the
impulsive regime. In this regime, we evaluate
numerically the bound k½�x

i ðtÞ; �x
j ð0Þ�k1 � fðtÞ, where fðtÞ¼

max
�tf8jsinðWxp
ij ð
;0ÞÞjg��i�j is obtained from the exact time

evolution of the impulsive regime. We consider a crystal of
N ¼ 253 9Beþ ions [5], assuming pulse areas of �l ¼ 1. The
white circle corresponds to a wave front advancing at a speed
of 3dm�!t.
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regime is characterized by oscillating forces that are much
weaker than their detuning from the trap frequency g �
�t. In this regime, phonons can be approximately traced
out, leading to effective algebraically decaying spin-spin
interactions [20,21], Heff ¼ P

ijJij�
z
i�

z
j. When �!t �

2�t, the effective interaction is dipolar kJijk�8J0=ð1þ
dijÞ3, with J0¼ðg=4�tÞ2�!t. In this case, we can apply the

existing LRBs for spin models [13], obtaining

k½�iðtÞ; ��
j ð0Þ�k1 � 2

a0ð1þ dijÞ3
ðe~�2ð�!tÞt � 1Þ; (12)

where ~�2 ¼ ða0=8Þðg=�tÞ2. For the large detunings
required to obtain the dipolar decay, �t=2� � 80 kHz,
the propagation of spin correlations (12) becomes very
slow (�1 s). For this reason, experiments use smaller
detunings [5], leading to stronger couplings at the expense
of becoming truly long rangedwhere the paradigm of LRBs
no longer applies [13]. Yet, one can still expect correlation
propagation in time scales�1 ms from the effectivemodel,
which are still much slower than the optimal LRB (10) [31].

Probing the LRB through fluorescence.—We discuss
how to exploit the control or measurement tools of
trapped-ion experiments [25] to probe LRBs. Note that

single-time observables, e.g., h��
i ðtÞi, h��

i ðtÞ��
j ðtÞi, are

already being measured with trapped ions [32] or atoms
in optical lattices [1,33]. Our aim is to measure retarded

correlation functions h��
i ðtÞ��

j ð0Þi.

The experimental scheme to accomplish it, both for
always-on [Fig. 2(a)] and pulsed [Fig. 2(b)] state-
dependent forces, is composed of three steps. (i) The ini-
tialization consists of preparing a localized spin excitation

jþi ¼ ð" þij #iÞ= ffiffiffi
2

p
by a �=2 pulse at the jth ion [34],

while the phonon lattice is in a thermal state �th (details in
Fig. 2), such that �0 ¼ j # 
 
 
 þj 
 
 
 #ih# 
 
 
 þj 
 
 
 # j �
�th. (ii) The evolution consists of letting the excitation
propagate for t 2 ðt0; tfÞ, while switching on the state-

dependent forces continuously [Fig. 2(a)] or in two pulses
[Fig. 2(b)]. To measure the retarded spin correlation func-
tions to test the LRBs, we need to apply two unitaries in
addition to the forces. First, we should apply an impulsive
perturbation VðtÞ ¼ �B�

x
j�ðt� t0Þ localized at the jth ion

and �B � 1. Second, after letting the system evolve, we
should apply a �=2 pulse at the distant ith ion. (iii) The
measurement consists of collecting the state-dependent
fluorescence of the ion crystal, which amounts to a mea-
surement of h�z

i ðtfÞi. Using a linear-response-theory-type

argument (Supplemental Material [24]), we have shown
that @�B

h�z
i ðtfÞij�B¼0 ¼ �ih�x

i ðtfÞ�x
jðt0Þi. By modification

of the unitaries (Supplemental Material [24]) [35], it is
possible to recover any retarded spin correlation

h��
i ðtfÞ��

j ðt0Þi. We remark that the operations required

in each step are performed individually with accuracies
better than 99% in current experiments [25].
Conclusions.—We have derived a new LRB for a col-

lection of models (1) involving spins and bosons in a
lattice. Although the LRB applies to a variety of
quantum-optical setups (e.g., superconducting circuits),
we have focused on ion crystals, where it pinpoints that
spin correlations can spread much faster than the experi-
mental regimes currently considered. Regardless of the
infinite dimensionality of Eq. (1), we conjecture that
the LRB encloses further theoretical implications, such
as the clustering of correlations or the efficiency of time-
dependent density matrix renormalization group methods,
which might be of interest to recent studies [37].
This work was supported by the European project

PROMISCE, CAM research consortium QUITEMAD
(S2009-ESP-1594), and the Spanish MINECO Project
FIS2012-33022.
Note added.—Upon completion of this manuscript, we

became aware of the e-print of Ref. [33], figuring a similar
measurement protocol for spin correlations.
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