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We study the phase diagram of interacting electrons in a dispersionless Chern band as a function of their

filling. We find hierarchy multiplets of incompressible states at fillings � ¼ 1=3, 2=5, 3=7, 4=9, 5=9, 4=7,

3=5 as well as � ¼ 1=5, 2=7. These are accounted for by an analogy to Haldane pseudopotentials

extracted from an analysis of the two-particle problem. Important distinctions to standard fractional

quantum Hall physics are striking: in the absence of particle-hole symmetry in a single band, an

interaction-induced single-hole dispersion appears, which perturbs and eventually destabilizes incom-

pressible states as � increases. For this reason, the nature of the state at � ¼ 2=3 is hard to pin down, while

� ¼ 5=7, 4=5 do not seem to be incompressible in our system.
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Introduction.—Following recent proposals of the exis-
tence of novel lattice generalizations of fractional quantum
Hall (FQH) states, termed fractional Chern insulators
(FCI), in (approximately) flat bands exhibiting nonzero
Chern numbers [1–3], there has been intense research
activity in understanding this phenomenon [4–26].

From the original observation of a FCI state at Chern
band filling � ¼ 1=3 [3–5] (at which the original FQH state
was also first observed), a number of questions immediately
arises. First, under what conditions can FCIs be observed?
Second, what are the states which compete with the FCI
states? Third, what are the differences between FCI physics
in Chern bands compared to the familiar setting of Landau
levels in the continuum appropriate for describing the
FQH state in conventional semiconductor heterojunctions,
e.g., arising due to the nonuniform Berry curvature in
reciprocal space?

This Letter aims to contribute to all of these questions.
We start by demonstrating that a nearest-neighbor interac-
tion leads to a FCI state also at � ¼ 2=5 and � ¼ 1=5,
although the latter fraction has a FCI phase that is substan-
tially less robust than the � ¼ 1=3 FCI. We account for this
with a heuristic derived from considering the two-particle
problem in the lattice model. Further, we find evidence of
several additional FCI states akin to the hierarchy FQH
states familiar from conventional QH physics and its com-
posite fermion [27] hierarchy [28,29] picture.

Turning to the qualitative distinctions from conventional
QH physics, we find that in the absence of particle-
hole symmetry in a single band, an effective crystal-
momentum-dependent potential appears, which shows up
in the properties of the single-hole dispersion, and leads to
a modulation of the occupation numbers nðkÞ in the

many-body ground state which presage the breakdown of
the QH effect. This is reflected by a strong distinction
between the many-body states at � ¼ 1=3 and � ¼ 2=3
even in the spin-polarized setting that we study.
Our studies use extensive large-scale exact diagonaliza-

tions of the many-body Hamiltonian of the lattice systems
coupledwith analytical considerations. On amore technical
level, we address questions of the interplay of topological
order and the concomitant finite-size lattice quasi-ground-
state degeneracies, as well as the finite-size scaling of the
gaps.
Setup.—In order to be specific, we focus on the two-

band checkerboard lattice model introduced in Refs. [2,3]
and sketched in Fig. 1(a). Here, t1e

�i� is a nearest-
neighbor hopping with an orientation-dependent complex
phase, and t2 denotes the next-nearest-neighbor hopping

(a) (b)

FIG. 1 (color online). (a) Illustration of the checkerboard
lattice model with the relevant hopping amplitudes [2,3]. The
interaction term is a nearest-neighbor density-density interaction
(interaction between pairs of white and grey sites). (b) Berry
curvature in the first Brillouin zone for the indicated set of
parameters. Dark (light) intensity denotes small (large) Berry
curvature.
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amplitude. After Fourier transform, the single-electron
(kinetic) Hamiltonian reads

H ¼ X

k2BZ

ðcykA; cykBÞhðkÞðckA; ckBÞT; (1)

where hðkÞ is given in Ref. [30]. In the following, we
consider the case of t1 ¼ 1, � ¼ �=4, and varying t2.
For t2 � 0, 1, one obtains two separated bands with
Chern number �1. The Berry curvature in each band
can be expressed in terms of the single-particle state in
the band jn�k i via the Berry connection A�

j ðkÞ ¼
�ihn�k j@kj jn�k i as F�

ij ¼ @kiA
�
j ðkÞ � @kjA

�
i ðkÞ. The two

bands have topologically quantized Chern numbers C ¼
ð1=2�ÞRBZ F

�
12ðkÞd2k ¼ �1, while the Berry curvature

varies in the Brillouin zone and depends on the micro-
scopic parameters (t2 in the present case). In Fig. 1(b), we
display the Berry curvature for the specific value of
t2 ¼ 0:5 [note that the Berry curvature vanishes at (0, 0)
and (�, �)].

Interactions.—We consider nearest-neighbor repulsion
Hint ¼ V

P
hi;jininj [cf. caption of Fig. 1(a)] throughout this

Letter. If the energy gap between the two bands is large
compared to the interaction strength, it is possible to
project the interactions into the partially filled band, lead-
ing to a projected Hamiltonian of the form

H ¼ X

k1k2k3k4

Vk1k2k3k4
cyk1

cyk2
ck3

ck4
(2)

for two-body interactions. Here, cQ annihilates an electron

with wave function�QðrÞ of the single-particle state of the
partially filled band with crystal momentum Q. In the
following, we take the flat band limit, i.e., drop the residual
energy dispersion in the band, as we wish to highlight the
new phenomena arising due to the nonconstant Berry
curvature, as opposed to remnant energy dispersion.

Particle-hole asymmetry and two-particle analysis.—It
is enlightening to consider the two simplest interacting
cases, namely, the single-hole and the two-particle prob-

lems. Performing a particle-hole transformation ck ! cyk
within one of the bands, the projected Hamiltonian (2)
transforms to

H ! X

k1k2k3k4

V�
k1k2k3k4

cyk1
cyk2

ck3
ck4

þX

k

EhðkÞcykck; (3)

which includes an effective single-hole energy EhðkÞ ¼
4
P

mVmkmk (adopting a convention under which Vklmn is
antisymmetric under exchange of its indices). This term
amounts to a trivial overall energy shift in a Landau level.
By contrast, it introduces an effective dispersion even for
an entirely flat Chern band. We display EhðkÞ in Fig. 2(a)
for t2 ¼ 0:5. As we will demonstrate below, this particle-
hole asymmetry generally leads to a deformation of nðkÞ
and in fact dominates the physics near � ¼ 1, i.e., in the
dilute-hole limit. Note that for our checkerboard example,

the energy spectrum is particle-hole invariant under
� $ 2� �.
Next, we consider the two-particle problem: In Fig. 2(b),

we display the nonzero eigenvalues of the two-particle
problem along a path in the Brillouin zone for the
nearest-neighbor interaction for t2 ¼ 0:5. The spectrum
depends on the total momentum K ¼ k1 þ k2 underscor-
ing the lack of translation invariance in reciprocal space.
We observe two dominant eigenvalues of mean value
�0:4 V which remain nonzero throughout the Brillouin
zone, while there is also a second set of two eigenvalues
about 10 times smaller which vanish as K!ð0;0Þ. All
other eigenvalues are strictly zero [31]. Considering the
analogous two-particle problem in the continuum, one
finds that the eigenvalues are independent of the center
of mass momentum K and that one can identify these
eigenvalues with Haldane’s pseudopotenial parameters
Vm (m odd for fermions), well known in Landau levels
[28]. The multiplicity of these energy levels [31] motivates
a suggestive pseudopotential analogy in which we label the
two nonzero pairs of eigenvalues of the projected two-
particle Chern band problem as ‘‘pseudopotentials’’ V 1

(the larger pair) and V 3 (the smaller pair), as indicated
in Fig. 2(b).
Hierarchy states and the phase diagram.—To investigate

the full interactingmany-body problem,we have performed
extensive exact diagonalization studies on a large number
of finite samples with rectangular shapes (as in previous
numerical studies of FCI) as well as tilted samples, where
the spanning vectors of the samples need not be aligned
with the lattice axes. The latter choice of samples allows us
to study a considerably larger number of clusters with
aspect ratio close to one. The list of considered clusters
can be found in the Supplemental Material [31].
The pseudopotential analogy introduced above suggests

a hierarchy of incompressible states at � ¼ p=q � 1=3, q
odd, due to the relatively large energy scale V 1. In
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FIG. 2 (color online). (a) Energy of a single hole in the
fully filled lower band EhðKÞ :¼ EðNp ¼ Ns � 1;KÞ �
EðNp ¼ Ns; 0Þ. (b) Nonzero eigenvalues EðNp ¼ 2;KÞ of the

two-particle problem on a representative path through the
Brillouin zone for t2 ¼ 0:5. In general, there are four nonzero
energies except at K ¼ ð0; 0Þ, where there are only two finite
energies. Circles are data for (b) 6� 6 (empty circles) and 8� 8
(filled circles) unit cells [(a) 10� 10 unit cells], and the lines are
guides to the eye.
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particular, we have looked for the m ¼ 1 composite fer-
mion branch at � ¼ p=ð2mpþ 1Þ [27] with rather clear
evidence of FCI states at � ¼ 2=5, 3=7, 4=9 as well as their
1� � relatives at � ¼ 5=9, 4=7, 3=5, beyond the � ¼ 1=3
state already discussed in the literature [3–5]. Data of the
low-energy spectrum of at least two samples for each
fraction are displayed in the Supplemental Material [31].
Here, we provide strong evidence for a stable incompress-
ible � ¼ 2=5 state, as shown in Figs. 3(a)–3(c). In Fig. 3(a),
we present the spectral flow of the five ground-state mani-
fold levels upon flux insertion for two different samples.
The ground-state manifold (filled symbols) does not mix
with excited states (empty symbols) and returns to the
initial spectrum upon insertion of five flux quanta. This
provides strong evidence for a state with quantized Hall
conductance. In Fig. 3(b), we display the finite-size scaling
of the energy spread of the five states in the ground-state
manifold for different samples. We plot the energy splitting
as a function of the inverse topological extent 1=W (as
defined in the Supplemental Material [31]; in short, it
counts the number of straight discrete �k steps one has
to follow in momentum space to return to the origin),
which can become quite small (as small as 1=25) for our
tilted samples. Note that the topological extent is not in
general equivalent to the geometrical extent. In particular,
the samples withW ¼ 10, 20, 25 have a geometrical aspect
ratio equal to one. We also stress that the five ground states
are systematically found in the sectors predicted by the

counting rule developed in Refs. [5,9] and which we
generalized for tilted samples [31]. In the case of tilted
samples, the ground-state sectors show a great variability,
depending on the cluster geometry, which is an argument
against the formation of a charge density wave state, which
should exhibit a unique set of degenerate momenta dictated
by the spatial symmetry breaking of the charge density
wave. Finally, in Fig. 3(c), we show the finite-size scaling
of the gap from the ground state to the first excited state as
a function of inverse system size 1=Ns. Our data show non-
negligible finite-size effects but convincingly point
towards a finite excitation gap of the order of V=30 in
the thermodynamic limit. This is in contrast to recent
claims of a vanishing gap based on smaller system sizes
[17,20].
Next, we turn to fractions below � ¼ 1=3. According to

the pseudopotential analogy, our nearest-neighbor interac-
tions generate a finite V 3, albeit roughly a factor of 10
smaller than V 1. We would thus expect to find a stable
� ¼ 1=5 state with associated energy scales significantly
smaller than those of the � ¼ 1=3 state. Indeed, we find
strong evidence for a � ¼ 1=5 FCI state, as shown in
Figs. 3(d)–3(f). In particular, the finite-size effects of the
ground-state manifold splitting shown in Fig. 3(e) behave
qualitatively similarly to the � ¼ 2=5 case in Fig. 3(b), and
the energy gap to excited states extrapolates to a value of
the order of V=200. We furthermore find some mild evi-
dence for a � ¼ 2=7 state [31], which is stabilized by V 3.
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FIG. 3 (color online). (a)–(c) Numerical evidence for a fractional Chern insulator state at � ¼ 2=5. (d)–(f) Numerical evidence for a
fractional Chern insulator state at � ¼ 1=5. For details, see the main text. Here, we focus on t2 ¼ 0:5, which is close to the value where
the variance of the Berry curvature is minimal. See Table I for the samples that we consider in (c) and (f).
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Effect of the single-hole energy.—When numerically
exploring the phase diagram, we discovered that several
particle-hole conjugate states of stable low-density FCI
fractions do not seem to be realized; for example, we find
it difficult to systematically observe the required ground-
state degeneracy for�¼2=3, while for�¼5=7 and�¼4=5,
the required degeneracy is absent. An enlightening way
to understand this finding is to monitor the filling depen-

dence of the momentum space occupation number nðkÞ ¼
hcykcki when plotted as a function of the single-hole energy
EhðkÞ introduced before (see Fig. 4), where the occupancy
nðkÞ in the incompressible many-body state clearly tracks
EhðkÞ. Note that we display nðkÞ for all momenta in the
Brillouin zone but plot the value nðkÞ at the position EhðkÞ
on the x axis. The data collapse onto a single curve, which is
roughly linear for the incompressible fractions, is quite
remarkable. The role of the interaction-induced effective
single-particle dispersion is thus to significantly distort the
momentum space occupancy as the filling increases. When
the distortion becomes too strong, the incompressible FCI
state becomes unstable and a compressible state with a
Fermi-like nðkÞ distribution takes over. We expect these
compressible Fermi-liquid-like states to show a large, but
nonquantized, anomalous Hall effect.

It is instructive to compare our results with what is
known from conventional FQH physics. For intermediate
filling fractions in the lowest Landau level, both experi-
ment [32] and theory [33] suggest that the stability of the
FQH states towards disorder, temperature, etc., is essen-
tially determined by the denominator q of the filling
fraction (for odd q), implying a self-similar structure
in the clean zero-temperature limit. Corrections to the

self-similar structure in ‘‘real’’ systems are minor and
include effects due to an instability towards Wigner crys-
tallization at low filling fractions and particle-hole sym-
metry breaking effects. (Landau level mixing, etc.) The
main features are qualitatively similar to what we find in
the lattice system. However, in the Chern insulator case,
the corrections are more substantial. In particular, there is
nothing like a ‘‘clean’’ limit, as the Berry curvature effects
necessarily destroy weak states, and the compressible
competing states discussed above prevail. Moreover, due
to the explicit particle-hole asymmetry within the band, we
find that FCI states are absent for � * 2=3.
Discussion.—The question of to what extent fractional

Chern insulators are ‘‘nothing but’’ FQH states on the
lattice is fundamental to this rapidly developing field: it
combines the questions of where to find a FCI with how to
diagnose it and how to theoretically describe it, before
being able to address differences to the ‘‘weak-field’’
continuum Landau level physics.
The FCI states we thus found, as well as their respective

stabilities, are naturally organized with the aid of the hier-
archy concept developed for the FQH. To obtain this infor-
mation, we have developed new diagnostics, including an
adaptation ofHaldane’s pseudopotentials, strongly suggest-
ing a common field-theoretic description for the two
phenomena. At the same time, a particularly noteworthy
negative result is our observation, at odds with some pre-
vious treatments, that FCIs do not generically come with a
constant occupation number of the flat band orbitals in
reciprocal space.
Indeed, this phenomenon arises even for perfectly flat

(dispersionless) bands, as a result of a nonuniform Berry
curvature, which appears as a potent driving force for the
destruction of FCI states by acting as a k-dependent
chemical potential of a strength tuned by the electron
density of the flat band, removing particle-hole symmetry
in a lattice-specific manner. Our study provides a first
glimpse of the competing states.
Clearly, much further work on each of these points is

warranted, especially in the light of promising experimen-
tal prospects to observe such states in optical lattices with
artificial magnetic fields [21,34–36].
We acknowledge useful discussions with Masud Haque.
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Note added.—Recently, we became aware of three

papers which also provide evidence for FCI states beyond
the Laughlin states [16,17,20].
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FIG. 4 (color online). Momentum space orbital occupation
nðkÞ ¼ hcykcki plotted as a function of the single-hole energy

EhðkÞ. Different colors denote different fractions, while the
symbols at the same fraction label different clusters. The dashed
horizontal lines serve as reference values for a constant nðkÞ at
the same filling fraction. As the filling � is increased, nðkÞ
displays a more pronounced (roughly linear) correlation with
EhðkÞ. Dotted lines (� ¼ 2=3, � ¼ 4=5) denote fractions which
are most likely compressible, non-FCI states.
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