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Institute of Medical Virology, Helmut-Ruska-Haus, Charité–Universitätsmedizin Berlin, Berlin, Germany

Viral hemorrhagic fever caused by hantaviruses is an emerging infectious disease
for which suitable treatments are not available. In order to improve this situation
a better understanding of hantaviral pathogenesis is urgently required. Hantaviruses
infect endothelial cell layers in vitro without causing any cytopathogenic effect and
without increasing permeability. This implies that the mechanisms underlying vascular
hyperpermeability in hantavirus-associated disease are more complex and that immune
mechanisms play an important role. In this review we highlight the latest developments
in hantavirus-induced immunopathogenesis. A possible contribution of neutrophils has
been neglected so far. For this reason, we place special emphasis on the pathogenic role
of neutrophils in disrupting the endothelial barrier.

Keywords: viral hemorrhagic fever, hantaviruses, immunopathogenesis, neutrophils, neutrophil extracellular traps,
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Introduction

Viral hemorrhagic fever (VHF) is caused by viruses belonging to different virus families, one
of which is the Bunyaviridae (Schmaljohn and Nichol, 2007). Structurally, hantaviruses have an
envelope derived from the host cell membrane. Their genome consists of three negative-strand RNA
segments encoding a nucleoprotein (N), two glycoproteins (Gn andGc), and a RNA-dependent RNA
polymerase (Schmaljohn and Nichol, 2007). According to the geographic location of the natural
reservoir hosts and the disease syndrome induced, hantaviruses are divided into OldWorld andNew
World hantavirus species.

Humans become infected with hantaviruses after inhalation of aerosols derived from excreta of
persistently infected but asymptomatic natural reservoir hosts, in general rodents. Depending on the
hantavirus species involved the severity of hantavirus-induced disease varies with case fatality rates
from less than 1% to up to more than 40% (Jonsson et al., 2010; Krüger et al., 2015). Old World
hantavirus species such as Hantaan virus (HTNV) are associated with hemorrhagic fever with renal
syndrome (HFRS). After an incubation period of approximately 3 weeks HFRS starts with a febrile
phase and further unspecific symptoms. Subsequently, hypotension and oliguria is observed that
may finally result in fatal shock. Patients recover after a polyuric phase that starts in the second
week of illness. A mild form of HFRS, also termed nephropathia epidemica, with a case fatality
rate of less than 1% is endemic in Europe and is in large part due to infection with Puumala virus
(PUUV; Mustonen et al., 2013). In contrast, infection with New World hantavirus species such as
Sin Nombre virus (SNV) can result in hantavirus cardio-pulmonary syndrome (HCPS; Nichol et al.,
1993). In the course ofHCPSpatients develop pulmonary edema and cardiac failurewhereas inHFRS
kidney failure is the prominent clinical feature. Andes virus (ANDV) is the most lethal New World
hantavirus species with case fatality rates of up to more than 40%. It is the only hantavirus species
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for which human-to-human-transmission has been reported
(Martinez-Valdebenito et al., 2014). Some hantavirus species
such as Prospect Hill virus (PHV) are non-pathogenic whereas
others such as Tula virus (TULV) cause only sporadically disease
(Klempa et al., 2003; Zelena et al., 2013). InChina 20,000 to 50,000
HFRS cases are reported annually, which represents 90% of HFRS
cases worldwide (Fang et al., 2015).

It is now increasingly apparent that the paradigmof two distinct
syndromes induced by Old Word and New World hantaviruses
needs to be reconsidered (Krautkrämer et al., 2013; Clement et al.,
2014). For example, cardiopulmonary dysfunction can dominate
the clinical picture after infection with Old World hantavirus
species (Clement et al., 1994; Rasmuson et al., 2011a,b; Gizzi et al.,
2013). Vice versa, kidney function is also impaired in patients suf-
fering from infection with NewWorld hantavirus species (Pergam
et al., 2009; MacNeil et al., 2011).

As with other VHF dysregulation of the endothelial cell
(EC) barrier resulting in capillary leakage is the key finding in
hantavirus-induced disease (Duchin et al., 1994). The extent of
vascular dysfunction determines the severity of the clinical course.
So far no preventive or therapeutic strategies for hantavirus-
induced disease have been approved by the Food and Drug
Administration (Schmaljohn, 2009; Krüger et al., 2011). How-
ever, an experimental HCPS DNA vaccine has been successfully
tested in non-human primates (Kwilas et al., 2014). Moreover,
the HCPS DNA vaccine elicits production of neutralizing human
IgG (immunoglobulin G) in trans-chromosomal bovines which
could be used for passive immunoprophylaxis in humans (Hooper
et al., 2014). In this review we will focus on concepts explain-
ing how hantavirus-induced immune responses interfere with
the endothelial barrier function and briefly mention also non-
immunological mechanisms.

Non-immunological Mechanisms

Hantaviruses infect and replicate in EC cultures without causing
any cytopathic effect or increasing permeability (Pensiero et al.,
1992; Temonen et al., 1993; Khaiboullina et al., 2000; Sundstrom
et al., 2001). However, in the presence of vascular endothelial
growth factor (VEGF) replication of HTNV or ANDV in human
umbilical EC downregulates vascular endothelial (VE)-cadherin,
a major component of adherens junctions, thereby disrupting
the endothelial barrier (Gavrilovskaya et al., 2008; Gorbunova
et al., 2010; Li et al., 2012). Recently, VE-cadherin degradation
was observed even in the absence of exogenous VEGF after
ANDV infection of primary human pulmonary microvascular
EC (Shrivastava-Ranjan et al., 2010). This was not confirmed in
another experimental setup using in vitro capillary blood vessels
(Taylor et al., 2013). In this system it was found that infection
with HTNV or ANDV results in activation of the kallikrein–kinin
system and liberation of bradykinin, a potent inducer of vascular
permeability (Taylor et al., 2013). In accordance, a bradykinin
receptor antagonist improved the clinical outcome in a case
of PUUV infection (Antonen et al., 2013). Finally, glomerular
EC infected with PUUV show disruption of cell-to-cell contacts
(Krautkrämer et al., 2011).

Hantaviral Immunopathogenesis

Both innate and adaptive as well as humoral and cellular immune
mechanisms contribute to hantavirus-associated disease. Human
dendritic cells (DC) are highly mobile and bridge innate and
adaptive immunity. DC reside at the pathogen-host interface in
peripheral tissue including the respiratory mucosa and alveoli of
the lung. They can push their dendritic projections into the airway
lumen thereby “snorkeling” through the epithelial-tight junctions
(Jahnsen et al., 2006). Thus, DC may become infected with han-
tavirus in the lung shortly after inhalation of viral particles. In
accordance, human DC are susceptible to infection with HTNV
and ANDV in vitro (Raftery et al., 2002; Marsac et al., 2011).
Moreover, monocytes infected with HTNV develop into DC-like
cells (Markotic et al., 2007; Schönrich et al., 2008). DC might act
as a Trojan horse helping the pathogens to disseminate within
the human organism and finally infect EC in various organs.
Alternatively, DC may become infected later when they get in
contact with the already infected human EC barrier. In striking
contrast tomost otherDC-tropic viruses bothOldWorld andNew
World hantavirus species induce DC maturation in vitro (Raftery
et al., 2002; Marsac et al., 2011). This implies that in humans
hantavirus-infected DC migrate to the draining lymph nodes and
induce a vigorous adaptive immune response.

In accordance, histopathological analysis of tissue collected
from fatal human HCPS cases has revealed strong mononuclear
cell infiltrates especially in lung tissue (Nolte et al., 1995; Zaki
et al., 1995). Similarly, endobronchial mucosal biopsies and bron-
choalveolar lavage fluid from HFRS patients revealed activated
CD8+ T cells and strong upregulation of vascular cell adhesion
molecule 1 (VCAM-1) at the site of infection (Rasmuson et al.,
2011b). Animal models of HCPS based on non-human primates
and Syrian hamsters confirmed that an excessive and aberrant
tissue-specific host response correlates with increased vascular
hyperpermeability (Safronetz et al., 2015). For unknown reasons,
however, T cell depletion neither influenced the viral load nor
the clinical course of HCPS in Syrian hamsters. Intriguingly, most
of the host genes that are linked to hantavirus disease severity
are associated with abnormal immune responses or even autoim-
mune diseases (Charbonnel et al., 2014). In line with this view
elevated levels of autoantibodies to nuclear antigen are found in
hantavirus-infected patients (Raftery et al., 2014).

Activation of Endothelial Cells

Immunohistological studies of kidney biopsies derived from
HFRS patients revealed that EC become activated during PUUV
infection and increase expression of chemokines and adhesion
molecules such as intercellular adhesion molecule 1 (ICAM-1),
E-Selectin, and VCAM-1 (Temonen et al., 1996). The latter are
important for regulating the interaction of EC with immune cells
(Razakandrainibe et al., 2013). It is questionable whether han-
tavirus directly upregulate adhesionmolecules on EC (Sundstrom
et al., 2001; Geimonen et al., 2002; Yu et al., 2014). It has been
established, however, that immune cells stimulated during han-
tavirus infection release tumor necrosis factor alpha (TNF-α),
a strong inducer of adhesion molecules in EC (Pober, 2002).
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The chemokines that are upregulated during hantavirus infec-
tion include interleukin (IL)-8 (Klingstrom et al., 2008; Sadeghi
et al., 2011; Libraty et al., 2012; Kyriakidis and Papa, 2013), a
key neutrophil-recruiting chemokine and activator (Amulic et al.,
2012). Intriguingly, in some studies IL-8 levels were positively
correlated with severe acute disease suggesting that it is part of
an important pathogenic link (Libraty et al., 2012; Kyriakidis and
Papa, 2013).Moreover, expression ofHLA (human leucocyte anti-
gen) class Imolecules is increased onEC (Kraus et al., 2004). These
include HLA-E (Bjorkstrom et al., 2011) which serves as a ligand
for the activating NK (natural killer) cell receptor NKG2C. Thus,
hantavirus-infected EC can interact with a variety of immune
effector cells such as HLA class I-restricted CD8+ T cells, HLA-E
stimulated NK cells and neutrophils.

Cytotoxic Immune Cells

Cytotoxic activity of activated immune cells may eliminate
hantavirus-infected EC thereby causing vascular leakage. A SNV-
specific CD8+ T cell line lysed HLA-matched SNV-infected EC
thereby increasing vascular permeability (Hayasaka et al., 2007).
Moreover, involvement of T cells is also supported by genetic
susceptibility studies (Terajima and Ennis, 2011). In accordance,
researchers have recently detected enhanced endothelial repair
activity in HFRS patients (Krautkrämer et al., 2014). A role for
cytotoxic immune mechanisms is further supported by increased
serum levels of perforin and granzyme B (Klingstrom et al., 2006)
as well as cell-free DNA (Outinen et al., 2012a; Raftery et al., 2014)
in HFRS patients. However, histopathological examination of tis-
sue from fatal HCPS cases did not reveal necrosis or any overtly
visible lesions that can account for the vascular leakage in HCPS
patients (Lukes, 1954; Nolte et al., 1995; Zaki et al., 1995). This
may be due to difficulties in visualizing small but functionally rel-
evant morphological correlates of endothelial damage. Moreover,
it is possible that apoptotic EC are immediately phagocytosed by
macrophages or neutrophils.

There is evidence that hantavirus-infected EC are protected,
at least to some degree, from attack by cytotoxic T cells and NK
cells (Gupta et al., 2013). However, uninfected EC are suscepti-
ble to cytotoxic attack and might be prone to bystander killing.
For example, a subset of NK cells is activated through increased
HLA-E expression on hantavirus-infected EC and may subse-
quently attack uninfected EC (Braun et al., 2014). This bystander
NK attack could be facilitated by the fact that uninfected cells
express less inhibitory HLA class I molecules on the cell surface
than hantavirus-infected EC (Kraus et al., 2004; Lalwani et al.,
2013).

Neutrophils

Metchnikoff (1887) first postulated that polymorphonuclear cells
release substances that damage EC function. Nevertheless, neu-
trophils have been overlooked in models of hantavirus-induced
disease although they represent the most abundant type of
immune cell. In fact, neutrophil-rich infiltrates were reported in
HCPS patients (Zaki et al., 1995). Moreover, increased numbers
of neutrophils with band cell morphology are observed in the

blood during hantavirus-associated disease (Hjelle et al., 1995;
Zaki et al., 1995). This neutrophil subtype represents most likely a
typical left-shift response that is usually found after bacterial chal-
lenge and regulates T cell responses (Pillay et al., 2012;Nauseef and
Borregaard, 2014). Recent research indicates that neutrophils can
contribute generally to hantavirus-induced immunopathogenesis.
Upon interaction with activated EC neutrophils undergo NETosis
(Gupta et al., 2010; Saffarzadeh et al., 2012), a recently discovered
form of programmed neutrophil cell death (Brinkmann et al.,
2004). It is characterized by the generation and release of neu-
trophil extracellular traps (NETs). NETs are a fibrillary network
composed of a double-stranded DNA backbone and coated with
histones as well as granule molecules such as myeloperoxidase,
elastase and cathepsin G. NETosis in close proximity to EC is
harmful and results in increased vascular permeability (Gupta
et al., 2010; Villanueva et al., 2011; Saffarzadeh et al., 2012).

Neutrophils express β2 integrins, i.e., β2αL (CD18/CD11a),
β2αM(CD18/CD11b) and β2αX (CD18/CD11c; Langereis, 2013).
A recent study has demonstrated that hantaviruses strongly acti-
vate neutrophils through β2 integrin signaling resulting in NETo-
sis (Raftery et al., 2014). In addition, activated platelets recruit
neutrophils rapidly to the site of inflamed EC during VHF. Subse-
quently, platelet-leukocyte aggregation is mediated by the interac-
tion of platelet proteins with β2 integrins on neutrophils (Zapata
et al., 2014). Several infection models have demonstrated that
platelet-neutrophil interactions through β2 integrins result also
in NETosis (Clark et al., 2007; Caudrillier et al., 2012; McDonald
et al., 2012; Jenne et al., 2013). Thus, β2 integrins may act as a
master switch of NETosis during VHF (Figure 1A).

In accordance with hantavirus-induced NETosis, high levels of
extracellular histones are found in sera from hantavirus-infected
patients (Raftery et al., 2014; Vaheri et al., 2014). Histones are
known to cause microvascular injury and mediate death in sepsis
(Xu et al., 2009). Moreover, thrombocytopenia, prolonged pro-
thrombin time and fibrin deposition are hallmarks of hantavirus-
induced disease (Laine et al., 2010) and are observed upon histone
injection intomice (Fuchs et al., 2011). In fact, extracellular nucle-
osomes derived from neutrophils induce formation of thrombo-
sis in microvessels which is regarded as an innate host defense
mechanism (Massberg et al., 2010). Importantly, depletion of
neutrophils prevents pneumonia and vascular hyperpermeability
in the SCID (severe combined immunodeficiency) mouse model
of hantavirus infection (Koma et al., 2014). The observation that
methylprednisolone treatment is not beneficial for HCPS patients
is also in accordance with hantavirus-induced NETosis playing an
important pathogenic role (Vial et al., 2013) as corticosteroids do
not suppress NET formation (Lapponi et al., 2013).

Neutrophils may also contribute to microvascular plasma pro-
tein leakage by mechanisms other than NETosis (Figure 1B).
Depending on the β2 integrin ligand involved in signaling and
further as yet unknown microenvironmental stimuli neutrophils
may be activated without undergoing NETosis. After adhering
to activated endothelium and crawling along EC neutrophils
start to transmigrate and release TNF-α which strongly increases
vascular permeability (Finsterbusch et al., 2014). Subsequent
binding of TNF-α to its receptor on EC induces endocytosis
and degradation of VE-cadherin (Schulte et al., 2011). Similarly,
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FIGURE 1 | Proposed neutrophil-mediated mechanisms contributing to
vascular leakage during hantavirus infection. Neutrophils are activated
through virus-induced β2 integrin signaling. Activated platelets also stimulate
neutrophils through β2 integrins. Depending on the β2 integrin ligands involved

and possibly further microenvironmental stimuli neutrophils can be activated in a
different way resulting in (A) NETosis or (B) secretion of inflammatory cytokines
such as TNF-α or VEGF. In both cases increased vascular leakage is generated,
although most likely by distinct mechanisms.

stimulated neutrophils also secrete VEGF (Taichman et al., 1997),
an importantmediator ofVE-cadherin degradation in hantavirus-
infected EC (Gavrilovskaya et al., 2008; Gorbunova et al., 2010;
Shrivastava-Ranjan et al., 2010; Li et al., 2012). In accordance,
high VEGF serum levels are found during HFRS and HCPS
(Shrivastava-Ranjan et al., 2010; Gavrilovskaya et al., 2012; Ma
et al., 2012). Taken together, neutrophils represent a long-sought
missing piece in the puzzle of hantaviral immunopathogenesis.

Complement System

There is compelling evidence that the severity of HFRS symptoms
correlates with the degree of complement activation (Paakkala
et al., 2000; Sane et al., 2012). The complement system functions
as an important inducer of vascular leakage alongside the kinin
and the coagulation system (Bossi et al., 2011). During acute
HFRS complement is activated by pentraxin-related protein 3
(PTX3), which represents a humoral pattern recognition receptor
(Outinen et al., 2012b). Intriguingly, PTX3 is stored in neutrophil
granules and released upon outside-in signals through integrins
(Jaillon et al., 2007; Razvina et al., 2014). The soluble complement
components C3a and C5a generated during complement activa-

tion by antibodies and PTX3 not only induce cytoskeletal rear-
rangements in EC but also IL-8 secretion (Monsinjon et al., 2003).
Consequently, PTX3 attracts more neutrophils to the endothelial
barrier aggravating vascular inflammation.

Inflammatory Cytokines

High levels of proinflammatory cytokines are detected in sera
from hantavirus-infected patients especially TNF-α (Linderholm
et al., 1996; Mori et al., 1999; Borges et al., 2008; Klingstrom
et al., 2008; Sadeghi et al., 2011; Saksida et al., 2011; Libraty et al.,
2012; Kyriakidis and Papa, 2013). TNF-α is released by activated
antiviral immune cells such as neutrophils, NK cells and CD8+ T
cells as well as hantavirus-infected DC and macrophages (Raftery
et al., 2002; Marsac et al., 2011; Shin et al., 2012).

TNF-α represents a double-edged sword. On one side it may
help to control hantaviral dissemination by purging virus from
infected cells through non-cytolytic mechanisms (Khaiboullina
et al., 2000; Guidotti and Chisari, 2001). On the other side, if it
is administered exogenously in quantities that are found during
hantavirus infection, vascular leakage and respiratory distress
are induced (Tracey and Cerami, 1994; Wimer, 1998). Local
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FIGURE 2 | Proposed immune mechanisms contributing to
hantavirus-induced disruption of the endothelial barrier. Both cellular
and humoral components of innate and adaptive immune responses could
contribute to vascular leakage of hantavirus-infected vessels. In response to
hantavirus-infected EC, neutrophils generate NETs or may secrete
inflammatory cytokines such as TNF-α which directly or indirectly increase
vascular permeability. The humoral pattern recognition receptor PTX3 and
antibodies activate complement. Activated complement components induce

cytoskeletal rearrangements in EC further increasing dysfunction of the EC
barrier. NK cells may kill bystander EC or also secrete TNF-α. DC may carry
the virus from lung tissue to EC of the microvasculature in various organs or
become infected after interaction with virus-infected EC. As
hantavirus-infected DC mature they migrate to draining lymph nodes to
initiate a vigorous CD8+ T cell response. The latter could contribute to
vascular leakage by direct killing of hantavirus-infected EC or, more likely, by
releasing TNF-α.

release of TNF-α at the EC interface could increase vascular
permeability by direct and indirect mechanisms. Firstly, TNF-
α not only upregulates adhesion molecules such as ICAM-1, a
natural ligand for β2 integrin, but also IL-8. This cytokine both
recruits and activates neutrophils, and furthermore induces NETs
(Brinkmann et al., 2004). Secondly, TNF-α can directly increase
vascular permeability by inducing cytoskeletal rearrangements
resulting in redistribution of human microvascular endothelial
tight junctions (Blum et al., 1997; Ozaki et al., 1999). Han-
taviruses may further enhance this direct TNF-α effect as HTNV-
infected EC show prolonged hyperpermeability after exposure to
TNF-α in comparison to uninfected control cells (Niikura et al.,
2004). The pivotal role of TNF-α in hantaviral immunopatho-
genesis may explain the relatively poor activity of ribavirin in

HCPS; it blocks ANDV replication and suppresses release of
some inflammatorymediators but not TNF-α (Khaiboullina et al.,
2013).

A high-producing TNF-α genotype (polymorphism at position
−308)was linked tomore severeHFRS in Finish patients although
not independently of the HLA-B8-DR3 haplotype (Kanerva et al.,
1998; Makela et al., 2002). This high-producing TNF-α genotype
was alsomore frequently found inHCPS patients than in seropos-
itive individuals without HCPS (Borges et al., 2010). Another
study in Belgium showed a link between a low-producing TNF-α
genotype (polymorphism at position −238) with more severe
HFRS (Maes et al., 2006). This discrepancy may be reconciled
by assuming that TNF-α release at the hantavirus-infected EC
barrier must be tightly controlled. If there is not enough TNF-α
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the virus may replicate and disseminate more vigorously espe-
cially as hantavirus N protein can interfere with signaling
through the TNF receptor (Taylor et al., 2009; Ontiveros et al.,
2010). This likely increases vascular permeability due to non-
immunological effects of viral particles on subcellular structures.
On the other hand, too much local TNF-α allows better control
of the virus but at the same time may increase immune-mediated
damage.

Concluding Remarks

Humoral as well as cellular mechanisms of the adaptive and
innate immune system contribute to hantavirus-induced disrup-
tion of the endothelial barrier (Figure 2). Intriguingly, neutrophils

which so far have not been regarded as a player in hantavirus-
induced immunopathogenesis seem to be important. NETs as well
as neutrophil-derived factors such as VEGF, PTX3, and TNF-α
can cause vascular dysfunction. Further studies are needed to
reveal whether strategies aiming at neutrophil function can pre-
vent hantavirus-induced immunopathogenesis. Furthermore, it
is possible that NETs and other neutrophil-derived mediators of
vascular hyperpermeability play a role inVHF caused bymembers
of other virus families.
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