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Abstract

Stamen movements can be understood as a mechanism influencing pollen presentation and increasing outbreeding
success of hermaphroditic flowers via optimized male function. In this study we experimentally analyzed the factors
regulating autonomous and thigmonastic (triggered by flower visitors) stamen movements in eight species of Loasaceae.
Both types of stamen movements are positively influenced by light and temperature and come to a virtual standstill in the
dark and at low temperatures (12uC). Pollen presentation is thus discontinued during periods where pollinators are not
active. Overall stamen presentation increases with increasing flower age. Contrary to expectation, no geometrical
correlation between the floral scale stimulated and the stamen fascicle reacting exists, indicating that the stimulus is
transmitted over the receptacle and stamen maturation dictates which and how many stamens react. Thigmonastic stamen
presentation is dramatically accelerated compared to autonomous movement (3–37 times), indicating that the rate of
stamen maturation can be adjusted to different visitation schedules. Flowers can react relatively uniformly down to
stimulation intervals of 10–15 min., consistently presenting comparable numbers of stamens in the flower c. 5 min. after the
stimulus and can thus keep the amount of pollen presented relatively constant even under very high visitation frequencies
of 4–6 visits/h. Thigmonastic pollen presentation dramatically reduces the overall duration of the staminate phase (to 1/3rd

in Nasa macrothyrsa). Similarly, the carpellate phase is dramatically reduced after pollination, down to 1 d from 4 d. Overall
flower longevity is reduced by more than 2/3rds under high visitation rates (,3 d versus 10 d under visitor exclusion) and
depleted and pollinated flowers are rapidly removed from the pool. Complex floral behaviour in Loasaceae thus permits a
near-total control over pollen dispensation schedules and floral longevity of the individual flower by an extraordinary fine-
tuning to both biotic and abiotic factors.
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Introduction

The lack of obvious movements is one of the most striking

features differentiating plants from animals. Plant movements have

therefore particularly fascinated scientists across the ages [1],[2].

Some plant movements have been studied in detail, such as the

trap mechanisms of Dionaea muscipula and Aldrovanda vesiculosa [3],

or the leaf movements of Mimosa pudica [4] and Albizzia julibrissin

[5]. It has been reported that plant movements are influenced by

temperature (in Dionaea muscipula and Aldrovanda vesiculosa: [3];

Mimosa pudica: [4]; Albizzia julibrissi [5]), and light (solar tracking)

[6], or the lack thereof (nyctinasty, e.g. in Espeletia schultzii) [7].

Plant movements can have a range of functions, most frequently

serving to protect the plants from damage, but sometimes

functioning in trap mechanisms or in pollination ecology. In

terms of male function of flowers, stamen movements are the most

common type: Thigmonastic stamen movements in Berberis

(Berberidaceae) were amongst the first active floral movements

to be reported in the scientific literature [8], but stamen

movements have since also been reported from a range of taxa

such as Sparmannia (Malvaceae) [9], Portulaca (Portulacaceae) [10],

Nigella (Ranunculaceae) [11] and Opuntia (Cactaceae) [12]. In all

these cases the movement of the anthers is triggered by a

mechanical stimulus and usually leads to the simultaneous outward

or inward movement of all stamens present, maximizing pollen

deposition on visiting insects. In his review on ‘‘rapid plant

movements’’, Sibaoka [3] ascribes the thigmonastic response of

several plant species (Berberis spp., Sparmannia africana, Mahonia

aequifolium, Helianthemum vulgaris, Portulaca grandiflora) to a stimula-

tion of the filaments by flower visitors.

Thigmonastic stamen movements generally concern all stamens

of the androecium and are caused by stimulation of the stamen

(filament) itself. The response is thus fairly simple and shows little

plasticity. Exceptions are found in Berberis, where the number of

stamens moved depends on the strength of the mechanical
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stimulus [13] and Opuntia, where the direction of the movement

depends on the site of the stimulus [14].

The South American Loasaceae subfam. Loasoideae (Fig. 1)

show a much more complex type of floral behaviour. The flowers

have complex staminodial complexes, so-called nectar scales, into

which nectar is secreted. These nectar scales are often contrast-

ingly coloured and their shape and colour correlate to specific

pollination syndromes [15]. The polyandric androecium of these

plants consists of numerous, initially reflexed stamen bundles of

sequentially maturing anthers (Fig. 1B, G, J, K) alternating with

the staminodial complexes (Fig. 1G). In the absence of flower

visitors, mature anthers present their pollen in the center of the

flower by autonomously moving into an upright position (Fig. 1B,

K) [16], [17]. Anther dehiscence occurs immediately before or

during the stamen movement. At the end of the staminate phase

all stamens have moved into the center of the flower and the petals

are empty (Fig. 1J). As first reported by Schlindwein & Wittmann

[18] the manipulation of the floral scales in Caiophora arechavaletae

(Urb.) Urb. & Gilg, leads to a direct reaction in the stamen

bundles, causing the thigmonastic movement of individual stamens

from a reflexed position into the center of the flower. These

staminodial complexes are flexible, and are forcibly bent outwards

by the flower visitors whilst they are harvesting the nectar (Fig. 1H).

Pollen is thereby passively deposited ventrally on the visitors’

abdomen or is collected actively by the pollinator [19], [20]. These

thigmonastic stamen movements have since been reported from a

range of taxa in Loasaceae subfam. Loasoideae (genera Blumen-

bachia, Caiophora, Loasa, Nasa) [18], [19], [20], [21], [22], [23].

Unlike in other flowers, there is spatial separation between the

place of manipulation (the floral scale) and the place of the

reaction (the stamen bundle). It is unclear how the stimulus is

communicated from the floral scale to the anthers that show the

thigmonastic reaction and it is also unknown whether the stimulus

from an individual staminodial complex is communicated to all

five stamen bundles of the flower or affects only the two stamen

bundles neighbouring the floral scale that has been manipulated.

The function of thigmonastic anther presentation in Loasaceae

has been explained in the framework of the Pollen Presentation

Theory (PPT) [24], [25], [26], [27]: PPT argues that pollen release

in plants is adjusted to the frequency of flowers visits in order to

optimize male function. A selection for increased male fitness in

hermaphrodite flowers may favor a protracted period of pollen

donation with pollen released in minor amounts by dispensing or

packaging [28]. This probably increases the likelihood of siring

outcrossed offspring. The rapid presentation of fresh pollen in the

flower shortly after a flower visit and nectar depletion likely

reduces self-pollen deposition and increases pollen export [22].

Stamen movement in Loasaceae subfam. Loasoideae is present in

several genera of the group and differs from stamen movements in

other plant families: In Loasoideae, individual stamens in the

polyandrous androecium are triggered by the manipulation of a

separate floral organ (the floral scale) and this mechanism leads to

numerous separate stamen movements across the staminate phase,

i.e., in the course of several days. Thigmonastic stamen

movements are present across pollination modes in Loasoideae

in taxa pollinated by short-tongued bees, long-tongued bees and

hummingbirds (unpublished observation). Weigend et al. [22]

therefore detached the floral behaviour from the behaviour of

individual pollinators and offer a general functional explanation:

Rapid thigmonastic stamen presentation is advantageous, irre-

spective of pollinator species, ensuring the availability of pollen in

flowers recently depleted of nectar and thus makes optimal use of

the ‘‘hungry pollinators’’: Flies, bees and hummingbirds that visit

flowers that have been recently visited and where nectar is

depleted are more likely to move on to different plants [29],[30],

[31], [32], [33] and thus are more likely to sire outcrossed

offspring. Rapid, thigmonastic pollen presentation ensures that

these valuable ‘‘hungry pollinators’’ are dusted with pollen.

Theoretical works on pollen dispensing schedules [27], [34]

‘‘predicted’’ such a phenomon as the ‘‘unlikely case in which the

number of visits to be received is higly predictable and the

individual plant possess the ability to adjust pollen-dispensing

schedules accordingly’’. If so, they underscored: ‘‘plant fitness may

increase substantially’’. Pollinator behaviour and especially visita-

tion rates may vary throughout the time a flower is presenting

pollen. Visitation frequency may change depending on weather

conditions, daytime or competition among pollinators. Anther

maturation and dehiscence are commonly correlated to temper-

ature, as is overall duration of anthesis. However, there are few

publications on a correlation of stamen movements and temper-

ature or light. Only Jaffe et al. [35] could prove that the

thigmotropic stamen movement of Portulaca grandiflora Hook. is

positively correlated to the ambient temperature, but not to light

intensity. It is currently unknown in how far thigmonastic and

autonomous stamen movements, as found in Loasaceae subfam.

Loasoideae, are dependent on light or temperature: If autonomous

stamen movement was independent of light and temperature, then

a large number of mature stamens would be autonomously

presented during the night. As pollinator activity follows a diurnal

rhythm, the passive presentation of pollen via the autonomous

stamen movement as known for Loasoideae [22] would represent

a ‘‘waste’’ of pollen during the night. In their natural habitat

(mostly the Andes of Southern America), Loasoideae underlie a

distinct nightime temperature drop. Pollinator activity is generally

limited by thermal constraints, which in turn are (especially in the

high Andes) closely correlated to solar radiation [36]. The

dramatic fluctuations between day- and nighttime temperatures

at high altitudes and the rapid sunset and sunrise close to the

equator mainly determine pollinator activity. It would therefore be

expected that these abiotic factors affect stamen movement.

However, so far it is unclear to which degree flowers of Loasaceae

are able to adjust pollen presentation to these different external

factors.

Another interesting aspect is the possible effect of thigmonastic

stamen presentation on the overall duration of the male phase and

flower longevity. Flower longevity is a crucial aspect of pollination

biology: Withdrawal of successfully pollinated flowers from the

overall flower stock ensures the concentration of pollinator activity

on those flowers still requiring their attention [37], [38], [39].

Flower longevity reflects the ecological, genetical and physiological

constraints a plant is subject to during flowering [37]. Flower

longevity is often considered as being mainly influenced by an

either extended (unpollinated) or shortened (successfully pollinat-

ed) stigmatic phase. Ashman & Schoen [40] revealed a correlation

between the duration of floral attractivity and visitation frequency

independent of successful pollination. In Loasoideae, these two

factors are likely to be directly linked. Since pollinator frequency

(visitation rate) varies [22] and the pollen presentation (staminate

phase) within the anthesis is accelerated by the pollinator, it would

be expected that the entire staminate phase can be shortened or

extended accordingly. This in turn would directly affect flower

longevity, since the female phase follows immediately upon the

male phase.

There are thus a range of open questions in the context of

(autonomous and thigmonastic) stamen movement in Loasaceae,

which we want to address in this study:

Do light and temperature affect autonomous and thigmonastic

stamen movement?
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Can the stamen movement be adjusted to different visiting

intervals?

Is the accelerated pollen presentation associated with an

accelerated stamen maturation and the overall duration of the

staminate phase thus influenced by the number of (simulated)

flower visits?

Is the duration of the carpellate phase influenced by pollination?

Does the age of the individual flower (during the staminate

phase) influence the number of stamens presented under constant

visitation rates?

Is there a spatial relationship between the nectar scale

manipulated and the stamen bundle from which an anther/

anthers are presented?

Materials and Methods

Ethics statement
All necessary permits were obtained for the described field

studies. The field studies were undertaken on public land based on

the permit ‘‘Autorización No. 034-2006-Inrena-IFFS-DCB’’ is-

sued by the Instituto Nacional de Recursos Naturales in Lima,

Figure 1. Flowers and floral morphology of species of Loasaceae subfam. Loasoidea used in this study. A. Caiophora cirsiifolia, B. Loasa
insons, C. Nasa macrothyrsa, D. Nasa moroensis, E. Nasa vargasii, F. Presliophytum heucheraefolium, G. Flower of Nasa vargasii, important floral organs
labelled, H. Neoxylocopa lachnea [46], harvesting nectar on Nasa macrothyrsa, note the outwards bent nectar scale, J. Inflorescence of Nasa urens with
flowers in different stages of the anthesis, right: fruiting inflorescence, K. Sequence of the stamen movement in Nasa vargasii. A mature stamen leaves
the boat-shaped petal, passes the gap between two nectar scales and reaches the center of the flower to present its pollen.
doi:10.1371/journal.pone.0041121.g001
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Peru for T. Henning, G. Brokamp and A. Cano E. The study does

not include any endangered or protected species.

Plant material and cultivation
Observations on the flowers were made on cultivated plants in

the greenhouses at the Institut für Biologie, Freie Universität

Berlin. Seeds mostly collected on field trips to Peru had been used

to raise plants of these species in the greenhouse [vouchers:

Caiophora cirsiifolia: M. Weigend 7559 (BSB), Fig. 1A; Loasa insons

Weigend 8724 (BSB), Fig. 1B; Nasa dyeri ssp. australis: N. Dostert

98/80 (M, USM), Fig. 1G; Nasa macrothyrsa: M. Weigend et al. 7471

(B, M, USM, HUT), Fig. 1C, H; Nasa moroensis: M. Weigend 8424

(BSB, HUT, USM), Fig. 1D; Nasa urens: M. Weigend & H. Förther

97/542 (BSB), Fig. 1J; Nasa vargasii: M. Weigend 5463 (B, HUT,

M, USM), Fig. 1E, K; Presliophytum heucheraefolium: M. Weigend

7691 (BSB, USM), Fig. 1F]. Plants were raised and cultivated as

described earlier. (For detailed information see: [22], or contact

the authors). The number of individuals of the plant species used

for this study varied. N. macrothyrsa and P. heucheraefolium are tall,

profusely flowering (.100 flowers) shrubs. Three (N. macrothyrsa)

and five (P. heucheraefolium) tall plants were used for the experiments

conducted on these two taxa. The remaining species are smaller,

herbaceous plants with a smaller number of flowers per individual.

20 individuals of each of these species were brought into flower,

and all plants available were included in the experimental setup.

Flower longevity and artificial pollination
Flowers of Nasa are proterandrous, i.e., the flowers gradually

present their stamens with dehisced anthers during early anthesis

(staminate phase), after which the stamens wilt and the style

elongates and the stigma becomes receptive (carpellate phase)

(Fig. 1J). Flowers of Nasa macrothyrsa were individually marked and

the different phases of the anthesis where noted three times a day.

Pollination was carried out by transferring pollen from entire,

freshly deshisced anthers of flowers from different plants to the

stigmatic surfaces.

Stamen movement
Stamen movement patterns (autonomous and thigmonastic)

were investigated for five species out of three different genera,

namely: Loasa insons, Nasa dyeri ssp. australis, Nasa macrothyrsa, Nasa

urens and Presliophytum incanum. Mid-anthetic flowers (e.g. Fig. 1E)

were individually marked and mature anthers that already had

moved into the center of the flower where cut off one hour prior to

the experiment. Stamens that already have presented their pollen

in the center of the flower wilt and contract rapidly (Fig. 1J –

female phase). The stamen movement from the stamen fascicle

inside the petals into the center of the flower is rapid and takes

between one to three minutes (Fig. 1K).

Autonomous stamen movement
Flowers were prepared as described above and kept at different

temperatures and light exposures to examine the characteristics

and regulatory mechanisms of the autonomous stamen movement.

The influence of temperature on stamen movement was investi-

gated based on the temperatures measured in the habitat of Nasa

macrothyrsa. Autonomous stamen movement overnight (13.5 hours)

was investigated at 22uC (day time temperature in the field) and

12uC (night time temperature in the field), respectively. Flowers

were kept in the dark and autonomously presented stamens where

counted the next morning before sunrise. The data for the

autonomous movement during the day at 22uC were calculated

from the data of flower longevity (under pollinator exclusion) made

at the same time in our greenhouses. Therefore, the total number

of stamens per flower was divided by the duration of the staminate

phase minus the number of stamens that are expected to be

autonomously moved at night (12uC, 13.5 h).

Thigmonastic stamen movement
All species here studied are bee-pollinated [15]. Bees,

irrespective of bee genus, show similar handling behavior –

landing on and holding on to the floral scales using footholds

provided on the back of the nectar scales (Fig. 1H), quickly probe

each nectar scale and thereby insert the proboscis into one floral

scale after the other by turning in a circle in the center of the

flower. Floral design makes handling of the flower from the

periphery impossible. This procedure takes only a few seconds and

artificial manipulation thus closely imitated this behavior: Stamen

movement was triggered experimentally by slightly bending all five

nectar scales outwards with a dissecting needle and thus imitating

a pollinator visit (cf. Fig. 1H). Stamens were counted after they

reached an upright position. In the experiments at night, the

flowers were controlled periodically for stamen movement with a

small, dimmed pocket lamp. In all experiments, the stimulus was

given in five consecutive intervals irrespective of interval length.

Only flowers in the middle staminate phase (see below, ‘‘flower

age’’) were used in this experiment.

Regular visitor frequency/30 minute interval
The timing of experimental visits to flowers should reflect the

natural visitation rate [28]. Accordingly five consecutive 30 min-

ute intervals between stimuli were chosen, based on field

observations on Nasa macrothyrsa indicating an average interval

between two visits to individual flowers of c. 25 minutes [22].

These experiments where carried out on all species.

Five additional stimulation intervals were chosen, imitating

different visitor abundancies. For Nasa macrothyrsa three datasets

(30, 60, 180 min. intervals) are compared to examine low

visitation rates. For the 60 min. interval flowers were stimulated

(as described above) every hour for 10 consecutive hours. The

experiment was carried out one day and the influence on the

duration of the staminate phase was calculated from total stamen

number. For the very low visitor frequency (180 min. interval)

flowers were manipulated three times a day at 9 am, 12 am and 3

pm, respectively, over the entire staminate phase of the flowers.

Three other species out of two different genera of Loasaceae were

used to investigate the effect of high visitation rates (10, 15,

20 min. intervals). The latter three species [(Loasa insons, Nasa dyeri

ssp. australis (Nasa triphylla – group, [41]) and Nasa urens (Nasa

poissoniana – group, [42])] are all rather distantly related,

entomophilous taxa. They share the same basic flower morphol-

ogy and pollination system and the data here presented are thus

representative for a large proportion of Loasaceae subfam.

Loasoideae. The short intervals were tested to investigate to

which degree stamen presentation can be accelerated under high

visitation rates.

Location of the response relative to the stimulus
Five different species were examined in this respect, namely:

Nasa moroensis, N. macrothyrsa, N. vargasii, Caiophora cirsiifolia and

Presliophytum heucheraefolium. The flowers were prepared as de-

scribed above. The position of the scales in comparison to the

stamen-fascicles was noted on a flower diagram. A single nectar

scale was chosen randomly and stimulated for a total of six times at

30 min. intervals. The number of moving stamens reacting from

each fascicle was recorded.
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Flower age
Flowers of Nasa urens were prepared and manipulation was

carried out as above with a 30 min. interval between stimulations.

Prior to the experiment, flowers were sorted into four categories

(n = 10 flowers each) relative to the stage of the staminate phase. 1.

beginning - flowers with#two stamens already presented; 2. early -

2–10 stamens presented, 3. middle - .10 stamens presented and

.10 stamens still reflexed into the petals; 4. late - #10 stamens still

hidden in the petals.

Statistics
Statistics were done with R (version 2.13.0). To compare the

stamen movement of flowers in different staminate phases, a one-

factorial ANOVA followed by a Tukey HSD post-hoc test was

conducted. Normal distribution and homogeneity of the data were

tested by the Shapiro-Wilk Normality Test and the Bartlett Test of

Homogeneity of Variances, respectively. In the case of the stamen

movement vs. light, temperature and stimulus intervals (dataset

Nasa macrothyrsa, Tab. 1 Fig. 2) and the datasets on the different

visiting intervals (Nasa urens, Loasa insons, Nasa dyeri ssp. australis

Tab. 2), the underlying assumptions of the ANOVA were not met

due to unequal variances. Here, a fitted linear model using

generalized least squares using the function ‘‘gls’’ of the package

‘‘nlme’’ [43], including the formula ‘‘weights = varIdent(1)’’ [44],

was applied. The R ouput file is added as Supporting Information

S1. The data on the location of the response relative to the

stimulus was tested for significant differences using SPSSH for

WindowsH. A Friedmann-test was conducted to reveal overall

significant differences in the datasets. If significant differences were

found (P. heucheraefolium), a Wilcoxon-signed rank test has been

used to detect the detailed differences between all stamen bundles.

Results

Autonomous and thigmonastic stamen movement
dependent on light and temperature

Fig. 2 compares the autonomous and thigmonastic stamen

presentation in flowers of Nasa macrothyrsa depending on temper-

ature and light. Treatments and detailed results are summarized in

Table 1. Flowers showed an autonomous stamen movement of 1.5

stamens/flower/h in the light at 22uC, but only of 0.8 stamens/

flower/h in the dark at 22uC. In the dark and at 12uC, stamen

movement almost comes to a standstill with 0.025 stamen/flower/

h. Thigmonastic stamen movement was also higher (6.78 st./h) at

22uC in the light than in the dark at the same temperature (5.2 st./

h). Autonomous and thigmonastic stamen movement are thus

positively correlated to both light and temperature.

Visitation rates, thigmonastic stamen movement and the
duration of the male phase

Three different scenarios where tested, imitating different

visitation rates (Tab. 1, Fig. 2). Simulated flower visits at 3 h

intervals only marginally increased stamen presentation to

1.8360.13 stamens/h compared to autonomous stamen presen-

tation (1.54260.141, n = 42). Simulated flower visits at 1 h

intervals nearly doubled stamen presentation compared to

autonomous movement (to 2.8360.6 stamens/h). Visitation

frequencies observed in the field are close to 30 min. [22].

Imitating these intervals leads to a presentation of 6.7861.59

stamens/h, i.e., more than four times the rate of autonomous

stamen presentation. The flowers of N. macrothyrsa have ca. 100

stamens each (98610, n = 42) and the duration of the staminate

phase depends on the number of stamens presented per unit time:

Based on stamen presentation rates under different (simulated)

flower visitation rates the duration of the staminate phase falls

from ca. 6 d (6.255d60.522, n = 55) in the absence of flower

visitors to ca. 5 days (5.275d60.419, n = 21) with three visits per

day, to ca. 4 d (4.122 d, n = 21, calculated from the 60 min.-

experiment conducted for 10 h) under hourly visitation. Under

visitation frequencies of 30 min., i.e., close to those observed in the

field, the staminate phase of the anthesis would be reduced to less

than 2 days (ca. 1.45 d, n = 20) (Fig. 3).

Three species were studied with shorter visitation intervals of

10, 15, 20, 30, 60 min. They showed no clear statistically

significant differences in the immediate response upon stimulation

throughout, i.e., the number of stamens present 5 min. after

stimulation is apparently independent of the visitation intervals in

all three taxa studied (Tab. 2). Nasa urens represents the only

exception, with a significantly higher response when stimulated

every 15 min (Fig. 4). As would be expected, the total amount of

stamens moving per stimulus interval increases with interval

length, with the exception of N. urens, which peaks at the 15 min.

interval. The overall number of stamens presented per hour under

different stimulation intervals is variable: In L. insons the response

shows a slight (not significant) increase from 10 to 30 min.,

followed by a significant drop to the 60 min. interval (Fig. 5). In N.

dyeri the shortest interval shows the strongest overall response

(stamen movement per hour), which gradually falls with increasing

interval length (Fig. 6). In N. urens the 10 min. interval shows a

strong response, the 15 min. interval the strongest response, which

then falls moderately to 20 and 30 min. and again dramatically to

60 min (Fig. 4). A certain proportion of the stamen movements

Figure 2. Rate of the stamen movement depending on
different abiotic factors and visitation rates in Nasa macro-
thyrsa. Different letters indicate significant differences between the
treatments in the number of stamens moved per unit time (gls model;
P,0.05, Supporting Information S1).
doi:10.1371/journal.pone.0041121.g002
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following a stimulus can be ascribed to the autonomous stamen

movement that would normally occur in the corresponding time

interval. Substracting autonomous movement from the overall

movement leads to actual stamen movement caused by stimula-

tion. In both L. insons and N. urens stimulation at intervals of

60 min. approximately doubles the overall number of stamens

moving compared to the autonomous movement (Figs. 4, 5), in N.

dyeri the stimulus makes no difference and stimulation every

60 min. has no effect on the overall number of stamens moving

per unit time (Fig. 6). Conversely, shorter intervals dramatically

increase stamen presentation per unit time – by a factor 17

(10 min., N. dyeri) respectively 37 (15 min. N. urens).

Thigmonastic stamen movement and flower age
The influence of the ‘‘age’’ of an individual flower on the

thigmonastic stamen presentation was tested in Nasa urens. Fig. 7

and 8 show the results from the qualitative and quantitative side.

The overall number of stamens ‘‘triggered’’ by a stimulus increases

with flower age (Tab. 3, Figs. 7, 8): The youngest flowers moved by

far the least, the oldest the highest number of stamen in response

to a stimulus (Fig. 8). The speed of the response was more or less

equal between flower ages, i.e., all flower ages show a rapid

reaction within the first five minutes of the stimulus (Tab. 3, Fig. 7).

This immediate response is followed by a drop of activity between

10 and 15 minutes after the stimulus. This drop is less pronounced

in flowers that are at the very end of the staminate phase. Recently

opened flowers show a rather consistent decrease in activity,

reaching a minimum between 20 to 25 minutes after the stimulus.

All but the youngest flowers show considerable additional stamen

movement after the immediate response. Middle-staminate flowers

show a second peak of stamen activity in the second half of the

time after the stimulus. Flowers at the end of the staminate phase

have an even course of stamen activity throughout the period of

observation with a weaker drop after the immediate response and

a uniformly high activity in the second half of interval. These data

indicate that during the course of the staminate phase the rate of

stamen maturation gradually increases.

Pollination and duration of the carpellate phase
Under pollinator exclusion, the carpellate phase of Nasa

macrothyrsa has a mean duration of .4 days (4.1 d60.7, n = 26).

Under hand pollination flowers wilt rapidly and the corolla and

Table 1. Stamen movement depending on stimulation and abiotic factors in N. macrothyrsa.

nectarscales
stimulated

duration of experiment
in hours

stimulus interval
in min light temperature in 6C n

average stamen-
movement per h

yes 2.5 30 daylight 22 20 6.7861.58

yes 2.5 30 darkness 22 20 5.261.27

yes 5 60 daylight 22 20 2.8360.24

yes 9 180 daylight 22 21 1.8360.13

no 2.5 daylight 22 42 1.5460.14

no 13.5 darkness 22 25 0.8160.31

no 13.5 darkness 12 26 0.02560.42

doi:10.1371/journal.pone.0041121.t001

Table 2. Average stamen movement values per flower at different stimulus intervals (bold: experimentally derived data, rest:
calculated).

species Loasa insons Nasa dyeri ssp. australis Nasa urens

stimulus
interval in
minutes 10 15 20 30 60 10 15 20 30 60 10 15 20 30 60

stamens moved
per hour

4.56 4.84 4.74 5.04 3.22 6.78 5.93 5.22 4.87 3.63 5.88 9.84 4.38 4.79 2.39

total amount of
stamens moved
per stimulus

0.76 1.21 1.58 2.52 3.22 1.13 1.48 1.74 2.44 3.63 0.98 2.46 1.46 2.39 2.39

stimulus
response (tot.
movement -
autonomous
movement)

0.49 0.8 1.03 1.7 1.58 0.55 0.61 0.57 0.69 0.13 0.96 2.42 1.41 2.32 2.24

response within
first 5 minutes
after stimulus

0.48 0.43 0.71 1 0.81 0.61 0.87 0.93 1.02 0.71 0.9 2.28 0.98 1.19 1.19

autonomous
stamen
movement

0.27 0.41 0.55 0.82 1.64 0.58 0.88 1.17 1.75 3.5 0.25 0.38 0.5 0.75 1.5

doi:10.1371/journal.pone.0041121.t002
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androecium are shed. The mean duration of the carpellate phase is

reduced to ca. 1 day (1.1 d60.3, n = 27) after hand pollination.

Thus, the carpellate phase is dramatically reduced under

pollination and is terminated soon after a single successful

pollination event.

Spatial relationship between stimulus and thigmonastic
response

Five species were examined in order to identify a possible spatial

relationship between the trigger (i.e., the nectar scale manipulated)

and the responding stamen(-s): Nasa vargasii (n = 51 flowers), N.

moroensis (n = 56), N. macrothyrsa (n = 25), Caiophora cirsiifolia (n = 23)

and Presliophytum heucheraefolium (n = 18). If all stamen fascicles

reacted equally to the manipulation of a single nectar scale,

irrespective of their spatial relationship to the scale, then it would

be expected that 20% of the overall thigmonastic stamens would

originate from each of the five stamen bundles. Observed

summary data were close to this expectation: In N. vargasii and

N. moroensis 19 to 22% of the responding stamens originated in the

fascicles directly flanking the manipulated nectar scale (Fig. 9A–C).

In Caiophora cirsiifolia these fascicles showed a weaker response (17–

18%, Fig. 9D). Conversely, in P. heucheraefolium these fascicles were

the most active (both 25%, Fig. 9E). However, while there are

differences in the overall number of thigmonastic stamens from the

different fascicles, a statistical comparison (Friedmann-Test)

revealed no siginificant differences in any of the species of Nasa

and Caiophora examined (Tab. 4), i.e., the response of the

thigmonastic stamens was independent of which nectar scale is

Figure 3. Influence of different visitation rates (stimulus intervals) on the stamen movement rate and the corresponding lenght of
the staminate phase in Nasa macrothyrsa.
doi:10.1371/journal.pone.0041121.g003

Figure 4. Detailed stamen movement under different visitation rates (stimulus intervals) in Nasa urens. Different letters indicate
significant differences between the amount of stamens moved (gls model; P,0.05, Supporting Information S1).
doi:10.1371/journal.pone.0041121.g004
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stimulated. Only Presliophytum seems to have a spatialized stamen

reaction (P,0.05). A Wilcoxon-Test revealed that mainly those

two fascicles neighbouring the manipulated scale differ signifi-

cantly from the others. It has to be assumed, that these differences

can only be found between the two neighbouring and two of the

fascicles more distant to the stimulus. The activity of the third

remote fascicle varies to a lesser extent. Thus there is no significant

difference in the activity of this particular fascicle, compared to the

fascicles flank to the scale manipulated. Furthermore, for P.

heucheraefolium only 18 flowers where available and it cannot be

excluded that this significance is an artefact of the smaller sample

size.

Figure 5. Detailed stamen movement under different visitation rates (stimulus intervals) in Loasa insons. Different letters indicate
significant differences between the amount of stamens moved (gls model; P,0.05, Supporting Information S1).
doi:10.1371/journal.pone.0041121.g005

Figure 6. Detailed stamen movement under different visitation rates (stimulus intervals) in Nasa dyeri subsp. australis. Different letters
indicate significant differences between the amount of stamens moved (gls model; P,0.05, Supporting Information S1).
doi:10.1371/journal.pone.0041121.g006
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Discussion

The present study on pollen presentation in Loasaceae

documents a near total control of the flower over pollen

dispensation. Surprisingly, there appears to be no direct spatial

correlation between the stamen bundle providing the thigmonastic

stamen and the localization of the stimulus. The stimulus is

apparently transmitted to all stamen fascicles via the receptacle,

leading to a reaction in a determined number of stamens from all

fascicles.

The data presented here for a number of selected species

demonstrate that the pollen dispensation schedule is modulated by

Figure 7. Stamen movement rates in Nasa urens per 5 min interval from stimulation at different stages of the anthesis.
doi:10.1371/journal.pone.0041121.g007

Figure 8. Stem and leaf plot of data for the different flower ages incl. extremes (*) in Nasa urens. Different letters indicate significant
differences between the amount of stamens moved (gls model; P,0.05, Supporting Information S1).
doi:10.1371/journal.pone.0041121.g008
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both biotic and abiotic factors: It comes to a virtual standstill in the

dark and at low temperatures (here 12uC), so that in the absence of

pollinators during the (Andean) nights nearly no pollen is

presented. At higher temperatures (here 22uC) and daylight,

pollen is gradually presented by autonomous stamen movement,

but this stamen movement is slow, leading to a total duration of

the staminate phase in N. macrothyrsa of ca. 6 days. Under flower

visitation the anther presentation schedule can be dramatically

accelerated, reducing the staminate phase to less than 2 d, i.e., less

than a third, under flower visitation rates of 2 visits/h.

Experiments with other species further show that an acceleration

of pollen presentation is possible down to visitation intervals of 4

visits/h (in N. urens) respectively 6 visits/h (N. dyeri). In the field,

visitation rates are unlikely to be equal throughout anthesis and

differ for each individual flower: The data provided by Weigend et

al. [22] show a wide spread in visitation intervals. Thus,

temperature, light (day/night) and visitation rates fluctuate widely

during anthesis and for each individual flower. The direct response

of thigmonastic stamen movement to both stimulation and abiotic

factors permits an extreme degree of short-term fine-tuning of the

pollen presentation schedule and even of the overall duration of

the staminate phase, approaching the ideal condition formulated

by Harder & Wilson [28]. Stamen presentation per unit time can

be dramatically accelerated (up to 376 compared to autonomous

movement) and the duration of the staminate phase can be

dramatically reduced under very high visitation frequencies.

Possibly the most striking result is, that the average number of

mature stamens presented in the center of the flower after 5 min. is

held virtually constant irrespective of visitation frequencies.

Shortly after nectar and pollen depletion any visitor will therefore

always find approximately the same amount of pollen (and no

nectar) in the center of the flower. Pollen dispensation is thus

remarkably even and the amount of pollen presented shortly after

a previous visits is more or less equal, irrespective of visitation

Table 3. Thigmonastic stamen movement at different points
of the staminate phase.

stamens moved status of the staminate phase

beginning early middle late

Ø within the 1st 5 minutes 0.86 1.28 1.1 1.18

Ø per interval per flower 1.2 2 2.44 2.74

Ø in total (5 intervals) per flower 6 10 12.2 13.7

doi:10.1371/journal.pone.0041121.t003

Figure 9. Summary of the data on the stamen origin experimentally obtained. Grey filling/arrow = stimulated nectar scale. Stamen
movements from individual stamen fascicles were summed up for five stimulations in 30 Min. intervals. Percentage of stamen movement for each
fascicle is given in the corresponding ‘‘petal’’. A. Nasa vargasii, B. N. moroensis, C. N. macrothyrsa, D. Caiophora cirsiifolia, E. Presliophytum
heucheraefolium.
doi:10.1371/journal.pone.0041121.g009

Table 4. Sample size and P-values of the experiment on the
stamen origin.

taxon n plants n flowers
g stamen
moved P

Nasa vargasii 20 51 693 0.201

N. moroensis 20 56 573 0.244

N. macrothyrsa 3 25 281 0.947

Caiophora cirsiifolia 20 23 158 0.569

Presliophytum heucheraefolium 5 18 262 0.011

doi:10.1371/journal.pone.0041121.t004

Adjusting the Revolver

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e41121



intervals. Withdrawal of successfully pollinated flowers from the

overall flower stock [37], [38], [39] is taken care of very effectively,

with flowers terminating their carpellate phase virtually immedi-

ately after pollination, whereas unpollinated flowers remain open

for a much longer time. Under ideal conditions floral longevity in

N. macrothyrsa can thus be reduced from over 10 d (.6.25 d

staminate, .4.1 d carpellate) to less than 3 d (1.45 d staminate,

1.1 d carpellate), i.e., by more than 2/3rds. Direct observational

data for Nasa macrothyrsa confirm this conclusion and it can even be

extrapolated on shorter intervals. The effect may be even more

pronounced in other species with an even more extreme

acceleration of stamen presentation: In our experiments we found

no saturation in intervals of 30 min. and shorter (at least in N. dyeri

and in L. insons) – the total amount of anthers presented per hour

either increased with shorter intervals, or was kept constant. This

indicates that even under consistently high pollinator activity (6

visits/h) stamen maturation and presentation can be accelerated

sufficiently to ensure the immediate presentation of fresh pollen

after a flower visit. The only major difference in stamen

presentation is introduced by flower age, with the rate of stamen

maturation apparently accelerated in older flowers and conse-

quently overall pollen dispensation gradually increasing through-

out the staminate phase. Nevertheless, differences in the amount of

stamens moved upon a stimulus at different flower ages are minor

compared to the differences caused by changes in visitation rates.

Although not specifically examined here, short pollen viability

in general is thought to be linked to pollen allocation modes with a

frequent release of small quantities of pollen and vice versa [45]. In

the species here studied anthers dehisce immediately before or

during stamen movement, so that pollen presented is always fresh

and viable. The immature anthers are reflexed and hidden in the

petals, so that pollen collecting bees will usually not be able to

deplete (‘‘rob’’) the pollen of an individual flower in one visit.

Harder & Wilson [28] mentioned the ‘‘unlikely case in which

the number of visits to be received is higly predictable and the

individual plant possesses the ability to adjust pollen-dispensing

schedules accordingly’’ and argued that this would mean that

‘‘plant fitness may increase substantially’’. The data here presented

on several species of Loasaceae provide an unexpectedly extreme

example of such total control over pollen-dispensation in flowering

plants.

Supporting Information

Supporting Information S1 Detailed output of the statis-
tics computed in R.
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