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Recent discoveries in neutron scattering experiments for Kapellasite and Herbertsmithite as well as theoretical
calculations of possible spin liquid phases have revived interest in magnetic phenomena on the kagome lattice.
We study the quantum phase diagram of the S = 1/2 Heisenberg kagome model as a function of nearest neighbor
coupling J1 and second neighbor coupling J2. Employing the pseudofermion functional renormalization group
(PFFRG), we find four types of magnetic quantum order (q = 0 order, cuboc order,ferromagnetic order, and√

3 × √
3 order) as well as extended magnetically disordered regions by which we specify the possible parameter

regime for Kapellasite. In the disordered regime J2
J1

� 1, the flatness of the magnetic susceptibility at the zone
boundary which is observed for Herbertsmithite can be reconciled with the presence of small J2 > 0 coupling. In
particular, we analyze the dimer susceptibilities related to different valence-bond crystal (VBC) patterns, which
are strongly inhomogeneous, indicating the rejection of VBC order in the RG flow.
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Introduction. Frustrated magnetism is a focus of contem-
porary research in condensed matter physics, combining a
plethora of experimental scenarios and diverse theoretical
approaches to describe them. One of the most fascinating
challenges of the field has been to investigate and understand
the interplay of magnetic quantum order and disorder on
the kagome lattice. A major reason why this lattice of
corner-sharing triangles yields such a complicated structure of
quantum phases is already evident from the classical kagome
Heisenberg model (KHM): As a function of nearest neighbor
and next nearest neighbor Heisenberg couplings J1 and J2,
many different magnetic orders are present [1,2], where an
infinite number of degenerate ground states can be found [3].
From a theoretical perspective, not many rigorous results about
the quantum phase diagram are known so far. Advanced mean
field theories have provided important guidance as to what type
of ordered and disordered quantum phases could possibly be
found [4–10], but cannot give unambiguous information about
which phase will eventually be stabilized in the microscopic
model. A peculiar feature of the KHM which has been known
since early exact numerical calculations of finite size clusters
[11] is the large amount of singlet states at low energy. This
suggests an overabundance of competing quantum-disordered
phases and is probably one of the main reasons why the
interpretation of the present results for the J1 KHM from
microscopic numerical approaches is not yet fully settled
[12–17].

Transferring our fragile theoretical knowledge to exper-
imental scenarios is even more challenging. The Herbert-
smithite compound ZnCu3(OH)6Cl2 is one of the rare, properly
investigated material realizations of a S = 1/2 kagome spin
model, which is supposedly dominated by the J1 term. Early
investigations from neutrons [18] and muon spin rotation
(μSR) [19] have already indicated its unconventional frus-
trated magnetic properties, exhibiting no sign of magnetic
order down to a few mK. While there is no indication for
a magnetic spin gap, it is likely that this does not hint at a
key property of a possible KHM description, but might be

due to Dzyaloshinskii-Moriya (DM) effects and impurities
which further complicate the picture (see, e.g., Refs. [18–23]).
The latest detailed neutron scattering experiments resolve
a flat magnetic susceptibility profile [24,25], which allows
for an interpretation along spin fractionalization as known,
e.g., from spinon continua in the spin structure factor of
quasi-one-dimensional systems [26]. Recently, neutron and
μSR experiments on Kapellasite, Cu3Zn(OH)6Cl2, of which
Herbertsmithite is a polymorph, have found indications for
cuboc short-range correlations [27]. This is an exciting
discovery, as electronic structure calculations find dominant
antiferromagnetic J1 coupling and hence a similar regime
as Herbertsmithite [28]. From where classical cuboc order
emerges, however, this suggests the presence of ferromagnetic
J1 and antiferromagnetic J2 in Kapellasite [29].

In this Rapid Communication, we develop a pseudofermion
functional renormalization group (PFFRG) perspective on the
J1-J2 kagome Heisenberg model which is ideally suited to
treat magnetic order and disorder tendencies on an unbiased
footing [30–35]. Our objectives are twofold. First, we obtain
a detailed understanding of the J1-J2 quantum phase diagram,
including all magnetically ordered and disordered regimes
as well as the associated phase transitions. In particular, in
light of recent findings for compounds such as Kapellasite,
we allow both J1 and J2 couplings to be ferromagnetic
and antiferromagnetic. Aside from ferromagnetic, cuboc,√

3 × √
3, and q = 0 order, we find magnetically disordered

regimes located around (J1,J2) ∼ (1,0), (J1,J2) ∼ (0,1), and
possibly a nonmagnetic phase separating the cuboc from
the ferromagnetic domain (Fig. 1). Second, we specifically
investigate the J1 KHM disordered regime which is supposed
to relate to the Herbertsmithite scenario. Due to the large
system sizes of up to 317 sites which are reached by PFFRG,
we obtain accurate resolution of the momentum-resolved static
magnetic susceptibility. Aside from short-range correlations,
we observe a broad spectral distribution which becomes flat
at the magnetic zone boundary for J2/J1 ∼ 0.017 (Fig. 2).
This profile is similar to what is observed in recent neutron
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FIG. 1. (Color online) (a) Quantum phase diagram of the J1-J2 kagome Heisenberg model. Colored regions correspond to the magnetically
ordered phases q = 0, cuboc, ferromagnetic, and

√
3 × √

3 order, while white regimes are nonmagnetic. Faint areas near the phase transitions
(e.g., between the cuboc and the ferromagnetic phase) are regions of significant numerical uncertainty. (b) Flow of the susceptibilities at the
ordering vectors of the four ordered regimes. Arrows indicate the instability features. The curves for q = 0, cuboc, ferromagnetic, and

√
3 × √

3
order are given for α = 45◦, 130◦, 180◦, and 315◦, respectively (black dots in the phase diagram). (c) Susceptibilities at the ordering vectors
of the ordered phases as a function of α at constant � = 0.6, well above the instability features. Ordered regimes occur in the vicinity of the
maxima of these curves. (d)–(g) show the susceptibility profiles for all types of orders (at the points indicated in the phase diagram) at the
instability breakdown.

measurements [25]. Furthermore, we compute the dimer
susceptibilities for different pattern candidates. While local
pinwheel correlations tend to get enhanced by the RG flow,
long-range valence-bond crystal (VBC) orders are rejected, as
seen by a strongly inhomogeneous pattern response (Fig. 3).
This suggests that the initial RG bias for VBC flows away
towards a random valence-bond (RVB) liquid type state, which
is consistent with spin liquid proposals for the KHM.

Model. The Hamiltonian of the J1-J2 kagome Heisenberg
model (KHM) is given by

HKHM = J1

∑

〈ij〉
SiSj + J2

∑

〈〈ij〉〉
SiSj , (1)

where 〈ij 〉 and 〈〈ij 〉〉 denote nearest neighbor and second
neighbor pairs, respectively. We parametrize the couplings by

J1 = J cos α and J2 = J sin α, which enables us to character-
ize each point in parameter space by a single angle α (Fig. 1),
with 0 � α < 2π . (All energies are given in units of J in
the following.) For α = 90◦, the system decouples into three
independent kagome lattices, which implies that the system at
this point has the same physical properties as at α = 0. For
its classical counterpart [29], the J1-J2 KHM exhibits four
types of magnetic order: (i) the planar q = 0 Néel state with a
three-site unit cell which appears for purely antiferromagnetic
interactions at 0◦ < α < 90◦, (ii) the nonplanar cuboc state
with a 12-site unit cell located at 90◦ < α < 161.6◦, (iii) a
ferromagnetic phase at 161.6◦ < α < 270◦, and (iv) the planar√

3 × √
3 Néel state with a nine-site unit cell in the region

270◦ < α < 360◦ (the phases are also found in the quantum
phase diagram, Fig. 1). These types of order correspond to

FIG. 2. (Color online) Nonmagnetic phase for | J2
J1

| � 1: (a) � flow of the largest k component of the magnetic susceptibility for α = 0.
The flow behavior is smooth to � = 0. (Small oscillations below � ≈ 0.3 are due the frequency discretization.) (b), (c) k-space resolved
susceptibility at � = 0. Small maxima can be seen at the K points of the second Brillouin zone for J2 = 0 in (b). These maxima vanish for at
J2 = 0.017J1 in (c), with a strong resemblance to Ref. [25].
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FIG. 3. (Color online) Dimer configuration for (a) the HVBC [40] and (b) the modified HVBC before (left) and after (right) the RG flow.
Red lines correspond to strengthened and green lines to weakened bonds, where the thickness of the lines encodes the magnitude of the
response. The blue lines mark the unit cell of the pattern. (a) Local pinwheel structure gets enhanced during the flow, while the outer bond
responses are inhomogeneous, indicating the rejection of long-range order. Representative flows of the response on selected bonds are also
plotted. (b) A modified HVBC with 60◦ rotation symmetry shows similar features as (a).

different ordering-peak positions in the second Brillouin zone
[36]. For real-space illustrations of the different orders, we
refer to the Refs. [29,37].

Pseudofermion functional renormalization group. The
PFFRG approach [30–33,36], which we employ to obtain
the quantum phase diagram displayed in Fig. 1, starts by
reformulating the spin Hamiltonian in terms of a pseud-
ofermion representation of the spin-1/2 operators Sμ =
1/2

∑
αβ f †

ασ
μ
αβfβ (α,β = ↑,↓, μ = x,y,z) with fermionic

operators f↑ and f↓ and Pauli matrices σμ. This allows us
to apply Wick’s theorem, leading to standard Feynman many-
body techniques. We further introduce an infrared frequency
cutoff � in the fermionic propagator. The FRG ansatz then
formulates equations for the evolution of all m-particle vertex
functions [38] under the flow of �. To reduce the infinite
hierarchy of coupled equations to a closed set, the PFFRG only
includes two-particle reducible two-loop contributions [39],
which still assures a sufficient backfeeding of the self-energy
corrections to the two-particle vertex evolution. A crucial
advantage of the PFFRG as compared to Abrikosov-type
spin–random phase approximation (RPA) methods is that the
summations include vertex corrections between all interaction
channels, i.e., the two-particle vertex includes graphs that favor
magnetic order and those that favor disorder in such a way
that it treats both tendencies on an equal footing. Solving
the PFFRG equations requires (i) to discretize the frequency
dependencies and (ii) to limit the spatial dependence to a
finite cluster. In our calculations, the latter typically includes a
correlation area (cluster size) of 317 lattice sites. The onset
of spontaneous long-range order is signaled by a sudden
breakdown of the smooth RG flow, while the existence of
a stable solution indicates the absence of long-range order
[30,31]. From the effective low-energy two-particle vertex, we
obtain the spin susceptibility with a high momentum resolution
(Figs. 1 and 2) and, in the case of a magnetically disordered
regime, track possible VBC orders [32] by computing the
response functions to different dimer patterns (Fig. 3).

Quantum phase diagram. As shown in Fig. 1(a), we find
ferromagnetic, cuboc, q = 0, and

√
3 × √

3 Néel order in
the quantum J1-J2 KHM. Figure 1(b) shows the RG flow in
the four magnetically ordered phases. Clear instability break-
downs as resolved by strong kinks are seen in the ferromagnetic
and in the

√
3 × √

3 Néel phase. In the q = 0 Néel phase and
in the cuboc phase, however, the instability features are less
pronounced, which is consistent with a small magnetization.
We conclude that disorder fluctuations are still important in

these regions. The sequence of different ordering tendencies
as a function of α is also indicated in Fig. 1(c), showing the
susceptibility at constant � = 0.6. Figures 1(d)–1(g) illustrate
susceptibility profiles of the magnetically ordered phases (the
plots are taken for the cutoff value �c at the instability
breakdown). They exhibit distinct peak structures as expected
for the different orders [36]. Note that for the ferromagnetic
and the

√
3 × √

3 Néel phase, the PFFRG also accurately
resolves the expected subdominant peaks.

Due to quantum fluctuations, magnetically disordered
phases complement the ordered phases in the J1-J2 KHM
quantum phase diagram. We find a nonmagnetic region for
338◦ � α � 35◦ (Fig. 1). A similar nonmagnetic phase is
found for 56◦ � α � 124◦. In addition, we find indications for
a small disordered phase at α ≈ 161◦. Enhanced uncertainties
near the phase boundary between the cuboc and the ferromag-
netic phase, however, make it hard to resolve the range of this
phase.

For comparison of our phase diagram with related works,
we emphasize that the quantum phase diagram of the KHM
still needs to be calculated in the full α-parameter space.
Reference [29] finds the phase transition between the cuboc
ordered phase and the J2-dominated nonmagnetic phase at
α = 108◦, i.e., at somewhat smaller J1 as compared to
our results. Exact diagonalization studies [41] locate the
transition between the

√
3 × √

3 order and the J1-dominated
nonmagnetic phase at α � 333◦, in approximate agreement
with our findings. Furthermore, the asymmetric location of the
J1-dominated nonmagnetic phase with respect to negative and
positive J2 is also reported in Ref. [42].

The comparably small regime of unambiguous cuboc order
is an important piece of information in light of the recent
experimental findings for Kapellasite [27]. Our results confirm
that the only way to accomplish such a phase in the quantum
J1-J2 KHM is the existence of a ferromagnetic J1 and a
considerable antiferromagnetic J2, while even longer-range
Heisenberg couplings might additionally be important [43].
In particular, we find the cuboc phase in a regime with
enhanced quantum fluctuations, suggesting that comparably
small changes of system parameters should induce a significant
change in TN and the general magnetic susceptibility profile.
The PFFRG is ideally suited to track the evolution of the
susceptibility peaks in the cuboc domain, which we defer to a
later point.

Disordered phase for | J2
J1

| � 1. The J1 KHM (α = 0) has
been frequently studied in the literature, and it is supposed
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to be close to the parameter regime where Herbertsmithite
is located. There, we find that the RG flow remains stable
in the entire flow regime, such that the RG equations can
be smoothly integrated down to � = 0. Figure 2(a) depicts
the largest susceptibility component (i.e., the one at the K
points of the second Brillouin zone). No sign of any instability
breakdown is seen during the flow, which is a signature for
a nonmagnetic ground state. This property along with the
indication for a spin gap is also reflected in the spin-spin
correlations [see the inset of Fig. 2(a)]. Our data show an
almost perfect exponential decay of the correlations in real
space, from which we determine a small correlation length
of only ξ = 0.98 lattice constants. This is in agreement with
density matrix renormalization group (DMRG) calculations
[12,13,15] which find correlation lengths between 0.8 and
1.5 lattice spacings. The full k-space resolved susceptibility
in Fig. 2(b) reveals further information about the magnetic
properties at α = 0. The susceptibility is mainly concentrated
at the boundary of the second Brillouin zone and is almost
constant along the whole edge. Fluctuations at such large k are
consistent with the small correlation length. The susceptibility
along the edge shows only small maxima at the K points, which
have also been found in DMRG calculations [15]. (Comparing
to exact diagonalization results of smaller size, this emphasizes
similarities, but also discrepancies, due to finite torus loop
resonance artifacts for small tori [44].) As a result, subleading√

3 × √
3 fluctuations are preferred as compared to other

fluctuations at the Brillouin zone boundary. Most of the
discovered features such as a broad susceptibility profile
are shared by neutron scattering susceptibility measurements
in Herbertsmithites, and might hint at spin fractionalization
which can emerge in various spin liquid scenarios [25]. One
major discrepancy, however, is the lack of any maxima at the
K points in the actual measurements. By increasing J2, we
discover that the previous maxima at α = 0 vanish and look
similar to the experimental finding: Figure 2(c) shows the spin
susceptibility at J2/J1 = 0.017, indicating that the absence of
the boundary peaks in Herbertsmithite can be explained by the
presence of a small, but finite, J2 > 0 coupling.

The natural competitor for a spin liquid in such a mag-
netically disordered phase is VBC order. For α = 0, we
have considered generalized susceptibilities which measure
the propensity of the system to form a specific VBC. As has
been shown by dimer expansions [40], the honeycomb VBC
(HVBC) [Fig. 3(a)] is the most promising dimerization pattern
for the J1 KHM. It is a longstanding question whether or not
the ground state of this system is a HVBC. In order to calculate
valence-bond susceptibilities for such dimer coverings within
our RG approach, we add a small perturbation HD to the
model in (1) which increases (J1 → J1 + δ) or decreases

(J1 → J1 − δ) the couplings on the nearest neighbor bonds,
according to the dimer pattern. If the system supports the dimer
pattern, the strong bonds become stronger and the weak bonds
become weaker during the flow [36].

The RG flow of the HVBC pattern is depicted in Fig. 3(a).
The left picture denotes the modified bond strengths at the
start of the RG flow. The right picture shows the bond
strengths after the flow at � = 0. As is clearly visible, the
pinwheel bonds around the rotation center of the HVBC
structure are strongly and homogeneously enhanced. This
has been noticed before, as the pinwheel is an approximate
local eigenstate for the KHM [40]. On the other hand, as
also reported in Ref. [13], the “perfect hexagons” (i.e., the
hexagons with three dimer bonds along its edges, located
at the corners of the so-defined VBC unit cell in Fig. 3)
is a source of small response, which in total leads to very
inhomogeneous valence-bond susceptibilities. As a further
attempt, we have investigated a modified HVBC pattern where
the pinwheel structure stays unchanged, but the arrangement
of the outer bonds is modified [Fig. 3(b)]. The results we
obtain show the same magnitudes and inhomogeneities of
dimer responses as for the HVBC. Keeping the pinwheel
structure, we have also investigated further possible VBC
patterns [36]. The unified picture emerging from our studies
is that while the pinwheel structures are reasonable guesses
for the local correlation profile in the KHM, we do not find
any sign of long-range VBC order, as all VBCs we have
tested exhibit similar response patterns. More so, the findings
of many competing VBC pattern candidates frustrating each
other resemble the short-range RVB liquid hypothesis, which
can seed the emergence of spin liquids [45].

To summarize, we have obtained the quantum phase
diagram of the J1-J2 KHM and have investigated its magnetic
and nonmagnetic phases. In light of recent experiments on
Kapellasite, it will be interesting to further investigate the
interplay of order and disorder in the cuboc order regime. Fur-
thermore, we have provided model evidence for explaining the
features of the susceptibility measurements in Herbertsmithite,
and specifically link the absence of boundary susceptibility
enhancements to the existence of small but finite J2 coupling.
We have also found indications for RVB liquid physics in
the J1 KHM, rendering the related Herbertsmithite a prime
candidate for observing a spin liquid phase in nature.
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