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The recent theoretical discovery of fractional Chern insulators (FCIs) has provided an important new way to
realize topologically ordered states in lattice models. In earlier works, on-site and nearest-neighbor Hubbard-like
interactions have been used extensively to stabilize Abelian FCIs in systems with nearly flat, topologically
nontrivial bands. However, attempts to use two-body interactions to stabilize non-Abelian FCIs, where the
ground state in the presence of impurities can be massively degenerate and manipulated through anyon braiding,
have proven very difficult in uniform lattice systems. Here, we study the remarkable effect of long-range
interactions in a lattice model that possesses an exactly flat lowest band with a unit Chern number. When spinless
bosons with two-body long-range interactions partially fill the lowest Chern band, we find convincing evidence
of gapped, bosonic Read-Rezayi (RR) phases with non-Abelian anyon statistics. We characterize these states
through studying topological degeneracies, the overlap between the ground states of two-body interactions and the
exact RR ground states of three- and four-body interactions, and state counting in the particle-cut entanglement
spectrum. Moreover, we demonstrate how an approximate lattice form of Haldane’s pseudopotentials, analogous
to that in the continuum, can be used as an efficient guiding principle in the search for lattice models with stable
non-Abelian phases.
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I. INTRODUCTION

The possibility of realizing lattice generalizations of
fractional quantum Hall states, topologically ordered states
where the fundamental collective excitations of the system
are anyons with fractional statistics, has been an exciting
recent development.1–13 These states, known more generally
as fractional Chern insulators (FCIs), are highly exotic. For
instance, a bosonic FCI, which could be realized in cold
atoms or qubit arrays, is a highly correlated fractional quantum
liquid of bosons in a strong (artificial) magnetic field. In the
condensed matter context, similar phenomenology, albeit with
fermions as basic constituents, may arise from a combination
of ferromagnetism and spin-orbit coupling. In both settings, the
FCIs are stabilized by interactions on the lattice scale, which,
in materials, is typically three orders of magnitude larger than
the cyclotron frequency in two-dimensional (2D) electron gas
experiments. Thus, the strong correlations of an electronic
fermionic FCI could potentially persist at temperatures far
higher than the subkelvin limits of the 2D electron gas in
strong magnetic fields.

Our understanding of FCIs is predominantly guided by
the analogy to continuum Landau levels, where the elegant
symmetries and mathematical features of the system, such
as the exact band flatness and analytic structure of the wave
functions in the symmetric gauge, open the door to many exact
and nonperturbative results that would be inaccessible in more
general cases. In the low-flux limit, the effect of the lattice
is a small perturbation to the continuum problem,14,15 but at
higher flux densities topological flat bands and continuum
Landau levels differ significantly in details, despite their
topological equivalence. For instance, translation and rotation

are broken into discrete symmetries within the flat bands, and
the Berry curvature is necessarily inhomogeneous in reciprocal
space in any lattice model. Despite these complications and
new, lattice-specific competing instabilities, intense recent
theoretical research on topological flat band models has
demonstrated that a number of FCI counterparts of fractional
quantum Hall states emerge at low energies (see Refs. 16
and 17 for reviews). Laughlin states, which have Abelian
anyon excitations, are particularly robust and can be realized
in both bosons and fermions for many different lattices and
flux densities.

However, a striking limitation to this beautiful analogy is
that it has proven very difficult to actually construct realistic
models that stabilize lattice versions of non-Abelian FCIs,
where the fluid’s anyon excitations carry additional degenera-
cies which can be manipulated through adiabatically exchang-
ing and braiding the anyons. In fact, non-Abelian phases in
fractional Chern bands have only been firmly established in
the presence of dominant multiparticle interactions18–23 that
add an additional energy cost for three or more particles to
occupy the same (or neighboring) sites, and analogous results
have been obtained in chiral spin liquid models with ring
exchange terms, where spin k/2 can mimic a (k + 1)-body
interaction (see Refs. 24, 25, and 26 and references therein).
In the context of possible applications in the context of
quantum computation, this limitation is particularly severe,
as only non-Abelian quasiparticles have the potential to act as
topologically protected qubits, immune to any type of local
perturbations such as disorder.

In this work we report on the discovery that non-Abelian
Moore-Read (MR) and Z3 Read-Rezayi (RR) phases naturally
emerge as a consequence of realistic long-range interactions
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projected to a topological flat band, even at very high values
of flux per plaquette where the lattice effects are significant.
This result is in sharp contrast to what is found in earlier
studies of Abelian FCIs, which are known to be weakened
and ultimately destroyed by long-range interactions. A key
difference between our work and previous studies is our choice
of the Kapit-Mueller Hamiltonian1 for the single-particle
Chern band, which has a number of compelling features which
make it particularly well suited for stabilizing exotic anyon
states. While two very recent works have reported tentative
evidence for the MR phase for realistic (short-range, two-body)
interactions,13,27 our identification of this phase is arguably
more compelling, using the full state-of-the-art toolbox of
numerical techniques coupled with analytical considerations.
Our observation of the Z3 RR state for two-body interactions is
entirely new and particularly important since the low-energy
excitations include Fibonacci anyons, which can be used to
perform universal quantum computation (in contrast to the
Majorana fermion excitations of the MR state, which cannot).

The remainder of this paper is organized as follows. In
Sec. II we describe the Kapit-Mueller parent Hamiltonian
for the lattice lowest Landau level (LLL) and describe vari-
ous measures, including topological ground-state degeneracy,
spectral flow, wave-function overlap, and particle-cut entan-
glement spectrum, which we use to verify the topological char-
acter of the states that we find through exact diagonalization. In
Sec. III we report on the results of our calculations for bosons
with dipolar interactions in the Kapit-Mueller Hamiltonian
and demonstrate the existence of non-Abelian anyon states.
In Secs. IV and V we construct an analogous formulation
of Haldane’s pseudopotentials in our lattice Hamiltonian and
demonstrate how the structure of these pseudopotentials can
be used to optimize the interactions to further increase the
stability of non-Abelian ground states. In Sec. VI we discuss
how the model studied in our work might be implemented in
realistic systems such as cold atoms or qubit arrays, and in
Sec. VII we offer concluding remarks.

II. HAMILTONIAN AND METHODS

A. Kapit-Mueller Hamiltonian

We study Nb interacting bosons on 2D square lattices with
unit lattice spacing, with single-particle physics governed by
the Kapit-Mueller Hamiltonian,1

H0 = −
∑
j �=k

(J (zj ,zk)a†
j ak + H.c.), (1)

where J (zj ,zk) = J0W (z)e(π/2)(zj z
∗−z∗

j z)φ , z ≡ zj − zk ≡ x +
iy, and W (z) = (−1)1+x+y+xye−(π/2)(1−φ)|z|2 in the symmetric
gauge. The hopping matrix elements of this Hamiltonian
are complex, and the complex phase e(π/2)(zj z

∗−z∗
j z)φ is noth-

ing more than the symmetric gauge Peierls phase from a
uniform magnetic flux which penetrates the lattice and has
a strength of φ flux quanta per plaquette. We can rewrite
this Hamiltonian in the Landau gauge via the transformation
a
†
j → a

†
j exp(−iπφxjyj ). The Hamiltonian can be defined for

any 0 � φ < 1, and in this work we study the rational flux
densities φ = 1/q with q = 2, 3, 4, and 8. The hopping matrix
elements of (1) are infinite ranged, but as they decay as a

Gaussian, only a few terms beyond nearest-neighbor (NN)
hopping need to be kept, and the Hamiltonian can be readily
generalized to finite lattices of L1 × L2 sites with periodic
boundary conditions by summing over lattice translations as
described in Ref. 1. A unit cell in the Landau gauge contains
q sites in the x direction, so the lattice has (qN1) × N2

sites if there are N1 × N2 unit cells. Following the standard
conventions of the literature, the band filling fraction is defined
as ν ≡ Nb/(N1N2).

We study this Hamiltonian because its spectrum has an
extensively degenerate ground-state manifold which is exactly
flat, separated from any excited bands by a large gap and
spanned by lattice discretizations of the exact LLL wave

FIG. 1. Flattening of the lowest band(s) with longer-ranged
hopping on a square lattice. Top: Distribution of eigenvalues for the
Hofstadter problem—a nearest-neighbor hopping model on a square
lattice in a uniform gauge field of strength φ quanta per plaquette, with
the magnitude of the hopping matrix element set to unity. Bottom:
The same distributions for the Kapit-Mueller Hamiltonian, (1), with
the nearest-neighbor hopping matrix element set to unity as well
and a shift of the whole spectrum for a better comparison with the
top figure. On an L1 × L2 lattice with magnetoperiodic boundary
conditions, the lowest φL1L2 states (those within the shaded triangle)
collapse to an exactly degenerate lowest Landau level. As φ → 1 the
hopping becomes infinite ranged in this Hamiltonian, as seen in the
diverging energy of the highest band. We only study 1/8 � φ � 1/2
in this work.
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FIG. 2. (Color online) Berry curvature, rescaled by a multiplicative factor of 2π/q, of the lowest band of the Kapit-Mueller Hamiltonian
with (a) φ = 1/2, (b) φ = 1/3, (c) φ = 1/4, and (d) φ = 1/8, in 1/q of the Brillouin zone. The Berry curvature distribution is always
inhomogeneous for finite φ, but the variations quickly decay as φ → 0. See color bars for the rapidly changing scale.

functions of the continuum,1 which are described by elliptic θ

functions in the torus geometry that we study. These functions
are evaluated over complex integer zj and the fraction of states
in the lattice LLL is simply φ. This analytical understanding of
the wave functions allows us to exactly generalize a number of
results found in the continuum LLL problem. In particular,
for bosons at filling fraction ν = k/2 with a (k + 1)-body
repulsive on-site interaction, the system’s ground-state wave
function is exactly given by the RR state of level k,28 with
a gap to both particle and hole excitations if the chemical
potential is chosen to lie inside the many-body gap. We exploit
this exactness to help confirm the topological character of the
ground states with ranged two-body interactions, the focus of
this work.

The dramatic flattening of the lowest band in this Hamilto-
nian can be seen in Fig. 1. It is important to note that, while
the LLL wave functions have the same functional form as in
the continuum and the magnetic length lB = 1/

√
2πφ can be

less than a lattice spacing, the discretization of the LLL onto
the lattice has important physical consequences. The lattice
spacing itself introduces a second length scale into the system,
and as a result the properties of a given state depend upon
both the filling fraction ν and the flux density φ. Unlike in the
continuum LLL, two Kapit-Mueller systems with the same
interactions but different flux densities can have topologically
distinct ground states for the same ν; for example, we were

able to find k = 3 RR ground states in bosons at ν = 3/2 for
φ = 1/4 and φ = 1/3 but not for φ = 1/2. This occurs in
part because the ground-state manifold of the Kapit-Mueller
Hamiltonian is energetically flat but not “Berry flat”; the
gauge-invariant Berry curvature of the lowest band is positive
definite across the magnetic Brillouin zone, but unlike the
continuum, it is only uniform in the limit φ → 0 (Fig. 2).
Similarly, while the powers of zn

j or elliptic θ functions are
exact ground states of Eq. (1), the discretization to the lattice
breaks the rotational and continuous magnetic translational
symmetries of the continuum and they are not naturally or-
thogonal. Consequently, Haldane pseudopotentials,29,30 which
are one of the most valuable tools in studying the continuum
problem, cannot be generalized exactly to the lattice case.
They can still be a valuable approximate tool in our model,
however; we discuss an effective formulation of the Haldane
pseudopotentials later in this work. In fact, the analogy with
pseudopotentials leads us to introduce the new concept of
“interaction flatness,” which serves as an efficient guideline in
the search for realistic models with stable non-Abelian FCIs.

B. Topological degeneracies, trial wave functions,
and entanglement spectrum

The primary purpose of this work is to demonstrate the
existence of non-Abelian anyon ground states of interacting
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FIG. 3. (Color online) Numerical evidence for bosonic Moore-Read states at ν = 1 for (a–d) φ = 1/3 and (e–h) φ = 1/4, with two-body
on-site and dipolar interactions, (2). We choose U = 1.0 for φ = 1/3 and U = −0.6 for φ = 1/4. (a, e) Energy spectra for Nb bosons in a
square lattice of qN1 × N2 sites. (b, f) Finite-size scaling of both energy gap and ground-state splitting. The scaling behavior depends not only
on the system size but also on the aspect ratio L1/L2 of the lattice. (f) The gap even goes up when the system size increases because the sample
becomes more isotropic. (c, g) The x-direction spectral flow for Nb = 14 bosons, N1 = 2, and N2 = 7. (d, h) Particle-cut entanglement spectra
for Nb = 12 bosons, N1 = 2, and N2 = 6. The number of levels below the gap (solid line) is 3430, matching the quasihole excitation counting
of MR states.

bosons with ranged two-body interactions and with the
single-particle physics described by Hamiltonian (1). We do
so by using numerical exact diagonalization to study small
systems of up to 18 interacting particles with magnetoperiodic
boundary conditions, and to make the calculation numerically
tractable we project onto the exactly flat lowest band of
H0 and diagonalize the interaction terms within the reduced
basis. This approximation is good if the interaction potentials
are weak compared to the band gap, which is ∼3–4JNN

for the flux densities considered. We have three main tools
at our disposal to demonstrate the anyon content of the
resulting numerically generated ground states: topological
degeneracies, overlap with the RR trial wave functions, and
the particle-cut entanglement spectrum.

The anyon statistics of generic RR states require a ground-
state degeneracy when the system is placed on a torus.31–33

For the (k + 1)-body on-site interaction of lattice bosons this
degeneracy is exact for any system size commensurate with
the filling fraction, but for more general ranged interactions
it is broken by finite-size effects, though the magnitude of
this breaking is small compared to the excitation gap and is
expected to vanish in the infinite-system limit. The k = 1,
2, and 3 states of bosons are two-, three-, and fourfold
degenerate on the torus, and if the ground states of ranged
interactions are in the identical topological phase, the same
(approximate) ground-state degeneracy as in the RR states
should be observed. While it is possible in principle that
degeneracies in a ranged case could stem from separate effects
which have nothing to do with the anyon content (such as
charge density waves), we see no evidence of this occurring in
our calculations.

The topological degeneracy of ground states should also
be robust to twisted boundary conditions. For a many-body
state �, the twisted boundary condition in the x(y) direction
is defined as �(rj + L1(2)ex(y)) = exp(i�)�(rj ), where � is
the magnetic flux inserted through the handle of the torus and
ex(y) is the unit vector in the x(y) direction. � = 0 corresponds
to the usual periodic boundary condition. In the spectral flow,
i.e., the energy spectra as a function of �, the ground states
should never mix with excited levels.

In the continuum, the RR states of level k28 are the exact
and unique (up to topological degeneracies) ground states of a
(k + 1)-body repulsive δ interaction in the LLL. As our lattice
model, (1), has the same single-particle wave functions as
the continuum, the lattice discretizations of the RR states are
exact ground states of the (k + 1)-body on-site repulsion term
Hint = 1

(k+1)!

∑
i

∏k+1
m=1(ni + 1 − m), where ni is the particle

number at site i. It can be shown through conformal field
theory,34 Berry matrix analysis,35–39 or a plasma analogy40,41

that the braid statistics of the anyon excitations of these states
are Abelian for k = 1, equivalent to Ising anyons or Majorana
modes for k = 2,42 and Z3 parafermions or Fibonacci anyons
for k = 3.

As we can numerically obtain the exact RR states in the
lattice by diagonalizing the (k + 1)-body on-site interaction,
a simple tool at our disposal for predicting the topological
character of the ground states for generic ranged interactions
is the wave-function overlap. We first diagonalize the (k + 1)-
body on-site interaction to get a degenerate set of RR wave
functions |�i

RR〉 and then diagonalize the ranged interactions to
get a quasidegenerate set of ground states |�i〉. We then simply
compute the total squared overlap 1

k+1

∑k+1
i,j=1 |〈�i

RR|�j 〉|2;

205101-4



NON-ABELIAN FRACTIONAL CHERN INSULATORS FROM . . . PHYSICAL REVIEW B 88, 205101 (2013)

FIG. 4. (Color online) Numerical evidence for bosonic Read-Rezayi states at ν = 3/2 for (a) φ = 1/4 and (b–d) φ = 1/8, with two-body
on-site and dipolar interactions, (2). We choose U = −0.6 for φ = 1/4 and U = −2.7 for φ = 1/8. (a, b) Energy spectra for Nb bosons in the
square lattice of qN1 × N2 sites. (c) Finite-size scaling of both energy gap and ground-state splitting for φ = 1/8. (d) Particle-cut entanglement
spectra for Nb = 12 bosons, N1 = 1, N2 = 8, and φ = 1/8. The number of levels below the gap (solid line) is 884, matching the quasihole
excitation counting of RR states.

if this quantity is close to unity, then the states are es-
sentially identical and should have topologically identical
excitations.

Entanglement measures can usually provide more insights
into the topological order of the ground states than the overlap,
which is only a single number that will vanish in the thermody-
namic limit. Here we consider the entanglement spectrum that
corresponds to the particle cut.43,44 After dividing the whole
system into two sets of particles, A and B, which contains
NA and NB = Nb − NA bosons, respectively, we can obtain
the reduced density operator of part A of the ground-state
manifold by ρA = 1

k+1 TrB(
∑k+1

i=1 |�i〉〈�i |). The entanglement
spectrum level is then defined as ξi = − ln λi , where λi is the
eigenvalue of ρA. Due to translational invariance, each ξi can
also be labeled by the total momentum of part A. Considering
that some particles are traced out artificially, the particle-cut
entanglement spectrum should contain information about the
quasihole excitations, which is a fingerprint of topological
order in the ground-state manifold.

III. NON-ABELIAN STATES OF DIPOLAR BOSONS

We begin the discussion of our results by considering the
experimentally realistic case of bosons with two-body on-site

and dipolar interactions,

Hint = U

2

∑
i

ni(ni − 1) + V

2

∑
i �=j

ninj

|ri − rj |3 , (2)

where i and j are site indices and V is set equal to 1 in this
section. We implicitly assume that |V | 
 J0 so that we need
consider only the lowest band of H0 in our calculations. We
truncate the dipolar interaction by only considering the nearest
distance between two sites on the torus when evaluating the
dipolar matrix elements (i.e., we do not sum over periodic
contributions). We then scan the values of U for fixed φ to
search for the features described in the previous section, which
tell us when the ground states of (2) are in the same topological
phase as the RR states.

We first focus on the filling fraction ν = 1 (k = 2), where
the RR state is also called the MR state (for the remainder
of this work, RR state will refer only to the k = 3 case).
Compelling evidence, as displayed in Fig. 3 and Table I,
demonstrates that the ground states of (2) are indeed in the
MR phase for flux densities as high as φ = 1/4 and φ = 1/3.
After choosing appropriate U , there are always three quaside-
generate ground states for each system size that we study, and
they are separated from the excited levels by an energy gap
(defined as the difference between the lowest excited level and

205101-5



ZHAO LIU, EMIL J. BERGHOLTZ, AND ELIOT KAPIT PHYSICAL REVIEW B 88, 205101 (2013)

TABLE I. Total squared overlaps between the ground states of
two-body interactions (2) at ν = 1 and the exact Moore-Read states
for φ = 1/3 and φ = 1/4. Lattice sizes and interaction parameters are
the same as in Fig. 3. N/D: There is no clear threefold quasidegeneracy
for this sample.

Nb = 8 Nb = 10 Nb = 12 Nb = 14

φ = 1/3 0.9142 0.9349 0.9012 0.8806
φ = 1/4 N/D 0.9279 0.9280 0.8949

the highest ground level) which is significantly larger than the
ground-state splitting [Figs. 3(a) and 3(e)]. A finite-size scaling
analysis strongly suggests that the gap will survive in the
thermodynamic limit [Figs. 3(b) and 3(f)]. By calculating the
spectral flow, we find that the topological degeneracy is robust
to the twisted boundary conditions, i.e., the ground manifold
never mixes with the excited levels [Figs. 3(c) and 3(g)]. The
total squared overlaps between the ground states of (2) and the
exact MR states are highly nontrivial (Table I). The particle-cut
entanglement spectra show clear entanglement gaps, below
which the number of levels is the same as the quasihole
excitation counting of MR states [Figs. 3(d) and 3(h)]. These
results conclusively confirm the existence of the MR phase in
the presence of on-site and ranged dipolar interactions, (2), at
high flux densities.

Compared with the MR phase, the RR phase at ν = 3/2
(k = 3) is more fragile and sensitive to details such as the
precise form of the interactions and the lattice size. The need
to go to a slightly lower flux as well as the higher filling
fraction complicates the numerical simulations in the sense
that the number of available lattice samples is decreased by
the increasing size of the computational basis, making faithful
finite-size extrapolations harder to achieve. Nevertheless, we
still observe very encouraging evidence that the RR phase
might be stabilized at a flux density as high as φ = 1/4 using
the dipolar interaction with a suitably tuned on-site interaction.
In Fig. 4(a), we show the energetic data for φ = 1/4 with the
interaction, (2), in which we use the same U as for the MR case.
The topological degeneracy supports that the ground states are
in the RR phase. However, the disappearance of a clear fourfold
quasidegeneracy for Nb < 15, which may be caused by the less
isotropic aspect ratio L1/L2, makes it difficult to do a reliable
finite-size scaling of the energy gap. The total squared overlap
between the ground states and the exact RR states is lower than
that in the MR case, due to which the entanglement gap in the
particle-cut entanglement spectra is invisible for large NA.
Nevertheless, the overlap reaches 0.8220 for 15 bosons, which
is very encouraging (Table II). On general grounds, we expect

TABLE II. Total squared overlaps between the ground states of
two-body interactions (2) at ν = 3/2 and the exact Read-Rezayi states
for φ = 1/4 and φ = 1/8. Lattice sizes and interaction parameters are
the same as in Fig. 4. N/D: There is no clear fourfold quasidegeneracy
for this sample.

Nb = 9 Nb = 12 Nb = 15

φ = 1/4 N/D N/D 0.8220
φ = 1/8 0.8682 0.9025 0.8843

that the evidence of RR states will become more compelling
for smaller φ. The φ = 1/8 results displayed in Figs. 4(b) and
4(d) and Table II confirm this expectation and conclusively
establish the existence of the RR phase for realistic interactions
in the Kapit-Mueller lattice model at a relatively high flux
density.

IV. PSEUDOPOTENTIAL ANALOGY

In this section we corroborate the numerical evidence for
non-Abelian FCIs in the lattice by drawing connections to
Haldane’s pseudopotentials;29 in particular, we discuss to what
extent the much simpler problem of two particles interacting
within a Chern band7 can guide the search for exotic FCI
phases. In continuum Landau levels, Haldane’s pseudopoten-
tials offer a very useful framework for understanding the phase
diagram of interacting particles by providing an expansion of
any interaction in terms of parent Hamiltonians for various
model states. As we shall see, the insights that we gather also
provide efficient guiding principles for engineering optimal
models stabilizing non-Abelian FCIs, and it is precisely
these principles which led us to the results in the previous
section.

In the original problem of the continuum LLL, the pseu-
dopotentials were formulated as

H =
∑
i<j

∞∑
m=0

VmP ij
m , (3)

where P
ij
m projects onto a state where particles i,j have

relative angular momentum m and Vm are the pseudopotential
parameters, which are real numbers determined by the func-
tional form of the interaction (and by the form factor of the
pertinent Landau level). Any two-body potential interaction
V (r) can be written as a sum of pseudopotential terms, with
positive Vm corresponding to repulsive channels and negative
Vm corresponding to attractive ones. More generally, the
pseudopotentials project onto components of the many-body
wave function with certain vanishing properties and, as such,
can be defined in generic geometries such as the torus.30 Up to
a q-fold topological degeneracy, the Laughlin states at filling
fraction ν = 1/q are the unique zero-energy ground states
with Vm > 0, m � q − 2 and Vm = 0,m > q − 2. For bosons
(fermions) only the even (odd) pseudopotentials occur in the
Hamiltonian due to the (anti-)symmetry of the many-body
wave functions.

When the pseudopotential distribution is sufficiently peaked
at small m, as in the case in the lowest electronic Landau
levels of conventional semiconductor heterostructures, it is
well known that a hierarchy of Abelian fractional quantum
Hall states is realized.29,45,46 The basic physics of this hierarchy
is that, in the vicinity of a Laughlin fraction, ν = 1/q, the
fractionally charged quasiparticles themselves experience an
effective repulsive short-range interaction and thereby form
Laughlin-like liquids on their own. When the pseudopotential
distribution is less peaked, as in higher Landau levels, pairing
or even clustering may instead be favored. In particular, this is
believed to happen in the half-filled second Landau level (ν =
5/2), where the quasiparticles undergo p-wave pairing akin
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FIG. 5. (Color online) Two-particle spectrum for the on-site interaction on a 12 × 12 lattice for (a) φ = 1/2, (b) φ = 1/3, and (c) φ = 1/4
and on a 16 × 16 lattice for (d) φ = 1/8.

to superconductivity (of spinless particles).42,47 Even more
exotically, at Landau level filling ν = 12/5 (and ν = 13/5),
there is some evidence48 that the nonpeaked pseudopotential
distribution may lead to three-particle clustering and the
resulting formation of RR states.

Building on the ideas of Läuchli et al.,7 who realized
that there is a natural generalization of the pseudopotential
arguments to the lattice via the two-particle problem projected
to a Chern band, we now rationalize our findings on non-
Abelian FCIs. In fact, the pseudopotential analogy turns out to
be particularly enlightening in the context of the Kapit-Mueller
model, as we elaborate on in the following.

Let us first consider the case of on-site interactions.
The two-particle spectrum, {En(K)|En(K) � En+1(K),n =
0,1,2, . . . }, of this problem is displayed in Fig. 5 for various
flux densities. Notably there are two nonzero eigenvalues,
E0(K) and E1(K), in each momentum sector.49 These eigenval-
ues are split and also depend on the center-of-mass momentum,
K. For smaller φ these “imperfections” decrease, and in the
limit φ → 0 they vanish. In this limit, the symmetry of the
problem is enhanced and we can identify the spectrum with
that of two particles projected to a Landau level where an
identical spectrum is obtained for the δ-function potential,
which is precisely the zeroth pseudopotential, with strength

V0. Hence we can identify V0 = E0(K) [=E1(K)] in our lattice
model as φ → 0.

This observation suggests that the replacement

V0 → V0(K) = [E0(K) + E1(K)]/2, (4)

where the parameters V0(K) can be directly obtained by
diagonalizing the problem of two particles projected to the
pertinent (lowest) Chern band, is suitable for describing the full
many-body problem in the lattice at general φ. The validity of
this replacement is corroborated by the fact that the Laughlin
state at ν = 1/2 is indeed the exact gapped ground state for
on-site repulsion in the Kapit-Mueller model at any φ.

More boldly, we suggest that the generalization

Vm → Vm(K) = [E2m(K) + E2m+1(K)]/2 (5)

is appropriate for arbitrary m (cf. Ref. 7 for a complementary,
heuristically motivated, argumentation). Clearly, it is easy
to come up with counterexamples, such as “hollow-core”
interactions where the identification, (5), needs modification.
Nevertheless, this heuristic serves as an efficient guideline for
the class of interactions we consider in this work, and as a
first guiding principle, we look for interactions which lead to
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TABLE III. Pseudopotential parameters, (6), extracted from
Fig. 6, compared with those for which the ground states of two-body
interactions, (2), have the largest overlap with the exact MR states in
the continuum. Continuum results were obtained for 10 bosons on a
sample with L1/L2 = 1.50 Here we rescale the energy so that Ṽ0 = 1.

φ = 1/3, U = 1.0 φ = 1/4, U = −0.6 Continuum

Ṽ0 1 1 1
Ṽ2 0.2423 0.2869 0.3
Ṽ4 0.0787 0.0916 0.0938
Ṽ6 0.0414 0.0482 0.0492

average generalized pseudoptentials,

Ṽm = 1

N1N2

∑
K

Vm(K), (6)

similar to the Vm’s where non-Abelian phases are know to oc-
cur in the continuum (whenever such information is available).
In Table III we compare the leading Ṽm’s, extracted from the
data in Fig. 6, for optimal choices of the on-site interaction U ,
for the dipolar interactions (2), with optimal pseudopotential
parameters, Vm, in the continuum. The similarities are rather
striking even though the precise values depend slightly on
the aspect ratio L1/L2 of the sample and the definition of
“optimal,” i.e., if the parameters are chosen so as to optimize
the overlaps or whether an optimized ground-state degeneracy
is the goal. Our goal is to observe excellent degeneracy for
each system size, rather than to pursue the largest overlap for
one fixed system size.

We note that although Vm(K) varies as a function of
the center-of-mass momentum K, this should not affect
the projector properties of the corresponding Hamiltonian
(as manifest in the m = 0 case discussed above). However,
for states that are not exact zero modes of any two-body
Hamiltonian, the variation with K may have a crucial influence
and provides a hint as to why non-Abelian FCIs have proven so
hard to realize for two-body interactions. Consequently, as the
second, equally important, guiding principle our search for
non-Abelian states in bosons with long-ranged interactions
is guided by the conjecture that non-Abelian states will be

most stable when the pseudopotential distributions Vm(K) are
nearly flat and independent of K, as they are in the continuum
LLL. While this idea is only heuristic, we can justify it in
part by noting that the gapped FCI states effectively fill the
LLL and involve contributions from every momentum wave
vector allowed by the boundary conditions. If the interaction
pseudopotentials have a broad spread in K, then it is easy
to imagine low-energy modes arising from small variations
in the relative occupations of momenta in the ground state,
whereas if the pseudopotentials are flat, the variation in energy
arising from variations in the ground-state momenta should be
comparatively larger, increasing the ground-state gap. In other
words, we expect that “interaction flatness” should make an
important contribution to the stability of FCI states, just as
Berry flatness and band flatness do in both Chern bands and
the continuum LLL.

While the requirement of interaction flatness is purely a
conjecture and the existence of exact, zero-energy ground
states in the Kapit-Mueller Hamiltonian for (k + 1)-body
on-site interactions, even at flux densities where the on-site in-
teraction has a broad energy range when projected to the LLL,
is an important counterexample, it, along with the first guiding
principle, provides an extremely useful tool when searching
for non-Abelian states. Namely, while the computational cost
of exact diagonalization increases exponentially with system
size, for any well-defined interaction V (r) the computational
cost of obtaining two-particle spectra such as those shown in
Figs. 5 and 6 is essentially negligible, so it is easy to conduct a
brute force search in the two-particle spectra to find combina-
tions of interactions which lead to nearly flat pseudopotentials.
As mentioned above, knowledge of the optimal ratios of theVm

from continuum LLL studies48,51–54 of the desired phase should
be further employed to guide this search. Once an “optimal”
set of interaction terms is determined, the full many-body
Hamiltonian can be diagonalized to determine whether or not
those interactions can indeed stabilize the target non-Abelian
state, and small variations in the interaction terms can then
be studied through exact diagonalization to search for local
maxima in the energy gap and local minima in the finite-size
degeneracy breaking. We employed precisely this procedure to
find most of the non-Abelian states reported in this work, and

FIG. 6. (Color online) Two-particle spectrum on a 12 × 12 lattice for (a) φ = 1/3,N1 × N2 = 4 × 12 and (b) φ = 1/4,N1 × N2 = 3 × 12,
with dipolar interactions, (2). We choose the on-site interaction as U = 1.0 for φ = 1/3 and U = −0.6 for φ = 1/4. Only the largest eight
levels are shown.
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FIG. 7. (Color online) Numerical evidence for bosonic non-Abelian states at ν = 1 and ν = 3/2, with two-body interactions, (7). (a) Energy
spectra and (b) finite-size scaling of the energy gap and ground-state splitting at ν = 1 for φ = 1/2. We choose nmax = 2 with V1 = 0.65 and
V2 = 0.4. (c) Energy spectra at ν = 3/2 for φ = 1/3. We choose nmax = 4 with V1 = 1, V2 = V3 = 0.55, and V4 = 0.35. (d) Energy spectra at
ν = 3/2 for φ = 1/4. We choose nmax = 4 with V1 = 0.9, V2 = 0.7, V3 = 0.6, and V4 = 0.2.

we believe that it could be an important guiding principle
for future searches for exotic states in other Chern band
Hamiltonians. In the case of the dipolar interactions studied
in Sec. III, the search for optimal interactions to stabilize
non-Abelian FCIs was conducted over the single parameter
V/U , and as shown in Fig. 6 the two-particle spectra are
indeed flatter than those in Fig. 5 for the optimal parameter.
As we show in the next section, the study of the two-particle
spectra also allows for much more general searches over many
tuning parameters. Such searches would be impossible with
brute force exact diagonalization for large systems but are
easier in the two-particle pseudopotential framework and can
dramatically increase the stability of the higher order MR and
RR states.

We remark that, as done earlier in the continuum,55 the
pseudopotential concept can also be extended to multibody in-
teractions. Analogously with the two-body case, this provides
a rationale for the fact that the on-site (k + 1)-body repulsive
interaction acts as a parent Hamiltonian for the Zk RR states
in the Kapit-Mueller model. Even though other lattice models
with flat Chern bands do not have the benefit of exact model
states for short-range interactions we expect that our insights
carry over rather directly to more generic models, in agreement
with the heuristic arguments in Ref. 7.

For completeness we also wish to mention that there is
another approach to extract effective pseudopotentials in Chern

bands due to Lee et al.56,57 We do not use their formalism in
this work, in part because they do not consider the momentum
dependence of the Vm directly. Yet another approach, whereby
continuum pseuopotentials were constructed to fit various
FCIs, was considered by Wu et al.11 Although conceptually
pleasing and helpful in confirming the nature once an FCI
phase is identified, the approach of Wu et al. does not
provide guidance in the search for lattice models harboring
non-Abelian FCI phases.

V. OPTIMIZING INTERACTIONS TO STABILIZE
NON-ABELIAN STATES

In Sec. III, we show how to stabilize MR and RR states
by experimentally realistic, infinite-ranged interactions. The
pseudopotential analysis in Sec. IV suggests that it is also
possible to reach the MR and RR phases by fine-tuning finite-
range two-body interactions as long as the two-particle spectra
are relatively flat and the average generalized pseudopotentials
Ṽm are appropriate. In fact, by allowing ourselves to tune more
interaction parameters we are able to stabilize non-Abelian
FCIs at even higher flux densities. Specifically, we consider
a combination of the on-site term and nth NN terms [n = 1
corresponds to the NN interaction, n = 2 corresponds to the
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TABLE IV. Total squared overlaps between the ground states of
two-body interactions (7) at ν = 1 and the exact Moore-Read states
for φ = 1/2. Lattice sizes and interaction parameters are the same as
in Fig. 7(a).

Nb = 8 Nb = 10 Nb = 12 Nb = 14

φ = 1/2 0.8891 0.8509 0.8101 0.8269

next-nearest-neighbor (NNN) interaction, etc.],

Hint = U

2

∑
i

ni(ni − 1) +
nmax∑
m=1

Vm

⎛
⎝ ∑

(i,j )∈Nm

ninj

⎞
⎠ , (7)

where Nm is the set of all mth NN sites and U is set equal to 2
in this section. nmax indicates the range of the interactions, and
we choose nmax as small as possible. By choosing appropriate
Vm, we obtain stronger evidence of the non-Abelian phases,
even for system sizes where these phases are absent with the
combination of on-site and dipolar interactions, (2).

Let us first consider the MR phase for φ = 1/2. As
discussed earlier we were not able to identify the necessary
threefold quasidegeneracy with the single-parameter family of
interactions given in Eq. (2) for this high flux density. However,
we find that an appropriate choice of more generic interactions,
(7), can stabilize the MR phase [Figs. 7(a) and 7(b)]. Already
by keeping on-site and NN interactions, we are able to identify
a region in parameter space where an excellent threefold
quasidegeneracy for each studied system size, ranging from 8
to 16 bosons, occurs. Importantly, a finite-size scaling analysis
suggests that the energy gap can survive in the thermodynamic
limit in this regime [Fig. 7(b)]. The overlap results listed in
Table IV also clearly corroborate our belief that the ground
states are indeed representing the MR phase.

By tuning more interaction parameters, we have also ob-
tained evidence of the RR phase for φ = 1/3 and increased its
stability at φ = 1/4. For φ = 1/3, the RR phase is not observed
with the combination of on-site and dipolar interactions, (2).
However, fine-tuning the interactions of the form (7) with
nmax = 4 (a four-dimensional search made possible by the flat
pseudopotential heuristic of the previous section), we observe
fourfold degeneracy for 15 and 18 bosons [Fig. 7(c)]. For
φ = 1/4, we find stronger evidence of the RR phase compared
with that in Sec. III. The fourfold degeneracy appears for
more samples, and the energy gap for the two largest system
sizes (Nb = 15 and Nb = 18) is roughly twice as large as
that in Fig. 4(a), while the ground-state splitting is smaller
[Fig. 7(d)]. The total squared overlaps in Table V also show
a large improvement compared with those in Table II. As an

TABLE V. Total squared overlaps between the ground states of
two-body interactions (7) at ν = 3/2 and the exact Read-Rezayi states
for φ = 1/3 and φ = 1/4. Lattice sizes and interaction parameters
are the same as in Figs. 7(c) and 7(d). N/D: There is no clear fourfold
quasidegeneracy for this sample.

Nb = 9 Nb = 12 Nb = 15

φ = 1/3 N/D N/D 0.7330
φ = 1/4 0.8483 0.6598 0.8849

example, the squared overlap for Nb = 15 bosons increases
from 0.8220 to 0.8849.

In each of the above cases we find it particularly encourag-
ing that the topological degeneracies generically become more
pronounced at larger system sizes. In fact, we did not observe
the opposite behavior in any of the cases discussed in this
work; i.e., we did not observe the approximate degeneracies
to weaken or disappear in the large samples.

VI. CANDIDATE SYSTEMS

Having demonstrated the existence of non-Abelian FCIs in
the LLL of the Kapit-Mueller Hamiltonian, we now discuss
candidate physical systems in which this model could be
realized. Perhaps the most natural system in which to observe
the non-Abelian states that we describe here is a gas of
ultracold atoms or molecules.58 In such experiments a dilute
gas of bosons or fermions is cooled to quantum degeneracy
in a magnetic or optical trap, and additional features, such
as optical lattices and artificial gauge fields, are turned on
adiabatically during or after the cooling process. While the
atoms or molecules are themselves electrically neutral, a
number of methods have been studied in recent years for
generating artificial magnetic fields in them, ranging from
rotation59,60 to more exotic methods involving additional lasers
and multiphoton Raman transitions.15,61–68 Many of these
methods exploit the periodicity of an optical lattice to reach
high effective flux densities and, so, are fully compatible with
the Hamiltonian studied in this work.

As the trapped atoms are electrically neutral, their natural
interactions are weak and short ranged, though the interaction
strengths can be increased by increasing the depth of the
optical lattice or by tuning the external magnetic field to
exploit a Feshbach resonance. Longer-ranged interactions can
be achieved by trapping ultracold polar molecules, which
have a strong dipole-dipole interaction that we have shown
is particularly useful in stabilizing non-Abelian ground states.
Recent experiments have cooled ultracold molecules below
quantum degeneracy and trapped them in 2D layers69 and in
optical lattices.70 Artificial gauge fields in polar molecules
have yet to be demonstrated but are certainly possible and are
an active area of theoretical research.12,71,72

We note also that an alternative method for obtaining a
lattice LLL of bosons is to engineer arrays of qubits or nonlin-
ear optical resonators73–78 with specially tuned interactions
and couplings to create an artificial gauge field. However,
it is important to understand that the results of our bosonic
calculations in this work are not directly applicable to the
qubit array case. In this study we have projected Hamiltonian
(1) onto its lowest band and diagonalized the interaction term
in this reduced subspace, a technique which implicitly assumes
that the interaction energy is small compared to the band gap. In
qubit arrays, the on-site interaction between bosons is typically
hard core (and thus infinite energy), and while finite-ranged
interactions such as potential terms between NNs or NNNs
can be weak and tunable, the hard-core interaction will lead to
significant ground-state mixing with the excited bands for any
ν > 1/2. While we expect that the interactions and flux density
in qubit arrays could be tuned to achieve the same sequence
of topological states which we have demonstrated here for

205101-10



NON-ABELIAN FRACTIONAL CHERN INSULATORS FROM . . . PHYSICAL REVIEW B 88, 205101 (2013)

weaker interactions, additional numerical calculations which
take the hard-core constraint into account are needed to verify
this claim.

VII. CONCLUSION

We have demonstrated that a realistic physical Hamiltonian
for interacting lattice bosons in a uniform magnetic field can
exhibit non-Abelian anyon ground states. We have shown
that the MR state at ν = 1 can be observed robustly for a
variety of flux densities and that the more exotic RR state at
ν = 3/2 can also be observed at slightly lower flux ranges.
The observation of the higher order RR state is a particularly
exciting result, since unlike the MR state, its excitations
are capable of universal topological quantum computation;
however, our evidence for its existence is not as conclusive
as it is for the MR state. Nonetheless, our results clearly
demonstrate that non-Abelian FCIs are realistic ground-state
configurations of bosons with long-range two-body interac-
tions, further strengthening the analogy between Chern bands
in the lattice and the LLL of the continuum. Our results
also demonstrate the utility of using approximate Haldane
pseudopotentials to guide the tuning of two-body interactions
to stabilize non-Abelian ground states. In cold atoms both
in optical lattices and in qubit arrays such tuning is possible
by externally adjusting the physical parameters of the system
and could be vital for successfully realizing such states in
real experiments.

Finally, we note that we only studied systems with a single
species of boson in this work, and the addition of a spin
or flavor degree of freedom unlocks new ground states. In
particular, for two species of bosons with a local (flavor-
independent) three-body repulsive interactions the ground

state at ν = 4/3 is a “non-Abelian spin singlet” state79,80

with Fibonacci anyon excitations. We expect that this state,
as well as other interesting configurations, could also be
stabilized by tuning ranged two-body interactions in the
Kapit-Mueller Hamiltonian. Similarly, long-range interactions
in flat band models with higher Chern numbers, |C| > 1,
are likely to result in new phases possibly including the
intriguing non-Abelian states81 that were recently shown to
be stabilized by multibody interactions in the pyrochlore slab
(kagome multilayer) model.82 We also very recently learned
of a new Chern band model by Atakişi and Oktel,83 which,
like the Kapit-Mueller Hamiltonian, obtains an exact LLL in
the lattice and is also capable of flattening the excited bands.
Since the ground-state bands of the two Hamiltonians are
identical, our calculation should apply directly to that model,
and it would also be interesting to apply our prescriptions for
interaction flattening to look for correlated states in higher flat
Chern bands.
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