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We consider the entanglement properties of free fermions in one dimension and review an

approach which relates the problem to the solution of a certain differential equation. The

single-particle eigenfunctions of the entanglement Hamiltonian are then seen to be spheroidal

functions or generalizations of them. The analytical results for the eigenvalue spectrum agree

with those obtained by other methods. In the continuum case, there are close connections

to random matrix theory.

I. INTRODUCTION

The entanglement properties of many-particle quantum states have been the topic of many

studies in recent years [1]. This holds in particular for the ground state of free fermionic systems.

These are Slater determinants, and in this case the reduced density matrix (RDM) for some portion

of the total system has the form

ρ =
1

Z
e−H (1)

where H is again a free-particle Hamiltonian, see [2]. Its single-particle eigenfunctions ϕk and the

corresponding eigenvalues εk can be determined either from the one-particle correlation functions

[3–6] or from the overlap of the occupied states in the subsystem [7, 10–12]. Their properties for

the most studied case, namely a segment in a chain of free fermions, are relatively well-known.

Thus the low-lying |εk| vary roughly linearly with k and the slope is proportional to 1/ lnL if the

subsystem has length L and lnL is large. This leads to a logarithmic variation S = 1/3 lnL of

the entanglement entropy S which is characteristic for critical systems and follows from conformal

invariance, see [13]. The law was first obtained from an asymptotic analysis of the correlation

matrix using the Fisher-Hartwig conjecture [14], and further subleading terms have been derived

in the same way [15, 16]. The eigenfunctions ϕk are largest near the boundaries for small |εk| and
concentrated in the interior of the subsystem for large |εk|. This can be seen easily from numerical

calculations. For a half-filled system, there are also analytical expressions in the continuum limit

[9]. Altogether, a picture emerges, where the (entanglement) Hamiltonian H has both bulk and

http://arxiv.org/abs/1302.2239v2
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boundary-like states with the latter dominating the entanglement.

Given the relatively simple form of the correlations (or the overlap), one wonders whether a

complete analytical treatment of the problem is possible. This is, in fact, the case and it turns

out that it was done a long time ago by Slepian in the analysis of time and band limited signals

[17, 18]. A good account of the background can be found in his 1982 John von Neumann lecture

[19]. The work has received a large number of citations in very different areas. The analogy to the

entanglement problem, where one deals with limited regions in momentum space (the Fermi sea)

and in real space (the subsystem), was pointed out already by Gioev and Klich [8]. However, while

they derived a formula for S in higher dimensions, we focus here on the eigenvalue problem.

It turns out that the eigenfunctions ϕk, or their Fourier transforms, are the (prolate) spheroidal

functions which appear if one separates the Helmholtz equation in elliptical coordinates, or general-

izations of them. They enter in the continuum case because the integral kernel of the entanglement

problem commutes with the corresponding differential operator. Those concentrated in the interior

of the subsystem are quite familiar objects, namely oscillator functions. They become more com-

plicated once they touch the boundary. In any case, the machinery of solving differential equations

can be used to obtain their form and also the eigenvalues εk. In particular, an asymptotic analysis

is possible and gives the low-lying ones for the case of a large subsystem. This leads to exactly

the same density of states as found in the Fisher-Hartwig approach [14, 20]. If either momenta

or positions become discrete, the situation is still similar. Working with the other, continuous

quantity, one has a commuting differential operator and can discuss its eigenfunctions. One should

mention that a lot of this material also appears in random matrix theory, because in the Gaussian

unitary ensemble the same integral kernel enters and the eigenvalues εk determine the functions of

interest, see [21]. The connection to this field was pointed out by Keating and Mezzadri [22, 23]

and also used in [15], but again with the focus on the entropy.

The purpose of this paper is to draw attention to the results described above, because they

complement the usual approaches and put the entanglement problem into a broader context. Our

own contribution is mainly the collection and the presentation, including a number of figures. In

section 2 we give a brief general outline of the determination of ϕk via correlation and overlap

matrices. In section 3 we discuss the case of an infinite continuum system, where the simple

sine kernel and the usual spheroidal functions appear, of which we show some examples. Section

4 treats the case of a finite continuum system, where the correlations still lead to an integral

equation. Section 5 deals with an infinite lattice where the same equation appears in momentum

space. In this case we also discuss the matrix which commutes with the correlation matrix, as well
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as the dispersion relation of the εk. Finally, section 6 contains remarks on semi-infinite systems

and higher dimensions and a brief conclusion is given in Section 7.

II. CORRELATION MATRICES AND OVERLAP MATRICES

The structure of the problem is best seen from the formulae for a general lattice system with a

discrete set of orthonormal single-particle functions Φq(n). A many-particle state |F 〉 in which a

set F of these is occupied (the Fermi sea) then is

|F 〉 =
∏

q∈F

c†q |0〉 (2)

where c†q are creation operators and |0〉 is the vacuum. With

cn =
∑

q

Φq(n)cq (3)

the correlation matrix in state |F 〉 becomes

Cmn = 〈F |c†mcn|F 〉 =
∑

q∈F

Φ∗
q(m)Φq(n) (4)

and the RDM in a subsystem S is determined by the eigenvalue problem

∑

j∈S

Cij ϕk(j) = ζk ϕk(i), i ∈ S (5)

If S consists of L sites, (5) gives L single-particle eigenfunctions ϕk. The eigenvalues ζk with

0 ≤ ζk ≤ 1 are their non-integer occupation numbers and related to the εk via

εk = ln
1− ζk
ζk

or ζk =
1

eεk + 1
(6)

These quantities can also be obtained by constructing the Schmidt decomposition of |F 〉 directly [7].

In this case, one forms new orthonormal functions Ψk from the occupied Φq which are orthogonal

also in the subsystem (and in the remainder R). This is done by calculating the overlap matrix

Aqq′ =
∑

j∈S

Φ∗
q(j)Φq′(j) (7)

and solving the eigenvalue problem

∑

q′∈F

Aqq′ ϕk(q
′) = ζk ϕk(q), q ∈ F (8)
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Then

Ψk(i) =
∑

q∈F

ϕk(q)Φq(i) (9)

satisfies (5) when restricted to S. Similarly, its restriction to R satisfies the analogue of (5) with

eigenvalue (1 − ζk). Moreover, it has norm ζk in S and norm 1 − ζk in R. Therefore, if ϕk is

normalized in S, one has

ϕk(i) =
1√
ζk

Ψk(i), i ∈ S (10)

which gives the pair of relations

ϕk(i) =
1√
ζk

∑

q∈F

ϕk(q)Φq(i) , ϕk(q) =
1√
ζk

∑

i∈S

ϕk(i)Φ
∗
q(i) (11)

The normalization properties allow to obtain the eigenvalues ζk solely from the Ψk if these can be

found by some other means (as will be the case below). If one arranges the ζk in decreasing order,

the corresponding Ψk are less and less concentrated in S. For L sites in the subsystem, (8) can

have only L non-trivial solutions. If the particle number, i.e. the number of states in F , exceeds

L, the remaining Ψk have no components in the subsystem and ζk = 0.

In the following we apply these formulae to the case of plane waves, Φq(n) ∼ eiqn or Φq(x) ∼ eiqx.

The two eigenvalue problems (5) and (8) then correspond to working in real space and in momentum

space, respectively. Moreover, the state |F 〉 will be a normal Fermi sea (|q| ≤ qF ) and the subsystem

S a single segment. The two functions ϕk(i) and ϕk(q) are then related by a Fourier transform

limited to a window in q space and in real space.

III. INFINITE CONTINUOUS SYSTEM

We now consider free fermions on an infinite line with all momentum states |q| ≤ qF filled. The

system then has average density n̄ = qF/π and the correlation matrix is

C(x− x′) =

∫ qF

−qF

dq

2π
e−iq(x−x′) =

sin qF (x− x′)

π(x− x′)
(12)

Choosing the subsystem S as the segment −ℓ/2 ≤ x ≤ ℓ/2, the eigenvalue problem (5) becomes

∫ ℓ/2

−ℓ/2
dx′ C(x− x′)ϕk(x

′) = ζk ϕk(x) (13)

or in reduced variables y = 2x/ℓ with ϕk(ℓy/2) = ψk(y)

∫ 1

−1
dy′K(y − y′)ψk(y

′) = ζk ψk(y) (14)
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with the sine kernel

K(y − y′) =
sin c(y − y′)

π(y − y′)
, c = qF ℓ/2 (15)

Similarly, the overlap matrix is

A(q − q′) =

∫ ℓ/2

−ℓ/2

dx

2π
e−i(q−q′)x =

sin(q − q′)ℓ/2

π(q − q′)
(16)

and with p = q/qF the eigenvalue problem (8) becomes

∫ 1

−1
dp′K(p− p′)ψk(p

′) = ζk ψk(p) (17)

Thus the equations in real space and in momentum space are identical. In the following, we will

work in real space.

The sine kernel is the “square” of another, even simpler symmetric kernel K̃(y, y′)

K(y − y′) =

∫ 1

−1
dz K̃(y, z)K̃∗(z, y′) , K̃(y, z) =

√

c

2π
eicyz (18)

Therefore, the eigenvalues ζk of the sine kernel follow from the eigenvalues µk of K̃ via ζk = |µk|2.
Moreover, K̃ commutes with the second-order differential operator [24]

D = − d

dy
(1− y2)

d

dy
+ c2y2 (19)

provided the functions one operates on are regular at y = ±1. Therefore the (real) eigenfunctions

of K̃ and K can be obtained from

Dψ = θψ (20)

This equation has continuous and bounded solutions for all y only for a discrete set of values θ = θk.

The corresponding ψk are the prolate spheroidal wave functions of the first kind and order m = 0.

In the notation of [25] these are called angular functions S0k for y2 < 1 and radial functions R0k for

y2 > 1 (which fits with our notations of subsystem and remainder). Both are normalized separately

and connected by joining formulae. Their properties have been investigated in great detail, see e.g.

[26–28]. Studying the solution of (20) for all y gives the quantity Ψk of (10). Of particular interest

is the case where the subsystem contains many particles. Since the average number is

N̄ = ℓn̄ =
2

π
c (21)

this corresponds to large c.
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A qualitative picture of the spheroidal functions can be obtained by observing that for small y

the operator D reduces to

D = − d2

dy2
+ c2y2 (22)

and thus to the Hamiltonian of the harmonic oscillator with frequency ω = c. The oscillator

functions

uk(y) = Ak e
− 1

2
cy2Hk(

√
cy) (23)

with the Hermite polynomials Hk have a spatial extension yk ≃
√

(2k + 1)/c (using the classical

turning point) and therefore ”fit” into the subsystem as long as 2k + 1 < c. Under this condition

the exact spheroidal functions resemble them closely, in particular those concentrated fully in the

interior. A picture gallery is shown in Fig. 1, where we plotted the first 15 spheroidal and oscillator

functions for c = 5π (N̄ = 10). Both are normalized to 2/(2k+1) in (−1, 1). The function S0k has

exactly k zeros there and is alternatingly even and odd. One sees that up to k ∼ 7 the differences

are rather small. As k increases further, the oscillator functions deviate more and have zeros

outside the subsystem, while the oscillation of S0k becomes faster near the boundaries. For large

c, it is logarithmic up to a distance 1/
√
c from ±1, i.e. besides y the variable ln[(1 + y)/(1 − y)]

enters, as also found in a continuum approximation for a half-filled lattice system [9]. The nature

of the eigenfunctions is reflected directly in the occupation numbers ζk which are close to 1 for

small k and close to zero for large k. As discussed below, the transition takes place at k ∼ N̄ .

If one continues ψk to y2 > 1, one finds the eigenfunctions in the remainder R corresponding

to the eigenvalue 1 − ζk. These are a kind of mirror image of those in S. For small k, they are

oscillating rapidly near the boundary but have very small amplitudes (the phenomenon has been

termed superoscillation [29]), while for large k the behaviour is smooth there and only later an

oscillation sets in. This is illustrated in Fig. 2 where the R0k are shown for a number of k values

up to k = 40. Note that due to the normalization conventions the functions S0k and R0k do not

match at y = 1 The form for |y| ≫ 1 can be obtained from D by writing ψ(y) = χ(y)/y which

leads to the operator

D̂ = y

(

d2

dy2
+ c2

)

(24)

and gives approximately wave-like solutions χ(y) ∼ cos(cy + α) = cos(qFx+ α). This can be seen

clearly in the figure.
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FIG. 1: The first 15 spheroidal functions S0k(c, y) for c = 5π (full lines, red) and, for comparison, the

oscillator functions uk(y) (dotted lines, blue).

Turning to the eigenvalues ζk (usually called λk in the literature), they can be obtained from

the relation [27]

∫ 1

−1
dy eicyzS0k(c, y) = 2inR0k(c, 1)S0k(c, z) (25)

which is, up to a factor, the eigenvalue equation of the integral operator K̃. This gives the general
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formula

ζk = |µk|2 =
2c

π
[R0k(c, 1)]

2 (26)

which can be evaluated numerically. To obtain analytical expressions for large c, Slepian considered

the solutions of (20) in the various regions of y and connected them in the domains of overlap [17].

While he considered small and large k separately, des Cloizeaux and Mehta using WKB formulae

could later obtain a single expression [30] and Landau and Widom gave a mathematical proof [31].

The procedure is rather tedious, but in the end a relatively simple result for εk emerges if k ≃ N̄ ,

c.f. (1.37), (1.38) in [17]. Namely, it is given by the root of smallest absolute value of the equation

c+
εk
π

ln(2
√
c)− ϕ(

εk
2π

) =
π

2
(k − 1

2
) (27)

where ϕ(z) = argΓ(1/2 + iz) and Γ(z) is the gamma function. This has solutions |εk| ≪ 1 which

are obtained by expanding ϕ(z)

εk
2π

(

ln(4c) − ϕ′(0)
)

=
π

2
(k − 1/2 − N̄) (28)

or, with c inserted,

εk =
π2(k − 1/2− N̄)

ln(2πN̄ )− ψ(1/2)
(29)

where ψ(1/2) = −γ − 2 ln 2 = −1.963..., γ is Euler’s constant and ψ(z) denotes the digamma

function. Thus εk goes through zero (ζk through 1/2) for k ≃ N̄ ≫ 1 and the slope vanishes

logarithmically with c or N̄ . A similar formula was found in [9] for a half-filled lattice system. For

larger εk one really has to solve (27). It is simpler, however, to view it as a relation k = k(ε) which

leads to a density of states n(ε) = dk/dε given by

n(ε) =
1

π2

[

ln(4c)− ϕ′(
ε

2π
)
]

(30)

where explicitly

ϕ′(z) =
1

2
[ψ(

1

2
+ iz) + ψ(

1

2
− iz) ] (31)

This is the result found and plotted in [20] and implicit already in [14]. Inserting it into the

expression for the entanglement entropy, one finds the leading logarithmic term and the first

correction. We will come back to it in Section 5.
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FIG. 2: Spheroidal functions R0k(c, y) for c = 5π, 1 ≤ y ≤ 3 and various k.

IV. FINITE CONTINUOUS SYSTEM

Consider now a finite system in the form of a ring with circumference L. The momenta are

quantized according to q = 2πn/L with integer n and the Fermi momentum is written as qF =

2πm/L. This gives a total particle number N = 2m+ 1 and a correlation matrix

C(x− x′) =
1

L

m
∑

n=−m

e−i 2π(x−x′)n/L =
1

L

sin (Nπ/L)(x− x′)

sin (π/L)(x − x′)
(32)

With the same subsystem as before, −ℓ/2 ≤ x ≤ ℓ/2, the eigenvalue equation (13) retains its form.

However, here it is preferable to define the reduced variable as z = x/L such that |z| ≤ 1/2. Then

the equation becomes

∫ W

−W
dz′K ′(z − z′)ψk(z

′) = ζk ψk(z) (33)

with W = ℓ/2L < 1/2 and the modified sine kernel

K ′(z − z′) =
sinπN(z − z′)

sinπ(z − z′)
(34)
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The overlap matrix is

A(q − q′) =

∫ ℓ/2

−ℓ/2

dx

L
e−i(q−q′)x =

sin(q − q′)ℓ/2

(q − q′)L/2
(35)

but since the momenta are discrete, one can write it as

Ann′ =
sin (πℓ/L)(n − n′)

π(n− n′)
(36)

and the eigenvalue equation is a genuine matrix equation with a Toeplitz matrix.

The problem is now in exactly the form as studied by Slepian in 1978 [18]. In particular, (33)

is his equation (10) and the ψk are his functions Uk. There are only N of them with non-zero

eigenvalue (corresponding to the N eigenvalues of the overlap matrix) and he calls them discrete

prolate spheroidal wave functions. The treatment of the infinite case can be repeated, because

there is again a commuting differential operator, namely

D′ = − 1

4π2
d

dz
(cos 2πz − cos 2πW )

d

dz
− 1

4
(N2 − 1) cos 2πz (37)

One sees that, in comparison with (19), the powers have been replaced by cosine functions, which

reflect the ring geometry. The first term is a kinetic energy with different sign in S and R, as in

the infinite case. The second term is a potential with a minimum at the origin. In the limit of

small z and W one can expand the cosine functions and recovers the operator D of the infinite

case. The finite size is then no longer visible. The same holds for the integral operator K ′ which

reduces to K. The N lowest eigenfunctions of the differential operator give the solution both in

the subsystem and in the remainder, and determining the respective norms allows to calculate the

eigenvalues ζk. Pictures of the functions for N = 4, 5 and W = 0.2, 0.4 are shown in [18] and one

sees the similarity to the oscillator functions in particular for the lowest state k = 0.

The analysis of the eigenfunctions of D′ for large N leads to formulae for εk which are very

similar to those of the infinite system, see equs. (53), (60) and (61) in [18]. Instead of (27) one

finds the equation

πNW +
εk
2π

ln(2N sin 2πW )− ϕ(
εk
2π

) =
π

2
(k − 1

2
) (38)

and in the linear region this gives after inserting W

εk =
π2(k − 1/2− N̄)

ln(2N sin (πℓ/L))− ψ(1/2)
(39)

For L→ ∞, keeping N/L = n̄ constant, this reduces to (29).

The existence of the commuting operator D′ also has consequences for the other eigenvalue

problem. This will be discussed in the following section.
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V. INFINITE LATTICE SYSTEM

In the entanglement investigations, this is the most studied case. Let the system be the limit

of a ring with a total of M sites. The correlation matrix is

Cnn′ =

∫ qF

−qF

dq

2π
e−iq(n−n′) =

sin qF (n− n′)

π(n− n′)
(40)

which corresponds to (12) but with discrete sites. We will choose the subsystem here as the L sites

n = 1, 2, ...L. Then the eigenvalue equation is

L
∑

n′=1

Cnn′ ϕk(n
′) = ζk ϕk(n) (41)

and for the overlap matrix one finds

A(q − q′) =
1

M

L
∑

n=1

e−i(q−q′)n

= e−iq(L+1)/2

(

1

M

sin (q − q′)L/2

sin (q − q′)/2

)

eiq
′(L+1)/2 (42)

The exponential factors reflect the location of the subsystem, but do not affect the spectrum. The

eigenvalue equation can be written

∫ qF

−qF

dq′

2π

sin (q − q′)L/2

sin (q − q′)/2
ϕ̃k(q

′) = ζk ϕ̃k(q), ϕ̃k(q) = eiq(L+1)/2 ϕk(q) (43)

With p = q/2π, W = qF/2π = n̄/2 and ϕ̃k(2πp) = ψ(p) this leads to

∫ W

−W
dp′K ′(p − p′)ψk(p

′) = ζk ψk(p) (44)

which is (33) with the substitution N → L in the kernel K ′.

Therefore, as noted in previous work [10, 11], the infinite lattice and the finite continuum

problem are actually the same with the role of positions and momenta, i.e. of correlation and

overlap matrices, interchanged. Thus the discrete spheroidal functions appear here in momentum

space, and the same holds for the commuting differential operator. As mentioned above, this

operator has a consequence for the other eigenvalue problem (41). From (11)

ϕ̃k(q) =
1√
ζk
eiq(L+1)/2 1√

M

L
∑

n=1

ϕk(n)e
−iqn (45)

and inserting this into the eigenvalue equation D′ϕ̃ = θ′ϕ̃ one finds a three-term recursion relation

for the ϕk(n) which involves only the sites n− 1, n and n+ 1. In other words, the ϕk(n) are also
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the eigenfunctions of a tridiagonal matrix T which therefore commutes with C (in the subsystem).

Thus the relation [K ′,D′] = 0 has an equivalent [C, T ] = 0 in real space.

Writing T in the form

T =























d1 t1

t1 d2 t2

t2 d3 t3
. . .

. . .

tL−1 dL























(46)

the matrix elements are

tn =
1

2
n(L− n), dn = (

L+ 1

2
− n)2 cos qF (47)

Both coefficients vary parabolically around the center of the system. Viewed as a hopping Hamil-

tonian, T describes an inhomogeneous system where the hopping is largest in the middle. The

potential energy is also largest there if qF > π/2, but smallest if qF < π/2. For a half-filled system,

qF = π/2, it vanishes.

This matrix was later rediscovered in [9] on the basis that the Hamiltonian in (1) when calculated

numerically shows a very similar structure. Note that T is only determined up to a multiplicative

factor and an additive constant. The matrix elements given in [9] differ from (47) by the factor 2/L2

and a constant in dn. Using T , one can obtain the eigenfunctions ϕk numerically for much larger

systems than via the correlation matrix. They resemble the spheroidal functions of the continuum

and were termed discrete prolate spheroidal sequences by Slepian. In Fig. 3 we show some of them

for a system of L = 50 sites and qF = π/2. For qF = 0, π they are given by Hahn polynomials and

the eigenvalues of T are very simple [32]. In the limit qF → 0 and L → ∞ keeping qFL constant,

the problem becomes continuous in y = n/L and one comes back to the usual spheroidal functions.

Expanding the quantities in Tϕ = θ′ϕ, one can also derive the differential operator D directly.

The eigenvalues εk follow directly from the formulae in section 4 with N → L and 2πW = qF .

Then (39) becomes

εk =
π2(k − 1/2− N̄)

ln(2L sin qF )− ψ(1/2)
(48)

For a half-filled system (qF = π/2) this gives the asymptotic result found in [9], whereas for qF → 0

and L→ ∞ it reduces to (29). The density of states n(ε) which decreases with ε is clearly seen in

numerical calculations of the εk [2]. This is illustrated in Fig. 4, where the eigenvalues obtained
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FIG. 3: The first 15 eigenfunctions ϕk for a subsystem of L = 50 sites in a half-filled infinite chain.

directly from (41) are shown together with the theoretical formula for k = k(ε), viewing k as a

continuous variable. The curves are not exactly linear, but show an upward (downward) bend on

the positive (negative) side. One sees that for L = 20 there are small differences between both

results, but for the larger L there is an excellent agreement. One also sees that even there the

linear region is still quite small.



14

-30

-20

-10

 0

 10

 20

 30

-15 -10 -5  0  5  10  15

εk

k - (L+1)/2

L=20
L=50

L=100

FIG. 4: Dispersion relation of the εk for a half-filled infinite lattice and three different sizes of the subsystem.

Symbols: numerical data, lines: analytical result for k(ε).

VI. FURTHER ASPECTS

So far, we have considered only systems without boundaries. However, the results cover also

the case of a semi-infinite geometry when the subsystem is located next to the boundary. The Φq

are then sine functions and, in the continuum case, lead to the correlation matrix

Cs(x, x
′) = C(x− x′)− C(x+ x′), x, x′ ≥ 0 (49)

where C(x− x′) is the result (12). But if the subsystem is the interval 0 ≤ x ≤ ℓ/2, the eigenvalue

problem

∫ ℓ/2

0
dx′ Cs(x− x′)ϕk(x

′) = ζk ϕk(x) (50)

is solved by the odd eigenfunctions of (13). Thus one can take over the previous results, confining

oneself to the odd k-values. This means in particular that the spacing of the low-lying εk doubles

and the density of states halves. As a result, the entanglement entropy is also halved.

The argument also holds for the lattice case, where Cs has the form (49) with x, x′ → n, n′

and n, n′ ≥ 1. However, the solutions of the analogue of (50) then vanish at the point n = 0.

Therefore, one has to compare with an infinite lattice problem, where this point is the center of the

subsystem. This means, that it has to consist of 2L+1 sites (an odd number), if in the semi-infinite

case the subsystem has L sites. The connection between infinite and semi-infinite system is also
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seen at the level of the commuting matrices. There exists a tridiagonal matrix Ts with the property

[Cs, Ts] = 0 and it is just the right half of the matrix T [9].

Returning to closed systems, one should mention that a finite ring of M lattice sites filled with

N = 2m+1 particles leads to the correlation matrix (32) with x→ n and L→M . For a segment

of L sites, one can then also find a commuting tridiagonal matrix [33] which is a generalization of T

and leads to another discrete version of the spheroidal functions. The parabolic form of the tn and

dn is then replaced by trigonometric expressions. For example tn ∼ sin(πn/M) sin(π(L − n)/M),

and for M → ∞ one reobtains (47).

Another generalization concerns higher dimensions. The case of an infinite continuum with

spherical Fermi surface and a spherical subsystem has also been studied in detail [34]. Due to

the rotational symmetry, the eigenfunctions are products of an angular and a radial factor. For

the latter, one finds an integral equation with a Bessel function as kernel. Again a commuting

differential operator exists and is closely related to D. For d = 2 and with y → r

Dr = D +
m2 − 1/4

r2
, r > 0 (51)

where m = 0,±1,±2... is the azimuthal quantum number. Physically, the additional term can be

viewed as a centrifugal potential. As a result, the eigenfunctions have to vanish at the origin. They

were called generalized spheroidal functions and some are shown in [34]. For the eigenvalues εkm

for fixed m one finds very similar results as in one dimension.

VII. CONCLUSION

We have considered the ground state of free fermions and discussed an approach which deter-

mines the reduced density matrix directly via its single-particle eigenfunctions. It circumvents the

original matrices or integral kernels and works instead with differential operators. In the continuum

case, this leads to spheroidal functions which are well known in mathematics and appear in various

other areas. Physically, they have the character of either bulk or boundary-like states, and it is

amusing that, in the first instance, they are close to harmonic oscillator functions. In hindsight,

however, one could have guessed that from the appearance of their lattice counterparts. In the

lattice case, the asymptotic results for the single-particle eigenvalues bridge a gap between the

numerical calculations and the Fisher-Hartwig determinantal formulae which only give a density

of states. We have demonstrated in Fig. 4 how well the results match.

On the technical level, the approach is rather tedious and inferior to Fisher-Hartwig calculations.
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However, the concept of a commuting operator is interesting and reminiscent of transfer matrix

problems in integrable classical lattice models. It is also interesting that this feature carries over to

higher dimensions for spherical subsystems. As to the one-dimensional problem, one has now an

almost complete overview over the properties of the entanglement Hamiltonian H, but an explicit

form is still lacking.
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