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Hiermit erkläre ich, dass die vorliegende Dissertation von mir selbständig verfasst
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Introduction

Roughly half of the world’s population is female and there are more than 100 million
women worldwide regularly using hormonal contraceptives such as the birth control
pill. Nevertheless, the menstrual cycle has so far received comparatively little attention
in the field of mathematical modeling. In this context, the term “menstrual cycle”
refers to the processes of the control system in the female body drafted in Fig. 1.

Figure 1: Control system of the female menstrual cycle, modified from [56].

In fact, there are only few models describing the dynamics of the female menstrual
cycle. Up to now, the focus has mainly been on coarse interactions like feedback
mechanisms among the most important hormones [33, 76, 81] and follicular masses
[6, 7, 37] or, explicitly, on follicular dynamics [11, 12, 13, 51]. Modeling of biochemical
processes like receptor binding [5, 14, 41, 85] which are part of this control system
can be found as well. The model derived in [37] is able to reproduce quite well the
given experimental data estimated from [58] for some of the essential elements of
the control system. However, the dynamics of progesterone and estradiol belonging
to these essential elements and the dynamics in the hypothalamus are not included.
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Nonetheless, since the model in [37] offers a suitable approach for LH and FSH as
well as for the follicular development, it is chosen as basis in the subsequent modeling
process.

In order to be able to cover a vast range of external manipulations, the mathe-
matical model that is developed here must comprise the main components where the
processes belonging to the menstrual cycle occur, as well as their interconnections.
This rather elaborate mathematical model is the basis for a detailed analysis and
could be helpful for possible drug design. Testing medical or pharmaceutical therapies
is cost-intensive since clinical studies must be conducted. The integration of a detailed
mathematical model in this process could be advantageous.

Outline. Some modeling fundamentals that can be used for mathematical modeling
in physiology in general and that are applied here to the modeling of the female men-
strual cycle are introduced in Chapter 1. Here, the human body, even if it is an entity,
is not regarded as a single homogenous system, but as decomposed into compartments.
The mathematical basis for the model, a system of differential equations, is introduced.
Since the processes take place in different parts of the body and influence each other
with a certain delay, passing over to delay differential equations is deemed a reasonable
step.

Next, the compartment model, as developed in [37], is recalled. Based on this
model and with the aid of the above modeling fundamentals, a model for the female
menstrual cycle is developed step by step in Chapter 2. The pulsatile release of the
gonadotropin-releasing hormone (GnRH) is controlled by a complex neural network.
Here it is chosen to model the pulse time points of this GnRH pulse generator by a
stochastic process. The final model, named GynCycle, describes the dynamics of hor-
mones, enzymes, receptors (partly at different states and in different compartments),
follicular phases, and the GnRH pulse generator.

When modeling complex physiological processes and control systems in the human
body such as the female menstrual cycle, a large number of parameters arises natu-
rally. Their values are not known for the most part, thus making parameter estimation
necessary. In order to simplify this often high-dimensional problem, a method is de-
veloped in Chapter 3 for the decomposition of the mathematical model into several
smaller model parts. This method is carried out for GynCycle.

By model decomposition, the problem can be reduced. In the next step, the param-
eters that can probably be estimated simultaneously are computationally estimated.
The full model consists of stiff delay differential equations including a stochastic ap-
proach for the pulse generator. Finally in Chapter 4, the results are shown by com-
paring simulations of GynCycle with experimental data.

In order to show possible applications, the model is extended for the intake of
hormonal contraceptives. The corresponding simulations are performed in Chapter 5.
Moreover, the effects of continuous administration of GnRH are treated.



Chapter 1

Basic Modeling Concepts

First, some principle modeling concepts are introduced that could be useful in the
modeling of physiological processes and that are used to construct the complex math-
ematical model of the human menstrual cycle. The concept of compartmentalization
of the considered body parts and how the connections between the compartments can
be modeled, for example, via receptor binding and feedback mechanisms, is described.
If the biochemical mechanisms are known, simple reaction kinetics can be used and
if enzymes catalyze the reaction, simple enzyme kinetics are applied. Taking into ac-
count the fact that the different elements of the system influence each other with a
certain delay, delay differential equations instead of ordinary differential equations are
used.

1.1 Compartmentalization of the human body

The human body is not a closed homogeneous system; it consists of organs and tissues
etc. in which different processes take place. In order to reduce the biological complex-
ity, the body parts that are essential in the processes are extracted and divided into
discrete body elements, referred to as compartments [1] that are interconnected via
the shared blood system [53], here called transport compartment. The characteristics
of compartments are that isolated processes take place, but at the same time they can
interact with each other. The model formulating the relations between these compart-
ments is called compartmental model [83] and this process of organizing the human
body in compartments is referred to as compartmentalization which is the concept of
pharmacokinetic modeling [1]. More precisely, physiologically based compartments are
used in this context since the compartments are based on the actual anatomy and
physiology [1].

1.2 Interfaces between the compartments

The compartments are non-closed systems and can influence each other. The ques-
tion arises, how exactly the exchange takes place and what possibilities there are for
interrelations between compartments.
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8 CHAPTER 1. BASIC MODELING CONCEPTS

On the one hand, it is possible that only coarse interrelations such as inhibiting or
stimulating effects are known. Then these feedback mechanisms can be modeled by Hill
functions. On the other hand, it is possible in some cases to model on a biochemical
basis via e.g. receptor binding.

1.2.1 Receptor binding and recycling

It is often the case that the hormone that is synthesized in one compartment reaches
another compartment through the blood circulation and binds to its corresponding
receptor. They form a complex and thereby the receptor becomes activated:

Ractivatable + H → (H-Ractivated).

Usually, the receptor does not return directly to the activatable state after dissociating
from the hormone, but becomes first desensitized or inactivatable:

Ractivatable → Ractivated → Rinactivatable → Ractivatable.

1.2.2 Feedback regulation

If the biochemical details are not established and only a stimulatory or inhibitory
effect of one hormone on another is known, modeling can be done by use of feedback
functions originating from enzyme kinetics. Positive feedback can be described by
applying Michaelis-Menten kinetics, negative feedback by mechanisms for inhibitory
enzymes [72].

If a substrate S stimulates another substrate P, it holds

S increases ⇒ P increases
S decreases ⇒ P decreases,

where the italics denote the corresponding concentrations now and in the following.
The inhibition of S on P can be described by

S increases ⇒ P decreases
S decreases ⇒ P increases.

A simple method to model these observations mathematically, is the appliance of
Hill functions that are commonly used to model feedback in physiology. They have
values between 0 and 1, thus they are bounded. Additionally, the Hill functions provide
a kind of switch, enabling to model the event that the concentration has to exceed a
certain threshold value in order to be effective. At this switch the values of the Hill
function change from values near 0 to values near 1 or the other way around.

Definition 1.1. The Hill function for positive feedback (stimulation) is defined by

h+(S;T, n) :=

(
S
T

)n
1 +

(
S
T

)n =
Sn

Tn + Sn
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and the Hill function for negative feedback (inhibition) by

h−(S;T, n) :=
1

1 +
(
S
T

)n =
Tn

Tn + Sn
,

where S denotes the concentration of the hormone (S ≥ 0) that acts with a positive
and negative feedback, respectively, T ∈ R+ the threshold value, and n ≥ 1 the Hill
coefficient.

It is h+ ≡ 1 − h−, where h+(·;T, n) : [0,∞) → [0, 1) is strictly monotonically
increasing and h−(·;T, n) : [0,∞) → (0, 1] strictly monotonically decreasing. The
switch is the more distinctive, the higher the Hill coefficient n is chosen. The threshold
value T denotes the value at which the Hill function has the value 1

2 , i.e. where it
changes from values near 0 to values near 1.

The resulting dynamics of P if S is stimulatory is given by

d

dt
P = p+ · h+(S;T, n), p+ ∈ R+,

and the resulting dynamics of P if S is inhibitory by

d

dt
P = p− · h−(S;T, n), p− ∈ R+.

It is possible that the effect of S is not constant, i.e. that there are at least two
effects responsible for the result.

Definition 1.2. The biphasic Hill function [66] is defined by

h−,+(S) := h−(S;T−, T+, n) := h−(S;T−, n) + h+(S;T+, n),

where T− < T+ and S denotes the concentration of the hormone (S ≥ 0) that exerts
an inhibitory effect at low concentration and a stimulatory effect at high concentration.

Lemma 1.1. The unique minimum of h−,+(·) on [0,∞) is given by T−,+S := (T− · T+)
1
2 .

Furthermore it is h−,+(S) ∈ [h−,+(T−,+S ), 1] for all S ∈ [0,∞).

Proof. It is h−,+(S) > 0 for all S ≥ 0 and since T+ > T− it holds for S > 0

h−,+(S) =
T−,n

T−,n + Sn
+

Sn

T+,n + Sn

= 1− Sn · (T+,n − T−,n)
(T−,n + Sn) · (T+,n + Sn)

< 1.

The derivation of h−,+(·) is given by

d

dS
h−,+(S) = −n · T

−,n · Sn−1

(T−,n + Sn)2
+
n · T+,n · Sn−1

(T+,n + Sn)2
. (1.1)
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E
2

h−
,+

(E
2)

1

T−,+
S

h
−

,+
(S

)

S

Figure 1.1: Biphasic Hill function h−,+(·) with the threshold value T−,+S (n > 1).

If d
dSh

−,+(S) = 0, it follows S = 0 or S = (T− · T+)
1
2 =: T−,+S . The first term of the

right side of Eq. (1.1) is negative and the second term is positive for all S > 0. It is
for S > 0

d

dS
h−,+(S) < 0⇔ d

dS
h−(S;T−, n) >

d

dS
h+(S;T+, n)

⇔ n · T−,n · Sn−1

(T−,n + Sn)2
>
n · T+,n · Sn−1

(T+,n + Sn)2

⇔ S2·n < T−,n · T+,n

⇔ S < (T− · T+)
1
2

and analogously

d

dS
h−,+(S) > 0⇔ S > (T− · T+)

1
2 .

It follows that h−,+(·) is decreasing on [0, T−,+S ) and increasing on (T−,+S ,∞). That

proves that S = (T− · T+)
1
2 is the unique minimum. The maximum is given for

S = 0 since it is h−,+(S) = 1. Moreover it is limS→∞ h−,+(S) = 1. It follows
h−,+(S) ∈ [h−,+(T−,+s ), 1] for S ≥ 0.

Thus T−,+S is the threshold value for the switch from inhibition to stimulation [66].
Note that T−,+S is independent of n. An example for the biphasic function is shown in
Figure 1.1.

The dynamics of P is then given by

d

dt
P = p−,+ · h−,+(S;T−, T+, n), p−,+ ∈ R+.
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1.3 Metabolic processes

Many processes in the human body are only partly explored and this limits the mod-
eling possibilities. In this context, neither molecular processes, nor genetic, nor spatial
effects in cells are incorporated. Here it is considered in detail if the biochemical
reaction mechanisms are known to a certain extent.

1.3.1 Reaction kinetics

If reaction mechanisms are given, they can be modeled by simple reaction kinetics if
no enzymes are involved.

Considering the irreversible reaction

S k→ P,

simple reaction kinetics for the concentrations of the product P and of the substrate
S can be assumed:

d

dt
P = k · S, d

dt
S = − d

dt
P, k ∈ R+.

If the reversible reaction is considered

S
k1


k−1

P,

simple reaction kinetics lead to the product and substrate rates

d

dt
P = k1 · S − k−1 · P,

d

dt
S = − d

dt
P, k1, k−1 ∈ R+.

1.3.2 Enzyme kinetics

Since many reactions in the human body are catalyzed by enzymes and since it is
not appropriate to assume first-order reaction kinetics in these cases, the mechanism
called Michaelis-Menten is chosen to model the dynamics. It is the simplest and most
common approach for enzyme catalyzed reactions.

Modeling the irreversible enzyme catalyzed overall reaction

S → P,

by introducing the enzyme E, the Michaelis-Menten mechanism has the form [72]

E + S
k1
�
k−1

(E-S) k2→ P + E,

where k−1, k1, k2 ∈ R+ denote the reaction constants, E the enzyme, and (E-S) the
complex. Assuming constant total enzyme concentration Etotal = E + (E-S) and the
quasi-stationary state for the enzyme complex concentration d

dt(E-S) = 0 yields

d

dt
(E-S) = k1 · E · S − k−1 · (E-S)− k2 · (E-S)

= k1 · (Etotal − (E-S)) · S − (k−1 + k2) · (E-S) = 0
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which leads to

(E-S) =
k1 · Etotal · S

k1 · S + k−1 + k2
.

Since it is d
dtP = k2 · (E-S), the reaction rate for the product can be modeled by

d

dt
P = k2 · Etotal ·

S

KM + S
,

where P denotes the product concentration and S the substrate concentration, with
the Michaelis-Menten constant

KM :=
k−1 + k2

k1
.

For the reaction rate of the substrate S, it is

d

dt
S = −k2 · Etotal ·

S

KM + S
.

Obviously, assuming Michaelis-Menten kinetics instead of first-order reaction kinetics
leads to a product formation rate that is not linearly but sigmoidally dependent on
the substrate concentration and bounded by the maximal rate

Vmax := k2 · Etotal.

The situation is more complicated in the case of reversible reactions such as

S � P,

where the Michaelis-Menten mechanism is described by [72]

E + S
k1
�
k−1

(E-S)
k2
�
k−2

P + E, k−2 ∈ R+.

Assuming again constant total enzyme concentration and the quasi-stationary state
for the enzyme complex concentration yields

d

dt
(E-S) = k1 · S · E − k−1 · (E-S)− k2 · (E-S) + k−2 · P · E

= (k1 · S + k−2 · P ) · (Etotal − (E-S))− (k−1 + k2) · (E-S) = 0

which leads to

(E-S) =
(k1 · S + k−2 · P ) · Etotal
k1 · S + k−2 · P + k−1 + k2

.

Since it is d
dtP = k2 ·(E-S)−k−2 ·P ·E, the reaction rate for the product does no longer

depend only on the substrate concentration, but also on the product concentration:

d

dt
P = Etotal ·

k2 · S − k−1·k−2

k1
· P

KM + S + k−2

k1
· P

.
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For the substrate S, the reaction rate is

d

dt
S = −Etotal ·

k2 · S − k−1·k−2

k1
· P

KM + S + k−2

k1
· P

.

For the purpose of simplification the following notations are introduced:

Definition 1.3. Dependence by Michaelis-Menten kinetics in the case of an irreversible
reaction is expressed by the irreversible Michaelis-Menten function

f irrev(S,E; pirrev) := pirrev1 · E · S

pirrev2 + S
,

where pirrev := (pirrev1 , pirrev2 )T , pirrev ∈ R2
+, denotes the parameter vector, S the sub-

strate concentration, and E the total enzyme concentration. In the case of a reversible
reaction, the reversible Michaelis-Menten function is defined by

f rev(P, S,E; prev) := E · p
rev
1 · S − prev2 · P

prev3 + S + prev4 · P
,

where prev := (prev1 , prev2 , prev3 , prev4 )T , prev ∈ R4
+, denotes the parameter vector and P

the product concentration.

It holds for the irreversible case pirrev1 = k2 and pirrev2 = KM and for the reversible
case prev1 := k2, prev2 := k−1·k−2

k1
, prev3 := KM , and prev4 := k−2

k1
[66].

Normally, the reactions in the human body are reversible. But in order to simplify
the modeling of this mechanism, it is possible to neglect the reverse reaction if the
rate constant of the reverse reaction is very small compared to the rate constant of the
forward reaction: k1 � k−1. The advantage is a lower number of parameters.

1.4 Delay differential equations

By the compartmentalization, essential spatial effects are incorporated. Usually the
dynamics of the concentrations are well described by ordinary differential equations.

If there are body parts where only few molecules participate in the processes as e.g.
in the cell, the modeling by ordinary differential equations is not adequate. Cells play
a certain role here in the modeling of the human menstrual cycle, e.g. in the follicular
development. However, a high number of cells is involved in this case and it is the
total effect that is interesting, rather than the processes within a single cell.

Even if a division into compartments is accomplished, it is possible that there are
spatial effects within one compartment that can be neglected at the cost of the model’s
quality. To improve the model, this compartment, in turn, could be divided into several
compartments, or modeling by partial differential equations could be done.

The model that is developed in the next chapter is based upon a deterministic
modeling approach by using a (non-autonomous) system of differential equations

d

dt
y(t) = f(t, y(t)),
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where y : R → Rn, f : R × Rn → Rn, n ∈ N. As aforementioned, since the processes
take place in different parts of the body and influence each other with a certain delay,
not ordinary but delay differential equations are chosen. In order to consider the time
delays, e.g. due to transport effects, they can be incorporated into the differential
equations by using dependency of t − τ instead of t with the delay τ ∈ R+. The
(non-autonomous) system of delay differential equations (DDEs) is given by

d

dt
y(t) = f(t; y(t); y(t− τ1), . . . , y(t− τm)),

where y : R → Rn, f : R × Rn×(m+1) → Rn, n,m ∈ N, and τi ∈ R+, i = 1, . . . ,m,
denote the discrete, state-independent delays.

To describe the biological variety in an adequate manner, the application of integro-
differential equations with distributed lags (see e.g. [54]) instead of delay differential
equations with discrete delays is more accurate, but, concomitantly, more expensive
which is why here it is restricted to constant delays. The equations would be of the
form

d

dt
y(t) = f (t; y(t); ỹ1(t), . . . , ỹm(t)) ,

where for l = 1, . . . ,m

ỹl(t) :=
∫ ∞
τl,min

y(t− θ) · gl(θ) dθ, t ≥ t0,

gl(·), l = 1, . . . ,m, denote probability densities∫ ∞
τl,min

gl(θ) dθ = 1,

and τl,min the minimal delay τl,min for each delayed process, l = 1, . . . ,m.
As approach for the discrete delay, the mean value of the density shifted by the

minimal delay can be chosen (see e.g. [40]):

τl := τl,min +
∫ ∞

0
(τ − τl,min) · gl(τ) dτ.

A particularity of DDEs compared to ODEs is that an initial function instead of
an initial value y(t0) = y0 must be given to solve the system for t ≥ t0:

y(t0 − θ) = φ(θ), 0 ≤ θ ≤ τmax,

where τmax := maxl∈{1,...,m} τl. Thus it is an infinite dimensional problem. In the case
of integro-differential equations the initial function

y(t0 − θ) = φ(θ), 0 ≤ θ ≤ ∞,

must be provided.
In the following it is assumed that a solution exists.



Chapter 2

Model Development - GynCycle

This chapter presents how a complex mathematical model for the human menstrual
cycle is developed. Using model fundamentals for feedback mechanisms, reaction and
enzyme kinetics, differential equations are obtained that describe the dynamics of
the involved elements as, for example, hormones, enzymes, receptors, and follicular
masses. Moreover, a special feature of the menstrual cycle is presented. From the
hypothalamus, the hormone GnRH is released in pulses that cannot simply be modeled
by use of differential equations but by use of a stochastic approach.

Despite the relevance of this topic, few mathematical models exist dealing with
the human menstrual cycle or parts of it [5, 11, 14, 37, 51, 85]. One of these models
[37] provides the basis for the further modeling since it is the most elaborate of the
models for the human menstrual so far. It comprises the dynamics in the pituitary
and in the ovaries and calculates progesterone, estradiol, and inhibin concentrations,
essential components of the control system, as linear combinations of follicular masses.
Unfortunately, it offers no modeling approach for the GnRH pulse generator in the
hypothalamus.

Basically the processes take place in three different areas, the hypothalamus, the
pituitary, and the ovaries (compartments), that are interconnected through the blood
circulation (transport compartment). A very important element in this control system
is the GnRH pulse generator. From the hypothalamus, the hormone GnRH is released
in pulses into the pituitary portal system with the aid of a mechanism, the GnRH
pulse generator. One part binds to the GnRH receptors in the pituitary and the
remaining part reaches the blood system where the GnRH is rapidly cleared. By
binding of GnRH to its receptor, the receptor becomes activated and thus stimulates
the release of the gonadotropins FSH and LH into the blood system. In this way,
the gonadotropins reach the ovaries where they bind to their respective receptor and
thereby activate them. Thus, the enzymes get activated and promote the biosynthesis
of the gestagens, androgens, and estrogens in the follicles. The follicular development,
in turn, is regulated by the gonadotropins. Progesterone, estradiol, and inhibin reach
the blood system and thus the hypothalamus and pituitary where they can regulate
the processes by means of positive and negative feedback. In Fig. 2.1, an overview
over the compartmental model of this control system is shown.

In the following, the control system is described in detail and modeling approaches

15
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Figure 2.1: Compartmental model of the human menstrual cycle. The three main
compartments hypothalamus, pituitary, and ovaries (dark grey) are connected through
the blood system. It is distinguished between the pituitary portal system (hypophysic
blood system) and the remaining blood system both represented by transport com-
partments (lighter grey). In the hypothalamus the hormone GnRH, in the pituitary
the gonadotropins LH and FSH, and in the ovaries the steroids progesterone (P4) and
estradiol (E2) as well as the hormone inhibin (Ih) are synthesized.
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for the different parts are presented and discussed. On the basis of Fig. 2.1, the model
is developed bit by bit by replacing the compartments and the connections between
compartments by a detailed modeling approach. The final model is presented in a
figure at the end of this chapter.

In Section 2.1 the basic compartment model from [37] is presented. In Sections 2.2
and 2.3, the pulse generator for the GnRH release in the hypothalamus and the model
equations for the GnRH concentration in the pituitary portal system being important
for the dynamics in the pituitary are derived. The receptor binding of GnRH in the
pituitary as well as the dynamics of the LH and FSH synthesis and release are presented
in Sections 2.4 and 2.5. In Sections 2.6 and 2.7, modeling approaches for the follicular
development, receptor, and enzyme concentrations, and the biosynthesis of steroids as
well their blood concentrations are discussed. Finally in Section 2.8, the results are
summarized and a model scheme with all components of the complex model is shown.
Moreover, all model equations and parameters are listed.

2.1 Basic compartment model

The model presented in [37] is composed of 13 delay differential equations where four
of them describe the dynamics in the pituitary and the resulting concentrations of the
gonadotropins LH and FSH in the blood and the remaining nine describe the dynamics
of the follicular masses. Comparison with experimental data shows that this model is
capable of describing the dynamics of the human menstrual cycle in a sound way. That
is why it is here referred to as the basic compartment model in the following. However,
the dynamics of the progesterone, estradiol, and inhibin concentrations in the blood,
essential components of the regulatory system, arise as linear combinations of follicular
masses and are not part of the dynamical system. The activities in the hypothalamus,
especially the GnRH pulse generator and the resulting pulsatile secretion of GnRH into
the blood circulation, are not included. An overview of the control system considered
in the basic compartment model is given in Fig. 2.2.

In [37], the following assumptions regarding the influence of progesterone, estradiol,
and inhibin on the LH and FSH dynamics are made:

• High blood levels of estradiol promote rapid LH synthesis, whereas progesterone
inhibits the LH synthesis in the luteal phase [74].

• Inhibin inhibits the FSH synthesis [34, 39, 58, 73].

• Progesterone stimulates the release of FSH and LH when estradiol blood levels
are in a normal range during the late follicular phase [10].

• Estradiol inhibits the release of FSH and LH into the blood circulation and it
has a greater inhibitory effect on FSH release than on LH release [84, 71, 75].

• The release rate of LH and FSH is assumed to be proportional to the amount of
LH and FSH on reserve in the pituitary, respectively.

• Finally, the clearance rates of LH and FSH are assumed to be proportional to
the blood levels of LH and FSH, respectively.



18 CHAPTER 2. MODEL DEVELOPMENT - GYNCYCLE

HYPOTHALAMUS
GnRH

PITUITARY
LH, FSH

PORTAL SYSTEM

BLOOD

OVARIES
P4, E2, Ih

A
A
A
A
A
A
A
A
A
A
A
A
AU �

�
�

���

�

?

6

6

6

Figure 2.2: Control system considered in [37]. The compartments of the human
menstrual cycle that are included in the model are shaded dark grey.
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Figure 2.3: Model scheme for LH synthesis and release in [37]. +: stimulatory, −:
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Figure 2.4: Model scheme for FSH synthesis and release in [37]. +: stimulatory, −:
inhibitory.

• The period of time between changes in the blood concentrations of P4, E2, and
Ih and changes in the synthesis of LH and FSH are captured by a time delay
[71].

Based upon these assumptions, the model schemes shown in Figs. 2.3 and 2.4 are
developed. The stored gonadotropin mass is determined by synthesis (syn) and release
(rel). Once released into the blood circulation, it is distributed in the blood volume
VB where it is eliminated proportionally to the present concentration (clear).

In the following, E2 denotes the estradiol concentration, P4 the progesterone con-
centration, and Ih the inhibin concentration in the blood. For the dynamics of the
LH synthesis and release and, finally, the LH concentration in the blood, the following
equations are chosen in the basic compartment model:

d

dt
PLH(t) = synLH(E2(t− τE2), P4(t− τP4))− relLH(E2(t), P4(t), PLH(t)) (2.1)

d

dt
LH(t) =

1
VB
· relLH(E2(t), P4(t), PLH(t))− clearLH(LH(t)), (2.2)

where

synLH(E2, P4) =
a1 ·

a2·Ea3
2

a
a3
4 +E

a3
2

1 + P4
a5

(2.3)

relLH(E2, P4, PLH) =
a6 · (1 + a7 · P4)

1 + a8 · E2
· PLH (2.4)

clearLH(LH) = a9 · LH (2.5)
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and PLH denotes the mass of stored LH in the pituitary, LH the LH concentration
in the blood and τP4 , τE2 the delays for the progesterone and estradiol concentration,
respectively.

The model equations for FSH are of the form

d

dt
PFSH(t) = synFSH(Ih(t− τIh))− relFSH(E2(t), P4(t), PFSH(t)) (2.6)

d

dt
FSH(t) =

1
VB
· relFSH(E2(t), P4(t), PFSH(t))− clearFSH(FSH(t)), (2.7)

where

synFSH(Ih) =
a10

1 + Ih
a11

(2.8)

relFSH(E2, P4, PFSH) =
a12 · (1 + a13 · P4)

1 + a14 · E2
2

· PFSH (2.9)

clearFSH(FSH) = a15 · FSH (2.10)

and PFSH denotes the mass of stored FSH in the pituitary, FSH the FSH concentration
in the blood and τIh the delay for the inhibin concentration. The coefficients ai ∈ R+,
i = 1, . . . , 15, are the parameters of the pituitary compartment.

The follicular dynamics are described by modeling active follicular masses at differ-
ent stages where active mass is defined as mass that is growing and secreting hormones
[37]. The following partition into follicular stages is done:

• Menstrual Follicular Stage (MsF ): mass of immature follicles

• Secondary Follicular Stage (SeF ): mass of secondary follicles

• Preovulatory Follicular Stage (PrF ): mass of the dominant follicle

• Ovulatory Scar 1 (Sc1): mass during ovulation

• Ovulatory Scar 1 (Sc2): mass during luteinization

• Luteal Stage i (Luti): mass of the corpus luteum at stage i, i = 1, . . . , 4.

In the basic compartment model, the differential equations for the follicular phase
are given by

d

dt
MsF (t) = b1 · FSH(t) +

(
b2 · FSH(t)− b3 ·

(
LH(t)
LH0

)b4)
·MsF (t) (2.11)

d

dt
SeF (t) = b3 ·

(
LH(t)
LH0

)b4
·MsF (t) +

(
b5 ·

(
LH(t)
LH0

)b6
− b7 ·

LH(t)
LH0

)
· SeF (t)

(2.12)

d

dt
PrF (t) = b7 ·

LH(t)
LH0

· SeF (t)− b8 ·
(
LH(t)
LH0

)b9
· PrF (t), (2.13)
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where LH0 represents the unit of measurement of LH. For the mass dynamics during
ovulation and luteinization, the equations are

d

dt
Sc1(t) = b8 ·

(
LH(t)
LH0

)b9
· PrF (t)− b10 · Sc1(t) (2.14)

d

dt
Sc2(t) = b10 · Sc1(t)− b11 · Sc2(t), (2.15)

and finally for the luteal phase:

d

dt
Lut1(t) = b11 · Sc2(t)− b12 · Lut1(t) (2.16)

d

dt
Lut2(t) = b12 · Lut1(t)− b13 · Lut2(t) (2.17)

d

dt
Lut3(t) = b13 · Lut2(t)− b14 · Lut3(t) (2.18)

d

dt
Lut4(t) = b14 · Lut3(t)− b15 · Lut4(t), (2.19)

where bi ∈ R+, i = 1, . . . , 15, denote the parameters of the ovarian compartment.
The ovarian hormones estradiol, progesterone, and inhibin are released at the rate

γi from the follicles at stage Fi into the blood, i = 1, . . . , 9, where they are eliminated
at the constant rate δ. The following differential equations describe the changes of the
hormone’s blood concentration C:

d

dt
C =

1
VB
·
n∑
i=1

γi · Fi − δ · C,

where Fi denotes the corresponding active mass, i = 1, . . . , 9 [37]. It is assumed that
the clearance from the blood occurs on a faster time scale than the follicular and luteal
development, hence, δ is large. Dividing by δ and defining ε := 1

δ where ε is small
yields:

ε · d
dt
C =

1
VB
·
n∑
i=1

γi
δ
· Fi − C.

Since ε is small, the quasi-stationary state ε · ddtC ≈ 0 can be assumed which leads to

C(t) =
n∑
i=1

Ci · Fi,

where Ci := γi
δ·VB .

Estradiol is secreted mainly by the secondary follicles and the preovulatory follicle
and partially by the corpus luteum. Therefore, the concentration E2(·) may be written
as a linear combination of SeF , PrF , and Lut4 (including a basal concentration):

E2(t) = c1 + c2 · SeF (t) + c3 · PrF (t) + c4 · Lut4(t). (2.20)



22 CHAPTER 2. MODEL DEVELOPMENT - GYNCYCLE

Progesterone and inhibin are secreted mainly in the luteal phase by the corpus luteum,
however, inhibin is also secreted by the preovulatory follicle. Thus, the concentrations
of P4(·) and Ih(·) (including a basal concentration) can be written as:

P4(t) = c5 · Lut3(t) + c6 · Lut4(t) (2.21)
Ih(t) = c7 + c8 · PrF (t) + c9 · Lut3(t) + c10 · Lut4(t), (2.22)

where ci ∈ R+, i = 1, . . . , 10, denote the parameters for these auxiliary equations [37].

2.2 GnRH pulse generator in the hypothalamus

It is possible that the substrates are not released at a constant rate into the blood
system, but in pulses. Such a mechanism is presented in this section. The question
arises whether the deterministic modeling approach by differential equations is able to
reproduce this effect. Modeling by a stochastic approach seems to be more suitable in
this case.

In the hypothalamus, the processes are determined by a mechanism called GnRH
pulse generator resulting in pulsatile release of GnRH into the pituitary portal system.

There are about 1000 [68] up to 1500 [52] GnRH neurons producing GnRH in the
hypothalamus. They represent the final output neurons of an integrated neural network
[42]. Regulation of the pulse frequency and pulse mass is mainly affected by estrogens
and progesterone. Estrogens act on many components of the GnRH network including
the brainstem A2 neurons. It binds to the estrogen receptors leading to an increased
noradrenaline secretion in the case of A2 neurons and, thereby, facilitating the activity
within the GnRH neural network. Thus, the expression of GnRH-mRNA is enhanced
resulting eventually in an increased GnRH secretion [42]. In contrast, progesterone
inhibits the GnRH pulses via progesterone receptors [77]. Summarized, GnRH is stored
in the GnRH neurons and released when the neurons become stimulated.

The GnRH pulse generator is an essential component of the reproductive control
system. If it fails, it may have serious consequences for the entire cycle. The GnRH
release in pulses, the frequency, and the amplitude are critical for a normal menstrual
cycle [86]. Continuous GnRH administration, for example, leads to desensitization of
the GnRH receptors in the pituitary. That, in turn, results in a decrease of LH and
FSH release into the blood circulation, wherefore a normal follicular development is
no longer possible. Hence, the question of developing therapy methods with aid of a
mathematical model in the case of dysfunction of the pulse generator could be of great
interest.

There have been some approaches for modeling the neural network explicitly, e.g.
[30]. The main reason for avoiding this is the uncertainty of the exact processes in
the hypothalamus concerning the regulation of the human menstrual cycle [42, 77].
Another reason is the immense effort required for modeling the neural network in a
decent manner. Instead, a stochastic approach is chosen to model the overall effect of
the pulsatile release of GnRH [47].

Basically there are two components of this mechanism that are modeled:

• GnRH pulse frequency (pulse time points)
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Figure 2.5: Model scheme for the regulation of the pulse frequency. T freqE2
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value for the estradiol concentration in the case of frequency regulation. +: stimula-
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• GnRH pulse mass (the amount of GnRH that is stored between two pulse time
points and that is released per pulse).

The modeling of these two components is presented in the following.

2.2.1 Pulse frequency

The GnRH pulse frequency is not constant during the menstrual cycle. In the follicular
phase, GnRH is released at approximately constant intervals: the length of interval
between two pulses is about 80 or 90 minutes. At mid-cycle, the gaps between the
pulses shorten [45, 86]. As a result of the higher pulse frequency at mid-cycle, it
is assumed that estradiol because of its rising levels at mid-cycle, at least at high
concentrations stimulates the GnRH pulse frequency. In the luteal phase, the interval
between the pulses is prolonged to several hours [45]. Progesterone is the main factor
of this reduction of pulse frequency [32, 45]. In the early luteal phase, the pulse
frequency diminishes to one pulse every 2 to 4 hours, in the mid-luteal phase to every
4 to 6 hours and in the late luteal phase to every 8 to 12 hours [9]. The model scheme
for the regulation of the GnRH pulse frequency is presented in Fig. 2.5.

To model the pulsatility in an adequate manner, a stochastic approach is chosen.
A similar approach for a pulse generator has been presented in [47], in the context of
modeling the male reproductive hormone system. The idea is to model the pulse time
points by a renewal process. Let {Sj}j∈N be a sequence of independent and identically
distributed random variables with the distribution function F (and density function
f). The pulse time points {Tj}j∈N0 are then modeled by

T0 := 0, Tj+1 := Tj + Sj+1, j ∈ N0.

It is required that the pulse time points are feedback-regulated by delayed progesterone
and estradiol concentrations. Moreover, regulation of the pulse pattern is desired. The
most natural choice, the Poisson process, is not suitable in this case since it does not
offer this kind of flexibility as opposed to the Weibull density that is chosen here for
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the survival time between two pulses:

f(s) = P [s|λ(·)]
= γ · (λ(s) · s)γ−1 · exp (− (λ(s) · s)γ) .

where γ ∈ R+. A sort of stochastic time transformation of a Weibull renewal process
is exerted, i.e. transformation of the deterministic term λ(s) into the stochastic term∫ s

Tj−1

λ(r) dr.

Thus the following is obtained:

f(s) = P [s|Tj−1, λ(·)]

= γ · λ(s) ·

(∫ s

Tj−1

λ(r) dr

)γ−1

· exp

(
−

(∫ s

Tj−1

λ(r) dr

)γ)
.

By the stochastic time transformation dependency of the pulse time points is achieved.
The delayed feedback can be included in the pulse intensity function λ(·) and in

addition, due to the parameter γ it is possible to regulate the pulse pattern. Suppose
that the survival time is Sj , starting at the pulse time point Tj−1, j ∈ N. Then it is:

F (Sj) =
∫ Tj−1+Sj

Tj−1

f(s) ds = P [Tj−1 < s ≤ Tj |Tj−1, λ(·)] (2.23)

= 1− exp

(
−

(∫ Tj

Tj−1

λ(r) dr

)γ)
. (2.24)

Feedback regulation of the GnRH pulse frequency and mass by progesterone and
estradiol represents the interface from the ovaries to the pituitary. The steroids are
released into the blood and reach the hypothalamus through the blood circulation.
They influence the work of the neural network in a complicated and not fully known
way. Only inhibitory, stimulatory or a combined influence can be observed. These
feedback mechanisms are modeled by the Hill functions.

The function λ(·) describes the pulse intensity and allows the feedback regulation
of the pulse time points. Progesterone has a negative effect and estradiol a positive
effect (at high concentration) on the GnRH pulse frequency [32, 45]:

λ(t) = h−
(
P4(t−τP4);T freqP4

, nfreqP4

)
·
(

1 + h+
(
E2(t−τE2);T freqE2

, nfreqE2

))
· λmax,

(2.25)

where P4 and E2 denote the progesterone and estradiol concentrations in the blood,
respectively, τP4 , τE2 the delays, T freqP4

, T freqE2
the threshold values, nfreqP4

, nfreqE2
the Hill

coefficients, and λmax ∈ R+. Written as differential equation, the first model equation
(Eq. 1 in Table 3.6 at the end of this chapter) is given:
d

dt
Λ(t) = λ(t)

= h−
(
P4(t− τP4);T freqP4

, nfreqP4

)
·
(

1 + h+
(
E2(t− τE2);T freqE2

, nfreqE2

))
· λmax,

where Λ(s) :=
∫ s

0 λ(r) dr denotes the cumulative pulse intensity function.
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Figure 2.6: Model scheme for the regulation of the GnRH pulse mass. TmassE2
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old value for the estradiol concentration in the case of mass regulation. +: stimulatory,
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Lemma 2.1. The pulse intensity λ(·) is bounded: λ(t) ∈ (0, 2·λmax) for all t ≥ 0.

Proof. Since h−(·) ∈ (0, 1] and h+(·) ∈ [0, 1), it follows λ(t) > 0 and λ(t) < 2 · λmax
for all t ≥ 0.

2.2.2 Pulse mass

The amount of GnRH pulse mass, denoted by MGnRH,j , that is stored between two
pulses Tj−1 and Tj is affected by estradiol as well. Estradiol inhibits the GnRH am-
plitude [65], whereas progesterone has no significant effect [77]. The GnRH surge, in
turn, is triggered by rising estradiol upon the hypothalamus [9]. Hence, it is reasonable
to assume that estradiol is inhibitory at low concentrations and stimulatory at high
concentrations [9, 82, 86]. The model scheme for the regulation of the GnRH pulse
mass is presented in Fig. 2.6. Since estradiol acts differently on the GnRH pulse mass,
it is assumed here that there are at least two effects responsible for the regulation of
the GnRH pulse mass: One mechanism leads to a negative feedback, the other one
to a positive feedback. One model approach for this case is presented in Chapter 1.
These two effects are modeled with aid of the biphasic Hill function, the sum of the
Hill functions h− and h+.

The mass MGnRH,j can be calculated by introducing the accummulated mass
MGnRH (Eq. 2 in Table 3.6):

d

dt
MGnRH(t) =

(
h−(E2(t−τE2);TE2,1, nE2,1) + h+(E2(t−τE2);TE2,2, nE2,2)

)
·Mmax,

(2.26)

where TE2,1, nE2,1, TE2,2, nE2,2,Mmax ∈ R+ denote the parameters.
Define h−,+(E2) := h−(E2;TE2,1, nE2,1)+h+(E2;TE2,2, nE2,2). Assume that TE2,1 <

TE2,2 and nE2,1 = nE2,2. Then the unique minimum of h−,+ on R+ is given by (see
Lemma 1.1)

TmassE2
:= (TE2,1 · TE2,2)

1
2 .

Furthermore, it is h−,+(E2) ∈ [h−,+
(
TmassE2

)
, 1] for all E2 ∈ [0,∞).

The pulse mass MGnRH,j is stored between the two pulse time points Tj−1 and Tj
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and is completely released at the next pulse time point Tj , j ∈ N:

MGnRH,j = MGnRH(Tj)−MGnRH(Tj−1)

=
∫ Tj

Tj−1

(h−(E2(t−τE2);TE2,1, nE2,1) + h+(E2(t−τE2);TE2,2, nE2,2)) ·Mmax dt.

(2.27)

2.3 GnRH concentration in the pituitary portal system

Except for the pituitary portal system, the GnRH concentration does not play a major
role in the blood system: the GnRH concentration in the blood circulation is not
detectable [59]. That is why it is neglected in the remaining blood system in the further
modeling. Additionally to the release of GnRH in pulses, a basal GnRH secretion at
the constant rate bFSH can be assumed. This basal secretion is independent of feedback
mechanisms since even at high GnRH pulse frequency the GnRH concentration declines
not to zero values but to a baseline level [59]. Moreover, the GnRH pulse mass is not
released at once, but distributed into the pituitary portal system with the blood volume
VPPS . It is assumed that the distribution does not occur at a constant rate but attains
a peak with short delay after the start of the release that is the last pulse time point
and which can be modeled by use of a Gamma density. Binding of GnRH to its
receptor located in the pituitary is proportional to the present GnRH concentration
in the pituitary portal system and to the unbound GnRH receptor concentration with
the rate constant βGnRH . The clearance of GnRH is assumed to be proportional to
the present GnRH concentration in the pituitary portal system where the clearance
rate is denoted by αGnRH .

In order to be accurate, the pulse masses of the foregoing pulses must be considered
as well, see [47] and [46]. In this case the dynamics of the GnRH concentration can be
described by

d

dt
GnRH(t) =

bGnRH
VPPS

+
j∑
i=1

MGnRH,i

VPPS
· ψ(t− Ti)

− βGnRH ·GnRH(t) ·RGnRH(t)− αGnRH ·GnRH(t). (2.28)

Here, the masses of the foregoing pulses are not considered since it is assumed that
j−1∑
i=1

MGnRH,i

VPPS
· ψ(t− Ti)�

MGnRH,j

VPPS
· ψ(t− Tj), t ∈ (Tj , Tj+1).

It follows for the GnRH concentration in the pituitary portal system:

d

dt
GnRH(t) =

bGnRH
VPPS

+
MGnRH,j

VPPS
· ψ(t− Tj)

− βGnRH ·GnRH(t) ·RGnRH(t)− αGnRH ·GnRH(t), (2.29)

where t ∈ [Tj , Tj+1) for all j ∈ N, GnRH and RGnRH denote the GnRH and GnRH
receptor concentration, respectively, and ψ the normalized density function for the
GnRH mass distribution.
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In [47], a generalized Gamma family of densities has been chosen

ψ(t) :=

 β3

Γ(β1)·ββ1·β3
2

· tβ1·β3−1 · exp
(
−
(
t
β2

)β3
)

if t ≥ 0,

0 if t < 0,

where β1 > 1, β2 > 0, and β3 > 0. The standard Gamma density

ψ(t) :=

{
am

Γ(m) · t
m−1 · exp(−a · t) if t ≥ 0,

0 if t < 0,

where a,m ∈ R+, m ≥ 1, which is obtained for β1 = m, β2 = 1
a , and β3 = 1 in

the generalized case, is sufficient here since the exact shape of the GnRH pulses is not

known. More precisely, it is ψ(t) := am

Γ(m) ·
(
t

[t]

)m−1
·exp(− a

[t] ·t) for t ≥ 0, for simplicity,
the first notation is used in the following. The Gamma distribution is selected here
since it is more realistic than simple exponential decline since the maximum is not
reached at the pulse time point but it is delayed. The parameters can be chosen
so that the distribution is asymmetric, reaching the maximum relatively quickly and
declining slowly.

Note that in the first case (Eq. (2.28)), it holds

lim
t↑Tj

d

dt
GnRH(t) = lim

t↓Tj

d

dt
GnRH(t) =

d

dt
GnRH(Tj)

but in the second case (Eq. (2.29)), it is

lim
t↑Tj

d

dt
GnRH(t) 6= lim

t↓Tj

d

dt
GnRH(t) =

d

dt
GnRH(Tj).

If a and m are chosen appropriately, the difference is negligible (see Chapter 4).
The GnRH dynamics are summarized in Fig. 2.7.

2.4 Mechanisms in the pituitary

The hormone GnRH is transported over the pituitary portal system into the pituitary
where it binds to its receptor and activates it which stimulates the release of the
gonadotropins LH and FSH that are both synthesized in the pituitary. Moreover, the
synthesis of LH and FSH in the pituitary as well as the secretion from this pool are
regulated by the steroids produced in the ovaries.

2.4.1 Receptor binding of GnRH

GnRH stimulates the release of LH and FSH, but it has no effect on other pituitary
hormones [32]. Within a few seconds after binding of this peptide to its receptor, a
massive calcium entrance into the cell occurs [62]. This leads after a couple of minutes
to the release of stored LH and FSH. The amplitude of the GnRH pulses (amplitude
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Figure 2.7: Model scheme for the GnRH dynamics.

modulation) and, as fine regulation, the frequency of GnRH pulses (frequency modu-
lation) regulate the LH and FSH concentrations over the cycle [62]. LH responds to
GnRH more quickly and more distinctive than FSH [32].

The pulsatility of GnRH secretion is necessary since continuous administration of
GnRH leads to decreasing LH and FSH concentrations [57]. This phenomenon can be
explained by the negative feedback of GnRH on its receptor [32]. Declining response
of the GnRH receptors on GnRH is called desensitization [16].

In [41], a mathematical model for the GnRH receptor binding including the receptor
recycling which leads to the release of LH is developed. Unfortunately, the model is
not designed for the human but for the ovine case, which is why the results must
be handled with care when using it for the human case. The model scheme for the
receptor binding in the pituitary is adopted from [41], shown in Fig. 2.8. After binding
of GnRH to its receptor at the rate r1, the complex stimulates the release of LH from
the LH pool. The activated receptor becomes at first desensitized at the rate r2 and
returns to the unbound state at the rate r3. The resulting model equations for the
receptor recycling are [41]:

d

dt
RGnRH = r3 ·RGnRH -d− r1 ·GnRH ·RGnRH (2.30)

d

dt
(GnRH-RGnRH) = r1 ·GnRH ·RGnRH − r2 · (GnRH-RGnRH) (2.31)

d

dt
RGnRH -d = r2 · (GnRH-RGnRH)− r3 ·RGnRH -d, (2.32)

where (GnRH-RGnRH) denotes the complex concentration in the pituitary andRGnRH -d
the concentration of the desensitized receptors.
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Figure 2.8: Model scheme for the receptor binding in the pituitary [41]. H: GnRH,
RH : GnRH receptor, (H-RH): hormone-receptor complex, RH -d: desensitized recep-
tor, Hd: degraded hormone.

Note that the sum of RGnRH , (GnRH-RGnRH), and RGnRH -d is constant since

d

dt
RGnRH +

d

dt
(GnRH-RGnRH) +

d

dt
RGnRH -d = 0.

Here it is stated that if the GnRH concentration increases, the number of free receptors
decreases, but it has no influence on the total number of receptors. However, the total
number of GnRH receptors is not constant [16] and here it is assumed that GnRH
exerts a negative feedback not only on the number of free receptors but also on the total
number of receptors. In order to make the total number of receptors more dynamic,
another term is added. If there is a high GnRH concentration, it is assumed that the
free receptors are cleared at a rate near r4. If the GnRH concentration is low, it is
assumed that the free receptors are produced at a rate near r4. One possibility to
incorporate the negative feedback of GnRH on its receptor is to write the differential
equation for the free receptor concentration as

d

dt
RGnRH = r4 · fGnRH(GnRH;TGnRH) + r3 ·RGnRH -d

− r1 ·GnRH ·RGnRH , (2.33)

where TGnRH ∈ R+ and

fGnRH(GnRH;TGnRH) :=
1− GnRH

TGnRH

1 + GnRH
TGnRH

since it holds

fGnRH(0;TGnRH) = 1
fGnRH(TGnRH ;TGnRH) = 0

lim
GnRH→∞

fGnRH(GnRH;TGnRH) = − 1
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so that this approach is equivalent to the one above (Eq. (2.30)) if GnRH = TGnRH .
LH is synthesized at the constant basal rate bLH and its release from the pituitary
into the blood circulation is dependent on the stored LH mass in the pituitary and on
the concentration of the GnRH receptor complex. For the LH dynamics, it is, slightly
changed from [41]:

d

dt
PLH = bLH − a1 · PLH − a2 · PLH · (GnRH-RGnRH) (2.34)

d

dt
LH =

1
VB
· (a1 · PLH + a2 · PLH · (GnRH-RGnRH)) , (2.35)

where PLH denotes the LH mass in the pituitary, LH the LH concentration in the
blood, and a1, a2 the rate constants.

Additionally, the calcium dynamics are included in the model presented in [5] and
[85]. It is described in the form of model schemes in Figs. 2.9 and 2.10 whereby the
model equations are taken from [85]. Again, it is assumed that initially GnRH bounds
to its receptor

GnRH + RGnRH
k1
�
k−1

(GnRH-RGnRH),

where k1 and k−1 denote the rate constants for the forward and reverse reactions,
respectively. The bound complex in turn can form dimers

2 (GnRH-RGnRH)
k2
�
k−2

(GnRH-RGnRH)2,

where k2 and k−2 denote the rate constants. Formation of larger aggregates is possible.
It is assumed that the average number of monomers forming a macroaggregate is n.
Then the aggregates move into the cell which is called internalization. The internalized
hormones are completely degraded. Parts of the receptors are also degraded, the
remaining receptors, the fraction θ ∈ (0, 1), return to the membrane at the rate k11

and with the delay τ . A simple reaction mechanism is assumed for this process:

n (GnRH-RGnRH)
(1−θ)·k11−−−−−−→ nGnRHd + nRGnRH,d

and

n (GnRH-RGnRH) θ·k11−−−→ nGnRHd + nRGnRH ,

where GnRHd denotes the degraded hormone and RGnRH,d the degraded receptor.
There is a low basal rate of receptor synthesis, P0, and free receptors are degraded
at the rate γ. By the reaction of a G protein (GQ) with the dimer an effector (E) is
produced

(GnRH-RGnRH)2 +GQ
k3
�
k−3

E,

where k3 and k−3 denote the rate constants. Additionally, another dependence of GQ
on the dimer concentration is mentioned in [85], but not presented here, since it is
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not used for the complex model. These reflections lead to the following differential
equations for the free receptor, the complex, and the dimer concentrations:

d

dt
RGnRH = − k1 ·GnRH ·RGnRH + k−1 · (GnRH-RGnRH)

+ θ · k11 · n · (GnRH-RGnRH)τ + P0 − γ ·RGnRH (2.36)
d

dt
(GnRH-RGnRH) = k1 ·GnRH ·RGnRH − k−1 · (GnRH-RGnRH)

+ 2 · k−2 · (GnRH-RGnRH)2 − 2 · k2 · (GnRH-RGnRH)2

− k11 · n · (GnRH-RGnRH) (2.37)
d

dt
(GnRH-RGnRH)2 = − k−2 · (GnRH-RGnRH)2 + k2 · (GnRH-RGnRH)2

− k3 ·GQ · (GnRH-RGnRH)2 + k−3 · E (2.38)

and for the G protein and the effector concentrations:

d

dt
GQ = − k3 ·GQ · (GnRH-RGnRH)2 + k−3 · E

+ k33 · exp
(
− t− Tj

k333

)
· (GnRH-RGnRH)2 (2.39)

d

dt
E = k3 ·GQ · (GnRH-RGnRH)2 − k−3 · E, (2.40)

where

(GnRH-RGnRH)τ := (GnRH-RGnRH)(t− τ) · χ(t− τ),

χ(t) :=

{
1 if t ≥ 0
0 if t < 0.

The remaining part of the model presented in [85] is only coarsely presented since
it is not included in the model at this point. It is further assumed that the production
of inositol 1,4,5-triphosphate (IP3) is proportional to the concentration of E, with the
constant rate k5 and that it is eliminated at the constant rate k−5 proportional to its
concentration:

d

dt
IP3 = k5 · E − k−5 · IP3. (2.41)

When IP3 binds to receptors on the membrane of the endoplasmic reticulum (ER),
the Ca2+ that is stored in the ER is released. It is assumed that the fraction of open
channels, CHO, depends on IP3 through Michaelis-Menten kinetics:

CHO(t) =
α · IP3(t)

1 + α · IP3(t)
· (θ1 + θ1 · β · (t− Tj) · exp(1− β · (t− Tj))) , (2.42)

where Tj , j ∈ N, denote the GnRH pulse time points and α, β, θ1 ∈ R+ the parame-
ters. The Ca2+ concentration dynamics in the endoplasmic reticulum, CAER, and the
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concentration of the cytosolic Ca2+ dynamics, CAC , are described by the differential
equations [85]

d

dt
CAER = − CHO · ERR · (CAER − CAC)

+ k−6 ·
CA2

C

T 2
CA,1 + CA2

C

· (ERUL− CAER) (2.43)

d

dt
CAC = θ2 · CHO · ERR · (CAER − CAC)

− θ2 · k−6 ·
CA2

C

T 2
CA,1 + CA2

C

· (ERUL− CAER)

+ VSR · (CAE − CAC)− k7 ·
CA2

C

T 2
CA,2 + CA2

C

+ k9 · CAE (2.44)

where

ERR = k6 + k66 · CAC − k666 · CA2
C (2.45)

denote the rate constant for calcium that is released from the ER into the cytoplasm,

VSR = k8 · E + k88 · CAC − k888 · CA2
C · VSRO (2.46)

the rate of calcium influx from extracellular calcium into the cytosol, VSRO the fraction
of open calcium channels in the outer membrane decreasing in the presence of hormone
and increasing in the absence of hormone,

d

dt
VSRO =

{
−v1 if GnRH > 0,
v2 if GnRH = 0,

(2.47)

and k6, k−6, k66, k666, k7, k8, k88, k888, k9, ERUL, θ2, TCA,1, TCA,2, v1, v2 ∈ R+ the
parameters. The external Ca2+ concentration, CAE , remains constant. Finally, it is
assumed that the release of LH depends on CAC through Michaelis-Menten kinetics
[85]:

d

dt
LH = k10 ·

CA2
C

T 2
CA,3 + CA2

C

, k10, TCA,3 ∈ R+. (2.48)

This model [85] focus on the GnRH-induced secretion of LH, since GnRH has
effect only on gonadotropin release and not on synthesis. The release stimulation is
described in more detail which is why it could offer a suitable alternative. At this
stage, the calcium dynamics presented in this model will not be incorporated in the
complex model since it goes beyond the limits for this modeling process.

The research focus on the case of LH, since it is a key element at mid-cycle. There-
fore, it can only be assumed that the release of FSH mediated by GnRH is comparable
to the LH release, see [86].

In Fig. 2.10, the receptor recycling process, as it is derived in [85], slightly modified,
is presented. Additionally to [5] that is constrained to the receptor binding leading to
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calcium dynamics and, finally, to the LH dynamics, the recycling process is included in
[85]. Thus, assuming a receptor recycling mechanism similar to the one in [41], though
derived for the ovine case, seems to be reasonable even for women.

The GnRH receptor binding can be summarized in the following way: The GnRH
molecule binds to its receptor and forms a complex. The complex is the active form
of the receptor. The bound receptor does not return instantly to the unbound state,
but arrives first at a desensitized state where it cannot be activated.

The receptor binding can be modeled as presented in Chapter 1. Finally, in order
to model the GnRH receptor binding, Eqs. (2.31), (2.32), and (2.33) are taken. In
order to make the total receptor concentration more dynamic, it is assumed that GnRH
exerts a negative feedback not only on the number of free receptors but also on the
total number of receptors [66]. The dynamics are then described by (Eqs. 4 to 6 in
Table 3.6):

d

dt
RGnRH = r4 ·

TGnRH −GnRH
TGnRH +GnRH

+ r3 ·RGnRH -d− r1 ·GnRH ·RGnRH

d

dt
(GnRH-RGnRH) = r1 ·GnRH ·RGnRH − r2 · (GnRH-RGnRH)

d

dt
RGnRH -d = r2 · (GnRH-RGnRH)− r3 ·RGnRH -d, r1, . . . , r4, TGnRH ∈ R+,

where the first term in the equation for RGnRH has values in (−r4, r4), GnRH ∈ R+,
depending on the GnRH concentration. The GnRH receptor dynamics are visualized
in Fig. 2.11.

2.4.2 Synthesis and release of FSH and LH

The changes in the stored gonadotropin depend on two effects: the synthesis and
the release. The synthesis as well as the release of the gonadotropins is regulated
by progesterone, estradiol, and inhibin serving as interface from the ovaries to the
pituitary. Inhibitory, stimulatory, and a combination of these effects can be observed
that are modeled here by Hill functions.

In addition to the definitions and assumptions presented in Section 2.1 (see Figs.
2.3 and 2.4),
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• syn denotes the synthesis in the pituitary, rel the release from the pituitary into
the blood, and clear the clearance in the blood

• progesterone inhibits and estradiol stimulates the synthesis of LH

• estradiol inhibits and progesterone stimulates the release of LH

• inhibin inhibits the synthesis of FSH

• estradiol inhibits and progesterone stimulates the release of FSH

• the release rate of LH and FSH is proportional to the amount of LH and FSH
stored in the pituitary, respectively

• the gonadotropin mass is distributed in the blood volume VB

• the clearance rates of LH and FSH, denoted by αLH and αFSH , are proportional
to the blood levels of LH and FSH, respectively,

the additional assumptions that are presented in the following are made.
It is assumed that there is a basal production of LH as in [41] at the constant rate

bLH . Analogously, a basal rate bFSH in the case of FSH is defined. The release of both,
LH and FSH, is assumed to be proportional to the GnRH receptor complex concentra-
tion and to their stored mass PLH and PFSH , respectively. Probably, the inhibitory
effect of estradiol does not remain during the entire cycle. Actually, it has the ability
to exert both negative and positive feedback on the secretion of the gonadotropins
[2, 65, 82, 86]. Since the initiation of the LH and FSH surge is the consequence of the
stimulation by estradiol [86], it is assumed that estradiol is inhibitory at low concen-
trations and stimulatory at high concentrations. This biphasic feedback is also part
of the regulation of the GnRH pulse generator (see Chapter 1 and Section 2.2). The
biphasic effect of estradiol is modeled analogously to the case of the GnRH mass with
T pitLH and T pitFSH as threshold values between inhibition and stimulation for LH and FSH,
respectively. The stimulatory effect of estradiol is amplified by progesterone [32, 82].

In contrast to the assumed stimulatory effect of progesterone, it is possible that
estradiol can inhibit FSH synthesis [2] and progesterone can, in combination with
estradiol, exert a negative feedback on the FSH secretion [86]. Inhibin inhibits the FSH
synthesis [32, 58] and, moreover, the FSH release [45, 55]. These feedback mechanisms
are mediated by receptor binding for which the mechanism is not completely clarified.

Summarized, the following assumptions for the synthesis and release of LH and
FSH can be made [66]:

• Progesterone inhibits the LH synthesis and stimulates the LH release [37].

• Estradiol stimulates the LH synthesis and inhibits the LH release at low concen-
tration and stimulates it at high concentration [2, 65, 82, 86].

and:

• Progesterone stimulates the FSH release [37].
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Figure 2.13: Regulation of FSH synthesis and release by progesterone, estradiol, and
inhibin. +: stimulatory, −: inhibitory, T pitFSH : threshold value for the switch from
inhibitory to stimulatory effect.

• Estradiol inhibits the FSH release at low concentration and stimulates it at high
concentration [2, 65, 82, 86].

• Inhibin inhibits the FSH synthesis and release [37, 45, 55].

The assumptions are visualized in the Figs. 2.12 and 2.13.
From this it follows for the stored LH in the pituitary (Eq. 7 in Table 3.6):

d

dt
PLH = synLH(P4,τP4

, E2,τE2
)− relLH(P4,τP4

, E2,τE2
, (GnRH-RGnRH), PLH),

where

synLH = bLH + h−1 (P4) · h+
1 (E2) · synLH,max

relLH = h+
3 (P4) ·

(
h−2 (E2) + h+

2 (E2)
)
· relLH,max · (GnRH-RGnRH) · PLH

and synLH,max, relLH,max ∈ R+ denote the parameters.
For the FSH pool, the dynamics can be described by (Eq. 9 in Table 3.6):

d

dt
PFSH = synFSH(IhτIh)− relFSH(P4,τP4

, E2,τE2
, IhτIh , (GnRH-RGnRH), PFSH),

where

synFSH = bFSH + h−3 (Ih) · synFSH,max
relFSH = h+

5 (P4) ·
(
h−4 (E2) + h+

4 (E2)
)
· h−5 (Ih) · relFSH,max · (GnRH-RGnRH) · PFSH
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and synFSH,max, relFSH,max ∈ R+ denote the parameters.

2.5 FSH and LH concentrations in the blood

The gonadotropins FSH and LH leave the pituitary and enter the blood circulation. To
obtain their concentrations, their masses are divided by the volume of distribution. In
the blood, the gonadotropins are metabolized proportionally to their concentrations.

If the additional assumptions are considered (see Fig. 2.12), the model equations
for the LH dynamics have the following modified form in comparison to the basic
compartment model (Eq. 8 in Table 3.6):

d

dt
LH =

1
VB
· relLH(E2,τE2

+τLH,1 , P4,τP4
+τLH,1 , (GnRH-RGnRH)τLH,1 , PLH,τLH,1)

− clearLH(LH),

where

clearLH = αLH · LH

and αLH ∈ R+ denote the parameter. Note that the constant parameter a2 in Eqs.
(2.34) and (2.35) is replaced by the non-constant term(

h−2 (E2) + h+
2 (E2)

)
· h+

3 (P4) · relLH,max.

In the case of FSH (see Fig. 2.13), the model equations for the LH dynamics have
the following modified form in comparison to the basic compartment model (Eq. 10
in Table 3.6):

d

dt
FSH =

1
VB
· relFSH

(
E2,τE2

+τFSH,1 , P4,τP4
+τFSH,1 , IhτIh+τFSH,1 ,

(GnRH-RGnRH)τFSH,1 , PFSH,τFSH,1
)
− clearFSH(FSH),

where

clearFSH = αFSH · FSH

and αFSH ∈ R+ denote the parameter.
It is h+

i (H) := h+
i (H;T+

i , n
+
i ) and h−i (H) := h−i (H;T−i , n

−
i ), i = 1, . . . , 5, andHτ :=

H(t− τ), for the concentrations H = E2, P4, Ih, (GnRH-RGnRH), PLH , PFSH and the
delays τ = τE2 , τP4 , τE2 + τLH,1, τIh, τE2 + τFSH,1, τP4 + τFSH,1, τIh + τFSH,1 where
τLH,1, τFSH,1 arise due to the mean time period between the hormone’s synthesis in
the pituitary and its maximal distribution in the blood.

The dynamics of LH and FSH are visualized in Fig. 2.14.
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Figure 2.14: Model scheme for the dynamics of LH and FSH.

2.6 Dynamics in the ovaries

The follicular development is primarily controlled by LH and FSH where FSH plays
an important role especially at the beginning while LH promotes follicular growth up
to ovulation and maintains the activities of the corpus luteum in the second half of the
cycle. The process of development can be divided into several stages characterized by
the LH and FSH receptor concentrations, the enzyme production, and the biosynthesis
of steroids, hormones deriving from cholesterol.

For simplicity, it is assumed that the total receptor concentration is constant. The
enzyme concentrations in the follicles depend on the LH and FSH blood concentrations
and on the concentrations of activated LH and FSH receptors. By assuming simple
Michaelis-Menten kinetics, model equations for the steroidogenesis can be developed,
the steroid biosynthesis in the ovaries, from which the steroid concentrations in the
blood arise. In the following, there are three main questions to be clarified: which
parts of the steroidogenesis occurs in which cells and at which stage.

A couple of immature follicles start the follicular development in every menstrual
cycle normally resulting in ovulation at mid-cycle which enables reproduction. The
processes mainly take place in two cell types of the follicles, the granulosa and the
theca cells. These cells express different receptors and enzymes [9, 15, 32, 79, 80]. In
these follicles, progesterone and estradiol as well as other steroids are synthesized.

2.6.1 Follicular development

The whole purpose of regulation carried out by reproductive hormones is eventually
the follicular development in the ovaries which is shown in Fig. 2.15. Out of the pool
of immature follicles in the ovaries, a couple of them enter the menstrual cycle and
run through the single follicular stages, unless they undergo atresia. The production
of steroids depends largely upon the follicles’ growth and maturation.

There are mainly two cell types that are important in the pathway of follicular
development, the granulosa and the theca cells. They differ in, for instance, receptor
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Figure 2.15: Follicular development, modified from [56]. The shapes of the various
follicular stages within one ovary are visualized.

expression and enzyme production. The androgen synthesis in the theca cells is mainly
mediated by the enzymes cholesterol side-chain cleavage (P450scc), 17α-hydroxylase
(P45017-OH), and 3β-hydroxysteroid dehydrogenase (3β-HSD) [9]. In granulosa cells,
the enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) transforms androstenedione
into testosterone, and aromatase (P450arom) catalyzes the reaction from testosterone
to estradiol [9]. The enzymes P450scc and 3β-HSD are produced in the granulosa cells
as well.

The following approaches are conceivable and have been developed to some extent
in the past:

1. Modeling the dynamics of single follicles. The time points where follicles enter
the maturing process are generated by a stochastic process. This is done in
[51] and [11] where the dynamics in the follicles are represented by the estradiol
concentrations. The dynamics are described by a system of differential equations.
This model is able to characterize ovulatory as well as anovulatory cycles [51].
In [11], the model is modified in order to model PCOS.

2. Modeling on a cellular level. There are mainly two different cell types in the
follicles: theca and granulosa cells. By modeling the cell growth and maturation
process as well as the receptor complex concentration, the steroid synthesis and
release dynamics can be determined. The case of growth kinetics of the granulosa
cell population has been treated in [12] and [13].

3. Modeling follicular masses in discrete stages. The number of follicles in every
single stage is not important, only its mass. Every stage has its characteristic
enzyme and steroid production. This approach is used in [37], [38], [71], and [75].
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4. Two-cell theory. The idea of modeling follicular masses could be combined with
the two-cell theory. That means that the total follicular masses are not consid-
ered, but a granulosa cell mass and a theca cell mass since granulosa and theca
cells are the locations where steroidogenesis takes place.

The third approach, that is used in the complex model, is chosen in [37], the basic
compartment model. By including additional information, the model for the follicular
development from the basic compartment model will be modified. In the following,
the influence of the gonadotropins FSH and LH is studied.

The ovaries contain a pool of immature primordial follicles consisting of approx-
imately 400,000 follicles at puberty [32, 45]. They possess an oocyte, an immature
egg-cell, that is surrounded by a single layer of flattened, poorly differentiated cells
called granulosa cells [32, 45, 80]. Out of this pool, 1 to 15 [9] or even 30 [45] enter the
follicular growth and maturation process of the menstrual cycle. It is assumed that this
first step of the so-called initial recruitment [80] is independent of the gonadotropins
FSH and LH [9, 45, 69, 87], but regulated by intra-ovarian factors [80].

When the primordial follicle has left the pool of resting follicles, the size of the
oocyte begins to increase, the zona pellucida, a membrane that will eventually surround
the oocyte, begins to form, and the granulosa cells assume a cuboidal shape. The follicle
at this stage is called primary follicle [32, 80]. It is assumed that the follicular growth
is still independent of FSH and LH [87].

As the so-called secondary follicle or preantral follicle [32, 80] is being formed,
the granulosa cells express FSH receptors [45, 80]. But to start the gonadotropin-
dependent follicular development and to ensure the further development, a certain,
individually varying threshold value T follFSH for FSH has to be exceeded [45, 80]. Hence-
forth, the follicles are gonadotropin-sensitive [32, 45]. The growth of Fs is assumed
to be proportional to its own mass and to a function of the FSH concentration. The
transition from the secondary follicle to the next stage is promoted by FSH [80] and
is also proportional to its mass:

d

dt
Fs(t) = d1 · h+(FSHτFSH,2 ;T follFSH , n

foll
FSH)

+ d2 · f1(FSHτFSH,2) · Fs(t)− d3 · f1(FSHτFSH,2) · Fs(t), (2.49)

where Fp is assumed to be constant and is included in the parameter d1, τFSH,2 denotes
the delay for FSH, nFSH the Hill coefficient, and di ∈ R+, i = 1, . . . , 3, the remaining
parameters.

The follicle is now called the tertiary follicle or antral follicle [32]. The granulosa
cells rapidly proliferate and the follicle continues to enlarge [32, 80]. The production
of IGF-2 starts and it diffuses into the surrounding ovarian stroma inducing the differ-
entiation of the theca cells [45]. These express LH receptors and become LH-sensitive
[45, 80]. Since the thecal layer is formed, LH can also have a stimulating effect on the
follicular development. Within the granulosa layer, fluid is accumulating leading to
the formation of the so-called antrum. The follicles are no longer only FSH responsive
but FSH dependent [69, 80]. The growth of Ft as well as the transition of Ft to the
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next stage are proportional to its own mass and a function of LH and FSH

d

dt
Ft(t) = d3 · f1(FSHτFSH,2) · Fs(t)

+ d4 · f2(FSHτFSH,2 , LHτLH,2) · Ft(t)− d5 · f2(FSHτFSH,2 , LHτLH,2) · Ft(t),
(2.50)

where τLH,2 denotes the delay for LH and di ∈ R+, i = 4, 5, the parameters.
Among the recruited follicles, selection of normally one dominant follicle takes place

and the subordinate follicles undergo atresia [45, 80]. The mechanism leading to this
selection is still unknown [45]. Upon the completion of this growth phase, the follicle,
now referred to as Graafian follicle or preovulatory follicle, is prepared for ovulation
[32, 80]. FSH induces LH receptors in the granulosa cells and, consequently, LH as well
as FSH promote follicular maturation [45, 80]. The growth as well as the transition to
the next stage are LH dependent:

d

dt
Fg(t) = d5 · f2(FSHτFSH,2 , LHτLH,2) · Ft(t)

+ d6 · f1(LHτLH,2) · Fg(t)− d7 · f1(LHτLH,2) · Fg(t), (2.51)

where di ∈ R+, i = 6, 7, denote the parameters.
The growth and maturation process is completed and the follicle is ready for ovu-

lation when speaking of the ovulatory follicle. LH stimulates this process where the
follicle ruptures and releases the ovum. Then, the cells of the ruptured follicle change
morphologically, which is called luteinization [80]. The follicle at this stage is referred
to as luteinizing follicle [80]. The correct term from now on is corpus luteum when
speaking of the follicle [45]. LH has no influence on these changes, the corpus luteum
is establishing autonomously [45]:

d

dt
Mo(t) = d7 · f1(LHτLH,2) · Fg(t)− d8 ·Mo(t) (2.52)

d

dt
Ml(t) = d8 ·Mo(t)− d9 ·Ml(t), (2.53)

where di ∈ R+, i = 8, 9, denote the rate constants.
It runs through the stages early corpus luteum, mature corpus luteum, and late

corpus luteum. At the beginning of this phase, it is referred to as early corpus luteum.
In the mature corpus luteum as well as in the late corpus luteum, LH becomes more and
more indispensable in the maintenance of corpus luteum activities [80]. LH promotes
the transition from the early to the mature and from the mature to the late corpus
luteum

d

dt
Le(t) = d9 ·Ml(t)− d10 · f1(LHτLH,2) · Le(t) (2.54)

d

dt
Lm(t) = d10 · f1(LHτLH,2) · Le(t)− d11 · f1(LHτLH,2) · Lm(t) (2.55)

d

dt
Ll(t) = d11 · f1(LHτLH,2) · Lm(t)− d12 · Ll(t). (2.56)
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where di ∈ R+, i = 10, 11, 12, denote the parameters.
The regression of the corpus luteum ends, unless pregnancy occurs, as an avascular

scar, the corpus albicans [80]

d

dt
La(t) = d12 · Ll(t)− d13 · La(t), (2.57)

where d13 ∈ R+ denotes the rate constant.
The functions f1(·) and f2(·, ·) could be defined by

f1(H) := Hα, α ∈ R+

and

f2(H1, H2) := Hα1
1 ·H

α2
2 , α1, α2 ∈ R+.

H, H1, and H2 stand for the dimensionless FSH or LH concentrations, FSH
FSH0

or LH
LH0

,
where FSH0 and LH0 denote the units of FSH and LH, respectively. This possibility
is based on the basic compartment model [37]. It could be assumed that the growth
within on stage and the transition from one stage to the next is, if it is dependent on
FSH or LH, proportional to FSH or LH. With the expansion of the equations by the
additional exponents it is aimed at refining the model.

Two essential processes, that have to be distinguished, can be identified: the matu-
ration of the follicles or, understood in a discrete manner, the transition of a follicular
stage to the next one, and the growth, the proliferation of cells within one stage. The
exact assignment of the influence of FSH and LH on the transition between stages and
on the growth at the stages is difficult since the specifications in the literature vary.
Simulation of the different possibilities could help to decide which approach is to be
chosen. The assumed influence of the gonadotropins at the different stages is shown
in Fig. 2.16 schematically. The physiological classification can be used as basis for the
determination of the mathematical partitioning. To improve the quality, each stage
could be divided into several steps as it was done in the basic compartment model
for the luteal phase. These model equations could be written separately for the cases
of granulosa and theca cells if desired as proposed in the fourth approach. There are
other factors influencing follicular development that have been neglected at this state
of modeling since FSH and LH are the main hormones regulating the follicular growth
and maturation.

Summarized it can be said: The growth and maturation of the follicles in the ovaries
are not modeled via receptor binding but directly. It is assumed that the follicular
development divided into nine stages is only influenced by FSH and LH and by their
own masses. In the follicular phase (secondary to Graafian follicle), the follicles mature
and grow resulting normally in one dominant follicle. During ovulation (ovulatory and
luteinizing follicle), the ovum is released and in the luteal phase, the follicle becomes
a corpus luteum and finally a corpus albicans. Growth is assumed for the first three
phases Fs, Ft, and Fg [66]:
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Fpo Fp Fs Ft Fg Mo Le LmMl Ll La

> T
foll
FSH

FSH

OVARIES

BLOOD LH

Figure 2.16: Model scheme for the gonadotropin-dependence during the follicular de-
velopment. The gonadotropins FSH and LH influence the growth and maturation at
certain stages, growth stimulation is expressed by an arrow towards the circle, matura-
tion (transition) stimulation by an arrow to the transition arrow. FSH stimulates the
transition from Fp to Fs if its concentration is higher than the threshold value T follFSH .
Fpo: primordial follicle, Fp: primary follicle, Fs: secondary follicle, Ft: tertiary follicle,
Fg: Graafian follicle, Mo: ovulatory follicle, Ml: luteinizing follicle, Le: early corpus
luteum, Lm: mature corpus luteum, Ll: late corpus luteum, La: corpus albicans.

• Secondary follicle (Eq. 11 in Table 3.6):

d

dt
Fs(t) = d1 · h+

(
FSHτFSH,2 ;T follFSH , n

foll
FSH

)
+
(
d2 · FSHα1

τFSH,2
− d3 · FSHα2

τFSH,2

)
· Fs(t)

• Tertiary follicle (Eq. 12 in Table 3.6):

d

dt
Ft(t) = d3 · FSHα2

τFSH,2
· Fs(t)

+
(
d4 · FSHα3

τFSH,2
· LHα4

τLH,2
− d5 · FSHα5

τFSH,2
· LHα6

τLH,2

)
· Ft(t)

• Graafian follicle (Eq. 13 in Table 3.6):

d

dt
Fg(t) = d5 · FSHα5

τFSH,2
· LHα6

τLH,2
+
(
d6 · LHα7

τLH,2
− d7 · LHα8

τLH,2

)
· Fg(t)

• Ovulatory and luteinizing follicle (Eqs. 14 and 15 in Table 3.6):

d

dt
Mo(t) = d7 · LHα8

τLH,2
· Fg(t)− d8 ·Mo(t)

d

dt
Ml(t) = d8 ·Mo(t)− d9 ·Ml(t).
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• Corpus luteum (Eqs. 16 to 18 in Table 3.6):

d

dt
Le(t) = d9 ·Ml(t)− d10 · LHα9

τLH,2
· Le(t)

d

dt
Lm(t) = d10 · LHα9

τLH,2
· Le(t)− d11 · LHα10

τLH,2
· Lm(t)

d

dt
Ll(t) = d11 · LHα10

τLH,2
· Lm(t)− d12 · Ll(t)

• Corpus albicans (Eq. 19 in Table 3.6):

d

dt
La(t) = d12 · Ll(t)− d13 · La(t).

The parameters αi, i = 1, . . . , 9, can reduce or increase the influence of the go-
nadotropins LH and FSH at the different follicular stages.

2.6.2 Receptor binding of LH and FSH

In order to find out more about the effects of the gonadotropins on the events in the
ovary, it is necessary to identify the interface between the two compartments pituitary
and ovaries. The gonadotropins FSH and LH are released into the blood and reach the
ovaries. Stimulation of follicular growth and maturation and, therewith, biosynthesis
of the steroids is enhanced mainly by gonadotropin coupling to its receptor which
activates a cascade of reactions. FSH and LH bind to their receptors and form a
complex. By interacting with the G protein and transforming of GDP to GTP, the
enzyme adenylate cyclase (or adenylyl cyclase, AC) gets activated. The activated
AC reacts with ATP, forming cAMP. By influence of cAMP, protein kinase A (PKA)
gets activated leading to higher enzyme synthesis and therefore to stimulation of the
steroidogenesis [80].

In [14], a model for the FSH-induced cAMP production in ovarian follicles is de-
rived. An overview of the reaction scheme is given in Fig. 2.17. FSH binds to its
receptor, RFSH , at the constant rate k+. This results in the formation of an active
complex, (FSH-RFSH), that dissociates at the constant rate k−:

FSH + RFSH

k+

�
k−

(FSH-RFSH).

The bound receptor is phosphorylated and therefore inactivated which is mediated by
cAMP

(FSH-RFSH)
ρ→ (FSH-RFSH -p),

where ρ is defined in form of a Hill function of cAMP

ρ(cAMP ) =
α · cAMP γ

δγ + cAMP γ
,
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where δ denotes the threshold parameter, γ the Hill coefficient, and α ∈ R+ a rate
constant. Then the receptor complex is internalized and FSH dissociates

(FSH-RFSH -p) ki→ Ri + FSH,

and, finally, FSH is hydrolyzed and the receptor returns to the cell membrane

Ri
kr→ RFSH .

The following equations for the receptor recycling are obtained, slightly modified from
[14] by including the delay τFSH,2:

d

dt
RFSH = k− · (FSH-RFSH) + kr ·Ri (2.58)

− k+ · FSHτFSH,2 ·RFSH (2.59)
d

dt
(FSH-RFSH) = k+ · FSHτFSH,2 ·RFSH − (ρ+ k−) · (FSH-RFSH) (2.60)

d

dt
(FSH-RFSH -p) = ρ · (FSH-RFSH)− ki · (FSH-RFSH -p) (2.61)

d

dt
Ri = ki · (FSH-RFSH -p)− kr ·Ri. (2.62)

The bound receptors activate the inactive adenylate cyclase, ACi. The activation
depends on the complex concentration that is multiplied by the amplification pa-
rameter σ representing the average number of adenylate cyclase activated by one
bound receptor. The concentration of the activated adenylate cyclase (ACa) is FSH-
sensitive. If σ · (FSH − RFSH) > ACa, the differential equation is increasing, else
if σ · (FSH − RFSH) < ACa, it is decreasing. A factor β ∈ R+ acts as time scale
parameter. Since this process is autoamplified, the term σ · (FSH −RFSH)− ACa is
multiplied with ACa. This leads to the differential equation

d

dt
ACa = β · (σ · (FSH-RFSH)−ACa) ·ACa. (2.63)

By reaction of ACa with ATP, cAMP is synthesized at the rate ω activating the PKA

ATP + ACa
ω→ cAMP.

Finally, cAMP is hydrolyzed at the rate kPDE . This leads to the following equations

d

dt
ACa = β · (σ · (FSH-RFSH)−ACa) ·ACa (2.64)

d

dt
cAMP = ω ·ACa − kPDE · cAMP. (2.65)

In the model presented in [14], the cycle of G protein activation/deactivation is not
included. Moreover, it is assumed that the total number of FSH receptors (free, active,
phosphorylated, and internalized) remains constant and that the amount of FSH is
sufficiently large to be unaffected by binding to receptors.
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Figure 2.17: Model scheme for the FSH-induced cAMP production ([14]). RFSH : free
FSH receptor, (FSH-RFSH): hormone-receptor complex, (FSH-RFSH -p): phosphory-
lated receptor, Ri: internalized receptor, ACi: inactive adenylate cyclase, ACa: active
adenylate cyclase, ATP: adenosine triphosphate, cAMP: cyclic adenosine monophos-
phate, AMP: adenosine monophosphate, PDE: phosphodiesterase, PKAi: inactive pro-
tein kinase A, PKAa: active protein kinase A.

For simplicity, only the receptor recycling is incorporated into the model and as-
sume that ρ is constant. The receptor binding and recycling is described in Chapter
1. In this case, there are two inactivatable states: phosphorylated denoted by (FSH-
RFSH -p) and internalized denoted by Ri [14]. Thus, the receptor recycling for the FSH
receptors in the ovaries can be modeled by (Eqs. 20 to 23 in Table 3.6):

d

dt
RFSH = kFSH− · (FSH-RFSH) + kFSHr ·RFSHi (2.66)

− kFSH+ · FSHτFSH,2 ·RFSH (2.67)
d

dt
(FSH-RFSH) = kFSH+ · FSHτFSH,2 ·RFSH − (ρFSH + kFSH− ) · (FSH-RFSH)

(2.68)
d

dt
(FSH-RFSH -p) = ρFSH · (FSH-RFSH)− kFSHi · (FSH-RFSH -p) (2.69)

d

dt
RFSHi = kFSHi · (FSH-RFSH -p)− kFSHr ·RFSHi , (2.70)

where kFSH− , kFSH+ , kFSHr , kFSHi , ρFSH , τFSH,2 ∈ R+ denote the parameters. It is feasi-
ble to model the LH receptor dynamics in a similar manner as in the case of FSH [14]
since its primary signaling intermediary is cAMP as well, but other signal transduction
pathways are also possible [80]. Analogously for the LH receptors the model equations
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Figure 2.18: Model scheme for the dynamics of the LH and FSH receptors in the
ovaries including receptor recycling.

are given by, Eqs. 24 to 27 in Table 3.6, [66]:

d

dt
RLH = kLH− · (LH-RLH) + kLHr ·RLHi − kLH+ · LHτLH,2 ·RLH (2.71)

d

dt
(LH-RLH) = kLH+ · LHτLH,2 ·RLH − (ρLH + kLH− ) · (LH-RLH) (2.72)

d

dt
(LH-RLH -p) = ρLH · (LH-RLH)− kLHi · (LH-RLH -p) (2.73)

d

dt
RLHi = kLHi · (LH-RLH -p)− kLHr ·RLHi , (2.74)

where kLH− , kLH+ , kLHr , kLHi , ρLH , τLH,2 ∈ R+ denote the parameters. In both cases,
simple reaction kinetics is used as presented in Chapter 1 where the reaction from the
activatable receptor to the activated receptor (complex) is assumed to be reversible
as opposed to the remaining reactions that are assumed to be irreversible [14]. The
model scheme for the receptor binding of LH and FSH including receptor recycling are
shown in Fig. 2.18.

The total receptor concentration in the case of FSH is given by

RFSH,total = RFSH + (FSH-RFSH) + (FSH-RFSH -p) +Ri. (2.75)

FSH receptors are only expressed in the granulosa cells [16] while LH receptors are
expressed in the theca cells and, at a later stage, in the granulosa cells as well [9,
32]. There is evidence that the total concentration for both, FSH and LH receptors,
depend on the follicular stage [16] and in the granulosa cells on FSH and estradiol
concentrations. Coarsely, the dynamics can be described by:

d

dt
RLH,total = f(F thecat , . . . , Lthecaa ) + f(F grang , . . . , Lgrana ;FSH,E2) (2.76)

d

dt
RFSH,total = f(F grans , . . . , Lgrana ;FSH,E2), (2.77)

where f is not further specified. F granpo , . . . , Lgrana denote the granulosa cell masses,
F thecapo , . . . , Lthecaa the theca cell masses at the different follicular stages. For simplicity,
it can be assumed that the total receptor concentration is constant during the cycle as
it is done in [14].
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2.6.3 Total enzyme concentrations and enzyme activation

The enzymes P450scc, P45017-OH , P450arom, 3β-HSD, and 17β-HSD are important
catalyzers in the steroidogenesis. Their concentrations depend on the follicular stage
[9, 79]. Moreover, the production of the steroids is controlled by LH and FSH and
by LH and FSH receptors. The LH and the FSH molecules bind to their respective
receptor and activate a cascade of reactions. This results in the synthesis of cAMP and
thus in an enhanced mRNA concentration activating the enzyme synthesis [16, 80].

Primary follicles consist mainly of granulosa cells exhibiting FSH receptors. The
follicular mass is still small, that is why no detectable enzyme amount is produced.
The enzymes P450arom and 17β-HSD are produced in the granulosa cells [9, 80] via
the FSH receptor binding from the secondary follicle. In the tertiary follicle, there are
also theca cells expressing LH receptors. Thus, the enzymes P450scc, P45017-OH , and
3β-HSD are produced [9] via the LH receptor binding [80]. In the Graafian follicle,
the granulosa cells exhibit also LH receptors leading to the expression of P450scc and
3β-HSD via the LH receptor binding. In the corpus luteum, the processes are similar
to the ones in the Graafian follicle. The cells, then, are called luteinized theca and
luteinized granulosa cells, respectively [80].

As first modeling approach, it is assumed that the total enzyme concentrations are
proportional to the follicular masses from the secondary or tertiary follicular stage to
the late luteal stage [66]. For this reason, the total concentrations are written as a
linear combination of the respective follicular masses:

3β-HSDtotal = flincom(Ft, . . . , Ll; e1) (2.78)
17β-HSDtotal = flincom(Fs, . . . , Ll; e2) (2.79)
P450scctotal = flincom(Ft, . . . , Ll; e3) (2.80)
P45017-OH,total = flincom(Ft, . . . , Ll; e4) (2.81)
P450aromtotal = flincom(Fs, . . . , Ll; e5), (2.82)

where 3β-HSDtotal, 17β-HSDtotal, P450scctotal, P45017-OH,total, P450aromtotal denote
the total enzyme concentrations, e1 =: (e11, . . . , e17)T , e3 =: (e31, . . . , e37)T , e4 =:
(e41, . . . , e47)T ∈ R7

+, e2 =: (e21, . . . , e28)T , e5 =: (e51, . . . , e58)T ∈ R8
+ the parame-

ters and the function flincom(·; ·) defines the linear combination of follicular masses:

flincom(A; p) :=
n∑
i=1

pi ·Ai, p ∈ Rn
+, A ∈ Rn

+, n ∈ N.

The total enzyme concentrations depend on Fs only if they are expressed in the gran-
ulosa cells. The model scheme for the enzymes is shown in Fig. 2.19.

The enzymes are activated by the receptor binding. Once they have accomplished
their objective, that is the activation of the steroid synthesis, they will be inactivated.
If it is assumed here that the enzymes are activated proportionally to the receptor
complex concentration as well as to the total enzyme concentration and are deactivated
proportionally to its concentration, the following system of differential equations for
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Figure 2.19: Model scheme for the total enzyme concentrations (general dependency
on the follicular masses is shown).
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Figure 2.20: Model scheme for the activation of the enzymes.

the activated enzyme concentrations is obtained (Eqs. 28 to 32 in Table 3.6):

d

dt
3β-HSDa = a1 · 3β-HSDtotal · (LH-RLH)− a2 · 3β-HSDa (2.83)

d

dt
17β-HSDa = a3 · 17β-HSDtotal · (FSH-RFSH)− a4 · 17β-HSDa (2.84)

d

dt
P450scca = a5 · P450scctotal · (LH-RLH)− a6 · P450scca (2.85)

d

dt
P45017-OH,a = a7 · P45017-OH,total · (LH-RLH)− a8 · P45017-OH,a (2.86)

d

dt
P450aroma = a9 · P450aromtotal · (FSH-RFSH)− a10 · P450aroma, (2.87)

where 3β-HSDa, 17β-HSDa, P450scca, P45017-OH,a, P450aroma denote the concen-
trations of the active enzymes and ai, i = 1, . . . , 10, the rate constants. The model
scheme for the activation of the enzymes is shown in Fig. 2.20.

2.6.4 Biosynthesis of the steroids

The steroids are produced in the follicular and luteal cells, whereupon they, to a
certain extent, are released into the blood circulation. Since the steroids bind to
plasma proteins, transport effects must be considered.
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Cholesterol reacts to pregnenolone via the enzyme P450scc, pregnenolone to proges-
terone via 3β-HSD, and progesterone to 17α-hydroxyprogesterone via P45017-OH [32].
Whereas this metabolic route is referred to as ∆4 pathway, there is an alternative route,
the ∆5 pathway, including the reactions of pregnenolone to 17α-hydroxypregnenolone
via P45017-OH, 17α-hydroxypregnenolone to DHEA via P45017-OH, and DHEA to an-
drostenedione via 3β-HSD which is preferred in humans [15]. The reaction of an-
drostenedione to testosterone is catalyzed by the enzyme 17β-HSD from the secondary
stage and testosterone to estradiol via P450arom in mature follicles [9]. A good source
for the steroidogenesis (biosynthesis of the steroids) is the KEGG PATHWAY Database
[17]. The reactions and their catalyzing factors are available in more detail.

It is assumed that the cholesterol concentration is constant. For the enzyme cat-
alyzed reactions, the simple Michaelis-Menten mechanism (irreversible and reversible)
presented in the Chapter 1 is applied. Moreover, it is assumed that one molecule sub-
strate reacts to one molecule product. The fact that an enzyme can catalyze several
reactions is ignored. The steroids are released proportionally to their concentration.

The following equations describe an extract of the steroidogenesis, found in the
KEGG PATHWAY Database [17], that is shown in the Figs. 2.21 and 2.22. Even
if the reactions often involve other substrates as well, it is justifiable to simplify the
mechanism: since it is not enough known about the dynamics of the other substrates,
here it is started with assuming that their concentrations are constant. Moreover, if
the reaction mechanism is considered in more detail, the model is getting cumbersome.
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The dynamics of the gestagens pregnenolone and progesterone occurring in the
theca and granulosa cells according to the model scheme presented in Fig. 2.23 are
modeled by (Eqs. 33 and 34 in Table 3.6):

d

dt
pregO = c1 · P450scca · cholO − f rev(progO, pregO, 3β-HSDa; p1)

− f irrev(pregO, P45017-OH,a; k1)− c2 · pregO (2.88)
d

dt
progO = f rev(progO, pregO, 3β-HSDa; p1)

− f irrev(progO, P45017-OH,a; k2)− c3 · progO, (2.89)

where cholO denotes the cholesterol concentration that is assumed to be constant,
pregO the pregnenolone concentration, and progO the progesterone concentration. In
the theca cells, the steroids that are without exception produced in the theca cells,
the dynamics of the gestagens 17α-hydroxypregnenolone and 17α-hydroxyprogesterone
and of the androgens DHEA, androstenedione, and testosterone, are given by (Eqs. 35
to 39 in Table 3.6):

d

dt
17-pregO = f irrev(pregO, P45017-OH,a; k1)

− f rev(17-progO, 17-pregO, 3β-HSDa; p2)

− f irrev(17-pregO, P45017-OH,a; k3)− c4 · 17-pregO (2.90)
d

dt
17-progO = f irrev(progO, P45017-OH,a; k2)

+ f rev(17-progO, 17-pregO, 3β-HSDa; p2)

− f irrev(17-progO, P45017-OH,a; k4)− c5 · 17-progO (2.91)
d

dt
DHEAO = f irrev(17-pregO, P45017-OH,a; k3)

− f irrev(DHEAO, 3β-HSDa; k5)− c6 ·DHEAO (2.92)
d

dt
androO = f irrev(17-progO, P45017-OH,a; k4) + f irrev(DHEAO, 3β-HSDa; k5)

− f rev(testO, androO, 17β-HSDa; p3)

− f irrev(androO, P450aroma; k6)− c7 · androO (2.93)
d

dt
testO = f rev(testO, androO, 17β-HSDa; p3)

− f irrev(testO, P450aroma; k7)− c8 · testO, (2.94)

where 17-pregO denotes the 17α-hydroxypregnenolone concentration, 17-progO the
17α-hydroxyprogesterone concentration, DHEAO the dehydroepiandrosterone concen-
tration, androO the androstenedione concentration, and testO the testosterone concen-
tration. Finally, the dynamics of the estrogens estrone and estradiol occurring only in
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Figure 2.23: Model scheme for the steroidogenesis (summary of the Figs.
2.21 and 2.22). The steroids that are colored dark grey are incorporated into
the model since being the most important ones. chol-ester: Cholesterol es-
ter, chol: Cholesterol, 20α-OH-chol: 20α-Hydroxycholesterol, 22β-OH-chol: 22β-
Hydroxycholesterol, 17α,20α-DOH-chol: 17α,20α-Dihydroxycholesterol, 20α,22β-
DOH-chol: 20α,22β-Dihydroxycholesterol, preg: Pregnenolone, 17α-OH-preg: 17α-
Hydroxypregnenolone, prog: Progesterone, 17α-OH-prog: 17α-Hydroxyprogesterone,
DHEA: Dehydroepiandrosterone, DOH-andro: 3β,17β-Dihydroxyandrost-5-ene, an-
dro: Androstenedione (Androst-4-ene-3,17-dione), test: Testosterone, 19-OH-andro:
19-Hydroxyandrostenedione (19-Hydroxyandrost-4-ene-3,17-dione), 19-OH-test: 19-
Hydroxytestosterone, 19-oxo-andro: 19-Oxo-androstenedione (19-Oxo-androst-4-ene-
3,17-dione), 19-oxo-test: 19-Oxotestosterone, estro: Estrone, estra: Estradiol
(Estradiol-17β).

the granulosa cells are described by (Eqs. 40 and 41 in Table 3.6):

d

dt
estroO = f irrev(androO, P450aroma; k6)

− f rev(estraO, estroO, 17β-HSDa; p4)− c9 · estroO (2.95)
d

dt
estraO = f irrev(testO, P450aroma; k7)

+ f rev(estraO, estroO, 17β-HSDa; p4)− c10 · estraO, (2.96)

where estroO denotes the estrone concentration and estraO the estradiol concentration.
The parameters are given by ci ∈ R+, i = 1, . . . , 10, ki ∈ R2

+, i = 1, . . . , 7, and pi ∈ R4
+,

i = 1, . . . , 4.
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2.7 Steroid and inhibin concentrations in the blood

The steroids are synthesized in the cells of the follicles, the theca and granulosa cells.
At first, they enter the follicular fluid in the ovary. A part of this steroid mass reaches
the blood system, where it is distributed in the blood volume VB. Taking into account
that changes in the steroid mass affect the steroid concentration in the blood after a
certain time, delay terms τprog, τestra for progesterone and estradiol, respectively, are
included. The steroids are cleared proportionally to its concentration in the blood
(Eqs. 42 to 49 in Table 3.6):

d

dt
steroidB(t) =

ssteroid
VB

· steroidO(t− τsteroid)− αsteroid · steroidB(t),

where ssteroid, αsteroid ∈ R+ denote the rate constants, steroidO the steroid concentra-
tion in the ovaries, steroidB the steroid concentration in the blood, and τsteroid the de-
lay where steroid stands for concentrations of progesterone, 17α-hydroxypregnenolone,
17α-hydroxyprogesterone, DHEA, androstenedione, testosterone, estrone, and estra-
diol. In particular, the following equations for the two most important steroids are
obtained:

d

dt
P4(t) =

sP4

VB
· progO(t− τprog)− αP4 · P4(t) (2.97)

d

dt
E2(t) =

sE2

VB
· estraO(t− τestra)− αE2 · E2(t), (2.98)

where P4 denotes the serum progesterone concentration, E2 the serum estradiol con-
centration, and sP4 , sE2 , αP4 , αE2 ∈ R+ the rate constants. The biosynthesis together
with the two-cell-theory is visualized in Fig. 2.24.

The effective steroid concentrations in the blood is diminished by binding to certain
plasma proteins. Estradiol and testosterone bind preferably to sex hormone-binding
globulin (SHBG) and to albumin [79], progesterone to cortico-steroid-binding globulin
(CBG) and also to albumin [32]. The concentration of these proteins is increased by es-
trogens and decreased by androgens and progestins [32, 79]. However, the proportions
of free and bound estradiol, for example, do not vary significantly during the menstrual
cycle [32]. Therefore, it is assumed for simplicity that the binding protein concentra-
tions are constant. In order to model transport effects in a decent manner, sP4 and
sE2 are no longer constants, but depend on estrogens, androgens, and progestins.

There are other factors originating from the ovaries that are important for the
regulation of the control system as, for example, inhibin, activin, and follistatin. There
are two forms of inhibin composed of a α-subunit coupled with one of two β-subunits:
inhibin A (αβA) and inhibin B (αβB) [55]. Activins consist of two β-subunits and can
be found in three forms: activin A (βAβA), activin B (βBβB), and activin AB (βAβB).
Both inhibins and activins modulate the FSH secretion in the pituitary. Moreover, they
play a role in the follicular differentiation and steroidogenesis [55]. They are produced
in the follicles where they are regulated by FSH, LH, androgens, and by local factors
[9, 32, 55]. Follistatin is an activin binding protein that can reverse the activities of
activin. It is part of the complete inhibin, activin, and follistatin regulatory system



56 CHAPTER 2. MODEL DEVELOPMENT - GYNCYCLE

   17β-HSDaP450scca P45017-OH, a P450aroma3β-HSDa

TWO
CELL

THEORY

17-pregO

17-progO

cholO

pregO

progO

DHEAO

androO

cholO

pregO

progO

androO

estroO

testO

estraO

E2 P4

THECA

OVARIES
BLOOD

GRANULOSA

Figure 2.24: Model scheme for the biosynthesis of the steroids including the two-
cell-theory.

[9]. But as a first approach, the inhibin concentration is modeled similarly to the basic
compartment model, as linear combination of follicular masses analogously to [37] (Eq.
50 in Table 3.6):

Ih(t) = ih1 + ih2 · Ft(t) + ih3 · Lm(t) + ih4 · Ll(t), (2.99)

where Ih denotes the serum inhibin concentration and ihi ∈ R+, i = 1, . . . , 4, the
parameters. This is visualized in Fig. 2.25. For simplicity, the regulation and the
effects of activin and follistatin are not incorporated into the model at this stage.

2.8 Summary

Although being of great interest for half of the population, the menstrual cycle has
received relatively little attention in the field of mathematical modeling in the past. Up
to now, there are some models that, coarsely summarized, either are able to describe
the dynamics of some of the most important hormones and the follicular development
or deal with the biochemical background of receptor binding as part of the control
system. One of these models for the entire cycle presented in [37] is used as starting
point for the further modeling. Since here the intention is not to simply match data
but to study mechanisms, it is not aimed at developing a model that is as simple as
possible. Instead, it is the purpose here to incorporate as many processes as possible,
within reasonable limits.
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Figure 2.25: Model scheme for inhibin.

The hope is that the resulting complex model offers an expanded field of appli-
cations in comparison with smaller models. Below, the different components of the
model and some of their possible applications are presented showing why this high
level of complexity in the model could be useful:

• GnRH pulse generator. The modeling of the GnRH pulse generator is necessary
to simulate the dysfunction of the GnRH pulse generator. If the hypothalamus
fails, the amount of GnRH secretion is insufficient, whereupon the pituitary
releases too little FSH and LH.

• Pituitary dynamics. In case of pituitary failure (hypopituitarism), the FSH and
LH concentrations in the blood are low which is why the ovaries produce too
little hormone. In contrast, GnRH is released in higher amounts.

• Enzymes in the ovaries. With this level of complexity, simulating enzyme defi-
ciency is possible. For example, in patients with P45017-OH deficiency, elevated
levels of gonadotropin can be found. This results in an impaired conversion of
pregnenolone and progesterone to androgens and, finally, to estrogens [32].

• Steroidogenesis in the ovaries and steroid concentrations in the blood. One ex-
ample is ovarian failure. Since there is little hormonal output from the ovaries
in this case, GnRH, FSH, and LH are increasingly released from the hypothala-
mus and the pituitary because of the feedback regulation. Moreover, if there is
interest in serum steroid concentrations other than progesterone and estradiol,
the quite elaborate modeling of the steroidogenesis in the follicles is necessary.

• Follicular development. The modeling of the follicular development is helpful if
one aims at simulating the action of contraceptives. Then, it should be possible
to see that the follicular masses of the phases Fg and Mo are approximately zero
or at least not sufficient to lead to ovulation. In this way, possible drugs could
be tested helping to design suitable treatments. Another possible application is
PCOS, where a complex of varying symptoms is meant. One definition is that the
ovaries are continuously stimulated by high levels of LH which leads to increased
ovarian androgen secretion and commonly enlarged follicles [32].
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Hence, it can be seen that the present, rather complex model offers numerous possibil-
ities to simulate disorders and therapies. In order to cover various application fields,
the model must comprise the essential components and interrelations of the regulatory
system. Simulations of this model could help to predict the activity and regulation of
components that cannot be measured in the human as, for example, the GnRH con-
centration in the pituitary portal system. Moreover, simulations could help deciding
which experiments could be done next in order to clarify mechanisms in the control
system. Above all, if a detailed model is available, there are more possibilities to treat
individual cases, or at least to simulate groups of patients.

The first step in this model development was the determination of the essential
processes and interactions belonging to the hormonal regulation of the follicular de-
velopment. Basically, the three compartments hypothalamus, pituitary, and ovaries
connected through the blood circulation are involved. In this control system, the
GnRH pulse generator plays an important role. The frequency and the amplitude
of the GnRH pulses are regulated mainly by the ovarian hormones progesterone and
estradiol. The released GnRH reaches from the pituitary portal system into the pitu-
itary where it binds to its receptor. By this activation of the receptor, the secretion
of the gonadotropins LH and FSH is stimulated. Both the synthesis and the release
are regulated primarily by progesterone, estradiol, and inhibin via feedback mecha-
nisms. The gonadotropins are released into the blood circulation and transported to
the ovaries. They bind to their receptors and initiate signal transduction leading to the
synthesis of enzymes that are necessary for the steroidogenesis. In addition, LH and
FSH are essential components in the regulation of follicular growth and maturation.
Enzyme concentrations and, thus, steroidogenesis depend on the follicle’s stage.

Existing and new modeling approaches are presented and discussed. The dynamics
are modeled deterministically by use of delay differential equations in order to consider
the fact that the processes do not take place in one single compartment and that the
effect of one compartment’s hormone on another compartment’s hormone is retarded
due to the spatial separation and other effects. The GnRH pulse generator has a spe-
cial position in this system. For the pulse time points and the associated release of the
stored GnRH pulse mass, a stochastic approach was chosen. Enzyme catalyzed reac-
tions are modeled by assuming Michaelis-Menten kinetics. If the biochemical actions
are not known in detail, but feedback mechanisms among hormones can be assumed,
the Hill functions are applied.

The model development resulting in a complex model for the control system of the
human menstrual cycle is presented here. The following features were added to the
basic compartment model:

• the GnRH pulse generator

• the receptor binding in the pituitary and in the ovaries being regarded as interface
between the compartments

• the steroidogenesis including enzymes dynamics was treated in more detail than
hitherto by applying the two cell theory
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The model scheme for this complex model, including all components that have been
discussed in Chapter 2, is shown in Fig. 2.26 [66].

A large number of model equations and parameters arise in this model. To give an
overview, the equations are listed in Table 2.1 and the parameters in Table 2.2.

The final model consists of 49 delay differential equations describing the dynamics of
the GnRH pulse generator, hormones, receptors, active enzymes, and follicular masses.
Additionally, 6 auxiliary equations model the total enzymes and inhibin concentrations.
In the following this model is called GynCycle.

Table 2.1: Model equations. The 49 delay differential equations, the 6 functions
for the total enzyme concentrations in the ovaries, the inhibin concentration
in the blood, and the auxiliary functions are listed. In the first column, the
delay differential equations are consecutively numbered. All components and
their corresponding equation are given in the second and third column.

no component equation

1 GnRH pulse frequency d
dt

Λ(t) = h−
(
P4(t− τP4 );T freqP4

, nfreqP4

)
d
dt

Λ(t) = ·
(

1 + h+
(
E2(t− τE2 );T freqE2

, nfreqE2

))
· λmax

Λ(t) =
∫ t
0 λ(r) dr

2 GnRH pulse mass d
dt
MGnRH(t) =

(
h−(E2(t− τE2 );TE2,1, nE2,1)

d
dt
MGnRH(t) = + h+(E2(t− τE2 );TE2,2, nE2,2)

)
·Mmax

MGnRH,j = MGnRH(Tj)−MGnRH(Tj−1)

3 GnRH d
dt
GnRH(t) = bGnRH

VPPS
+
MGnRH,j
VPPS

· ψ(t− Tj)− βGnRH ·GnRH(t) ·RGnRH(t)

(pituitary portal system) d
dt
GnRH(t) = − αGnRH ·GnRH(t), t ∈ [Tj , Tj+1), ∀j ∈ N

ψ ψ(t) = am

Γ(m)
· tm−1 · exp(−a · t), t ≥ 0, ψ(t) = 0, t < 0

4 free GnRH receptor d
dt
RGnRH = r4 · fGnRH(GnRH;TGnRH) + r3 ·RGnRH -d− r1 ·GnRH ·RGnRH

fGnRH(GnRH;TGnRH) fGnRH(GnRH;TGnRH) =
1− GnRH

TGnRH

1+ GnRH
TGnRH

5 bound GnRH receptor d
dt

(GnRH-RGnRH) = r1 ·GnRH ·RGnRH − r2 · (GnRH-RGnRH)

6 desens. GnRH receptor d
dt
RGnRH -d = r2 · (GnRH-RGnRH)− r3 ·RGnRH -d

7 LH (pituitary) d
dt
PLH = synLH(E2,τE2

, P4,τP4
)

d
dt
PLH = − relLH(E2,τE2

, P4,τP4
, (GnRH-RGnRH), PLH)

8 LH (blood) d
dt
LH = 1

VB
· relLH(E2,τE2+τLH,1 , P4,τP4+τLH,1 ,

d
dt
LH = (GnRH-RGnRH)τLH,1 , PLH,τLH,1 )− clearLH(LH)

syn(LH) synLH = bLH + h−1 (P4) · h+
1 (E2) · synLH,max

rel(LH) relLH =
(
h−2 (E2) + h+

2 (E2)
)
· h+

3 (P4) · relLH,max · (GnRH-RGnRH) · PLH
clear(LH) clearLH = αLH · LH

9 FSH (pituitary) d
dt
PFSH = synFSH(IhτIh )

d
dt
FSH = − relFSH(E2,τE2

, P4,τP4
, IhτIh , (GnRH-RGnRH), PFSH)

10 FSH (blood) d
dt
FSH = 1

VB
· relFSH(E2,τE2+τFSH,1 , P4,τP4+τFSH,1 , IhτIh+τFSH,1 ,

d
dt
FSH = (GnRH-RGnRH)τFSH,1 , PFSH,τFSH,1 )− clearFSH(FSH)

syn(FSH) synFSH = bFSH + h−3 (Ih) · synFSH,max
rel(FSH) relFSH =

(
h−4 (E2) + h+

4 (E2)
)
· h+

5 (P4) · h−5 (Ih) · relFSH,max
relFSH = · (GnRH-RGnRH) · PFSH

clear(FSH) clearFSH = αFSH · FSH
11 secondary follicle d

dt
Fs(t) = d1 · h+(FSHτFSH,2 ;T follFSH , n

foll
FSH) + d2 · f1(FSHτFSH,2 ) · Fs(t)

d
dt
Fs(t) = − d3 · f1(FSHτFSH,2 ) · Fs(t)

12 tertiary follicle d
dt
Ft(t) = d3 · f1(FSHτFSH,2 ) · Fs(t) + d4 · f2(FSHτFSH,2 , LHτLH,2 ) · Ft(t)
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Table 2.1: Model equations. The 49 delay differential equations, the 6 functions
for the total enzyme concentrations in the ovaries, the inhibin concentration
in the blood, and the auxiliary functions are listed. In the first column, the
delay differential equations are consecutively numbered. All components and
their corresponding equation are given in the second and third column.

no component equation
d
dt
Ft(t) = − d5 · f2(FSHτFSH,2 , LHτLH,2 ) · Ft(t)

13 Graafian follicle d
dt
Fg(t) = d5 · f2(FSHτFSH,2 , LHτLH,2 ) · Ft(t) + d6 · f1(LHτLH,2 ) · Fg(t)

d
dt
Fg(t) = − d7 · f1(LHτLH,2 ) · Fg(t)

14 ovulatory follicle d
dt
Mo(t) = d7 · f1(LHτLH,2 ) · Fg(t)− d8 ·Mo(t)

15 luteinizing follicle d
dt
Ml(t) = d8 ·Mo(t)− d9 ·Ml(t)

16 early corpus luteum d
dt
Le(t) = d9 ·Ml(t)− d10 · f1(LHτLH,2 ) · Le(t)

17 mature corpus luteum d
dt
Lm(t) = d10 · f1(LHτLH,2 ) · Le(t)− d11 · f1(LHτLH,2 ) · Lm(t)

18 late corpus luteum d
dt
Ll(t) = d11 · f1(LHτLH,2 ) · Lm(t)− d12 · Ll(t)

19 corpus albicans d
dt
La(t) = d12 · Ll(t)− d13 · La(t)

f1, f2 f1(H) = Hα, f2(H1, H2) = Hα1
1 ·Hα2

2

h+, h− h+(H;T, n) =
(HT )n

1+(HT )n
, h−(H;T, n) = 1

1+(HT )n

inhibin (blood) Ih(t) = ih1 + ih2 · Ft(t) + ih3 · Lm(t) + ih4 · Ll(t)
20 free FSH receptors d

dt
RFSH = kFSH− · (FSH-RFSH) + kFSHr ·RFSHi

d
dt
RFSH = − kFSH+ · FSHτFSH,2 ·RFSH

21 bound FSH receptors d
dt

(FSH-RFSH) = kFSH+ · FSHτFSH,2 ·RFSH
d
dt

(FSH-RFSH) = − (ρFSH + kFSH− ) · (FSH-RFSH)

22 phos. FSH receptors d
dt

(FSH-RFSH -p) = ρFSH · (FSH-RFSH)− kFSHi · (FSH-RFSH -p)

23 int. FSH receptors d
dt
RFSHi = kFSHi · (FSH-RFSH -p)− kFSHr ·RFSHi

24 free LH receptors d
dt
RLH = kLH− · (LH-RLH) + kLHr ·RLHi − kLH+ · LHτLH,2 ·RLH

25 bound LH receptors d
dt

(LH-RLH) = kLH+ · LHτLH,2 ·RLH − (ρLH + kLH− ) · (LH-RLH)

26 phos. LH receptors d
dt

(LH-RLH -p) = ρLH · (LH-RLH)− kLHi · (LH-RLH -p)

27 int. LH receptors d
dt
RLHi = kLHi · (LH-RLH -p)− kLHr ·RLHi

28 active 3β-HSD d
dt

3β-HSDa = a1 · 3β-HSDtotal · (LH-RLH)− a2 · 3β-HSDa
29 active 17β-HSD d

dt
17β-HSDa = a3 · 17β-HSDtotal · (FSH-RFSH)− a4 · 17β-HSDa

30 active P450scc d
dt
P450scca = a5 · P450scctotal · (LH-RLH)− a6 · P450scca

31 active P45017-OH
d
dt
P45017-OH,a = a7 · P45017-OH,total · (LH-RLH)− a8 · P45017-OH,a

32 active P450arom d
dt
P450aroma = a9 · P450aromtotal · (FSH-RFSH)− a10 · P450aroma

total 3β-HSD 3β-HSDtotal = flincom(Ft, . . . , Ll; e1)
total 17β-HSD 17β-HSDtotal = flincom(Fs, . . . , Ll; e2)
total P450scc P450scctotal = flincom(Ft, . . . , Ll; e3)
total P45017-OH P45017-OH,total = flincom(Ft, . . . , Ll; e4)
total P450arom P450aromtotal = flincom(Fs, . . . , Ll; e5)
flincom flincom(A; p) =

∑n
i=1 pi ·Ai

33 pregnenolone (ovaries) d
dt
preg0 = c1 · P450scca · chol − frev(prog0, preg0, 3β-HSDa; p1)

d
dt
preg0 = − f irrev(preg0, P45017-OH,a; k1)− c2 · preg0

34 progesterone (ovaries) d
dt
prog0 = frev(prog0, preg0, 3β-HSDa; p1)− f irrev(prog0, P45017-OH,a; k2)

d
dt
preg0 = − c3 · prog0

35 17α-OH-preg. (ovaries) d
dt

17-preg0 = f irrev(preg0, P45017-OH,a; k1)
d
dt

17-preg0 = − frev(17-prog0, 17-preg0, 3β-HSDa; p2)
d
dt

17-preg0 = − f irrev(17-preg0, P45017-OH,a; k3)− c4 · 17-preg0

36 17α-OH-prog. (ovaries) d
dt

17-prog0 = f irrev(prog0, P45017-OH,a; k2)
d
dt

17-prog0 = + frev(17-prog0, 17-preg0, 3β-HSDa; p2)
d
dt

17-prog0 = − f irrev(17-prog0, P45017-OH,a; k4)− c5 · 17-prog0

37 DHEA (ovaries) d
dt
DHEA0 = f irrev(17-preg0, P45017-OH,a; k3)− f irrev(DHEA0, 3β-HSDa; k5)

d
dt
DHEA0 = − c6 ·DHEA0

38 androstenedione d
dt
andro0 = f irrev(17-prog0, P45017-OH,a; k4) + f irrev(DHEA0, 3β-HSDa; k5)

(ovaries) d
dt
andro0 = − frev(test0, andro0, 17β-HSDa; p3)− f irrev(andro0, P450aroma; k6)

d
dt
andro0 = − c7 · andro0

39 testosterone (ovaries) d
dt
test0 = frev(test0, andro0, 17β-HSDa; p3)− f irrev(test0, P450aroma; k7)

d
dt
test0 = − c8 · test0

40 estrone (ovaries) d
dt
estro0 = f irrev(andro0, P450aroma; k6)− frev(estra0, estro0, 17β-HSDa; p4)
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Table 2.1: Model equations. The 49 delay differential equations, the 6 functions
for the total enzyme concentrations in the ovaries, the inhibin concentration
in the blood, and the auxiliary functions are listed. In the first column, the
delay differential equations are consecutively numbered. All components and
their corresponding equation are given in the second and third column.

no component equation
d
dt
estro0 = − c9 · estro0

41 estradiol (ovaries) d
dt
estra0 = f irrev(test0, P450aroma; k7) + frev(estra0, estro0, 17β-HSDa; p4)

d
dt
estra0 = − c10 · estra0

f irrev f irrev(S,E; p) = p1 · E · S
p2+S

, p ∈ R2
+

frev frev(P, S,E; p) =
E·(p1·S−p2·P )
p3+S+p4·P

, p ∈ R4
+

42 progesterone (blood) d
dt
P4(t) =

sP4
VB
· prog(t− τprog)− αP4 · P4(t)

43 estradiol (blood) d
dt
E2(t) =

sE2
VB
· estra(t− τestra)− αE2 · E2(t)

44 17α-OH-preg. (blood) d
dt

17-pregB =
s17-preg
VB

· 17-preg0(t− τ17-preg)− α17-preg · 17-pregB(t)

45 17α-OH-prog. (blood) d
dt

17-progB =
s17-prog
VB

· 17-prog0(t− τ17-prog)− α17-prog · 17-progB(t)

46 DHEA (blood) d
dt
DHEAB = sDHEA

VB
·DHEA0(t− τDHEA)− αDHEA ·DHEAB(t)

47 androstenedione (blood) d
dt
androB = sandro

VB
· andro0(t− τandro)− αandro · androB(t)

48 testosterone (blood) d
dt
testB = stest

VB
· test0(t− τtest)− αtest · testB(t)

49 estrone (blood) d
dt
estroB = sestro

VB
· estro0(t− τestro)− αestro · estroB(t)

Table 2.2: Parameters. The parameters are assigned to their component. A
short remark about the type of parameter is given in the third column. In the
fourth column, the number of parameters arising in the respective component
is noted. Altogether, there are 208 parameters.

component parameters explanation #
GnRH pulse γ Weibull density parameter
frequency λmax intensity parameter

T freqP4
, nfreqP4

, T freqE2
, nfreqE2

Hill function parameter 6

GnRH pulse mass Mmax mass parameter
TE2,1, nE2,1, TE2,2, nE2,2 Hill function parameter 5

GnRH αGnRH , βGnRH rate constants
(pituitary portal system) bGnRH basal release rate

VPPS blood volume
a, m Gamma density parameter 6

GnRH receptors ri, i = 1, . . . , 4 rate constants
TGnRH threshold 5

LH T−i , n−i , i = 1, 2, T+
i , n+

i , i = 1, . . . , 3 Hill function parameter
bLH basal synthesis rate
αLH rate constant
synLH,max, relLH,max synthesis/release parameter 14

FSH T−i , n−i , i = 3, 4, 5, T+
i , n+

i , i = 4, 5 Hill function parameter
bFSH basal synthesis rate
αFSH rate constant
synFSH,max, relFSH,max synthesis/release parameter 14

follicles di, i = 1, . . . , 13 rate constants

T follFSH , nfollFSH Hill function parameter
αi, i = 1, . . . , 10 exponents 25

inhibin ihi, i = 1, . . . , 4 lin. com. parameter 4
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Table 2.2: Parameters. The parameters are assigned to their component. A
short remark about the type of parameter is given in the third column. In the
fourth column, the number of parameters arising in the respective component
is noted. Altogether, there are 208 parameters.

component parameters explanation #

LH receptors kLH− , kLHr , kLH+ , kLHi , ρLH rate constants 5

FSH receptors kFSH− , kFSHr , kFSH+ , kFSHi , ρFSH rate constants 5

total enzymes e1,j , j = 1, . . . , 7 (3β-HSD), lin. com. parameter
e2,j , j = 1, . . . , 8 (17β-HSD), lin. com. parameter
e3,j , j = 1, . . . , 7 (P450scc), lin. com. parameter
e4,j , j = 1, . . . , 7 (P45017−OH), lin. com. parameter
e5,j , j = 1, . . . , 8 (P450arom) lin. com. parameter 37

active enzymes a1, a2 (3β-HSD), a3, a4 (17β-HSD), rate constants
a5, a6 (P450scc), a7, a8 (P45017−OH), rate constants
a9, a10 (P450arom) rate constants 10

steroids (ovaries) chol const. cholesterol conc.
ci, i = 1, . . . , 10 rate constants
ki,j , i = 1, . . . , 7, j = 1, 2 irrev. MM parameter
pi,j , i = 1, . . . , 4, j = 1, . . . , 4 rev. MM parameter 40

steroids (blood) sP4 , sE2 , s17-preg , s17-preg , rate constants
sDHEA, sandro, stest, sestro rate constants
αP4 , αE2 , α17-preg , α17-preg , rate constants
α17-preg , αDHEA, αandro, αtest, αestro rate constants
VB blood volume 17

delays τP4 , τE2 , τIh,
τFSH,1, τLH,1, τFSH,2, τLH,2,
τprog , τestra, τ17-preg , τ17-prog ,
τDHEA, τandro, τtest, τestro 15
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Figure 2.26: Detailed model scheme for the control system of the human menstrual
cycle (the Figs. 2.7, 2.11, 2.14, 2.16, 2.18, 2.19, 2.20, 2.24, and 2.25 are merged). The
different parts of the complex model (without the steroids in the blood except for P4

and E2) presented in this chapter are summarized in one single model scheme. The
abbreviations are as introduced before.
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Chapter 3

Model Decomposition

When modeling complex physiological processes and control systems in the human
body such as the human menstrual cycle, a large number of parameters can arise.
Often their values are not known, which is why parameter estimation is necessary,
albeit expensive and possibly not successful. That is why it could be useful to consider
possibilities to simplify the problem of parameter estimation.

Suppose that the mathematical model consists of a system of (delay) differential
equations (see Section 1.4)

d

dt
y = f(y, yτ1 , . . . , yτm ; p), (3.1)

where y : R → Rn, y =: (y1, . . . , yn)T , f : R × Rn×(m+1) → Rn, f =: (f1, . . . , fn)T ,
n ∈ N, m ∈ N0, and τi ∈ R+, i = 1, . . . ,m, denote the constant delays if m ≥ 1, and
p ∈ Rnp

+ , np ∈ N, the vector of parameters.

Definition 3.1. In the mathematical model defined in Eq. (3.1), y1, . . . , yn are called
the elements.

In the following a method is developed that uses the availability of experimental
data for the decomposition of the complex mathematical model (published in [67]).
This method is applied implicitly in [37] where the mathematical model consisting of
13 differential equations is divided into two disjoint model parts. Parameter estimation
is performed separately for the two parts using approximations of experimental data
as input and afterwards they are recomposed to a dynamic model. In order to simplify
parameter estimation or even to make it possible, decomposition of the complex model
could be helpful. Instead of a high-dimensional problem, several smaller models are
obtained that can be treated more easily and successfully.

The procedure for the parameter estimation can be summarized in the following
way:

1. model decomposition into disjoint model parts

2. parameter estimation for a selection of parameters by using experimental data
as input

65
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3. recomposition of the model parts to the original model with the estimated pa-
rameter values

A graph theoretical approach can help identifying these model parts. Graphs are
frequently used to model a binary relationship between objects [29]. Here the definition
of a graph is based on the direct dependency of the right hand side of the system on its
elements. If the model parts are determined, the corresponding differential equations
belonging to the elements of these model parts can be solved separately if the required
input is available.

At first, the definition and method of the model decomposition are presented in
Section 3.1. This procedure is shown for the model of the human menstrual cycle
presented in Section 3.2 and the results are visualized. Finally, the results of this
chapter are summarized in Section 3.3.

3.1 Definition and method of the model decomposition

At first the graph representing the mathematical model and the requirements for the
model decomposition are defined in Section 3.1.1. In Sections 3.1.2, 3.1.3, and 3.1.4
the different steps to obtain the model decomposition are presented.

3.1.1 Representation of the mathematical model by a graph

First some terms that are used to describe the graph theoretical approach are intro-
duced [4, 23, 29]:

Definition 3.2. A graph is a pair G = (V,E) of disjoint sets with E ⊆ V 2, where V 2

denotes the set of all subsets of V that consists of two elements. The elements of V
are called the vertices of the graph G and the elements of E its edges, where an edge
is an unordered pair of distinct vertices. An edge e = {vivj} ∈ E (short e = vivj or
e = vjvi) connects the two vertices vi, vj ∈ V .

A directed graph is a graph G = (V,E) together with the two maps init : E → V
and ter : E → V . To every edge e, an initial vertex init(e) and a terminal vertex
ter(e) are assigned. A directed edge is also called arc. If init(e) = ter(e), then e is
called a loop.

The system of differential equations is represented here by the directed graph
G = (V,E). The vertices are then given by V := {v1, . . . , vn}, the set of elements,
where vi := arg(yi), i = 1, . . . , n, correspond with the elements of the system yi,
i = 1, . . . , n, respectively. An arc from one vertex to a second vertex is given if the
right hand side of the element represented by the second vertex is directly dependent
on the element represented by the first vertex:

E =

{
vivj ∈ V 2

∣∣∣∣∂fj∂yi
+

m∑
k=1

∂fj
∂yτk,i

6= 0

}
.

Define the set of parameters by P := {p1, . . . , pnp}.
The definition of the adjacency matrix is needed in the following [4, 23, 29].
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Definition 3.3. Two vertices vi, vj ∈ V of the graph G are called adjacent if vivj ∈ E.
The adjacency matrix A := (aij)n×n of G is defined by

aij :=

{
1 if vivj ∈ E
0 else.

In the definition of G given here, loops are possible, but they are not important in
the following, which is why they are neglected. The following definition is needed [23]:

Definition 3.4. If V ′ ⊆ V and E′ ⊆ E, then G′ := (V ′, E′) is a subgraph of G, written
G′ ⊆ G.

That means that here the graph G is reduced to the subgraph G′ = (V,E′) ⊆ G
where E′ := E\{e ∈ E|init(e) = ter(e)}. The corresponding adjacency matrix is then
given by A′ := (a′ij)n×n where a′ij := aij for all i, j = 1, . . . , n, i 6= j, and a′ii := 0,
i = 1, . . . , n, i.e. the diagonal of A is set to zero.

In order to perform parameter estimation, experimental data are necessary for
fitting the parameters. As in the case of the human menstrual cycle [66], experimental
data describing the data over the cycle are not given for all elements of the system.
The following definition is useful and simplifies the formulations. From now on the
elements and their corresponding vertices are used equivalently.

Definition 3.5. An element v ∈ V of the system in Eq. (3.1) is called an exp-element
if usable experimental data are given for this element over the considered time span.
Otherwise it is called a non-exp-element.

Suppose that N exp-elements vexp1 , . . . , vexpN ∈ V are given where vexpj = vij , j =
1, . . . , N , with 1 ≤ i1 < · · · < iN ≤ n andN ∈ N, N ≤ n. Then V exp := {vexp1 , . . . , vexpN }
is called the set of exp-elements.

Based on these exp-elements the set of elements is decomposed. It is essential that
experimental data for at least two elements from {y1, . . . , yn} are available, i.e. N ≥ 2,
in order to be able to obtain at least two model parts.

Summarized, from the model parts that emerge through the model decomposition,
the following properties are required:

• The model parts, denoted by V part
i , i = 1, . . . , N ′, and the parts of the corre-

sponding parameters, denoted by P parti , i = 1, . . . , N ′, where N ′ ≤ N , should be
disjoint in order to avoid double parameter estimation.

• Every model part V part
i , i = 1, . . . , N ′, should contain at least one exp-element

in order to be able to perform parameter estimation.

• Moreover, there should be at least one model part V part
i , i ∈ {1, . . . , N ′}, that

needs, if at all, input from exp-elements, i.e. V inp
i = V inp,exp, and no approx-

imations of elements from other model parts that are non-exp-elements, i.e.
V inp,app
i = ∅, and that furthermore does not need parameter input, i.e. P parti = ∅,

in order to have a model part to start the parameter estimation.
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It is possible that not all elements can be assigned to a model part. These elements
form the rest set V rest and the corresponding parameters the parameter rest set P rest.

Definition 3.6. The model decomposition is defined by the partition of the set of
elements V into the model parts V part

1 , . . . , V part
N ′ ⊂ V and the rest set V rest ⊂ V , and

the partition of the parameters into the parameter parts P part1 , . . . , P partN ′ ⊂ P and the
parameter rest set P rest ⊂ P , where N ′ ≤ N , N ≥ 2, if

(i) V =
N ′⋃
i=1

V part
i ∪ V rest

(ii) V part
i ∩ V part

j = ∅ ∀i, j = 1, . . . , N ′ ∧ i 6= j

(iii) V part
i ∩ V rest = ∅ ∀i = 1, . . . , N ′

(iv) P parti ∩ P partj = ∅ ∀i, j = 1, . . . , N ′ ∧ i 6= j

(v) P parti ∩ P rest = ∅ ∀i = 1, . . . , N ′

(vi) V part
i ∩ V exp 6= ∅ ∀i = 1, . . . , N ′

(vii) V rest ∩ V exp = ∅
(viii)∃i ∈ {1, . . . , N ′} : V inp,app

i = ∅ ∧ P inpi = ∅.

The different sets are introduced and defined more concisely in the subsequent
sections. It is shown that such a model decomposition exist for a model under the
conditions described above.

3.1.2 Determination of sets of predecessors and groupings

Interpolations of the experimental data for the exp-elements can replace the exp-
elements in the simulation of the mathematical model. That is why the connections
between these exp-elements and the remaining elements can be eliminated in the fol-
lowing proceeding. Then all predecessors of the exp-elements, the sets of predecessors,
V pre
j , j = 1, . . . , N , are determined in order to obtain a first, not necessarily unique,

assignment of the elements to the exp-elements.
The elimination of arcs leads to a further reduction of the graph G′. Define

G′′ := (V,E′′) ⊆ G′, where

E′′ = E′
∖{

e ∈ E′
∣∣init(e) ∈ V exp

}
.

The corresponding values of the adjacency matrix are set to zero in order to obtain
the adjacency matrix of the subgraph G′′: A′′ := (a′′ij)n×n where a′′ij := a′ij for i /∈ V exp

and a′′ij := 0 for i ∈ V exp, j = 1, . . . , n.

Sets of predecessors

Another definition for the relation of two vertices is needed in order to assign the
elements to exp-elements [4, 23, 29].
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Definition 3.7. A walk (of length k ∈ N) is a non-empty directed graph P = (V,E)
of the form

V = {v0, v1, . . . , vk}, E = {v0v1, v1v2, . . . , vk−1vk}.

It is called a vivj-walk if the first vertex in the walk is given by vi and the last by vj .
A walk is called a path if the vertices are pairwise distinct.

Definition 3.8. The vertex vi ∈ V is called a predecessor (of order k ∈ N) of vj ∈ V ,
if there is a vivj-walk (of length k) in G′′.

Then all predecessors of an exp-element form a set:

Definition 3.9. The sets of predecessors for vexpj ∈ V exp, j = 1, . . . , N , are given by

V pre
j := {v ∈ V |(v = vexpj ) ∨ (∃vvexpj -path ∈ G′′)}.

The set of parameters belonging to the element vi denoted by Pi, i = 1, . . . , n, is
defined by:

Pi :=
{
pj ∈ P

∣∣∣∣ ∂fi∂pj
6= 0
}
.

Definition 3.10. The set of parameters belonging to the set of predecessors V pre
j ,

j = 1, . . . , N , is given by

P prej :=
nprej⋃
l=1

PV prej (l), nprej := |V pre
j |,

where V pre
j is understood as tuple and V pre

j (l) denotes the l-th component if the
elements of V pre

j are ordered by ascending index for all l = 1, . . . , N .

The elements that cannot be assigned to a set of predecessors form a separate set.

Definition 3.11. The elements that do not belong to a set of predecessors form the
rest set V rest:

V rest := V \
N⋃
j=1

V pre
j

and the corresponding parameters the parameter rest set :

P rest := P\
N⋃
j=1

P prej .
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The vertex vl, l ∈ {1, . . . , n}, is a predecessor of order 1 of the exp-element
vexpj = vij , j ∈ {1, . . . , N}, if apre,1l,j := a′′l,ij = 1, i.e. if there is an arc from vl to
vij . Predecessors of order ≤ 2 of the exp-elements are given by

apre,2l,j := max
{
apre,1l,j , a′′l,1 · a

pre,1
1,j , . . . , a′′l,n · a

pre,1
n,j

}
, l = 1, . . . , n, j = 1, . . . , N,

since if apre,2l,j = 1 there is an arc from vl to vij or a path {vlvl′ , vl′vij} ⊆ E of length 2
for a l′ ∈ {1, . . . , n}.

Generally, the following lemma is true.

Lemma 3.1. The vertex vl is a predecessor of order ≤ k, k ≥ 2, of vij ∈ V exp if
apre,kl,j = 1, where

apre,kl,j := max
{
apre,k−1
l,j , a′′l,1 · a

pre,k−1
1,j , . . . , a′′l,n · a

pre,k−1
n,j

}
, l = 1, . . . , n, j = 1, . . . , N.

Proof. The case for k = 2 is given above and it follows that if apre,2l,j = 1 then vl is a
predecessor of vij . Suppose that the proposition holds for a k ≥ 2. For k + 1, it is

apre,k+1
l,j := max

{
apre,kl,j , a′′l,1 · a

pre,k
1,j , . . . , a′′l,n · a

pre,k
n,j

}
, l = 1, . . . , n, j = 1, . . . , N.

If the maximum is equal apre,kl,j , then the proposition is true for k + 1 as well since vl
is a predecessor of order ≤ k < k + 1 if apre,kl,j = 1. Otherwise there is a l′ ∈ {1, . . . , n}
such that the maximum is given by a′′l,l′ · a

pre,k
l′,j . Then vl′ is a predecessor of order ≤ k

of vij if apre,kl′,j = 1 and vl is a predecessor of order 1 of vl′ if a′′l,l′ = 1. Hence there is a

vlvij -path of length ≤ k + 1, if apre,kl′,j = 1 and a′′l,l′ = 1 and thus if apre,kl′,j · a
′′
l,l′ = 1. If

follows that if apre,k+1
l,j = 1, then vl is a predecessor of order ≤ k + 1 of vij .

Define

Apre,k := (apre,kl,j )l=1,...,n,j=1,...,N ∈ Rn×N ∀k = 1, . . . , n− 1,

Apre := Apre,n−1, Apre =: (aprel,j )l=1,...,n,j=1,...,N .

It follows:

Corollary 3.1. The vertex vl, l ∈ {1, . . . , n}, is a predecessor of vij ∈ V exp, j ∈ {1, . . . , N},
if aprel,j = 1.

Thus the sets of predecessors can be determined by

V pre
j = V exp ∪

{
vl ∈ V | aprel,j = 1

}
, j = 1, . . . , N.

The algorithmic calculation of Apre and V pre
j , j = 1, . . . , N , is shown in Algorithm

1.
It can be proved that each set of predecessors contains one and only one exp-

element.
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for j = 1, . . . , N do
for l = 1, . . . , n do

aprel,j = a′′l,ij ;
end
for k = 2, . . . , n− 1 do

for l1 = 1, . . . , n do
for l2 = 1, . . . , n do

aprel1,j
= max(aprel1,j

, a′′l1,l2 · a
pre
l2,j

);
end

end
end
V pre
j = vexpj ;

for l = 1, . . . , n do
if aprel,j = 1 then

V pre
j = V pre

j ∪ {l};
end

end
end

Algorithm 1: Algorithm for the determination ofApre and of the sets of predecessors
V pre
j , j = 1, . . . , N .

Lemma 3.2. It is V pre
j ∩V exp 6= ∅ for all j = 1, . . . , N . In particular, |V pre

j ∩V exp| = 1
for all j = 1, . . . , N .

Proof. Per definition is vexpj ∈ V pre
j , where vexpj ∈ V exp. For all e ∈ E′′ it is

init(e) /∈ V exp if init(e) ∈ V pre
j , thus it follows (V pre

j \{vexpj }) ∩ V exp = ∅ (because of
the definition of V pre

j , see Def. 3.9).

The rest set contains no exp-elements. It holds V rest ∩ V exp = ∅ since V exp ⊆⋃N
j=1 V

pre
j (condition (vii) in Def. 3.6).

Groupings

Under certain conditions it can be useful to merge sets of predecessors which is pre-
sented in this section.

Consider the case that two sets of predecessors match except for the exp-elements:

V pre
j \V exp = V pre

j′ \V
exp, j, j′ ∈ {1, . . . , N}, j 6= j′.

By the concept of grouping that is presented here, it can be avoided for the time being
that the emerging disjoint model parts consist in V pre

j and {vexpj′ }, i.e. that one of
these model parts only consists of the exp-element.

Definition 3.12. The sets of predecessors V pre
j1

, . . . , V pre
jl

, where j1, . . . , jl ∈ {1, . . . , N}
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and l ∈ {1, . . . , N}, form a grouping

V group
j :=

l⋃
k=1

V pre
jk

if they match except for the exp-elements:

V pre
jk
\V exp = V pre

jk′
\V exp, ∀k, k′ ∈ {1, . . . , l}, k 6= k′.

If l = 1 then V group
j = V pre

j1
.

There are N ′ ≤ N groupings V group
j . The assignment of the sets of predecessors to

groupings is unique.

Lemma 3.3. It holds

∀i ∈ {1, . . . , N}∃!j ∈ {1, . . . , N ′} : V pre
i ⊆ V group

j .

Proof. The groupings are defined such that every set of predecessors is assigned to
at least one grouping. In order to show uniqueness, suppose that there is a set of
predecessors that belongs to two groupings:

V pre
i ⊆ V group

j ∧ V pre
i ⊆ V group

j′ , i ∈ {1, . . . , N},

where V group
j :=

⋃l
k=1 V

pre
jk

and V group
j′ :=

⋃l′

k′=1 V
pre
j′
k′

. Then it is V pre
i \V exp = V pre

jk
\V exp

for all k = 1, . . . , l and V pre
i \V exp = V pre

j′
k′
\V exp for all k′ = 1, . . . , l′. Thus it follows

V pre
jk
\V exp = V pre

j′
k′
\V exp, ∀k = 1, . . . , l ∀k′ = 1, . . . , l′

and finally V group
j = V group

j′ .

The calculation of the groupings V group
j , j = 1, . . . , N ′, is presented in the Algo-

rithm 2.
Each grouping contains at least one exp-element.

Lemma 3.4. It holds V group
j ∩ V exp 6= ∅, ∀j = 1, . . . , N ′.

Proof. It is

V group
j ∩ V exp =

(
l⋃

k=1

V pre
jk

)
∩ V exp =

l⋃
k=1

(
V pre
jk
∩ V exp

)
6= ∅

since V pre
j ∩ V exp 6= ∅ for all j = 1, . . . , N (Lemma 3.2).

If the groupings are not disjoint, it is necessary to remove the elements that ap-
pear in more than one set in all sets except for one. This leads to the concept of
determination of model parts which is presented in the next section.
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for j = 1, . . . , N do
V length
j = |V pre

j |;
V temp
j = V pre

j ;
end
N ′ = 0;
for j = 1, . . . , N do

if |V temp
j | > 0 then
N ′ = N ′ + 1;
V group
N ′ = V pre

j ;
for l = j + 1, . . . , N do

if |V temp
l | > 0 then

if V pre
j \V exp

j = V pre
l \V exp

l then
V group
N ′ = V group

N ′ ∪ V exp
l ;

V temp
l = ∅;

end
end

end
end

end
Algorithm 2: Algorithm for the determination of the groupings V group

j ,
j = 1, . . . , N ′.

3.1.3 Determination of disjoint model parts

The objective of this chapter is a disjoint partition of the model. First of all, it is
necessary to define the criteria for a reasonable partition of the model. For example,
it could be desired that the maximal dimension of the model parts is not too large or
that the maximal number of parameters to be estimated is rather small.

The first criterion here is to determine the grouping with minimal number of pa-
rameters. If the minimum is not unique, then the second criterion is applied, to find
the grouping with minimal number of elements in the set of groupings with minimal
number of parameters. If the minimum is still not unique, the element with the small-
est index of these groupings is chosen since in this case the choices are considered to
be equivalent.

In order to apply the first criterion it is necessary to define the set of parameters
belonging to one grouping:

P groupj :=
ngroupj⋃
l=1

PV groupj (l), ngroupj := |V group
j |,

where V group
j (l) is defined as the l-th component if the elements of V group

j are ordered
by ascending index.

The idea consists in removing the elements of the first chosen grouping from the
other groupings. Then the next grouping is chosen according to the criteria men-



74 CHAPTER 3. MODEL DECOMPOSITION

tioned above and again, the elements of this grouping are removed from the remaining
groupings. This procedure is continued until there is only one grouping left.

That means that first

j1
min := arg

(
min
j
|P groupj |

)
is calculated. If |j1

min| > 1, then

j
′,1
min := arg

(
min
j∈j1min

|V group
j |

)

is determined. If still |j
′,1
min| > 1, the element with the smallest index is taken:

j
′′,1
min := j

′,1
min(1) (i.e. the first component if j

′,1
min is ordered by ascending index). For

simplicity denote j
′,1
min and j

′′,1
min also by j1

min in the following. Define as the model and
parameter part for j1

min

V part
j1min

:= V group
j1min

P part
j1min

:= P group
j1min

.

Then the other groupings of both the elements and the parameters are reduced:

V group
j \V group

j1min
, ∀j 6= j1

min

P groupj \P group
j1min

, ∀j 6= j1
min.

In the second step the same procedure as above must be conducted. Assume for
simplicity that j2

min is unique. Then it is

j2
min = arg

(
min
j 6=j1min

|P groupj \P group
j1min

|

)
and the emerging model and parameter parts are given by

V part
j2min

:= V group
j2min

\V group
j1min

P part
j2min

:= P group
j2min

\P group
j1min

.

Again, the remaining groupings of elements and parameters are reduced:

(
V group
j \V group

j1min

)
\V group

j2min
= V group

j \

(
2⋃
l=1

V group

jlmin

)
, ∀j 6= j1

min ∧ j 6= j2
min

(
P groupj \P group

j1min

)
\P group

j2min
= P groupj \

(
2⋃
l=1

P group
jlmin

)
, ∀j 6= j1

min ∧ j 6= j2
min.

This procedure can be continued until there is only one element grouping and one pa-
rameter grouping left which form the last model and parameter part (after reduction).
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Definition 3.13. Generally, the model parts and the parameter parts are defined by:

V part
j1min

:= V group
j1min

P part
j1min

:= P group
j1min

where

j1
min := arg

(
min

j∈arg(mink |P groupk |)
|V group
j |

)
(1),

and for l′ = 2, . . . , N ′:

V part

jl
′
min

:= V group

jl
′
min

\

(
l′−1⋃
l=1

V group

jlmin

)

P part
jl
′
min

:= P group
jl
′
min

\

(
l′−1⋃
l=1

P group
jlmin

)
,

where

jl
′
min = arg

 min
j∈arg(min

k 6=jl
min
∀l<l′

∣∣∣∣P groupk \
(⋃l′−1

l=1 P group
jl
min

)∣∣∣∣)
∣∣∣∣∣V group
j \

(
l′−1⋃
l=1

V group

jlmin

)∣∣∣∣∣
 (1),

where the notation (1) means the first component if the set is ordered by ascending
index.

The algorithm for the determination of the model parts is presented in Algorithm
3.

It follows from their construction that the emerging model parts and the parameter
parts are disjoint:

Lemma 3.5. The model parts and the parameter parts are each pairwise disjoint:

V part
i ∩ V part

j = ∅, ∀i, j = 1, . . . , N ′, i 6= j (condition (ii) in Def. 3.6),

P parti ∩ P partj = ∅, ∀i, j = 1, . . . , N ′, i 6= j (condition (iv) in Def. 3.6).

Proof. Choose l1, l2 ∈ {1, . . . , N ′} arbitrarily. W.l.o.g. it is assumed that l1 < l2. Then
it is

V part

j
l1
min

∩ V part

j
l2
min

=

(
V group

j
l1
min

\(
l1−1⋃
l=1

V group

jlmin
)

)
∩

(
V group

j
l2
min

\(
l2−1⋃
l=1

V group

jlmin
)

)

=

(
V group

j
l1
min

∩ (
l1−1⋂
l=1

¬V group

jlmin
)

)
∩

(
V group

j
l2
min

∩ (
l2−1⋂
l=1

¬V group

jlmin
)

)
.
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for j = 1, . . . , N ′ do
V part
j = V group

j ;

P partj =
⋃|V groupj |
l=1 PV groupj (l);

end
N ′min = {1, . . . , N ′};
while N ′min 6= ∅ do

% first criterion:
jmin = arg

(
minj=1,...,|N ′min| |P

part
N ′min(j)

|
)

;

if |jmin| > 1 then
% second criterion:
jmin = jmin

(
arg
(

minj=1,...,|jmin| |V
part
N ′min(jmin(j))

|
))

;

if |jmin| > 1 then
jmin = jmin(1);

end
end
for l = 1, . . . , |N ′min| do

if l 6= jmin then
V part
N ′min(l)

= V part
N ′min(l)

\V part
N ′min(jmin)

;

P part
N ′min(l)

= P part
N ′min(l)

\P part
N ′min(jmin)

;
end

end
N ′min = N ′min\jmin;

end
Algorithm 3: Algorithm for the determination of the model parts V part

j and of the
parameter parts P partj , j = 1, . . . , N ′.
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Since it is l1 ∈ {1, . . . , l2 − 1}, it follows

V group

j
l1
min

∩

(
l2−1⋂
l=1

¬V group

jlmin

)
= V group

j
l1
min

∩ ¬V group

j
l1
min

∩

 l2−1⋂
l=1,l 6=l1

¬V group

jlmin

 = ∅,

that means V part

j
l1
min

∩ V part

j
l2
min

= ∅. It can be proved analogously that the parameter parts

are disjoint.

The rest set is disjoint to the model parts.

Lemma 3.6. The conditions

(iii)V rest ∩ V part
j = ∅ ∀j = 1, . . . , N

(v) P rest ∩ P partj = ∅ ∀j = 1, . . . , N

in Def. 3.6 are satisfied.

Proof. It holds V = V rest ∪
(⋃N

j=1 V
pre
j

)
because of Def. 3.11 and

⋃N
j=1 V

pre
j ⊂ V .

Moreover it is

V rest ∩

 ⋃
j=1,...,N

V pre
j

 = ∅

and ⋃
j=1,...,N

V pre
j =

⋃
j=1,...,N ′

V group
j =

⋃
j=1,...,N ′

V part
j .

The decomposition of the model is complete.

Lemma 3.7. It is
N ′∑
j=1

npartj + nrest = n,

where nrest := |V rest| and npartj := |V part
j | for all j = 1, . . . , N ′.

Proof. Since the model parts are disjoint, it is∣∣∣∣∣∣
N ′⋃
j=1

V part
j

∣∣∣∣∣∣ =
N ′∑
j=1

|V part
j |.

Hence it follows

n = |V | = |V rest|+

∣∣∣∣∣∣
N ′⋃
j=1

V part
j

∣∣∣∣∣∣ = nrest +
N ′∑
j=1

npartj ,

since the rest set is disjoint with all model parts.
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Analogously to the groupings, each model part contains at least one exp-element.

Lemma 3.8. It holds V part
j ∩ V exp 6= ∅ ∀j ∈ {1, . . . , N ′}.

Proof. For l′ = 1, see Lemma 3.4 and Def. 3.13. It holds for jl
′
min ∈ {1, . . . , N ′},

l′ = 2, . . . , N ′,

V part

jl
′
min

= V group

jl
′
min

∩

(
¬

(
l′−1⋃
l=1

V group

jlmin

))

which yields

V part

jl
′
min

∩ V exp =

(
V group

jl
′
min

∩

(
¬

(
l′−1⋃
l=1

V group

jlmin

)))
∩ V exp

=
(
V group

jl
′
min

∩ V exp

)
∩

(
¬

(
l′−1⋃
l=1

V group

jlmin

))
.

Since V pre
i ∩ V exp = {vexpi }, it is

(V pre
j ∩ V exp) ∩ V pre

i = {vexpj } ∩ V
pre
i = ∅ ∀i, j = 1, . . . , N, i 6= j.

It follows, since the assignment of the sets of predecessors to groupings is unique,

(V group
j ∩ V exp) ∩ V group

i = ∅ ∀i, j = 1, . . . , N ′, i 6= j

which for all l′ = 2, . . . , N ′ leads to

l′−1⋃
l=1

(
(V group

jl
′
min

∩ V exp) ∩ V group

jlmin

)
= (V group

jl
′
min

∩ V exp) ∩

(
l′−1⋃
l=1

V group

jlmin

)
= ∅.

Since V group

jl
′
min

∩ V exp 6= ∅, it follows

(
V group

jl
′
min

∩ V exp

)
∩

(
¬

(
l′−1⋃
l=1

V group

jlmin

))
6= ∅

and finally V part

jl
′
min

∩ V exp 6= ∅.

Corollary 3.2. It holds V part
j 6= ∅ ∀j ∈ {1, . . . , N ′}.

The model parts can be regarded as subgraphs of G′: Define

Epartj := {vv′ ∈ E′|v, v′ ∈ V part
j }

and Gpartj := (V part
j , Epartj ) for all j = 1, . . . N ′.
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3.1.4 Determination of input

Finally, it is necessary to determine which input is necessary in order to solve the
model parts separately.

Definition 3.14. The sets of element input for the model part V part
j , j = 1, . . . , N ′,

are defined by

V inp
j :=

{
v ∈ V \V part

j |∃v′ ∈ V part
j : vv′ ∈ E

}
=
{
vl ∈ V \V part

j |∃vl′ ∈ V part
j : a′ll′ = 1

}
and the sets of parameter input by

P inpj :=

npartj⋃
l=1

PV partj (l)

 \P partj .

Two types of element input can be distinguished: V inp,app
j , j = 1, . . . , N ′, for the

input by approximations of non-exp-elements from other model parts and V inp,exp
j ,

j = 1, . . . , N ′, for the input by approximations of experimental data. It is

V inp
j = V inp,exp

j ∪ V inp,app
j ∧ V inp,exp

j ∩ V inp,app
j = ∅, ∀j ∈ {1, . . . , N ′}.

The sets V inp,app
j and V inp,exp

j , j = 1, . . . N ′, are given by

V inp,app
j := V inp

j \V exp

V inp,exp
j := V inp

j \V inp,app
j .

Due to the construction of the model parts, there is a j ∈ {1, . . . , N ′} such that
V inp,app
j = ∅ and P inpj = ∅, i.e. that the condition (viii) of Def. 3.6 is satisfied which

is proved in the next lemma:

Lemma 3.9. There is a j ∈ {1, . . . , N ′} such that V inp,app
j = ∅ ∧ P inpj = ∅.

Proof. It is V part
j1min

= V group
j1min

, thus it follows V inp
j1min

= ∅ and finally V inp,app
j1min

= ∅. Moreover

it holds P part
j1min

= P group
j1min

which yields

P inp
j1min

=


npart
j1
min⋃
l=1

PV part
j1
min

(l)

 \P partj1min

and since

npart
j1
min⋃
l=1

PV part
j1
min

(l) =

ngroup
j1
min⋃
l=1

PV group
j1
min

(l) = P group
j1min

= P part
j1min

,

it follows P inp
j1min

= ∅.
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Thus the parameter estimation can be started with the model part V part
j1min

, as it
does not need any input from other model parts (if at all input of approximations of
experimental data). After parameter estimation of this model part, approximations of
its elements can be generated that can serve as input for the remaining model parts
in the further parameter estimation. If there are several model parts that do not
require input (except for exp-elements), then parameter estimation can be performed
parallelly.

3.2 Decomposition of GynCycle

In this section, the model decomposition is performed for GynCycle which is derived in
Chapter 2 (originally in [67]) and the results are visualized.

3.2.1 Graph representation

The model presented in the preceding chapter consists of 49 elements. Experimental
data are available for the elements (see appendix)

• y1 (GnRH pulse frequency),

• y8 (LH),

• y10 (FSH),

• y42 (progesterone),

• y43 (estradiol),

• y44 (17α-hydroxypregnenolone),

• y45 (17α-hydroxyprogesterone),

• y46 (DHEA),

• y47 (androstenedione),

• y48 (testosterone), and

• y49 (estrone).

Since the dynamics of inhibin, for which experimental data are also available, is not
described by a differential equation (it is calculated as a linear combination of the
follicular masses y12, y17, and y18), it is represented by the element y50. The additional
arcs e for y50 are given if

∂fi
∂y50

6= 0 ⇒ init(e) = 50 ∧ ter(e) = i,

∂y50

∂yi
6= 0 ⇒ init(e) = i ∧ ter(e) = 50.
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Figure 3.1: The dependencies within the complex model of the human menstrual
cycle. An arrow is given if the dynamics of the element where the arrow ends is
directly dependent on the element where the arrow starts (without loops).
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Figure 3.2: Visualization of the graph for the model given in Table 3.6 (without
loops).

Hence there is a total of n = 50 elements (see Table 3.6 and Fig. 3.1). The graph for
this model is visualized in Figure 3.2.

Furthermore, there are np = 208 parameters and N = 12 exp-elements:

V exp = {1, 8, 10, 42, 43, 44, 45, 46, 47, 48, 49, 50}.

3.2.2 Sets of predecessors and groupings

By executing Algorithm 1 for the model in Table 3.6, the following sets of predecessors
are obtained:

j V pre
j

1 1
2 2, 3, 4, 5, 6, 7, 8
3 2, 3, 4, 5, 6, 9, 10
4 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 42
5 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 43
6 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 44
7 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 45
8 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 46
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j V pre
j

9 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 47

10 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 48

11 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 49

12 11, 12, 13, 14, 15, 16, 17, 18, 50

Only the vertex v19 is not a predecessor of an element of V exp thus the rest set consists
of this element:

V rest = {19}.

By executing Algorithm 2 for the model in Table 3.6, the following groupings are
obtained:

j V group
j

1 1
2 2, 3, 4, 5, 6, 7, 8
3 2, 3, 4, 5, 6, 9, 10
4 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 42
5 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 49
6 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 44, 45
7 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 46
8 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 47, 48
9 11, 12, 13, 14, 15, 16, 17, 18, 50

The number of sets is reduced from N = 12 to N ′ = 9. It is V group
i = V pre

i for
j = 1, . . . , 4, V group

5 = V pre
5 ∪V pre

11 , V group
6 = V pre

6 ∪V pre
7 , V pre

7 = V pre
8 , V group

8 = V pre
9 ∪ V pre

10 ,
and V group

9 = V pre
12 .

3.2.3 Model parts

By executing Algorithm 3 for the model in Table 3.6, the following disjoint model parts
are obtained:

j V part
j

1 1
2 2, 3, 4, 5, 6, 7, 8
3 9, 10
4 24, 25, 26, 27, 28, 30, 31, 33, 34, 42
5 40, 41, 43, 49
6 35, 36, 44, 45
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j V part
j

7 37, 46
8 20, 21, 22, 23, 29, 32, 38, 39, 47, 48
9 11, 12, 13, 14, 15, 16, 17, 18, 50

3.2.4 Input

The following required input for the model parts of the model in Table 3.6 is obtained:

j V inp,exp
j V inp,app

j P inp
j

1 42, 43 − −
2 1, 42, 43 − 7, 8
3 42, 43, 50 5 7, 8, 38
4 8 12, 13, 14, 15, 16, 17, 18 38, 70
5 − 29, 32, 38, 39 38, 173, 174, 176, 177
6 − 28, 31, 33, 34 38, 150, 151, 153, 154
7 − 28, 31, 35 38, 160, 161
8 10 11, 12, 13, 14, 15, 16, 17, 18, 28, 31, 36, 37 38, 163, 164, 166, 167
9 8, 10 − −

Hence it is possible to start parameter estimation with the two model parts V part
1 and

V part
9 since V inp,app

1 = ∅ ∧ P inp1 = ∅ and V inp,app
9 = ∅ ∧ P inp9 = ∅.

3.2.5 Result

As result, the different disjoint model parts as well as the arcs between the model parts
are obtained. There is an arc from a first model part to a second model part, if there
is an arc of one vertex of the first model part to a vertex of the second model part.
The result is presented in Table 3.2.5 as well as visualized in Figure 3.3.
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The dependencies among the model parts and parameter parts forcing a certain
order of parameter estimation are visualized in Figs. 3.4 and 3.5.

The model parts can be classified in three groups of model parts that could be
treated parallelly in parameter estimation:

V part
1

V part
2 → V part

3

V part
9 → V part

4 → V part
6 → V part

7 → V part
8 → V part

5 .

Since the order for the parameter parts is more restrictive:(
(P part1 → P part2 → P part3 ), P part9

)
→ P part4 → P part6 → P part7 → P part8 → P part5 ,

where P part1 → P part2 → P part3 and P part9 can be treated parallelly, the model parts
must be determined in this order, too. Thus the order of parameter estimation is
given by(

((P part1 , V part
1 )→ (P part2 , V part

2 )→ (P part3 , V part
3 )), (P part9 , V part

9 )
)
→ (P part4 , V part

4 )

→ (P part6 , V part
6 )→ (P part7 , V part

7 )→ (P part8 , V part
8 )→ (P part5 , V part

5 ).

where (P part1 , V part
1 )→ (P part2 , V part

2 )→ (P part3 , V part
3 ) and (P part9 , V part

9 ) can be treated
parallelly.

3.3 Summary

A method for simplifying the parameter estimation in the case of a large model in
physiology is developed here. In order to be able to apply this procedure, it is nec-
essary that experimental data are provided for at least two of the elements. The
more experimental data is available, the smaller the model parts become on average.
The mathematical basis is, for example, a system of differential equations. With the
help of these model parts, it is possible to perform parameter estimation for smaller
dimensions. At the end, the model parts can be recomposed replacing the input of
approximations of experimental data by the corresponding elements of other model
parts resulting in a dynamic model.

The detailed procedure for the determination of the model parts can be summarized
as follows:

1. transformation of the mathematical model into the corresponding graph

2. calculation of the adjacency matrix

3. defining the set of exp-elements

4. reducing the graph by removing the arcs starting in exp-elements

5. determining the sets of predecessors, the elements whereupon the exp-elements
depend
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Figure 3.3: Visualization of the subgraphs Gpartj , j = 1, . . . , N ′, representing the
model parts without the rest set V rest. The arc from Gparti to Gpartj is given if V part

i ∩
V inp
j 6= ∅. If V part

i ∩ V inp,app
j = ∅, the arc is dotted, otherwise it is solid.
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v12, . . . , v18

v11, . . . , v18

v28, v31

V
part
7

V
part
5

V
part
8

v28, v31,

v33, v34

v28, v31

v35

v36

v37

v29, v32,

v38, v39

V
part
6V

part
9

V
part
1

V
part
2

V
part
4

V
part
3

v5
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6. merging sets of predecessors to groupings if they match except for the exp-element

7. subsequently finding the grouping with the smallest number of parameters (if
unique) and remove the elements of this grouping from the other groupings in
order to obtain disjoint model parts

8. determining the direct predecessors of the elements of the model parts and dis-
tinguish between exp-elements and elements that need to be approximated (non-
exp-elements).

Finally, a decomposition of the model into disjoint model parts is obtained. This
decomposition is not necessarily complete. It is possible that there are elements that
do not belong to one of the model parts forming the rest set. These elements cannot
be estimated.

An example of the functionality is presented showing that it is possible to reduce
the dimension of the problem n = 50 to N ′ = 10 problems with a dimension of order
in the range of 1 to 10. The number of parameters of each parameter part is between 6
and 46 instead of np = 208. And it is partly possible to perform parameter estimation
parallelly which reduces the total time for solving this optimization problem.

This occurs if there is more than one model part that, if at all, needs input from
approximations of experimental data. That means that in this case parameter esti-
mation can be performed independently from the other model parts. If there is more
than one part with these conditions, it is possible to start parameter estimation with
all of these model parts simultaneously. This could reduce the time that is needed to
perform parameter estimation for all model parts and for the entire model in the end.

Table 3.6: Model equations for the human menstrual cycle. The 49
delay differential equations and one equation for the exp-element
y50 are listed. In the first column, the delay differential equations
are consecutively numbered. The corresponding elements are given
in the second and the equations in the third column.

no element equation

1 GnRHfreq
d
dty1(t) = p

p4
3

p
p4
3 +y42(t−p7)p4

·
(

1 + y43(t−p8)p6

p
p6
5 +y43(t−p8)p6

)
· p2

y1(Tj)− y1(Tj−1) = (− ln(1− Uj))
1
p1 , Uj ∼ U [0, 1],∀j ∈ N

2 GnRHmass
d
dty2(t) =

( p
p11
10

p
p11
10 +y43(t−p8)p11

+ y43(t−p8)p13

p
p13
12 +y43(t−p8)p13

)
· p9

3 GnRH d
dty3(t) = p16

p17
+ y2(Tj)−y2(Tj−1)

p17
· p

p19
18

Γ(p19) · (t− Tj)p19−1 · exp(−p18 · (t− Tj))
d
dty3(t) = − p14 · y3(t)− p15 · y3(t) · y4(t), t ∈ [Tj , Tj+1), ∀j ∈ N

4 RGnRH
d
dty4(t) = p22 · p23−y3(t)

p23+y3(t) + p21 · y6(t)− p20 · y3(t) · y4(t)
5 (GnRH-RGnRH) d

dty5(t) = p20 · y3(t) · y4(t)− p24 · y5(t)
6 RGnRH -d d

dty6(t) = p24 · y5(t)− p21 · y6(t)

7 PLH
d
dty7(t) = p25 + p

p27
26

p
p27
26 +y42(t−p7)p27

· y43(t−p8)p29

p
p29
28 +y43(t−p8)p29

· p30 − y42(t−p7)p36

p
p36
35 +y42(t−p7)p36

d
dty7(t) = ·

(
p
p32
31

p
p32
31 +y43(t−p8)p32

+ y43(t−p8)p34

p
p34
33 +y43(t−p8)p34

)
· p37 · y5(t) · y7(t)

8 LH d
dty8(t) = p37

p38
·
(

p
p32
31

p
p32
31 +y43(t−p8−p39)p32

+ y43(t−p8−p39)p34

p
p34
33 +y43(t−p8−p39)p34

)
d
dty8(t) = · y42(t−p7−p39)p36

p
p36
35 +y42(t−p7−p39)p36

· y5(t− p39) · y7(t− p39)− p40 · y8(t)



90 CHAPTER 3. MODEL DECOMPOSITION

Table 3.6: Model equations for the human menstrual cycle. The 49
delay differential equations and one equation for the exp-element
y50 are listed. In the first column, the delay differential equations
are consecutively numbered. The corresponding elements are given
in the second and the equations in the third column.

no element equation

9 PFSH
d
dty9(t) = p41 + p

p43
42

p
p43
42 +y50(t−p45)p43

· p44

d
dty9(t) = − y42(t−p7)p51

p
p51
50 +y42(t−p7)p51

· p
p53
52

p
p53
52 +y50(t−p45)p53

d
dty9(t) = ·

(
p
p47
46

p
p47
46 +y43(t−p8)p47

+ y43(t−p8)p49

p
p49
48 +y43(t−p8)p49

)
· p54 · y5(t) · y9(t)

10 FSH d
dty10 = p54

p38
·
(

p
p47
46

p
p47
46 +y43(t−p8−p59)p47

+ y43(t−p8−p59)p49

p
p49
48 +y43(t−p8−p59)p49

)
d
dty10 = · y42(t−p7−p59)p51

p
p51
50 +y42(t−p7−p59)p51

· p
p53
52

p
p53
52 +y50(t−p45−p59)p53

d
dty10 = · y5(t− p59) · y9(t− p59)− p60 · y10(t)

11 Fs
d
dty11(t) = p61 · y10(t−p64)p63

p
p63
62 +y10(t−p64)p63

+
(
p65 · y10(t− p64)p67

d
dty11(t) = − p66 · y10(t− p64)p68

)
· y11(t)

12 Ft
d
dty12(t) = p66 · y10(t− p64)p68 · y11(t) +

(
p69 · y10(t− p64)p72 · y8(t− p70)p73

d
dty12(t) = − p71 · y10(t− p64)p74 · y8(t− p70)p75

)
· y12(t)

13 Fg
d
dty13(t) = p71 · y10(t− p64)p74 · y8(t− p70)p75 · y12(t)
d
dty13(t) = + p76 · y8(t− p70)p78 · y13(t)− p77 · y8(t− p70)p79 · y13(t)

14 Mo
d
dty14(t) = p77 · y8(t− p70)p79 · y13(t)− p80 · y14(t)

15 Ml
d
dty15(t) = p80 · y14(t)− p81 · y15(t)

16 Le
d
dty16(t) = p81 · y15(t)− p82 · y8(t− p70)p83 · y16(t)

17 Lm
d
dty17(t) = p82 · y8(t− p70)p83 · y16(t)− p84 · y8(t− p70)p85 · y17(t)

18 Ll
d
dty18(t) = p84 · y8(t− p70)p85 · y17(t)− p86 · y18(t)

19 La
d
dty19(t) = p86 · y18(t)− p87 · y19(t)

20 RFSH
d
dty20(t) = p88 · y21(t) + p89 · y23(t)− p90 · y10(t− p64) · y20(t)

21 (FSH-RFSH) d
dty21(t) = p90 · y10(t− p64) · y20(t)− (p91 + p88) · y21(t)

22 (FSH-RFSH -p) d
dty22(t) = p91 · y21(t)− p92 · y22(t)

23 RFSH
i

d
dty23(t) = p92 · y22(t)− p89 · y23(t)

24 RLH
d
dty24(t) = p93 · y25(t) + p94 · y27(t)− p95 · y8(t− p70) · y24(t)

25 (LH-RLH) d
dty25(t) = p95 · y8(t− p70) · y24(t)− (p96 + p93) · y25(t)

26 (LH-RLH -p) d
dty26(t) = p96 · y25(t)− p97 · y26(t)

27 RLH
i

d
dty27(t) = p97 · y26(t)− p94 · y27(t)

28 3β-HSDa
d
dty28(t) = p98 ·

(∑7
i=1 p99+i · y11+i(t)

)
· y25(t)− p99 · y28(t)

29 17β-HSDa
d
dty29(t) = p107 ·

(∑8
i=1 p108+i · y10+i(t)

)
· y21(t)− p108 · y29(t)

30 P450scca
d
dty30(t) = p117 ·

(∑7
i=1 p118+i · y11+i(t)

)
· y25(t)− p118 · y30(t)

31 P45017-OH,a
d
dty31(t) = p126 ·

(∑7
i=1 p127+i · y11+i(t)

)
· y25(t)− p127 · y31(t)

32 P450aroma
d
dty32(t) = p135 ·

(∑8
i=1 p136+i · y10+i(t)

)
· y21(t)− p136 · y32(t)

33 pregO
d
dty33(t) = p145 · y30(t)− y28(t) · p146·y33(t)−p147·y34(t)

p148+y33(t)+p149·y34(t)
d
dty33(t) = − p150 · y31(t) · y33(t)

p151+y33(t) − p152 · y33(t)

34 progO
d
dty34(t) = y28(t) · p146·y33(t)−p147·y34(t)

p148+y33(t)+p149·y34(t) − p153 · y31(t) · y34(t)
p154+y34(t)

d
dty34(t) = − p155 · y34(t)

35 17-pregO
d
dty35(t) = p150 · y31(t) · y33(t)

p151+y33(t) − y28(t) · p156·y35(t)−p157·y36(t)
p158+y35(t)+p159·y36(t)

d
dty35(t) = − p160 · y31(t) · y35(t)

p161+y35(t) − p162 · y35(t)
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Table 3.6: Model equations for the human menstrual cycle. The 49
delay differential equations and one equation for the exp-element
y50 are listed. In the first column, the delay differential equations
are consecutively numbered. The corresponding elements are given
in the second and the equations in the third column.

no element equation
36 17-progO

d
dty36(t) = p153 · y31(t) · y34(t)

p154+y34(t) + y28(t) · p156·y35(t)−p157·y36(t)
p158+y35(t)+p159·y36(t)

d
dty36(t) = − p163 · y31(t) · y36(t)

p164+y36(t) − p165 · y36(t)

37 DHEAO
d
dty37(t) = p160 · y31(t) · y35(t)

p161+y35(t) − p166 · y28(t) · y37(t)
p167+y37(t)

d
dty41(t) = − p168 · y37(t)

38 androO
d
dty38(t) = p163 · y31(t) · y36(t)

p164+y36(t) + p166 · y28(t) · y37(t)
p167+y37(t)

d
dty38(t) = − y29(t) · p169·y38(t)−p170·y39(t)

p171+y38(t)+p172·y39(t) − p173 · y32(t) · y38(t)
p174+y38(t)

d
dty38(t) = − p175 · y38(t)

39 testO
d
dty39(t) = y29(t) · p169·y38(t)−p170·y39(t)

p171+y38(t)+p172·y39(t) − p176 · y32(t) · y39(t)
p177+y39(t)

d
dty39(t) = − p178 · y39(t)

40 estroO
d
dty40(t) = p173 · y32(t) · y38(t)

p174+y38(t) − y29(t) · p179·y40(t)−p180·y41(t)
p181+y40(t)+p182·y41(t)

d
dty40(t) = − p183 · y40(t)

41 estraO
d
dty41(t) = p176 · y32(t) · y39(t)

p177+y39(t) + y29(t) · p179·y40(t)−p180·y41(t)
p181+y40(t)+p182·y41(t)

d
dty41(t) = − p184 · y41(t)

42 P4
d
dty42(t) = p185

p38
· y34(t− p186)− p187 · y42(t)

43 E2
d
dty43(t) = p188

p38
· y41(t− p189)− p190 · y43(t)

44 17-pregB
d
dty44(t) = p191

p38
· y35(t− p192)− p193 · y44(t)

45 17-progB
d
dty45(t) = p194

p38
· y36(t− p195)− p196 · y45(t)

46 DHEAB
d
dty46(t) = p197

p38
· y37(t− p198)− p199 · y46(t)

47 androB
d
dty47(t) = p200

p38
· y38(t− p201)− p202 · y47(t)

48 testB
d
dty48(t) = p203

p38
· y39(t− p204)− p205 · y48(t)

49 estroB
d
dty49(t) = p206

p38
· y40(t− p207)− p208 · y49(t)

50 Ih y50(t) = p55 + p56 · y12(t) + p57 · y17(t) + p58 · y18(t)
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Chapter 4

Simulation of GynCycle

A model for the female menstrual cycle, called GynCycle, is developed in Chapter 2
and decomposed into model parts in Chapter 3. The next step is to choose adequate
numerical tools for the numerical integration of GynCycle and to determine suitable
parameter values for performing simulations that are in accordance with the given
experimental data (see appendix).

In this chapter the different steps that lead to the simulation of GynCycle are shown.
With the model decomposition presented in Chapter 3, the first step is done. Here
important approaches and auxiliary means are presented that are used for obtaining
the parameter values.

First the numerical integration of GynCycle, i.e. the solver and the integration of the
pulse generator into this solver, is presented in Section 4.1. Then it is shown how the
parameter values are obtained. Not all parameters are suited for use in the parameter
estimation. Those which are suitable can be determined via sensitivity analysis (even
if the result only holds for the current state) which is presented in Section 4.2. Then
in Section 4.3, after some remarks concerning the parameter estimation for GynCycle
are made, the most sensitive parameters are identified and the parameter values are
listed in the appendix. Finally the simulations of GynCycle are shown in Section 4.4.

4.1 Numerical integration

In the following set w.l.o.g. t0 := 0. The mathematical model GynCycle is a non-
autonomous system of DDEs (see Section 1.4)

y′(t) = f(t; y(t); y(t− τ1), . . . , y(t− τm)), t ≥ 0,
y(t) = φ(t), t ≤ 0, (4.1)

where y : R → Rn, f : R × Rn×(m+1) → Rn, n,m ∈ N, and τi ∈ R+, i = 1, . . . ,m,
denote multiple, constant, thus state-independent delays and φ : R → Rn the initial
function.

In this section first some comments concerning the choice of the solver are made.
Then the solver that is used here, RADAR5, is presented in more detail. Since the
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94 CHAPTER 4. SIMULATION OF GYNCYCLE

deterministic system of delay differential equations is coupled with a stochastic model
for the pulse generator in GynCycle, the solver must be expanded.

4.1.1 Choice of the solver

The problem of solving GynCycle is stiff. There are various definitions for stiffness.
Roughly said, if implicit solvers are successful as opposed to explicit solvers, the system
is stiff [19]. Here the assumption is allowed that GynCycle is stiff, since the explicit
DDE solver dde23 (Matlab) takes much more time in comparison to the implicit DDE
solver RADAR5 (Fortran90) even for relatively small time periods (comparing the
computing time for the interval [0, 2], the RADAR5 solver is faster than the dde23
solver with a factor of approximately 70; with increasing interval, the factor increases
as well).

Here RADAR5, developed and implemented by Guglielmi and Hairer (Version 2.1,
Fortran90, 2005), is chosen since it is concipated for a large class of stiff delay differen-
tial equations and can handle multiple, possibly small delays. Moreover RADAR5 pro-
vides good results for GynCycle. According to [35] there is no other code available that
can solve general differential-algebraic delay equations with multiple, state-dependent
delays.

There are some other, older programs for stiff delay differential equations with mul-
tiple delays, e.g. DDE-STRIDE (Fortran77) by Baker, Butcher and Paul (1992) and
DIFSUB-DDE (Fortran77) by Bocharov, Marchuk and Romanyukha (1996). DDE-
STRIDE is an adaption of the code STRIDE to delay differential equations and neu-
tral problems. This code can solve stiff problems with several state-dependent delays
(including vanishing delays). DIFSUB-DDE is an extension of the code DIFSUB by
GEAR (based on BDF) to delay differential equations with constant delays. Both are
not concipated for general differential-algebraic delay equations. In [35], RADAR5
and DIFSUB-DDE are compared (even though most codes for stiff delay equations
(including RADAR5) are still in an experimental stage [35]).

4.1.2 Numerical integration with RADAR5

For the numerical integration of GynCycle, the solver RADAR5 is used which is de-
signed for solving stiff delay differential equations (see above). Collocation methods
based on Radau nodes have been successfully applied to stiff ordinary differential equa-
tions (e.g. in RADAU5) and they have excellent stability properties also for delay
equations [35]. Thus RADAR5 has been developed based on RADAU5.

In this section the numerical method of the integrator RADAR5 is presented.
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Problem formulation

RADAR5 is concipated for initial value problems of a general class of (stiff) delay
differential equations:

M · y′(t) = f(t; y(t); y(α1(t, y(t))), . . . , y(αm(t, y(t)))) ,
y(t0) = y0,

y(t) = φ(t), t < t0,

where M is a constant (n × n)-matrix and αl(t, y(t)) ≤ t for all t ≥ t0 and for all
l = 1, . . . ,m. A discontinuity at t0, i.e. φ(t0) 6= y0, is allowed.

In the case of GynCycle, the system is explicit, i.e. it is M := I, the delays are
constant, i.e. αl(t, y(t)) := t − τl, l = 1, . . . ,m, and the initial function is given by
φ(t) := y0 for t ≤ t0, i.e. there is no discontinuity at t0 = 0.

Numerical method

Denote the discretization grid by (tk)k∈N0 , where tk−1 < tk for all k ∈ N, and the step
size by hk := tk+1 − tk, k ∈ N0.

As mentioned, a collocation method is used in RADAR5. Generally, a collocation
method corresponding to the vector c := (c1, . . . , cs)T is equivalent to the implicit
Runge-Kutta method (b, c, A), where b := (b1, . . . , bs)T and A := (aij)i,j=1,...,s (see e.g.
Theorem 6.36, [19]).

Assume 0 ≤ c1 < · · · < cs ≤ 1. The collocation polynomial uk(·) ∈ Pns , where
Pns denotes the polynomial space (of order s and dimension n), must satisfy the s+ 1
conditions on the interval [tk, tk+1], k ∈ N0:

(i) uk(tk) = yk

(ii) u′k(tk+ci ·hk) = f
(
tk+ci ·hk;Y

(k)
i ; Ỹ (k)

1,i , . . . , Ỹ
(k)
m,i

)
, i = 1, . . . , s,

where Y (k)
i := uk(tk + ci · hk) for all i = 1, . . . , s and Ỹ (k)

l,i , l = 1, . . . ,m, i = 1, . . . , s, is
given by [35]

Ỹ
(k)
l,i :=

φ
(
α

(k)
l,i

)
, if α(k)

l,i < t0

uk′
(
α

(k)
l,i

)
, if α(k)

l,i ∈ [tk′ , tk′+1], k′ ≤ k, k′ ∈ N0,

where α(k)
l,i := αl

(
tk+ci ·hk, Y

(k)
i

)
for all l = 1, . . . ,m and i = 1, . . . , s. It follows then

yk+1 = uk(tk + hk).
Let {l1, . . . , ls} denote the Lagrange basis of Ps−1 with respect to the nodes c1, . . . , cs:

li(θ) :=
s∏

j=1,j 6=i

θ − cj
ci − cj

, i = 1, . . . , s.

It holds li(cj) = δij for i, j = 1, . . . , s. Using the Lagrange interpolation formula yields

u′k(tk+θ ·hk) =
s∑
j=1

lj(θ) · u′k(tk+cj ·hk) =
s∑
j=1

lj(θ) · f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
.
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It follows for the collocation polynomial

uk(tk+θ ·hk) = yk + hk ·
∫ θ

0
u′k(tk+θ′ ·hk) dθ′

= yk + hk ·
s∑
j=1

f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
·
∫ θ

0
lj(θ′) dθ′.

Define

aij :=
∫ ci

0
lj(θ) dθ, i, j = 1, . . . , s

and

bj :=
∫ 1

0
lj(θ) dθ, j = 1, . . . , s.

The collocation polynomial uk(·) at the nodes c1, . . . , cs is then given by

(i) uk(tk+ ci ·hk)

= yk + hk ·
s∑
j=1

aij · f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
, i = 1, . . . , s, (4.2)

(ii) uk(tk+1) = uk(tk + hk)

= yk + hk ·
s∑
j=1

bj · f
(
tk + cj · hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
. (4.3)

Equivalently, Eqs. (4.2) and (4.3) can be written as s-step implicit Runge-Kutta
method for delay differential equation in symmetric form [19]:

(i) Y
(k)
i = yk + hk ·

s∑
j=1

aij · f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
, i = 1, . . . , s

(ii) yk+1 = yk + hk ·
s∑
j=1

bj · f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
.

Using again the Lagrange interpolation formula by adding c0 := 0 to the nodes
c1, . . . , cs, where the Lagrange polynomial Li(·) ∈ Ps is given by

Li(θ) :=
s∏

j=0,j 6=i

θ − cj
ci − cj

, ⇒ Li(cj) = δij , i, j = 0, . . . , s,

uk(·) is of the form

uk(tk + θ · hk) = L0(θ) · yk +
s∑
i=1

Li(θ) · Y (k)
i .
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RADAR5, as mentioned at the beginning of this section, is based on a Radau
method, i.e. cs := 1 is chosen and therefore it holds asj = bj , j = 1, . . . , s. For this
reason, the s-step Radau method is given by

(i) Y
(k)
i = yk + hk ·

s∑
j=1

aij · f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
, i = 1, . . . , s

(ii) yk+1 = Y (k)
s .

More precisely, since differential-algebraic equations are considered, the following non-
linear system must be solved:

(i) M ·
(
Y

(k)
i −yk

)
= hk ·

s∑
j=1

aij ·f
(
tk+cj ·hk;Y

(k)
j ; Ỹ (k)

1,j , . . . , Ỹ
(k)
m,j

)
, i = 1, . . . , s,

(4.4)

(ii) yk+1 = Y (k)
s .

There are different Radau methods. In RADAR5 the Radau IIA method (see [36],
p.72) is used for the numerical integration, where c1, . . . , cs are the zeros of

ds−1

dcs−1

(
cs−1 · (c− 1)s

)
.

Since s = 3 in RADAR5, c1, c2, and c3 are the zeros of

d3−1

dc3−1

(
c3−1 · (c− 1)3

)
= 2 · (c− 1) · (10·c2 − 8·c+ 1)

and thus c1 = 4−
√

6
10 , c2 = 4+

√
6

10 , c3 = 1.
In the case of GynCycle it is

α
(k)
l,i := tk + ci · hk − τl

for l = 1, . . . ,m and i = 1, . . . , s as well as

Ỹ
(k)
l,i :=

{
y0,i, if tk + ci · hk − τl < t0

uk′ (tk + ci · hk − τl) , if tk + ci · hk − τl ∈ [tk′ , tk′+1], k′ ≤ k, k′ ∈ N0.

Solving the nonlinear system

The nonlinear equations in Eq. (4.4) must be solved. In order to reduce the influence
of round-off errors ([36], for ODEs), define for i = 1, . . . , s

Z
(k)
i := Y

(k)
i − yk

Z̃
(k)
l,i := Ỹ

(k)
l,i − yk, l = 1, . . . ,m.
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Reformulation of the nonlinear system yields for i = 1, . . . , s

(i) M · Z(k)
i = hk ·

s∑
j=1

aij · f
(
tk + cj ·hk; yk + Z

(k)
j ; yk + Z̃

(k)
1,i , . . . , yk + Z̃

(k)
m,i

)
.

Thus the nonlinear equations

Fi(Z(k)) := M · Z(k)
i − hk ·

s∑
j=1

aij · f
(
tk+cj ·hk; yk+Z(k)

j ; yk+Z̃(k)
1,j , . . . , yk+Z̃(k)

m,j

)
= 0

must be solved for i = 1, . . . , s, where Z(k) := (Z(k)
1

T
, . . . , Z

(k)
s

T
)T . The nonlinear

system is then given by

F 0(Y (k)) := (F1(Y (k))T , . . . , Fs(Y (k))T )T

= (Is ⊗M) · Z(k) − hk · (A⊗ In) · f(Z(k)) = 0,

where

f(Z(k)) :=


f
(
tk+c1 ·hk; yk + Z

(k)
1 ; yk + Z̃

(k)
1,1 , . . . , yk + Z̃

(k)
m,1

)
...

f
(
tk+cs ·hk; yk + Z

(k)
s ; yk + Z̃

(k)
1,s , . . . , yk + Z̃

(k)
m,s

)
 .

In order to solve this system, the (simplified) Newton method is used. First the
starting values are set:

(i) Z(k),(0).

The Newton iterations are then given by (i′ ∈ N0)

(ii) DF 0(Z(k),(i′)) ·∆Z(k),(i′) = −F 0(Z(k),(i′))

(iii) Z(k),(i′+1) = Z(k),(i′) + ∆Z(k),(i′),

where DF 0(Z(k),(i′)) denotes the Jacobian matrix of the system.
Each Newton step requires s evaluations of f and the solution of a (n ·s × n ·s)-

dimensional linear system. In the case of the simplified Newton method, the matrix
DF 0(Z(k),(i′)) := DF 0(Z(k),(0)) is the same for all iterations. Its LU-decomposition is
done only once and is usually very costly [36]. The simplified Newton iterations are
then given by, i′ ∈ N0:

(ii) DF 0(Z(k),(0)) ·∆Z(k),(i′) = −F 0(Z(k),(i′)) (4.5)

where the exact Jacobian is replaced by an approximation:

DF 0(Z(k),(0)) := Is⊗M−hk ·A⊗

(
fz+

m∑
l′=1

fz̃l′ ·uk,αl′ ·α
(k)
l′,z

)
−hk ·(A⊗In)·

m∑
l′=1

L(l′)⊗fz̃l′ ,

(4.6)
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with

fz := fz(tk; yk; ỹk,1, . . . , ỹk,m) ,

where ỹk,l′ is defined analogously to Ỹ (k)
l′ ,

fz̃l′ := fz̃l′ (tk; yk; ỹk,1, . . . , ỹk,m)

for l′ = 1, . . . ,m and

uk,αl′ := uk,αl′

(
α

(k)
l′,0

)
α

(k)
l′,z := αl′,z(tk, yk) ,

where α(k)
l′,0 := αl′(tk, yk) and

uk,αl′

(
α

(k)
l′,i

)
· αl′,z

(
tk + ci · hk, yk + Z

(k)
i

)
= Li(αl′(tk + ci · hk; yk + Z

(k)
i )).

The last term in Eq. (4.6) considers that it must be distinguished between two
cases for the relation of the current step size and delay (see Fig. 4.1 for the case of
constant delay).

τl′

tk+ci·hk−τl′tk′ tk+ci·hktk′+1

τl′

tk tk+ci·hk−τl′ tk+ci·hk

Figure 4.1: On the top: step size (more precisely: ci · hk) is smaller than delay τl′ .
On the bottom: step size (more precisely: ci · hk) is larger than the delay τl′ .

The matrix L(l′) := (l(l
′)

ij )i,j=1,...,s is then defined by

l
(l′)
ij :=

{
Lj(σ

(l′)
i ) if σ(l′)

i > 0
0 else

with

σ
(l′)
i :=

α(tk + ci · hk, yk + Z
(k)
i )− tk

hk
.

In the case of GynCycle, the delays are constant and it is σ(l′)
i = ci·hk−τl′

hk
. If σ(l′)

i > 0,
l′ ∈ {1, . . . ,m}, i ∈ {1, . . . , s}, the current step size hk is larger than the delay τl′ :

hk ≥ ci · hk > τl′ , i = 1, . . . , s, l′ = 1, . . . ,m.
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If the step size hk is small compared to all delays τl′ , more precisely σ
(l′)
i ≤ 0, for

all l′ = 1, . . . ,m, then the Jacobian matrix is similar to the case of the ODEs (if the
delays are constant). If hk is larger than the delay τl′ , more precisely σ(l′)

1 > 0, for all
l′ = 1, . . . ,m, it follows σ(l′)

i = ci and finally L(l′) = Is. In this case it is

DF 0(Z(k),(0)) = Is ⊗M − hk ·A ·

(
fz +

m∑
l′=1

fz̃l′ +
m∑
l′=1

fz̃l′ · uk,αl′ · αl′,z

)
.

For simplicity of the calculation, L(l′) is set to 0s if σ(l′)
i ≤ 0 for at least one i, otherwise

it is set to Is if σ(l′)
1 > 0. The correct matrix L(l′) is used if problems arise with the

convergence of the simplified Newton iteration [35].
Every Radau method is L-stable and thus A invertible [19]. The premultiplication

of both sides of Eq. (4.5) with (hk ·A)−1 ⊗ In results in

F 1(Z(k),(i′)) := ((hk ·A)−1 ⊗ In) · F 0(Z(k),(i′))

= ((hk ·A)−1 ⊗ In) · ((Is ⊗M) · Z(k),(i′) − hk · (A⊗ In) · f(Z(k),(i′)))

= (h−1
k ·A

−1 ⊗M) · Z(k),(i′) − f(Z(k),(i′))

and

DF 1(Z(k),(0)) := ((hk ·A)−1 ⊗ In) ·DF 0(Z(k),(0))

= ((hk ·A)−1 ⊗ In) ·
(
Is ⊗M − hk ·A⊗

(
fz +

m∑
l′=1

fz̃l′ · uk,αl′ · αl′,z

)

− hk · (A⊗ In) ·
m∑
l′=1

Ll′ ⊗ fz̃l′
)

= h−1
k ·A

−1 ⊗M − Is ⊗

(
fz +

m∑
l′=1

fz̃l′ · uk,αl′ · αl′,z

)
−

m∑
l′=1

Ll′ ⊗ fz̃l′ .

This transformation leads to a simpler calculation of the iteration step that is replaced
by

(ii) DF 1(Z(k),(0)) ·∆Z(k),(i′) = −F 1(Z(k),(i′)).

In the following, only the special case of RADAR5 for GynCycle is considered. If the
delays are not state-dependent, as it is the case here, and M = I, the terms reduce to

F 1(Z(k),(i′)) = (h−1
k ·A

−1 ⊗ In) · Z(k),(i′) − f(Z(k),(i′))

and

DF 1(Z(k),(0)) = h−1
k ·A

−1 ⊗ In − Is ⊗ fz −
m∑
l′=1

Ll′ ⊗ fz̃l′ .

Further assume for simplicity of notation that L(l′) = 0 for all l′ = 1, . . . ,m.
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Next A is transformed in order to obtain a ”simpler” matrix Λ, in this case a block
diagonal form (Chapter IV.8, [36]):

T−1 ·A−1 · T = Λ,

where

Λ =

λ11 0 0
0 λ22 λ23

0 λ32 λ33

 .

Premultiplication with T−1 ⊗ In yields

F 2(Z(k),(i′)) = (T−1 ⊗ In) · F 1(Z(k),(i′))

= (T−1 ⊗ In) · (h−1
k ·A

−1 ⊗ In) · Z(k),(i′) − (T−1 ⊗ In) · f(Z(k),(i′))

= (h−1
k · (Λ · T

−1)⊗ In) · Z(k),(i′) − (T−1 ⊗ In) · f(Z(k),(i′))

= h−1
k · (Λ⊗ In) · (T−1 ⊗ In) · Z(k),(i′) − (T−1 ⊗ In) · f(Z(k),(i′))

and

DF 2(Z(k),(0)) = (T−1 ⊗ In) ·DF 1(Z(k),(0))

= (T−1⊗ In)·(h−1
k ·A

−1⊗In)−(T−1⊗In)·(Is⊗fz)
= h−1

k ·(Λ·T
−1)⊗In − (Is⊗fz)·(T−1⊗In)

= (h−1
k · Λ⊗ In − Is ⊗ fz) · (T

−1 ⊗ In).

Again for a simpler calculation, the iteration step is replaced by

(ii) DF 2(Z(k),(0)) ·∆Z(k),(i′) = −F 2(Z(k),(i′)).

Finally the transformation w(k) := (T−1 ⊗ In) · Z(k) is conducted:

(ii)(h−1
k ·Λ⊗In − (Is⊗fy))·∆w(k) = −h−1

k ·(Λ⊗In)·w(k) + (T−1⊗In)·F ((T⊗In)·w(k)).

Since T−1 ·A−1 · T = Λ, the matrices A−1 and Λ are similar, i.e. A−1 and Λ have
the same eigenvalues. In RADAR5, Λ has one real eigenvalue, γ̂, and one complex
pair of eigenvalues, α̂ ± iβ̂, where γ̂ := λ11, α̂ := λ22 = λ33, β̂ := λ23 = −λ32. Set
γ = h−1

k · γ̂, α = h−1
k · α̂, and β = h−1

k · β̂. Then it follows

h−1
k · Λ⊗ In − Is ⊗ fz =

γ · In − fz 0 0
0 α · In − fz −β · In
0 β · In α · In − fz

 .

Thus there are two linear systems of dimension n and 2 · n, respectively. The second
can be transformed into a n-dimensional, complex system

((α+ i · β) · In − fz) · (u+ i · v) = a+ i · b

which can be solved by simple Gaussian elimination (Chapter IV.8, [36]).
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4.1.3 Integration of the pulse generator into RADAR5

The model GynCycle does not only consist of pure DDEs since the GnRH pulse gener-
ator is modeled stochastically, more precisely the pulse time points and the resulting
pulse mass.

It holds (see Eq. (2.24) in Chapter 2) for all j ∈ N

F (Tj − Tj−1) = 1− exp

(
−

(∫ Tj

Tj−1

λ(r) dr

)γ)
.

In order to calculate the pulse time points Tj , first the random variable Uj ∼ U [0, 1]
must be generated. Then it must be equated with F (Tj − Tj−1):

Uj = 1− exp

(
−

(∫ Tj

Tj−1

λ(r) dr

)γ)
.

It follows

Λ(tk)− Λ(Tj−1) =
∫ Tj

Tj−1

λ(r) dr= (− ln(1− Uj))
1
γ

since the function λ(·) is positive.
For the integration of the calculation of the pulses into RADAR5, the system of

delay differential equations is solved until the inequality

g(tk;Tj−1, Uj) := Λ(tk)− Λ(Tj−1)− (− ln(1− Uj))
1
γ ≥ 0 (4.7)

is satisfied, where tk ≥ Tj−1 denotes the discrete time point. In [46, 47] for the male
case, the next pulse time point is determined by

Tj := tk = min
l∈N0

{tl ≥ Tj−1|g(tk;Tj−1, Uj) ≥ 0} .

More precisely, they calculate

Tj := tk = min
l∈N0

{tl ≥ Tj−1 + ∆minT |g(tk;Tj−1, Uj) ≥ 0} ,

where ∆minT denotes the minimum distance between two pulses.
This is only feasible if the step sizes are small compared to the intervals between

the pulses: tk − tk−1 � Tj − Tj−1. If the first model part (which consists of only one
equation, the pulse intensity of GnRH) is simulated, the step sizes can become quite
large compared to the interval length between two pulses. Moreover, since in general a
stiff integrator only is efficient if large step sizes are allowed, it is adequate to solve the
equation “correctly”. This is approximately given, if the equation is solved with the
(simplified) Newton method. That means, in order to obtain a more accurate result,
it must be proceeded in the case of

g(tk;Tj−1, Uj) > 0.
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The nonlinear equation

g(tk;Tj−1, Uj) = 0

is solved with aid of the simplified Newton method with starting value

t
(0)
k = tk

and iterations (i ∈ N0)

t
(i+1)
k = t

(i)
k −

1

g′(t(0)
k )
· g(t(i)k )

= t
(i)
k −

1

λ(t(0)
k )
· g(t(i)k )

since it holds

g′(t(0)
k ) =

d

dt

(∫ t
(0)
k

Tj−1

λ(r) dr − (− ln(1− Uj))
1
γ

)
= λ(t(0)

k ) > 0.

The term g(t(i)k ) can be calculated via the collocation polynomial (Λ(·) is provided).
The function λ(·) is dependent on E2(·) and P4(·) and can be calculated via the collo-
cation polynomial as well.

There is a zero of g(·;Tj−1, Uj) in the interval [Tj−1, tk] since g(·;Tj−1, Uj) is con-
tinuous and it is g(Tj−1;Tj−1, Uj) < 0 and g(tk;Tj−1, Uj) > 0 (intermediate value
theorem). Moreover g(·;Tj−1, Uj) is arbitrarily often continuously differentiable and
it is g′(t(0)

k ) 6= 0, thus the (simplified) Newton method is convergent in this case. A
local method is sufficient, since the distance of the starting value is already close to
the solution.

There can be more than one pulse time point between two successive grid points
tk−1 and tk. Thus Tj and Uj+1 must be reset and the condition

g(tk;Tj , Uj+1) = Λ(tk)− Λ(Tj)− (− ln(1− Uj+1))
1
γ ≥ 0

checked again. The algorithm is continued (increment of j) until it holds for the
smallest j′ > j

g(tk;Tj′−1, Uj′) = Λ(tk)− Λ(Tj′−1)− (− ln(1− Uj′))
1
γ < 0.

Since λ(·) is bounded, there is no problem with the next pulse time point.

Lemma 4.1. If Uj ∈ (0, 1), it holds for all j ∈ N

Tj − Tj−1 ∈ (0,∞).
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Proof. It is ∫ Tj

Tj−1

λ(r) dr = (− ln(1− Uj))
1
γ

and it is assumed that

(− ln(1− Uj))
1
γ ∈ (0,∞).

Since furthermore λ(·) < 2 · λmax, it holds∫ Tj

Tj−1

λ(r) dr ≤ 2 · λmax · (Tj − Tj−1).

Thus it follows

(Tj − Tj−1) · 2 · λmax ≥ (− ln(1− Uj))
1
γ > 0

and finally

Tj − Tj−1 ≥
(− ln(1− Uj))

1
γ

2 · λmax
> 0.

Since it holds

(− ln(1− Ui))
1
γ <∞

it is ∫ Tj

Tj−1

λ(r) dr <∞.

Moreover, the pulse intensity function λ(·) is bounded and positive which yields Tj <∞
and in particular Tj − Tj−1 <∞.

Lemma 4.2. It holds for all j ∈ N

lim
j→∞

Tj =∞.

Proof. It is

lim
j→∞

∫ Tj

T0

λ(r) dr ≤ lim
j→∞

(2 · λmax · Tj) = 2 · λmax · lim
j→∞

Tj ,

since T0 = 0. Further it holds

lim
j→∞

∫ Tj

0
λ(r) dr = lim

j→∞

j∑
i=1

∫ Ti

Ti−1

λ(r) dr

= lim
j→∞

j∑
i=1

(− ln(1− Ui))
1
γ = lim

j→∞
j ·
∫ 1

0
(− ln(1− u))

1
γ du =∞,
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i.e. the limit is not existing. It follows that

lim
j→∞

Tj =∞.

Lemma 4.3. There is a j′ > j such that

g(tk;Tj′−1, Uj′) < 0.

Proof. If Tj′−1 > tk it follows Λ(Tj′−1) > Λ(tk) and thus g(tk;Tj′−1, Uj′) < 0. This
occurs in finite steps since Tj − Tj−1 < ∞ and limj→∞ Tj = ∞ (see Lemma 4.1 and
4.2).

It is also possible that Tj′−1 ≤ tk and g(tk;Tj′−1, Uj′) < 0. This is the case if

Λ(Tj′−1) > Λ(tk)− (− ln(1− Uj′))
1
γ .

If the “exact” pulse time point is calculated, the “exact” pulse mass must also be
calculated. The subroutine which is called in RADAR5 when the solution is updated
is given in Algorithm 4.

subroutine event(tk, Tj−1, Uj)

g(tk, Tj−1, Uj) = Λ(tk)− Λ(Tj−1)− (− ln(1− Uj))
1
γ ;

t
(0)
k = tk;

while g(t(0)
k , Tj−1, Uj) ≥ 0 do

i = 0;
while |g(t(i)k , Tj−1, Uj)| > ε do

t
(i+1)
k = t

(i)
k − (λ(t(0)

k ))−1 · g(t(i)k , Tj−1, Uj);
i = i+ 1;

end
% update of pulse time point and pulse mass:
Tj = t

(i)
k ;

MGnRH,j = MGnRH(Tj)−MGnRH(Tj−1);
% preparation for calculation of new pulse time point:
j = j + 1;
Uj ∼ [0, 1];

g(t(0)
k , Tj−1, Uj) = Λ(tk)− Λ(Tj−1)− (− ln(1− Uj))

1
γ ;

end
end subroutine event

Algorithm 4: Algorithm for the determination of the GnRH pulse time points and
pulse masses.

An update of the remaining equations is done at the next time step. It is assumed
that, in the case of several pulse time points between tk−1 and tk, the amount of mass
that could be stored is not large which is why a direct update is not necessary.
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4.2 Sensitivity analysis

Now that the numerical basis is provided, the parameters that are suitable for the
parameter estimation can be determined.

Consider the non-autonomous system of DDEs (see Section 4.1, Eq. (4.1)) of the
form

d

dt
y(t; p) = f(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p), t ≥ 0,

y(t; p) = φ(t; p), t ≤ 0,

where the dependency of the parameter vector p is highlighted. It is m ∈ N, y(t; p) =
(y1(t; p), y2(t; p), . . . , yn(t; p))T ∈ Rn, and p = (p1, p2, . . . , pnp)T ∈ Rnp .

The sensitivity means here the influence of changes in the parameter vector p on the
solution vector y [19, 31]. A parameter is called sensitive if small changes in its value
lead to large changes in the solution [22]. The sensitivities of the elements with respect
to the parameters are an important issue when dealing with parameter estimation. The
parameters are only simultaneously identifiable if the system’s sensitivity with respect
to these parameters is high enough compared to the most sensitive one. In order
to be able to compare the different sensitivities, the condition, or more precisely the
subcondition, is calculated.

The parameters that are not sensitive compared to the remaining parameters do
not influence the system significantly at that state, thus their value can be considered
to be negligible for the solution. It is only important that their values are not set to
zero.

A solution must be found how to handle the stochastic part of the system which is
presented in Section 4.2.1. Since the parameters have positive values by definition, they
are transformed (Section 4.2.2). For the determinization of the sensitive parameters
first the sensitivity matrix is introduced in Section 4.2.3, then the calculation of the
sensitivities in the case of DDEs is presented in Section 4.2.4, and finally the analysis
of the calculated sensitivities is treated in Section 4.2.5. The results for GynCycle are
presented at the end of this section in Section 4.2.6 and in the appendix.

4.2.1 Determinization of the stochastic pulse generator

When performing parameter estimation, the GnRH pulse generator (or more precisely,
the calculation of the GnRH pulse frequency) must be considered separately since it
is modeled stochastically (see Section 2.2).

When solving the system of delay differential equations, where the pulse time points
are determined by a stochastic process, it must be considered that only one possible
realization is calculated. It is not acceptable to do parameter estimation only for one
arbitrary realization. In order to work correctly two possibilities for representative
simulations are mentioned here:

• In order to assess the simulation, a certain number of realizations must be de-
termined and from these values the mean value. This is associated with high
costs.
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• Another possibility is to “determinize” the value which is random in order to
obtain a deterministic character. In this case only one realization is necessary. If
the sequence of GnRH pulse time points is given, then the system is deterministic,
a sequence of DDEs.

Here the second possibility is chosen since it is cheaper. The determinization could
be proceeded as follows: It holds that Uj is stochastic and therefore (− ln(1−Uj))

1
γ is

stochastic (Uj ∼ [0, 1]). The expected value of (− ln(1− Uj))
1
γ , j ∈ N, is given by

E((− ln(1− Uj))
1
γ |j ∈ N) =

∫ 1

0
(− ln(1− u))

1
γ du = 0.8826.

Instead of the inequality in Eq. (4.7), the inequality

Λ(tk)− Λ(Tj−1)− E((− ln(1− Uj))
1
γ |j ∈ N) = Λ(tk)− Λ(Tj−1)− 0.8826 ≥ 0

can be used for simplicity.

4.2.2 Transformation of the parameters

Since all parameters in GynCycle are defined with positive values (if not even more re-
stricted), transformation of the parameters is necessary in order to use an unrestricted
method.

Thus define p′0 := ln(p0) for the initial values p0 of the parameter vector. The initial
values must be chosen positive which ensures that the iteratives of the parameter vector
are also positive (if the Gauss-Newton method is used) [60]. After termination of the
parameter estimation, the optimal parameter values are obtained by p∗ = exp(p

′,∗),
where p

′,∗ denotes the solution of the iteration.
If the parameter estimation (in the case of Gauss-Newton) conducted with the

transformed parameter (p′-iteration) is compared to the parameter estimation with
the original parameter (p-iteration), the following can be observed [61]:

• For non-critical examples, the p′-iteration may be slower.

• For critical examples, the p′-iteration may converge but the p-iteration may di-
verge.

• If the p′-iteration diverged but the p-iteration converged, it follows that the
solution p∗ contained negative components.

In the following, the sensitivity calculation and analysis refer to the transformed
parameter vector.

4.2.3 Definition of the sensitivity

Generally, the (absolute) sensitivity can be defined as follows:
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Definition 4.1. The absolute sensitivity of the i-th element with respect to the j-th
chosen parameter is expressed by

sabsij (t; p) :=
∂yi(t; p)
∂pj

, i = 1, . . . , n, j = 1, . . . , np. (4.8)

First these sensitivities are calculated for all elements of the system and for all
parameters that should be estimated. The solution is given for all grid points in a
defined time interval.

Further definitions of sensitivities are presented in Section 4.2.5 where special sen-
sitivities are calculated in order to determine the subcondition where experimental
data for the least-squares method are considered.

Note that the sensitivity holds approximately only in a vicinity of the state deter-
mined by y and p.

4.2.4 Calculation of sensitivities in the case of DDEs

In this section it is shown how the sensitivities can be calculated via the variational
equation.

Solving the variational equation in RADAR5

Denote by P est ⊆ P the set of parameters that are considered in the sensitivity analysis.
Let for simplicity be |P est| = np. For the calculation of the sensitivities, the variational
equation is solved. The variational equation arises by total differentiation of the system
with respect to the parameter pj ∈ P est:

d

dpj

(
d

dt
y(t; p) = f(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p1, . . . , pj , . . . , pnp)

)
.

There are two cases that must be distinguished when dealing with DDEs (in con-
trast to ODEs) [3]. If pj 6= τl for all l = 1, . . . ,m, i.e. pj is no delay, then the following
variational equation for yi and pj is obtained (i = 1, . . . , n, j = 1, . . . , np):

d

dpj
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p) =

d

dpj

(
d

dt
yi(t; p)

)
=

d

dt

(
d

dpj
yi(t; p)

)
=

d

dt
sabsij (t; p)

and finally
d

dt
sabsij (t; p) =

∂

∂y(t; p)
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p) · d

dpj
y(t; p)

+
m∑
l=1

∂

∂y(t− τl; p)
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p) · d

dpj
y(t− τl; p)

+
∂

∂pj
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p)

= fi,y · sabsj (t; p) +
m∑
l=1

fi,yτl · s
abs
j (t− τl; p) + fi,pj ,
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where

fi,y :=
∂

∂y(t; p)
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p)

fi,yτl :=
∂

∂y(t; p)
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p), l = 1, . . . ,m

fi,pj :=
∂

∂pj
fi(t; y(t; p); y(t− τ1; p), . . . , y(t− τm; p); p)

and sabsj (t; p) := (sabs1j (t; p), . . . , sabsnj (t; p))T . From this it follows that

d

dt
Sabs(t; p) = fy · Sabs(t; p) +

m∑
l=1

fyτl · S
abs(t− τl; p) + fp,

where Sabs(t; p) := (sabsij (t; p))i=1,...,n,j=1,...,np and

fy := (f1,y, . . . , fn,y)T

fyτl := (f1,yτl
, . . . , fn,yτl )

T , l = 1, . . . ,m

fp := (f1,p, . . . , fn,p)T .

Hence the following system (extension of the original system for sensitivity inte-
gration) must be solved (compare [31, 70] for the case of ODEs):

d

dt
ŷ :=

d

dt


y
sabs1

...
sabsnp

 =


f

fy · sabs1 +
∑m

l=1 fyτl · s
abs
τl,1

+ fp1

...
fy · sabsnp +

∑m
l=1 fyτl · s

abs
τl,np

+ fpnp

 =: f̂(t; ŷ; ŷτ1 , . . . , ŷτm).

Otherwise if pj = τl for a l ∈ {1, . . . ,m}, i.e. if the parameter pj is a delay, it is [3]
for all i = 1, . . . , n

d

dt
sabsij (t; p) =

∂

∂y(t; p)
fi ·

d

dτl
y(t; p) +

m∑
l′=1

∂

∂y(t− τl′ ; p)
fi ·

d

dτl
y(t− τl′ ; p)

+
∂

∂y(t− τl; p)
fi ·

d

d(t− τl)
y(t− τl; p) ·

d

dτl
(t− τl)

=
∂

∂y(t; p)
fi ·

d

dτl
y(t; p) +

m∑
l′=1

∂

∂y(t− τl′ ; p)
fi ·

d

dτl
y(t− τl′ ; p)

− ∂

∂y(t− τl; p)
fi ·

d

d(t− τl)
y(t− τl; p)

= fi,y · sabsj (t; p) +
m∑
l′=1

fi,yτl′
· sabsj (t− τl′ ; p)− fi,yτl ·

d

d(t− τl)
y(t− τl; p).
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4.2.5 Analysis of the special sensitivity matrix

Basically, the following definitions are based on [31] and [61] (for the case of ODEs).
By analyzing the sensitivity matrix, important indications concerning the suitability
of the chosen parameters for identification by means of a parameter estimation method
can be obtained [31].

The sensitivities are calculated for all elements of the system. However, only the
elements for which experimental data are available are considered in the subsequent
analysis. The sensitivities must then be calculated at the measure time points.

If data are not given for all elements of the system, the sensitivity only for these
N elements is relevant. Keep in mind that the set of exp-elements is given by V exp =
{i1, . . . , iN} where N = |V exp| (see Chapter 3).

The measure time points can vary among the exp-elements. Let (tj)j=0,...,kmax be
the discretization grid on the considered interval [t0, tend], where tend = tkmax . Define
Tl = (tlj)j=1,...,nlt

, where tlj < tlj+1 for all j = 1, . . . , nlt − 1 as the set of time points
where experimental data are available for the element il, l = 1, . . . , N . If the measure
time points are the same for all exp-elements, set nt as the number of data (t0j )j=1,...,nt

for each exp-element.

Definition 4.2. The special absolute sensitivity of the il-th chosen element and the
k-th chosen time-point with respect to the j-th chosen parameter is given by

s∗,abs∑l−1
l′=1

nl
′
t +k,j

:= sabsil,j(t
l
k; p), k = 1, . . . , nlt, l = 1, . . . , N, j = 1, . . . , np. (4.9)

If the time points are the same for all considered elements, it is:

s∗,abs(l−1)·nt+k,j := sabsil,j(t
0
k; p), k = 1, . . . , nt, l = 1, . . . , N, j = 1, . . . , np. (4.10)

For simplicity in the following define n′ :=
∑N

l=1 n
l
t. Thus Sabs(·; p) denotes the

solution of the variational equation and S∗,abs := (s∗,absi,j )i=1,...,n′,j=1,...,np the values that
are relevant for parameter estimation.

Both the model parameters and the solutions have (usually different) physical units.
Moreover the values can be of different scales. To attain comparability they must be
put in relation to the absolute values of the parameters and the solution values [31].

Definition 4.3. The special normalized sensitivity is defined by

s∗,norm∑l−1
l′=1

nl
′
t +k,j

:= sabsil,j(t
l
k; p) ·

|pj |
|yil |

, k = 1, . . . , nlt, l = 1, . . . , N, j = 1, . . . , np.

The normalization can be done for |yil | by, for example, using the norm over all
selected measure time points:

|yil | :=
∥∥∥{yil(t1), . . . , yil(tnlt)}

∥∥∥ , l = 1, . . . , N.

In order to obtain reasonable results by the normalization even if the parameter or
solutions have small values, threshold values ytrsh ∈ R+ and ptrsh ∈ R+ are defined for
y and p, respectively [31].
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Definition 4.4. The special relative sensitivity is defined for k = 1, . . . , nlt, l =
1, . . . , N , j = 1, . . . , np as follows:

s∑l−1
l′=1

nl
′
t +k,j

:= s∗,rel∑l−1
l′=1

nl
′
t +k,j

:= sabsil,j(t
l
k; p) ·

max(|pj |, ptrsh)
max(|yil |, ytrsh)

. (4.11)

The sensitivity vectors sj := (s1j , . . . , s∑N
l=1 n

l
t,j

)T , j = 1, . . . , np, for the np parame-
ters p1, . . . , pnp result in the columns of the sensitivity matrix S := (sij)i=1,...,n′,j=1,...,np

with the dimension (
∑N

l=1 n
l
t)×np and if the time points are the same for all elements

(nt ·N)× np. This matrix must be calculated in order to determine which parameters
are sensitive. In the following suppose for simplicity that the time points are the same
for all elements.

Parameters with little or no sensitivity are not estimatable. In the corresponding
column of the sensitivity matrix the values are in this case equal or close to zero. For
the calculation of the column-sum norm here the weighted l2-norm is used. The norm
of the j-th column sj of the sensitivity matrix S is thereby given by

||sj || :=

√√√√ 1
n′

n′∑
i=1

s2
ij , j = 1, . . . , np.

Almost-singularities can be detected by column norms close to zero (non-sensitive
parameters) [31].

In the case of linear dependencies, the parameters influence the solution in a com-
parable manner and lead therefore to linearly dependent columns in the sensitivity
matrix. The corresponding parameters cannot be estimated simultaneously. In order
to detect linear dependencies, further examinations must be conducted [31].

In both cases the matrix S is singular or from a numerical point of view almost-
singular. If it leads to no confusion, in the following n′ is denoted by n. The following
theorem and definition can be found in [20].

Theorem 4.1. If S is an arbitrary and real (n×np)-matrix, then there is an orthogonal
(n× n)-matrix U and an orthogonal (np × np)-matrix V such that

S = U · Σ · V T , (4.12)

where Σ = diag(σ1, . . . , σmin(n,np)) is a (n× np)-matrix with

σ1 ≥ · · · ≥ σmin(n,np) ≥ 0.

Definition 4.5. The factorization of S in Theorem 4.1 is called the singular value
decomposition and σi, i = 1, . . . ,min(n, np), are called the singular values of S.

Definition 4.6. The condition number κ of the matrix S is defined by

κ(S) := ||S|| · ||S−1||.
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It holds κ(S) ≥ 1 since κ(S) = ||S|| · ||S−1|| ≥ ||S · S−1|| = ||I|| = 1.

Lemma 4.4. The condition number κ of the (n × np)-matrix S is the ratio of the
biggest to the smallest singular value:

κ(S) =
σ1

σmin(n,np)
.

Proof. It holds

κ(S) = ||S|| · ||S−1|| = ||U · Σ · V T || · ||(U · Σ · V T )−1||
= ||U · Σ · V T || · ||V · Σ−1 · UT || = ||Σ|| · ||Σ−1||

since it is ||Q ·A|| = ||A|| for Q orthogonal and A arbitrary. Further it is

||Σ||∞ = max
i∈{1,...,min(n,np)}

σi = σ1.

For Σ−1 the row-sum norm yields analogously

||Σ−1||∞ = max
i∈{1,...,min(n,np)}

σ−1
i =

1
σmin(n,np)

.

Finally it is

κ(S) = ||Σ|| · ||Σ−1|| = σ1

σmin(n,np)
.

The condition number of the sensitivity matrix S is a measure for the estimabil-
ity of the parameter vector p. With increasing condition number, the simultaneous
estimability of the chosen parameters decreases. A matrix with a very big condition
number is almost singular. If the system that is solved in parameter estimation with,
e.g. the Gauss-Newton method (see Section 4.3), the system can be become numer-
ically seen singular and the method cannot be successful. As limit for the condition
number κmax ≈ 103 has proved to be reasonable [31]. In chemical applications typical
values of the maximal subcondition range between 10−1 and 10−3 [61].

The calculation of the condition is theoretically more satisfactory, but computa-
tionally more expensive [18] than the method that is presented in the following [31].

The triangularization of a nonsymmetric matrix by means of certain unitary trans-
formations (by Householder, see e.g. [21]), is given by (see e.g. [20]):

Lemma 4.5. If S is an arbitrary (n×np)-matrix, then there is an orthogonal (n×n)-
matrix Q (the product of Housholder matrices) and an upper triangular (n×np)-matrix
R such that

S = Q ·R. (4.13)
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Definition 4.7. The factorization of S in Lemma 4.5 is called QR decomposition.

Define the diagonal elements of R by rj := rjj , j = 1, . . . ,min(n, np). By means
of a suitable transformation, a column permutation strategy (see e.g. [21]) with the
permutation matrix Π, the diagonal elements of the matrix R can be arranged such
that |r1| ≥ · · · ≥ |rmin(n,np)|:

S ·Π = Q ·R.

By multiplication with Π, a ranking of the corresponding parameters with respect to
increasing subcondition is obtained:

(p1, . . . , pnp) ·Π =: (pi1 , . . . , pinp ).

Definition 4.8. The subcondition sc of the matrix S is defined by the ratio of the
biggest to the smallest diagonal element:

sc(S) :=

∣∣∣∣∣ r1

rmin(n,np)

∣∣∣∣∣ .
The subcondition sc has similar properties as the condition number κ.

Lemma 4.6. Let S be an arbitrary matrix. Among the condition number κ(S) and
the subcondition sc(S) the relation

sc(S) ≤ κ(S)

holds [20].

The subcondition depends on the number of parameters that must be estimated
and on the number of elements and measure time points. The subcondition of a part
matrix of the sensitivity matrix, S′ := (sij)i=1,...,n′,j=1,...,n′p , for a smaller number of
model parameters (n′p ≤ np) and for a smaller number of elements (n′ ≤ n) is always
smaller than the subcondition of the original matrix S = (sij)i=1,...,n,j=1,...,np .

Lemma 4.7. Let S := (sij)i=1,...,n,j=1,...,np be a (n × np)-matrix, Π := (πij)i,j=1,...,np

the permutation matrix such that S ·Π = Q·R, where Q := (qij)i,j=1,...,n orthogonal and
R := (rij)i=1,...,n,j=1,...,np upper triangular with decreasing diagonal elements. Moreover
define S′ := (s′ij)i=1,...,n′,j=1,...,n′p, a (n′ × n′p)-matrix with n′p ≤ np and n′ ≤ n, by

s′ij :=
np∑
k=1

sik · πkj , i = 1, . . . , n′, j = 1, . . . , n′p.

Then it follows

sc(S′) ≤ sc(S).
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Proof. It is S · Π = Q · R and S′ = Q′ · R′, where Q′ =: (qij)i,j=1,...,n′ and R =:
(rij)i=1,...,n′,j=1,...,n′p . It holds

sc(S′) =
|r1|

|rmin(n′,n′p)|
≤ |r1|
|rmin(n,np)|

= sc(S ·Π) = sc(S).

The sequence of parameters that arises that way can be regarded as classification
for their estimability which decreases with increasing subcondition.

4.2.6 Result of the sensitivity analysis for GynCycle

A list of the parameters ordered by model parts can be found in the appendix. The
parameters that are sensitive, i.e. if the subcondition is smaller than the maximal
subcondition 103, are marked. With these parameters, parameter estimation can be
started.

The number of sensitive parameters within one model part varies, the percentage
of sensitive parameters seems to be higher if the total number of parameters is small.
Note that there are always parameters from the direct equations that belong to the
most sensitive ones.

4.3 Parameter estimation

In the precedent sections, the numerical solution and the determination of sensitive
parameters are presented. In this section, it is shown how the sensitive parameters
can be estimated in order to optimize the simulation result. Here the Gauss-Newton
method for nonlinear least-squares problems is used. More precisely, parameter estima-
tion is done by means of the software NLSQ ERR (Deuflhard and Nowak, 2004). This
software solves nonlinear least-squares problems with a global unconstrained Gauss-
Newton method with error oriented convergence criterion and adaptive trust region
strategies (see also [18]). Alternatively, NLSQ RES (global unconstrained Gauss-
Newton method with a convergence criterion based on a projected residuum; by Deu-
flhard and Nowak, 2004) or NLSCON (older; for global constrained (or unconstrained)
Gauss-Newton method with error oriented convergence criterion; by Nowak, Weimann,
and Deuflhard, 1993) can be used.

4.3.1 Least-squares formulation

The least-squares formulation for the parameter estimation of GynCycle with the
Gauss-Newton method (see e.g. [20]) is presented. The goal is to determine the
parameter vector p ∈ Rnp , which arises within the solution y(·; p) of GynCycle (see Eq.
(4.1)) or of a model part, such that it fits given measurements yexp in a least-squares
sense.

Data are given for the set of experimental data V exp (see Chapter 3) at the measure
time points Tl, l = 1, . . . , N (see Section 4.2). In the following set n′ := N · nt.
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Since the parameters enter nonlinearly in y, a nonlinear least-squares problem of
the general form

min
p∈D

g(p)

is given, where g(p) := ||F (p)||22. It is F : D → Rn′ , F =: (Fi)i=1,...,N ·nt , a twice
continuously differentiable function F ∈ C2(D) on an open set D ⊂ Rnp with

F(l−1)·nt+k(p) :=
yil(tk; p)− y

exp
l,k

ywgtl,k

, ∀l = 1, . . . , N, k = 1, . . . , nt.

Here it is D := R+ and the weights are defined as follows:

ywgtl,k := ||{yexpl,1 , . . . , y
exp
l,np
}||22, l = 1, . . . , N, j = 1, . . . , np.

4.3.2 Gauss-Newton method

In this section the Gauss-Newton method (see e.g. [20]) is presented.
Sufficient conditions for a local minimum p∗ where g(p∗) = minp∈D g(p) are g′(p∗) =

0 and g′′(p∗) positive definite. Since it holds g′(p) = 2 ·F ′(p)T ·F (p), the problem can
be formulated as follows

G(p) := F ′(p)T · F (p) = 0.

This system of np nonlinear equations must be solved. Thereby it holds for l = 1, . . . , N
and j = 1, . . . , np

∂F(l−1)·nt+k(p)
∂pj

=
1

ywgtl,k

· ∂yil(tk; p)
∂pj

=
1

ywgtl,k

· sabsil,j(tk; p) =
1

ywgtl,k

· s∗,abs(l−1)·nt+k,j .

Note the connection to the sensitivity analysis. This nonlinear system of equations
can now be solved numerically by appliance of the Newton method. The iteration
instruction is for k′ ∈ N0 and initial value p(0)

G′(p(k′)) ·∆p(k′) = −G(p(k′)).

Differentiation of G with respect to p leads to

G′(p) = F ′(p)T · F ′(p) + F ′′(p)T · F (p).

It holds for l = 1, . . . , N and j, j′ = 1, . . . , np

∂2F(l−1)·nt+k
∂pj∂pj′

=
1

ywgtl,k

· ∂
2yil(tk; p)
∂pj∂pj′

=
1

ywgtl,k

·
δsabsil,j(tk; p)

δpj′
.
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Under the above assumption, G′(p) is positive definite in a vicinity of p∗ and thus in-
vertible. Assume that the model and data are approximately compatible, i.e. F (p∗) ≈
0. Moreover it holds in a vicinity of p∗, p ∈ U(p∗)

F (p) ≈ 0

and therefore

G′(p) ≈ F ′(p)T · F ′(p).

That way the costly calculation of F ′′(p) can be avoided. Therefore as simplification
for the (k′ + 1)-th step it is obtained

F ′(p(k′))T · F ′(p(k′)) ·∆p(k′) = −F ′(p(k′))T · F (p(k′)).

That in turn are the normal equations of the linear least-squares problem

min
p∈D
||F ′(p) ·∆p+ F (p)||22,

where it follows

F ′(p) ·∆p+ F (p) = 0.

The solution for the k′-th step results then in

∆p(k′) = −F ′p(k′))+ · F (p(k′)),

p(k′+1) = p(k′) + ∆p(k′),

where F ′(p(k′))+ denotes the pseudo-inverse (in the case of NLSQ ERR outer inverse)
of F ′(p(k′)):

F ′(p(k′))+ = (F ′(p(k′))T · F ′(p(k′)))−1 · F ′(p(k′))T .

In the global case it would be

p(k′+1) = p(k′) + λk′ ·∆p(k′), 0 < λk′ ≤ 1.

With aid of the QR decomposition the equation

F ′(p(k′)) ·∆p(k′) = F (p(k′))

is solved.
The numerical solution of the original nonlinear least-squares problem therefore is

reduced to the numerical solution of a sequence of linear least-squares problems.
The main costs consist in the calculation of the Jacobian matrix F ′(p). This

contains all derivations of F with respect to the parameter vector p and therefore
it is identical with the special sensitivity matrix S.

If this is calculated, ∆p(k′) can be determined and the procedure for the determi-
nation of the optimal parameter vector can be continued with p(k′+1).
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4.3.3 Result of the parameter estimation for GynCycle

The parameter values are given in the appendix.

4.4 Simulation and comparison with experimental data

The parameter estimation for the model parts is conducted. Then the model parts
are recomposed and last adaptions are done manually. Then the parameters that are
needed for GynCycle are available and simulations of GynCycle are possible.

The simulation results are not shown for all 50 elements, especially comparison with
experimental data is only possible for N = 12 of them. Additionally, the simulations
of the GnRH concentration and of the follicular masses are plotted. The simulations
visualize the dynamics over five cycles of length 31 d. The experimental data that are
used for comparison with the simulation results can be found in the appendix.

GnRH pulse frequency

The simulation of the GnRH pulse frequency is shown in Fig. 4.2.
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Figure 4.2: Simulation of the GnRH pulse frequency (blue solid: simulation result,
light blue solid: interpolation of experimental data).

The increase of the pulse frequency in the first half of the cycle is reproduced by
the model as the simulation shows, as well as the decrease in the second half. The
constant phase with the typical pulse frequency of one pulse every 90 minutes is not
given. Since the frequency is assumed to be relatively low in the end of the cycle and
relatively high at the beginning of the cycle, the transition should be similar to the
simulations even if the experimental data tell otherwise.
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GnRH concentration in the pituitary portal system

The simulations of the GnRH concentration is shown in Fig. 4.3.
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Figure 4.3: Simulation of the GnRH concentration in the pituitary portal system.

The pulsatile character is clearly recognizable.

LH concentration in the blood

The simulation of the LH blood concentration is shown in Fig. 4.4.
The most important characteristic is the peak at mid-cycle. During the remaining

cycle, the concentrations is comparatively small and constant. The simulation shows
that the model can reproduce these characteristics.

FSH concentration in the blood

The simulation of the FSH blood concentration is shown in Fig. 4.5.
In the first half of the cycle there is first an increase, then a decrease of the concen-

tration. At mid-cycle there is a peak, even though not as distinctive as in the case of
LH. In the second half there is first decrease and then increase. The simulation shows
that GynCycle is able to reflect the FSH dynamics.

Follicular masses in the ovaries

The simulations of the follicular masses are shown in Fig. 4.6.
One would except that the maxima of the phases should occur consecutively within

one cycle:

arg(max
t

(Fs(t))) < · · · < arg(max
t

(La(t)))
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Figure 4.4: Simulation of the LH blood concentration (blue solid: simulation result,
blue points: experimental data [37, 58], light blue solid: interpolation of experimental
data).
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Figure 4.5: Simulation of the FSH blood concentration (blue solid: simulation result,
blue points: experimental data [37, 58], light blue solid: interpolation of experimental
data).

which is given here. The mass of Fg should be larger and there is growth in the luteal
phase which is not reproduced by the simulations. Note that the equations for y11



120 CHAPTER 4. SIMULATION OF GYNCYCLE

0 50 100 150
0

200

400

600

800

1000

1200

1400

1600

time (d)

fo
lli

cu
la

r 
m

as
se

s

F
s

F
t

F
g

M
o

M
l

L
e

L
m

L
l

Figure 4.6: Simulation of the follicular masses at the different phases.

and y12 has been modified for the benefit of a better simulation result. The term
p66 · y10(t− p64)p68 · y11(t) is adapted to the term in the corresponding equations of the
basic compartment model:

p66 · y8(t− p70)p68 · y11(t).

Progesterone concentration in the blood

The simulation of the progesterone blood concentration is shown in Fig. 4.7.
The concentration is low in the first half of the cycle (follicular phase), then there

is a peak in the second half of the cycle, finally the concentration declines. This is well
represented by the simulations.

Estradiol concentration in the blood

The simulations of the estradiol blood concentration is shown in Fig. 4.8.
There is an increase in the first half of the cycle, then there is a peak approximately

one day before mid-cycle (the peak of LH). There is a second, smaller peak in the
second half of the cycle, then the concentration declines. This is well represented by
the simulations.

17α-Hydroxypregnenolone concentration in the blood

The simulation of the 17α-hydroxypregnenolone blood concentration is shown in Fig.
4.9.
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Figure 4.7: Simulation of the progesterone blood concentration (blue solid: simula-
tion result, blue points: experimental data [37, 58], light blue solid: interpolation of
experimental data).
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Figure 4.8: Simulation of the estradiol blood concentration (blue solid: simulation
result, blue points: experimental data [37, 58], light blue solid: interpolation of exper-
imental data).

The dynamics of 17α-hydroxypregnenolone is not given by experimental data, only
a range. Similar dynamics as the one of 17α-hydroxyprogesterone (see Fig. 4.10) are
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Figure 4.9: Simulation of the 17α-hydroxypregnenolone blood concentration (blue
solid: simulation result, light blue solid: interpolation of experimental data).

assumed which is well reproduced by the simulations.

17α-hydroxyprogesterone concentration in the blood

The simulation of the 17α-hydroxyprogesterone blood concentration is shown in Fig.
4.10.

The dynamics of 17α-hydroxyprogesterone are qualitatively comparable to the one
of progesterone, there is a peak in the second half of the cycle. The model can reproduce
quite well the dynamics of 17α-hydroxyprogesterone given by experimental data.

DHEA, androstenedione, and testosterone concentrations in the blood

The simulation of the DHEA blood concentration is shown in Fig. 4.11, the simulation
of the androstenedione blood concentration in Fig. 4.12, and the simulation of the
testosterone blood concentrations in Fig. 4.13.

The dynamics of the DHEA, androstenedione, and testosterone blood concentra-
tions are not reproduced. Since no other element is dependent on neither the DHEA
nor the androstenedione nor the testosterone blood concentration, this is negligible
for the time being. The dynamics of estrone and estradiol are well reproduced which
suggests that the simulations for DHEA, androstenedione, and testosterone represent
intermediate steps of the biosynthesis of the steroids. The model GynCycle should
be improved to describe the dynamics of DHEA, androstenedione, and testosterone
adequately.
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Figure 4.10: Simulation of the 17α-hydroxyprogesterone blood concentration (blue
solid: simulation result, blue points: experimental data [48], light blue solid: interpo-
lation of experimental data).
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Figure 4.11: Simulation of the DHEA blood concentration (blue solid: simulation re-
sult, blue points: experimental data [48], light blue solid: interpolation of experimental
data).

Estrone concentration in the blood

The simulation of the estrone blood concentration is shown in Fig. 4.14.
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Figure 4.12: Simulation of the androstenedione blood concentration (blue solid:
simulation result, blue points: experimental data [48], light blue solid: interpolation
of experimental data).
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Figure 4.13: Simulation of the testosterone blood concentration (blue solid: sim-
ulation result, blue points: experimental data [48], light blue solid: interpolation of
experimental data).

There is an increase in the first half of the cycle, then there is a peak approximately
one day before mid-cycle (the peak of LH). There is a second, smaller peak in the second
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Figure 4.14: Simulation of the estrone blood concentration (blue solid: simulation re-
sult,blue points: experimental data [48], light blue solid: interpolation of experimental
data).

half, then the concentration declines. This is quite well reproduced by the simulations.

Inhibin concentration in the blood

The simulation of the inhibin blood concentration is shown in Fig. 4.15.
In the case of the inhibin concentration there is first a small peak at mid-cycle and

a larger one in the second half of the cycle. Then the concentration decreases. Both
characteristics are given even if the first peak is too small in the simulation.

4.5 Summary

A numerical integrator, RADAR5, is chosen for this problem and the sensitive pa-
rameters are optimized for each model part. Simulations of the complex model are
possible after recomposition of the model parts. The modeling could be proceeded, for
example, the modeling of the steps around DHEA, androstenedione, and testosterone
could be improved.

The utilization of delays shows another advantage: the length of the cycle can be
varied by modifying the delay values (but other parameters have influence on the cycle
length as well). This is necessary for a flexible model, especially since individual cases
should be simulated.

For now the focus is on the qualitative result in view of first applications. The
quantitative result becomes important when considering real, individual data.
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Figure 4.15: Simulation of the inhibin blood concentration (blue solid: simulation
result, blue points: experimental data [37, 58], light blue solid: interpolation of exper-
imental data).



Chapter 5

Applications of GynCycle

The premises for the simulation of GynCycle are established in Chapter 4. The simula-
tions show that the model is able to reproduce the dynamics of essential characteristics
of the female menstrual cycle. Thus it is appropriate to deal with applications of Gy-
nCycle which is done in this chapter.

More precisely, some approaches for the modeling of hormonal manipulations of
the cycle are presented. First some models for hormonal contraceptives are introduced
and simulations are shown in Section 5.1. Then the case that GnRH is administrated
continuously is treated in Section 5.2. The results are summarized in Section 5.3.

5.1 Modeling the effects of hormonal contraceptives

Hormonal contraceptives belong to the most important and effective methods to avoid
pregnancy [45]. Worldwide there are over 60 million women taking regularly the birth
control pill, an oral hormonal contraceptive [27, 50]. The number of general contracep-
tive users is even higher (already in 1990 there were about 384 million [28]). Moreover
hormonal contraceptives can be used, for example, therapeutically for the regulation
of the cycle [45].

There are different types of hormonal contraceptives. Here it is distinguished be-
tween the way the intake or the administration takes place. That means that it is
examined on the one hand which compartments are affected and on the other hand
whether the administration occurs continuously, i.e. at a constant rate, or whether the
hormones are administered or taken at certain time points. There are further hormonal
methods, which act locally (i.e. at the cervix uteri or the endometrium). However,
these are not treated in this context.

As first group of hormonal contraceptives those are counted that are administered
non-orally and continuously and which affect mainly the blood compartment (and
possibly the skin or muscles):

• Subdermal implants [24]. One or more flexible rods containing a gestagen are
implanted under the skin.

• Injections [24]. A gestagen is injected every 12 weeks intramuscular or subcu-
taneous (under the skin). Others are effective for 2 to 5 years. The follicular

127
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maturation and the LH mid-cycle peak are suppressed. Furthermore there are
combined injectables, a monthly injection of a gestagen and an estrogen.

• Contraceptive patch [43]. An adhesive patch containing a gestagen and an es-
trogen is applied to the skin and worn continuously. It is changed each week for
three weeks and removed for one week.

The oral contraceptives (“birth control pill”), hormonal contraceptives that are
taken orally, are gathered in a second group. Those are taken usually once a day and
affect among other things the compartments stomach, intestine, blood, and liver:

• Combined oral contraceptives [24]. The tablets contain an estrogen component
(usually ethinylestradiol) and a gestagen component. Each tablet contains the
same amount of the gestagen and of the estrogen. The intake occurs e.g. for 21
days followed by a break of 7 days (there are combined oral contraceptives that
are taken without break [25]).

• Bi- or triphasic oral contraceptives [45]. The tablets contain, as the combined
oral contraceptives, an estrogen component and a gestagen component, but they
are taken in two (three) phases where the doses of gestagen and estrogen differ,
e.g. 11 days phase 1, 10 days phase 2, 7 days break.

• Progestogen only pill (“mini pill”) [45]. The tablets only contain a gestagen
component. They are taken without break. The ovulation is not suppressed
since the amount of hormone is low. The mini pill acts at the cervix uteri and
the endometrium.

The action of hormonal contraceptives primarily consists in the suppression of
ovulation [45]. There are exceptions as e.g. the progestogen only pill which comes in
small doses and acts differently. The suppression of the ovulation is mainly due to
the gestagen component and is amplified by an estrogen component. Additionally the
estrogen results in a significant improvement of the regulation of the cycle.

Furthermore the secretion of FSH and LH is inhibited [45], in particular, the mid-
cycle peak of LH is suppressed. The mid-cycle peak of LH is essential for the ovulation
but can only result in the release of the ovum if there is a Graafian follicle that can
become an ovulatory follicle (see Chapter 2). In GynCycle the suppression of the
ovulation can be modeled via the suppression of the follicular mass at ovulation. If
the mass of ovulation is low, i.e. below a critical value, it can be said that ovulation
does not occur.

Usually ethinylestradiol (EE) is used as estrogen which is a pharmacological variant
of E2 and amplifies the action of E2 [45]. The gestagens that are orally effective can be
divided into three groups due to their structure (derivates of 17α-hydroxyprogesterone,
norethisterone, and norgestrel) [45]. They differ in their potency to inhibit ovulation
[26].

Drugs are in general not well-mixed in the body. Thus it is adequate to regard the
body as a build-up of compartments [44] which is also described in Chapter 1. Here
it is assumed that each of these compartments has a well-defined volume and that the
drug that is taken or administered is well-mixed within these compartments [44].
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First two simple modeling approaches for the effect of extraneous gestagen and
estrogen are discussed. Then the representations of the different types of the hormonal
contraceptives by model equations and their connection to GynCycle are shown and
exemplary simulations are visualized.

5.1.1 Simple approaches

The dynamics of the elements in GynCycle that are dependent on progesterone (P4) and
estradiol (E2) are influenced by the gestagen and estrogen components as well. Suppose
that the concentrations of the gestagen and the estrogen components are constant.
Denote the constant gestagen component concentration by dGC where [dGC ] = [P4]
and the constant estrogen component concentration by dEC where [dEC ] = [E2]. Then
it follows for the dynamics in the hypothalamus and pituitary of the elements that are
dependent on P4 and E2 (i.e. GnRHfreq, PLH , LH, PFSH , and FSH):

d

dt
yi = fi(P4 + θGC · dGC , E2 + θEC · dEC), i = 1, 7, . . . , 10,

and dependent on only E2 (i.e. GnRHmass):

d

dt
y2 = f2(E2 + θEC · dEC),

where θGC , θEC ∈ R+ consider the potency of the gestagen and estrogen component
compared to P4 and E2, respectively. If the potency of the gestagen component is
comparable to the one of P4, then it is θGC = 1 (for θEC analogously).

In this approach the metabolism of the gestagen and estrogen components is not
considered. Even if the administration is continuous, the concentrations of the gestagen
and estrogen components are not constant until the steady state is reached. Thus this
approach is assessed as not suitable since the simplification is too strong.

A better and still simple approach to consider oral contraceptives in GynCycle is
the addition of constants in the differential equations for E2 and P4 (compare with
Eqs. (2.97) and (2.98) in Chapter 2):

d

dt
P4(t) =

θGC · νGC · βGC · dGC
VB

+
sP4

VB
· prog0(t− τprog)− αP4 · P4(t)

d

dt
E2(t) =

θEC · νEC · βEC · dEC
VB

+
sE2

VB
· estra0(t− τestra)− αE2 · E2(t),

where dGC (with [dGC ] = [P4] · Ld ) and dEC (with [dEC ] = [E2] · Ld ) denote the intake
dose per day of the gestagen and estrogen component, respectively, νGC , νEC ∈ (0, 1]
consider the bioavailability, and βGC , βEC ∈ (0, 1] the fraction that is not bounded to
plasma proteins for the gestagen and estrogen component, respectively. Both compo-
nents are distributed in the blood volume VB. The model equations for the dynamics
in the hypothalamus and in the pituitary are not affected since the concentrations of
the components are added in the equations for P4 and E2:

d

dt
yi = fi(P4, E2), i = 1, 7, . . . , 10.
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Figure 5.1: Single-compartment model (shaded gray) that is integrated in the com-
partmental model of GynCycle.

and

d

dt
y2 = f2(E2).

Here it is assumed that the metabolism (in this case simple clearance) of the endogenous
hormones is comparable to the one of the extraneous components. Thus it may be more
correct to consider the dynamics of the components themselves.

5.1.2 Single-compartment model

In this approach it is assumed that the dose of the hormonal contraceptive has been
taken or administered and has reached the blood compartment. That means that only
the dynamics in the blood compartment are considered (see Fig. 5.1).

The general model equation for the dynamics of the extraneous hormone concen-
tration H(·) can be written as

d

dt
H(t) =

ξH(t)
V (t)

− αH(t;H(t)), H(t0) = 0,

where ξH(·) denotes the intake function, V (·) the volume of the blood compartment,
and αH(·; ·) the clearance function.
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If the hormone is administered at a constant rate dH , the intake function is given
by

ξH(t) := νH · βH · dH , ∀t ≥ t0,

where νH denotes the fraction of bioavailability of the hormone H and βH the fraction
of unbounded molecules.

If the intake occurs at the time point tj > t0, the intake of the hormone H is better
described by

ξH(t) := νH · βH · dH · ψ(t− tj), ∀t ≥ tj , (5.1)

where ψ(·) denotes a probability density, e.g. the Gamma density. If the hormone is
taken at the time points tj , j ∈ N0 (as e.g. in the case of oral contraceptives), the
intake function can be written as

ξH(t) := νH · βH · dH ·
j∑
i=1

ψ(t− ti), t ∈ [tj , tj+1).

For simplicity only the last pulse time point can be considered (compare Chapter 2).
For the clearance it can be assumed for all t ≥ t0 that the hormone is metabolized

linearly (see e.g. [44]) at a constant rate:

αH(t;H(t)) := αH,B ·H(t),

or the enzymatic metabolism can be considered:

αH(t;H(t)) := VH,max ·
H(t)

KM +H(t)
.

Here the volume is assumed to be constant: V (t) := VB for all t ≥ t0. W.l.o.g. set
t0 := 0.

First group: continuous administration

For the gestagen and the estrogen components of, for example, a contraceptive patch
assume a constant administration rate and a constant clearance in the blood:

d

dt
GC(t) =

νGC · βGC · dGC
VB

− αGC ·GC(t), GC(0) = 0

d

dt
EC(t) =

νEC · βEC · dEC
VB

− αEC · EC(t), EC(0) = 0,

where GC(·), EC(·) denote the concentrations of the gestagen component and of the
estrogen component, respectively, dGC , dEC the intake dose per day that is distributed
in the blood volume VB, and that is cleared at the rate αGC , αEC , νGC , νEC the fraction
of bioavailability, and βGC , βEC the fraction of unbounded molecules, respectively.
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If, for example, a contraceptive patch is used for three weeks and then a break of
one week occurs, the equations for the time of the break are given by

d

dt
GC(t) = −αGC ·GC(t)

d

dt
EC(t) = −αEC · EC(t)

i.e. ξGC(t) = 0 and ξEC(t) = 0, the gestagen and estrogen components are cleared
from the blood compartment.

If the hormones are administered without break (e.g. injection or subdermal im-
plants for the period where they are effective), a steady state is reached:

GC∗ =
νGC · βGC · dGC

VB · αGC

EC∗ =
νEC · βEC · dEC

VB · αEC
.

In Fig. 5.2 a simulation is visualized for the case that the hormones are admin-
istered for the first 21 days of a cycle of length 28 and in Fig. 5.3 a simulation is
visualized for the case that the administration is not interrupted. The parameter
values that are used are listed in Table 5.1.
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Figure 5.2: Simulations of the gestagen and estrogen component concentrations (for
example: contraceptive patch (with both components)). Administration is from day
92 for three cycles with length 28 days on the first 21 days of every cycle.

Second group: oral contraceptives

Suppose that the intake rate is not constant, but that there are intake time points and
that the dose is distributed, i.e. a maximum is reached and then the concentration
declines. For simplicity it can be said that the intake time points are given by: tj =
t0 +j, j ∈ N, i.e. every day the dose is taken at the same time (which is recommended).
Then the equations are of the form, t ∈ [tj , tj+1), j ∈ N,
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Figure 5.3: Simulations of the gestagen and estrogen component concentrations (for
example: implants and injections (if both components; otherwise only gestagen com-
ponent relevant)). Administration is from day 92 for 84 days.

d

dt
GC(t) =

νGC · βGC · dGC
VB

· ψ(t− tj)− αGC ·GC(t), GC(0) = 0

d

dt
EC(t) =

νEC · βEC · dEC
VB

· ψ(t− tj)− αEC · EC(t), EC(0) = 0,

where dGC , dEC denote the dose of the gestagen and of the estrogen component,
respectively, and ψ(·) denotes the Gamma distribution. Similar to the GnRH pulse
generator and the resulting GnRH concentration described in Sections 2.2 and 2.3, it
would be more correct to model

d

dt
GC(t) =

νGC · βGC · dGC
VB

·
j∑
i=1

ψ(t− ti)− αGC ·GC(t), GC(0) = 0

d

dt
EC(t) =

νEC · βEC · dEC
VB

·
j∑
i=1

ψ(t− ti)− αEC · EC(t), EC(0) = 0.

Maximum serum concentrations of the gestagen and estrogen components are
reached within 1 to 2 hours after oral intake [45, 26]. Within the break, EE is metabol-
ically cleared [45].

In Fig. 5.4 a simulation for the intake for the first 21 days of a 28-days-cycle and
in Fig. 5.5 a simulation for the intake without break are visualized.

The continuous administration and the intake at discrete time points are compa-
rable which is justified in the following. Denote the dynamics for continuous adminis-
tration by y1(·) with

d

dt
y1(t) = p, y1(0) := 0,
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Table 5.1: Parameter values for the single-compartment
model. On the left: gestagen component; on the right: estro-
gen component.

Name Value Name Value
based on [49] based on [8, 26, 50, 64]

θGC 0.19 θEC 1.9
νGC 0.76 νEC 0.5
βGC 0.05 βEC 0.025
αGC 0.54 1/d αEC 0.95 1/d
dGC 3.0 mg = 3.0 · 3.18 · 103 nmol dEC 30.0 µg = 30.0 · 103 ng
aGC 84.1 aEC 87.0
mGC 2 mEC 2
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Figure 5.4: Simulations of the gestagen and estrogen component concentrations (for
example: combined oral contraceptive (intake with break)). Intake is from day 92 for
three cycles with length 28 days on the first 21 days of every cycle.

and the distributed intake by y2(·) with

d

dt
y2(t) = p · ψ(t), y2(0) := 0,

where p denotes the constant rate (amount per day). Calculation of the amount of
hormone after one day yields

y1(1) = p

and

y2(1) = p ·
∫ 1

0
ψ(s) ds ≈ p.
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Figure 5.5: Simulations of the gestagen and estrogen component concentrations (for
example: combined oral contraceptive (intake without break)). Intake is from day 92
for 84 days.

The amount is smaller in the second case but the difference is negligible if a and m
are chosen as done above. Thus the effects are considered to be similar which can be
assured by the simulation results. Hence the model equations for the first group can
be used as simplification of the model equations for the second group.

Effects on GynCycle

The resulting hormone concentrations that are regulated by oral contraceptives in the
hypothalamus and pituitary (the right hand side is dependent on P4 and E2) are given
by

d

dt
yi = fi(P4 + θGC ·GC,E2 + θEC · EC), i = 1, 7, . . . , 10.

and dependent on only E2:

d

dt
y2 = f2(E2 + θEC · EC),

where θGC and θEC denote the potency of the gestagen component compared to P4

and the potency of the estrogen component compared to E2, respectively.
One example is shown in Figs. 5.6, 5.7, 5.8 (with break), and 5.9, 5.10, 5.11 (with-

out break) where the follicular masses, the follicular mass at ovulation in particular,
and the LH concentration are shown.

It can be observed that the follicular mass is suppressed while taking oral contra-
ceptives. The LH (and FSH) concentration is suppressed during intake as well. If
there is a break after 21 days, the follicular masses are larger than in the case of intake
without break. That is consistent with the fact, the oral contraceptives are indeed
safer if the intake is not interrupted. There are other effects that must be consid-
ered as well when taking oral contraceptives continuously, which is why not every oral
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Figure 5.6: Simulation of the follicular masses (intake 21 of 28 days). Administration
is from day 92 for three cycles with length 28 days.
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Figure 5.7: Simulation of the ovulatory follicular mass (intake 21 of 28 days). Ad-
ministration is from day 92 for three cycles with length 28 days.

contraceptive is suitable for the intake without break. Moreover, the total amount of
hormone that is taken is higher than in the case of the normal intake which cannot
be ignored especially when considering time dependent effects. The difference between
intake with and without break is shown in Fig. 5.12. The higher amount of hormone
that is obtained for the case without break leads to a shift of the cycle in comparison
to the case with break: the “normal” cycle starts later.
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Figure 5.8: Simulation of the LH concentration (intake 21 of 28 days). Administra-
tion is from day 92 for three cycles with length 28 days.
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Figure 5.9: Simulation of the follicular masses (intake without break). Administra-
tion is from day 92 for three cycles with length 28 days.

Modeling an accidental break of intake

Since oral contraceptives are taken as tablets by the users, the possibility that the
intake is missed on one day (or more) of the cycle must be considered. In this case there
is no input for that day which decreases the concentrations of the gestagen and estrogen
components and increases the follicular masses. It is known that the follicular mass at
the ovulatory state can become critical under certain circumstances dependent on the
day of the cycle where this additional “break” occurs and the individual conditions
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Figure 5.10: Simulation of the ovulatory follicular mass (intake without break).
Administration is from day 92 for three cycles with length 28 days.
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Figure 5.11: Simulation of the LH concentration (intake without break). Adminis-
tration is from day 92 for three cycles with length 28 days.

[50]. In Fig. 5.13 an example is shown and compared with the dynamics if the intake
is regular. Indeed the follicular mass at the ovulatory state can become higher already
when one tablet is missed. If the critical value is exceeded, ovulation can occur if the
LH concentration is high enough. This is dependent on the day of the cycle. If the
tablet is not taken on day 1 of the cycle, the follicular mass is significantly increased.
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Figure 5.12: Simulation of the ovulatory follicular mass (intake 21 of 28 days: blue
solid, intake without break: red dashed). Intake is from day 92 for three cycles with
length 28 days.
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Figure 5.13: Simulation of the ovulatory follicular mass (intake 21 of 28 days). Break
of one day during intake in the fourth cycle. Intake is from day 92. blue solid: normal;
red dashdot: not on day 1 of cycle 4.

5.1.3 Multi-compartment models for oral contraceptives

In order to model more realistically, more compartments must be taken into consid-
eration, e.g. the stomach, the intestine, and the liver. The consideration of other
compartments is especially relevant when examing certain processes in other compart-
ments as, for example, adverse effects. Here only possible modeling approaches are
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Figure 5.14: Three-compartment model integrated in the compartmental model of
GynCycle.

presented.

The oral contraceptive is taken and reaches the stomach. Then it leaves the stomach
(assumed at a constant rate) and reaches the intestine where it is distributed in the
volume of the intestine. There it is absorbed within the small intestinal wall [26].
The gestagen component arrives the blood circulation (assumed at a constant rate)
and the estrogen component gets first to the liver. Finally the gestagen component
reaches the liver (assumed at a constant rate) where it is eliminated enzymatically.
The estrogen component reaches the blood through the liver and a re-entry from
the circulation to the intestine and the enzymatic clearance in the liver is possible
(enterohepatic circulation) [26]. Usually the gestagens have a high bioavailability,
but not ethinylestradiol since it undergoes enterohepatic circulation [63, 64]. The
enzymatic metabolism is modeled by use of the Michaelis-Menten mechanism (see
Chapter 1). For the other reactions, simple reaction kinetics are assumed.

For simplicity, first the dynamics are modeled by neglecting the processes in the
liver. The three-compartment model is visualized in Fig. 5.14.

The dynamics of the gestagen component in the stomach (if GCS(0) = 0 and if the
intake time points are at tj , j ∈ N0, tj+1 = tj + 1 with the dose dGC) can be modeled
by

d

dt
GCS,0(t) = − kGC,1 ·GCS,0(t), GCS,0(0) = 0, t ∈ [0, t1]

d

dt
GCS,j(t) = − kGC,1 ·GCS,j(t), GCS,j(tj) = GCS,j−1(tj) + dGC , t ∈ [tj , tj+1],∀j ∈ N.
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Define then for all t ≥ 0

GCS(t) := GCS,j(t), t ∈ [tj , tj+1).

Thus the dynamics of the gestagen component in the stomach, intestine, and blood
can be described for all t ≥ 0 by

d

dt
GCS(t) = − kGC,1 ·GCS(t), GCS(0) = 0

d

dt
GCI(t) =

kGC,1
VI

·GCS(t)− kGC,2 ·GCI(t), GCI(0) = 0

d

dt
GCB(t) =

kGC,2 · VI
VB

·GCI(t)− αGC(t;GCB(t)), GCB(0) = 0,

where kGC,1, kGC,2 ∈ R+ denote the rate constants. Analogous for the estrogen com-
ponent the following system is obtained:

d

dt
ECS(t) = − kEC,1 · ECS(t), ECS(0) = 0

d

dt
ECI(t) =

kEC,1
VI

· ECS(t)− kEC,2 · ECI(t), ECI(0) = 0

d

dt
ECB(t) =

kEC,2 · VI
VB

· ECI(t)− αEC(t;ECB(t)), ECB(0) = 0,

where kEC,1, kEC,2 ∈ R+ denote the rate constants. Then again the concentrations
that are dependent on P4 and E2 are influenced analogously to the single-compartment
model.

If time delays are considered, then it follows, for example, for the gestagen compo-
nent:

d

dt
GCS(t) = − kGC,1 ·GCS(t)

d

dt
GCI(t) =

kGC,1
VI

·GCS(t− τS)− kGC,2 ·GCI(t)

d

dt
GCB(t) =

kGC,2 · VI
VB

·GCI(t− τI)− αGC(t;GCB(t)).

In the four-compartment model, additionally the liver is incorporated. Then it is
necessary to distinguish between the gestagen and estrogen component. Two possibil-
ities of the four-compartment model are visualized in Figs. 5.15 and 5.16. In the first
case, high bioavailability can be expected, which is the case for the gestagens. In the
second case, because of this first-pass effect (due to the enterohepatic circulation), the
bioavailability is diminished, which is the case for EE. The bioavailability is modeled
here directly, thus no additional parameter ν is necessary.
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Figure 5.15: Four-compartment model for the gestagen component integrated in the
compartmental model of GynCycle.

Then the mathematical model for the gestagen component is given by

d

dt
GCS(t) = − kGC,1 ·GCS(t)

d

dt
GCI(t) =

kGC,1
VI

·GCS(t)− kGC,2 ·GCI(t)

d

dt
GCB(t) =

kGC,2 · VI
VB

·GCI(t)− kGC,3 ·GCB(t)

d

dt
GCL(t) =

kGC,3 · VB
VL

·GCB(t)− αGC(t;GCL(t)),

where GCS(·) is defined as above. Analogously the mathematical model for the estro-
gen component is given by

d

dt
ECS(t) = − kEC,1 · ECS(t)

d

dt
ECI(t) =

kEC,1
VI

· ECS(t) +
kEC,3 · VL

VI
· ECB(t)− kEC,2 · ECI(t)

d

dt
ECB(t) =

kEC,4 · VL
VB

· ECL(t)− kEC,5 · ECB(t)

d

dt
ECL(t) =

kEC,2 · VI
VL

· ECI(t) +
kEC,5 · VB

VL
· ECB(t)

− (kEC,3 + kEC,4) · ECL(t)− αEC(t;ECL(t)),

where ECS(·) is defined as above.
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Figure 5.16: Four-compartment model for the estrogen component (with enterohep-
atic circulation) integrated in the compartmental model of GynCycle.

5.2 Administration of GnRH

The GnRH pulse generator is an essential element in the human menstrual cycle (see
Chapter 2). If it fails or if GnRH is administered, the cycle is disturbed.

If GnRH is administrated, it is expected that the GnRH receptors are desensitized.
In GynCycle, three states for the GnRH receptors are assumed: free, complex, and
desensitized. The total receptor concentration (sum of free, complex, and desensitized)
is not constant but depends on the GnRH concentration. As a reminder, the equations
(see Chapter 2) that are directly affected by a continuous administration of GnRH are
listed:

d

dt
GnRH(t) = dG +

bGnRH
VPPS

+
MGnRH,j

VPSS
· ψ(t− Tj)

− βGnRH ·GnRH(t) ·RGnRH(t)− αGnRH ·GnRH(t)
d

dt
RGnRH(t) = r4 ·

TGnRH −GnRH(t)
TGnRH +GnRH(t)

+ r3 ·RGnRH -d(t)

− r1 ·GnRH(t) ·RGnRH(t)
d

dt
(GnRH-RGnRH)(t) = r1 ·GnRH(t) ·RGnRH(t)− r2 · (GnRH-RGnRH)(t)

d

dt
RGnRH -d(t) = r2 · (GnRH-RGnRH)(t)− r3 ·RGnRH -d(t),

where dG denotes the amount of GnRH that is administered.
In Figs. 5.17 and 5.18 one example for the administration of GnRH and its effect

on the percentage of desensitized receptors is shown. In can be clearly seen that
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Figure 5.17: The percentage of desensitized GnRH receptors if GnRH is administered
(start: on day 30, duration: 30 d, cycle: 5/10).

0 10 20 30 40 50 60 70 80 90
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

time (d)

pe
rc

en
ta

ge
 o

f d
es

en
si

tiz
ed

 G
nR

H
 r

ec
ep

to
rs

Figure 5.18: The percentage of desensitized GnRH receptors if GnRH is administered
(start: on day 30, duration: 30 d, without break).
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the percentage of the desensitized GnRH receptors in the periods where GnRH is
administered is increased. The calculation of the limit for the percentage of the GnRH
receptors (if GnRH(·) is assumed fix) yields

lim
dG→∞

lim
t→∞

RGnRH -d(t)
RGnRH(t) + (GnRH-RGnRH)(t) +RGnRH -d(t)

=
r2

r2 + r3
,

i.e., with the values given in the appendix, there is a limit percentage of approximately
75% which is consistent with the simulations.

5.3 Summary

Some approaches to model the effects of hormonal contraceptives are presented and
shown for the case of GynCycle. It is advantageous to model the dynamics of the
gestagen and estrogen components separately instead of including them into the pro-
gesterone and estradiol dynamics. The result of the simulations is the suppression of
the follicular mass at ovulation and of the LH (and FSH) concentration. The adminis-
tration of GnRH results in a higher percentage of desensitized GnRH receptors which
is expected.
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Conclusion

GynCycle is a complex mathematical model for the female menstrual cycle and de-
scribes the dynamics of 49 hormones, enzymes, receptors (partly at different states
and in different compartments), follicular masses, and the GnRH pulse generator. The
simulation of this model correctly mimics the qualitative dynamics for essential el-
ements in comparison with the given experimental data. Some first applications to
medical treatments lead to realistic results confirming the functionality of the model
and thus justify its use for medical investigation.

In order to simplify parameter estimation, a method for the decomposition into sev-
eral model parts has been developed in this thesis. Moreover, the numerical solution of
the stochastic pulse generator that is coupled with a system of delay differential equa-
tions in GynCycle has been integrated into RADAR5, a solver for stiff delay differential
equations.

For special medical questions, it might be inevitable to couple GynCycle with other
physiological models, for example, when other factors such as (mal)nutrition or top
level competitive sports play an important role. On the other side, the full model
should certainly be reduced as soon as it is intended as part of larger packages, e.g.
optimization cycles.

Last, but not least, parameter values for GynCycle have been estimated on the basis
of averaged data in this thesis. Thus GynCycle represents a “virtual”, healthy woman
with a “virtual” cycle length. In order to simulate the individual case, which will be
the ultimate goal of such a model, individual data will be necessary and parameter
values must be adapted individually.
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Appendix

Experimental data

First some general remarks are made about experimental data for the human menstrual
cycle that are found in the literature. Then the sources that are used for comparison of
the different experimental data are defined. If there are several sources for one element,
the different sources are compared in a plot. Finally the sources that are chosen for
comparison with simulations of GynCycle are listed.

When doing research of experimental data in the literature, two points must to
mentioned:

• The quality of the experimental data varies.

• The various sources are partly inconsistent with one another.

In the case of the human menstrual cycle, values of high precision from a clinical study
with many subjects can be available as well as ranges of values for different phases of
the cycles without reflecting the dynamics for the different days of the cycle. When
presenting the experimental data, inconsistencies are remarked.

The following sources are used for comparison of the experimental data:

• Source 1:
Table A.1 in [37] (values estimated from plot in [58])
33 normal women (serum concentration)

• Source 2:
[48] (estimated from plot)
5 normal women (serum concentration)

• Source 3:
Fig. 13-7 in [32], p. 442 (values estimated from plot)
9 normal women (serum concentration)

• Source 4:
[34] (estimated from plot)
6 normal women (plasma concentration)

The term “normal women” means in general healthy women of age between 18 and 40
with a regular cycle. The values are estimated from a plot. Thus errors in the values
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may occur. Since in particular the qualitative result instead of a hundred percent
correct solution (which would be left to define since the cycle varies from woman to
woman), the values estimated from the plot can be used for comparison. The data
from the different cycles might vary in cycle length or the cycle length is not even
defined (values around the mid-cycle peak and around the menses might be given).
The different sources of experimental data are shown for LH in Fig. 5.19, for FSH in
Fig. 5.20, for P4 in Fig. 5.21, for E2 in Fig. 5.22, and for 17α-hydroxyprogesterone in
Fig. 5.23. Even if the values can vary, qualitative similarities are detectable.
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Figure 5.19: Experimental data for the LH concentration (source 4 uses IU/L as
unit, thus the conversion factor is adjusted to the data from source 1 since focus is on
the qualitative course).

Finally for comparison with the simulations, source 1 (see Table 5.2) is chosen for
LH, FSH, P4, E2 and source 2 (see Table 5.3) for 17prog, DHEA, andro, test, and
estro. For the GnRH pulse frequency see Table 5.4 and Table 5.5. For 17preg no daily
values have been found (see Table 5.6). The abbreviations that are used are listed in
Table 5.7.

The values from source 1 are used for LH, FSH, Ih, P4, and E2 since they are the
best available (plots quite accurate, many subjects). The values are given for 31 data
points. The data for E2, P4, and Ih are decreasing on day 30 but are still larger than
the values on day 0. Hence, it is assumed that the period is (at least) 31 days and that
the value of day 31 is the same as on day 0 [74].

In source 2, values are given around the menses and the mid-cycle peak of LH, no
length of the cycle is defined. Here a length of 31 days is assumed and thus the values
matched to this cycle.

Concerning the experimental data, the following is also remarked:

• Since the values in [37] are estimated from the plots in [58], the accuracy of the
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Table 5.2: Experimental data for LH, FSH, Progesterone,
Estradiol, and Inhibin (source 1).

Day LH FSH P4 E2 Ih
[µg/L] [µg/L] [nmol/L] [ng/L] [U/L]

0 25.34 142.5 1.2 56.387 297.9
1 28.74 158.3 0.4 49.168 284.1
2 29.36 175.1 1.2 51.3653 313.8
3 33.71 168 1.113 53.5627 308.7
4 34.29 179.1 1.2 55.76 299.3
5 36.78 180.6 0.8 61.494 298.7
6 37.35 177.3 0.933 67.228 302.2
7 38.88 177 0.8 72.962 301.5
8 38.52 166.1 0.533 78.696 339.8
9 35.28 153.4 0.533 92.67 352
10 38.71 144.4 0.667 104.3 329.7
11 34.54 134.5 0.533 143.04 346.3
12 37.02 118.9 0.667 181.75 388.8
13 56.62 116.6 0.933 231.05 461.7
14 142.9 155.3 1.33 296.92 625.4
15 369.2 325.4 2.933 248.43 745.8
16 124 210.7 6 123.4 636.9
17 44.63 138.9 12.667 93.76 584.2
18 41.39 127.1 25.067 114.82 778.3
19 34.32 118.2 37.067 133.5 993.9
20 29.18 107.3 42.667 149.85 1279
21 21.18 101.2 51.867 155.57 1486
22 17.95 86.53 53.2 174.28 1632
23 16.64 81.36 49.867 178.83 1597
24 13.38 75.29 40 162.19 1440
25 12.02 76.79 33.3333 149.06 1154
26 13.54 82.1 22.667 130.04 919.5
27 16.02 91.23 14.667 112.23 711.1
28 16.56 100.4 11.733 92.044 675.8
29 24.72 121.9 7.33 75.373 532.2
30 28.2 133.9 4.667 66.983 423.4
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Table 5.3: Experimental data for 17α-Hydroxyprogesterone,
DHEA, Androstenedione, Testosterone, and Estrone (source
2; adjusted to a 31-days-cycle).

Day 17prog DHEA andro test estro
[pg/mL] [ng/mL] [ng/mL] [pg/mL] [pg/mL]

0 155 6.45 · 103 1.10 · 103 245 55
1 180 5.30 · 103 0.60 · 103 210 55
2 190 6.45 · 103 1.30 · 103 290 70
3 165 5.90 · 103 1.10 · 103 230 70
4 − − − − −
5 − − − − −
6 − − − − −
7 220 5.30 · 103 1.15 · 103 270 70
8 200 4.10 · 103 1.20 · 103 275 75
9 210 5.30 · 103 1.35 · 103 305 80
10 305 7.65 · 103 1.45 · 103 300 85
11 295 7.65 · 103 1.60 · 103 290 80
12 230 5.30 · 103 1.45 · 103 265 115
13 325 5.90 · 103 1.75 · 103 305 135
14 510 5.90 · 103 1.85 · 103 355 180
15 980 5.30 · 103 1.85 · 103 390 205
16 880 5.90 · 103 1.65 · 103 415 140
17 700 5.30 · 103 1.20 · 103 320 90
18 1105 5.90 · 103 1.15 · 103 290 85
19 1030 3.55 · 103 0.90 · 103 235 80
20 1190 4.10 · 103 0.85 · 103 220 90
21 1200 5.30 · 103 0.90 · 103 240 110
22 1040 5.90 · 103 0.90 · 103 260 115
23 890 5.90 · 103 1.25 · 103 240 115
24 − − − − −
25 − − − − −
26 − − − − −
27 − − − − −
28 510 4.70 · 103 1.30 · 103 230 85
29 235 4.70 · 103 0.90 · 103 235 80
30 220 4.10 · 103 1.05 · 103 220 60
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Table 5.4: Experimental data for the GnRH pulse frequency. The frequency is counted
between day-1 and day. It is pulse frequency = 1/length of intervals between pulses.

Phase Days [d] Frequency [1/d] Source
F 1 - 14 16 - 18 90 min (F) [9],

90 min (F) [45],
80 min (EF) ([86], Table 7-2)

LF 15 - 16 24 - 48 30 min (O) ([45], Fig. 1.6, LH),
< 80 min, 53 min (LF)
([86], p. 197, Table 7-2, LH)

EL 17 - 21 6 - 12 2 - 4 h (EL) [9],
120 min (EL) ([45], Fig. 1.6)

ML 22 - 26 4 - 6 4 - 6 h (ML) [9],
177 - 395 min (ML) ([86], p. 197, Table 7-2, LH),
240 min (L) [45]

LL 27 - 31 2 - 3 8 - 12 h (LL) [9]

Table 5.5: Experimental data for the GnRH pulse frequency.

Day 1 2 3 4 5 6 7 8 9 10
Lower bound 16 16 16 16 16 16 16 16 16 16
Upper bound 18 18 18 18 18 18 18 18 18 18

Day 11 12 13 14 15 16 17 18 19 20
Lower bound 16 16 16 16 24 24 6 6 6 6
Upper bound 18 18 18 18 48 48 12 12 12 12

Day 21 22 23 24 25 26 27 28 29 30 31
Lower bound 6 4 4 4 4 4 2 2 2 2 2
Upper bound 12 6 6 6 6 6 3 3 3 3 3

Table 5.6: Experimental data for 17α-Hydroxypregnenolone.

Source Phase Conv. Unit [ng/dL] SI Unit [nmol/L] Conv. Factor
[32] (appendix) serum A 530− 3570 1.6− 10.7 0.0307
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Figure 5.20: Experimental data for the FSH concentration (sources 3 and 4 use IU/L
as unit, thus the conversion factor is adjusted to the data from source 1 since focus is
on the qualitative course).
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Figure 5.21: Experimental data for the P4 concentration.

data is possibly not as high as the values may promise.

• The return from low to high (LH) pulse frequency is quite rough, a smoother
transition is possible but the rough one as well ([86], p. 194).
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Figure 5.22: Experimental data for the E2 concentration.
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Figure 5.23: Experimental data for the 17α-Hydroxyprogesterone concentration.

• The values for the LH concentration (serum) in [37] and [58] are not consistent
with the values in [32] (appendix, plasma or serum): for adults, a range of
[0.5, 2.7] µg/L is specified with values at mid-cycle peak in the range of [4.2, 15.8]
µg/L.

• The values for the FSH concentration (serum) in [37] and [58] are not consistent
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Table 5.7: Legend.

Abbreviation Meaning
F follicular
EF early follicular
LF late follicular
O ovulatory
L luteal
EL early luteal
ML mid-luteal
LL late luteal
A adult (female)

with the values in [32] (appendix, plasma/serum (heparin)): for premenopausal
adults, a range of [1.1, 5.3] µg/L is specified with values at mid-cycle peak in the
range of [2.6, 24] µg/L.

• The values for the 17α-hydroxyprogesterone concentration (serum) in [32] (ap-
pendix) are not consistent with the values in [45] (appendix, serum): for adults
in the follicular phase, in [32] a range of < 1.0 µg/L is specified in contrast to
[45] ([3.3, 10] µg/L).

• Only 10 % of DHEA are produced in the ovaries, 90 % are produced in the
adrenal cortex.

• The values for the free testosterone concentration (serum) in [32] (appendix)
are not consistent with the values in [45] (appendix, serum): For adults, in
[32] a range of [3, 13] pg/mL is specified in contrast to [45] ([0.7, 3.6] pg/L).
The free testosterone concentration is dependent on the SHBG concentration,
approximately 10 % of the total concentration is free.

In order to validate the model, real individual data must be used for comparison.
But for the time being, the given data are taken as it is done in [37].
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Parameter values of GynCycle

Table 5.8: Model part 1 - GnRH pulse frequency: parameter values.

No. (p) Name Value Unit Remark1

1 f γ 2.000 - 2 in [47]2

2 s λmax 11.26 [y1]/d 3

3 s T freq
P4

1.873 nmol/L mean(P4) = 13.83 (exp. data) in [37]4

4 nfreq
P4

1.000 - simple approach
5 s T freq

E2
54.95 ng/L mean(E2) = 121.2 (exp. data) in [37]

6 nfreq
E2

1.000 - simple approach
7 f τP4 0.09000 d simple approach
8 f τE2 0.09000 d simple approach

Table 5.9: Model part 2 - LH: parameter values.

No. (p) Name Value Unit Remark
9 Mmax 102.4 [y2]/d simple approach
10 TE2,1 7.829 ng/L < TE2,2

5

11 nE2,1 1.000 - nE2,2

12 TE2,2 207.8 mol/L > TE2,1
6

13 - nE2,2 1.000 - nE2,1

14 s αGnRH 47.61 1/d ln 2/t1/2 = ln 2/0.0028 = 249.5 [47]
15 βGnRH 5.104 1/([y4]· d) ↔ r1

7

16 s bGnRH 38.00 ([y3]· L)/d simple approach
17 VPPS 0.08769 L < VB

18 f a 814.3 - 488

19 f m 2.000 - simple approach
20 r1 5.104 1/([y3]· d) ↔ βGnRH

9

21 r3 22.76 1/d simple approach
22 r4 1.000 · 10−3 [y4]/d simple approach
23 s TGnRH 10.69 [y3] ≈ mean of GnRH conc.
24 s r2 68.23 1/d simple approach
25 s bLH 344.3 µg/d comparison with [37]
26 s TLH,syn,−

P4
1.338 nmol/L mean(P4) = 13.83 (exp. data) in [37]10

1f: fix value, s: sensitive parameter; all values rounded to four digits
2more regularity than the Poisson but still flexible enough [47]
3p1, p3, . . . , p8 fix ⇒ λmax ∈ [10.0, 13.7]
4mean(P4): mean of exp. data in [37] (equidistant time points)
5TmassE2 = (TE2,1 · TE2,2)

1
2 if nE2,1 = nE2,2

6TE2,2 = (TmassE2 )2/TE2,1
7p15 · [y4] = p20 · [y3]
8assumption: maximum is reached after 30 min and m = 2
9p20 · [y3] = p15 · [y4] = 5.463

10mean(P4): mean of exp. data in [37] (equidistant time points)
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Table 5.9: Model part 2 - LH: parameter values.

No. (p) Name Value Unit Remark

27 nLH,syn,−
P4

1.000 - simple approach
28 s TLH,syn,+

E2
119.9 ng/L mean(E2) = 121.2 (exp. data) in [37]

29 s nLH,syn,+
E2

5.136 - simple approach
30 s synLH,max 8576 µg/d comparison with [37]
31 TLH,rel,−

E2
0.04647 ng/L ↔ TE2,1

32 nLH,rel,−
E2

1.000 - nLH,rel,+
E2

33 s TLH,rel,+
E2

348.8 ng/L ↔ TE2,2
11

34 - nLH,rel,+
E2

1.000 - nLH,rel,−
E2

35 s TLH,rel,+
P4

1.301 nmol/L mean(P4) = 13.83 (exp. data) in [37]
36 nLH,rel,+

P4
1.000 - simple approach

37 s relLH,max 40.92 1/([y5]· d) comparison with [37]
38 f VB 2.500 L 12

39 f τLH,1 0.04333 d simple approach
40 s αLH 15.73 1/d clL = 14 in [37]

Table 5.10: Model part 3 - FSH: parameter values.

No. (p) Name Value Unit Remark
41 s bFSH 227.6 µg/d comparison with [37]
42 TFSH,syn,−

Ih 1.424 U/L 13

43 nFSH,syn,−
Ih 1.000 - simple approach

44 s synFSH,max 6.381 · 104 µg/d simple approach
45 f τIh 1.800 d δIh = 2.00 [37]
46 s TFSH,rel,−

E2
42.09 ng/L ↔ TE2,1

47 nFSH,rel,−
E2

0.9996 - nFSH,rel,+
E2

48 TFSH,rel,+
E2

0.3118 ng/L ↔ TE2,2

49 - nFSH,rel,+
E2

1.000 - nFSH,rel,−
E2

50 s TFSH,rel,+
P4

4.159 nmol/L 14

51 nFSH,rel,+
P4

0.9994 - simple approach
52 s TFSH,rel,−

Ih 638.8 U/L 15

53 nFSH,rel,−
Ih 1.001 - simple approach

54 s relFSH,max 41.53 1/([y5]· d) comparison with [37]
59 f τFSH,1 0.06934 d simple approach
60 αFSH 1.779 1/d clF = 8.2 in [37]

11T+
2 = (TLHE2 )2/T−2

120.55 · 4.5L; vdis in [37]; > 2.5L [78]
13mean(Ih) = 672.2 (exp. data) in [37]; mean(Ih): mean of exp. data in [37] (equidistant time

points)
14mean(P4) = 13.83 (exp. data) in [37]
15mean(Ih) = 672.2 (exp. data) in [37]
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Table 5.11: Model part 4 - Progesterone: parameter values.

No. (p) Name Value Unit Remark
93 kLH

− 1.164 1/d kFSH
−

94 kLH
r 24.33 1/d kFSH

r

95 kLH
+ 13.74 L/(µg · d) kFSH

+

96 ρLH 33.21 1/d ρFSH

97 kLH
i 656.4 1/d kFSH

i

98 s a1 665.4 [y28]/([y25]· d) simple approach
99 a2 415.6 1/d simple approach
100 e1,1 0.8740 1/[y12] simple approach
101 s e1,2 56.05 1/[y13] simple approach
102 e1,3 0.1751 1/[y14] simple approach
103 e1,4 2.131 1/[y15] simple approach
104 e1,5 0.6526 1/[y16] simple approach
105 e1,6 0.8377 1/[y17] simple approach
106 e1,7 1.024 1/[y18] simple approach
117 a5 15.32 [y30]/([y25]· d) simple approach
118 a6 1.105 1/d simple approach
119 e3,1 0.4289 1/[y12] simple approach
120 e3,2 1.048 1/[y13] simple approach
121 e3,3 0.8771 1/[y14] simple approach
122 e3,4 0.1372 1/[y15] simple approach
123 e3,5 0.9190 1/[y16] simple approach
124 e3,6 0.9577 1/[y17] simple approach
125 e3,7 2.851 · 10−4 1/[y18] simple approach
126 a7 188.0 [y31]/([y25]· d) simple approach
127 s a8 2090 1/d simple approach
128 s e4,1 49.76 1/[y12] simple approach
129 s e4,2 454.9 1/[y13] simple approach
130 e4,3 3.366 1/[y14] simple approach
131 e4,4 5.486 · 10−4 1/[y15] simple approach
132 e4,5 24.44 1/[y16] simple approach
133 e4,6 0.3695 1/[y17] simple approach
134 e4,7 9.008 · 10−5 1/[y18] simple approach
145 c1 · chol 0.9014 [y33]/([y30]· d) simple approach
146 p1,1 0.07649 16 simple approach
147 p1,2 0.7450 17 simple approach
148 p1,3 0.2185 [y33] simple approach
149 p1,4 1.865 [y33]/[y34] = - simple approach
150 k1,1 1.000 18 simple approach
151 k1,2 510.0 [y33] simple approach
152 c2 28.34 1/d simple approach

16[y33]/([y28]· d) = [y34]/([y28]· d)
17[y33]/([y28]· d) = [y34]/([y28]· d)
18[y33]/([y31]· d) = [y35]/([y31]· d)
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Table 5.11: Model part 4 - Progesterone: parameter values.

No. (p) Name Value Unit Remark
153 k2,1 0.1071 19 simple approach
154 k2,2 4.229 · 10−3 [y34] simple approach
155 c3 0.4227 1/d ↔ sP4

185 s sP4 2.021 nmol/([y34]· d) ↔ c3
186 f τprog 0.01000 d simple approach
187 αP4 0.5494 1/d simple approach

Table 5.12: Model part 5 - Estrone and Estradiol: parameter val-
ues.

No. (p) Name Value Unit Remark
179 s p4,1 0.5036 20 simple approach
180 s p4,2 5.777 · 10−4 21 simple approach
181 s p4,3 0.08541 [y40] simple approach
182 p4,4 1.000 · 10−4 [y40]/[y41] = - simple approach
183 s c9 55.59 1/d simple approach
184 s c10 64.22 1/d simple approach
188 s sE2 1.282 · 104 ng/([y41]· d) simple approach
189 f τestra 0.06137 d simple approach
190 αE2 1806 1/d simple approach
206 s sestro 1.253 · 104 ng/([y40]· d) simple approach
207 f τestro 0.9968 d simple approach
208 αestro 5.387 1/d simple approach

Table 5.13: Model part 6 - 17α-Hydroxypregnenolone and 17α-
Hydroxyprogesterone: parameter values.

No. (p) Name Value Unit Remark
156 p2,1 7.383 · 10−4 22 simple approach
157 s p2,2 0.01870 23 simple approach
158 p2,3 0.9999 [y35] simple approach
159 p2,4 8.044 · 10−3 [y35]/[y36] = - simple approach
160 s k3,1 0.3282 24 simple approach
161 k3,2 0.05246 [y35] simple approach
162 s c4 0.8533 1/d simple approach

19[y34]/([y31]· d) = [y36]/([y31]· d)
20[y40]/([y29]· d) = [y41]/([y29]· d)
21[y40]/([y29]· d) = [y41]/([y29]· d)
22[y35]/([y28]· d) = [y36]/([y28]· d)
23[y35]/([y28]· d) = [y36]/([y28]· d)
24[y35]/([y31]· d) = [y37]/([y31]· d)
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Table 5.13: Model part 6 - 17α-Hydroxypregnenolone and 17α-
Hydroxyprogesterone: parameter values.

No. (p) Name Value Unit Remark
163 s k4,1 0.07914 25 simple approach
164 k4,2 0.02609 [y36] simple approach
165 c5 0.9489 1/d simple approach
191 s s17-preg 0.6017 10·ng/([y35]· d) simple approach
192 f τ17-preg 0.9990 d simple approach
193 s α17-preg 0.07352 1/d simple approach
194 s s17-prog 2.751 µg/([y36]· d) simple approach
195 f τ17-prog 0.9980 d simple approach
196 s α17-prog 0.1139 1/d simple approach

Table 5.14: Model part 7 - DHEA: parameter values.

No. (p) Name Value Unit Remark
166 s k5,1 0.3302 26 simple approach
167 s k5,2 118.5 [y37] simple approach
168 s c6 0.04839 1/d simple approach
197 s sDHEA 23.79 µg/([y37]· d) simple approach
198 f τDHEA 2.640 · 10−3 d simple approach
199 s αDHEA 0.08372 1/d simple approach

Table 5.15: Model part 8 - Androstenedione and Testosterone: pa-
rameter values.

No. (p) Name Value Unit Remark
88 kFSH

− 1.164 1/d 3 · 10−4 1/s [14]
89 kFSH

r 48.15 1/d 5 · 10−4 1/s [14]
90 kFSH

+ 2.406 L/(µg · d) 5 · 106 1/(M · s) [14]
91 ρFSH 19.62 1/d 3 · 10−4 1/s27 [14]
92 kFSH

i 416.9 1/d 5 · 10−4 1/s [14]
107 a3 1.598 [y29]/([y21]· d) simple approach
108 a4 20.05 1/d simple approach
109 e2,1 0.01012 1/[y11] simple approach
110 e2,2 3.861 1/[y12] simple approach
111 e2,3 630.9 1/[y13] simple approach
112 e2,4 206.4 1/[y14] simple approach

25[y36]/([y31]· d) = [y38]/([y31]· d)
26[y37]/([y28]· d) = [y38]/([y28]· d)
27ρFSH(cAMP ) = αFSH ·cAMPγ

FSH

δFSH,γ
FSH

+cAMPγ
FSH ; cAMP ≈ δFSH ⇒ ρFSH ≈ αFSH

2
; αFSH : 51.84 1/d =

6 · 10−4 1/s; γFSH : 5.0; δFSH : 6.5 · 104 molecules/cell [14]
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Table 5.15: Model part 8 - Androstenedione and Testosterone: pa-
rameter values.

No. (p) Name Value Unit Remark
113 e2,5 4.204 1/[y15] simple approach
114 e2,6 7.360 1/[y16] simple approach
115 e2,7 17.40 1/[y17] simple approach
116 e2,8 218.7 1/[y18] simple approach
135 a9 0.3743 [y32]/([y21]· d) simple approach
136 a10 1.000 1/d simple approach
137 e5,1 1.959 · 10−3 1/[y11] simple approach
138 e5,2 432.3 1/[y12] simple approach
139 e5,3 0.08895 1/[y13] simple approach
140 e5,4 3.362 1/[y14] simple approach
141 e5,5 9.885 1/[y15] simple approach
142 e5,6 100.7 1/[y16] simple approach
143 e5,7 56.68 1/[y17] simple approach
144 e5,8 516.2 1/[y18] simple approach
169 p3,1 0.05772 28 simple approach
170 s p3,2 25.98 see p3,1 simple approach
171 p3,3 0.4596 [y38] simple approach
172 p3,4 0.1119 [y38]/[y39] = - simple approach
173 s k6,1 0.01241 29 simple approach
174 k6,2 1.920 · 10−3 [y38] simple approach
175 s c7 0.01847 1/d simple approach
176 k7,1 1.649 · 10−6 30 simple approach
177 k7,2 0.07960 [y39] simple approach
178 c8 0.2819 1/d simple approach
200 s sandro 4.611 · 10−3 µg/([y38]· d) simple approach
201 f τandro 0.9956 d simple approach
202 s αandro 0.02635 1/d simple approach
203 stest 0.4967 µg/([y39]· d) simple approach
204 f τtest 0.9999 d simple approach
205 s αtest 0.02820 1/d simple approach

Table 5.16: Model part 9 - Inhibin: parameter values.

No. (p) Name Value Unit Remark
55 ih1 119.2 U/L h1 = 274.28 in [37]
56 ih2 0.09728 U/(L ·[y12]) h2 = 0.4064 in [37]
57 ih3 4.878 · 10−4 U/(L ·[y17]) h3 = 0.4613 in [37]
58 ih4 2.803 U/(L ·[y18]) h4 = 2.1200 in [37]
61 d1 40.44 [y11]/d comparison with [37]

28[y38]/([y29]· d) = [y39]/([y29]· d)
29[y38]/([y32]· d) = [y40]/([y32]· d)
30[y39]/([y32]· d) = [y41]/([y32]· d)
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Table 5.16: Model part 9 - Inhibin: parameter values.

No. (p) Name Value Unit Remark

62 s T foll
FSH 2487 µg/L mean(FSH) = 139.5 (exp. data) in [37]

63 nfoll
FSH 1.000 - simple approach

64 f τFSH,2 2.000 d simple approach
65 s d2 6.983 · 10−3 1/d c1 = 0.0058 in [37]
66 s d3 0.2014 1/d comparison with [37], 31

67 α1 1.000 - 1 in [37]
68 α2 0.7753 - α = 0.7736 in [37], 31

69 d4 5.551 · 10−3 1/d comparison with [37]
70 f τLH,2 2.000 d simple approach
71 s d5 0.02594 1/d comparison with [37]
72 α3 9.942 · 10−3 - 1 (simple approach)
73 α4 0.1458 - β = 0.1566 in [37]
74 α5 8.551 · 10−3 - 1 (simple approach)
75 α6 1.000 - 1 (simple approach)
76 d6 1.056 · 10−3 1/d 1 (simple approach)
77 d7 1.162 1/d comparison with [37]
78 α7 0.01294 - γ = 0.0202 in [37]
79 α8 0.02536 - γ = 0.0202 in [37]
80 d8 0.6839 1/d d1 = 0.6715 1/d in [37]
81 d9 0.7192 1/d d2 = 0.7048 1/d in [37]
82 d10 0.7119 1/d comparison with [37]
83 α9 0.01436 - 0.01 (simple approach)
84 d11 0.7085 1/d comparison with [37]
85 α10 8.477 · 10−3 - 0.01 (simple approach)
86 d12 0.6786 1/d k3 = 0.6891 1/d in [37]

Table 5.17: Rest set: parameter values.

No. (p) Name Value Unit Remark
87 d13 1.000 1/d k4 = 0.7093 1/d in [37]

31in connection with the modified model equation
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Table 5.18: Initial values.

No. (y) Name Value Unit Remark
1 Λ 0.000 - 0 (simple approach)
2 MGnRH 0.000 [y2] = [y3]· L 0 (simple approach)
3 GnRH 8.379 [y3] = [y2]/L 1 (simple approach)
4 RGnRH 1.904 32 1 (simple approach)
5 (GnRH-RGnRH) 1.201 see RGnRH 1 (simple approach)
6 RGnRH -d 4.110 see RGnRH 1 (simple approach)
7 PLH 65.08 µg 600 µg in [37]
8 LH 4.465 µg/L 25.34 µg/L (exp. data) in [37]
9 PFSH 15.21 µg 352 µg in [37]
10 FSH 52.35 µg/L 142.5 µg/L (exp. data) in [37]
11 Fs 1.724 33 9 in [37]
12 Ft 6.175 see Fs 1 in [37]
13 Fg 1.194 see Fs 1 in [37]
14 Mo 2.579 see Fs 1 in [37]
15 Ml 3.801 see Fs 1 in [37]
16 Le 7.852 see Fs 1 in [37]
17 Lm 19.58 see Fs 1 in [37]
18 Ll 49.96 see Fs 1 in [37]
19 La 1.000 see Fs 1 in [37]
20 RFSH 0.2832 34 1 (simple approach)
21 (FSH-RFSH) 2.555 see RFSH 1 (simple approach)
22 (FSH-RFSH -p) 0.1203 see RFSH 1 (simple approach)
23 RFSH

i 1.041 see RFSH 1 (simple approach)
24 RLH 0.4245 35 1 (simple approach)
25 (LH-RLH) 1.480 see RLH 1 (simple approach)
26 (LH-RLH -p) 0.07489 see RLH 1 (simple approach)
27 RLH

i 2.020 see RLH 1 (simple approach)
28 3β-HSDa 364.0 36 1 (simple approach)
29 17β-HSDa 2624 see 3β-HSDa 1 (simple approach)
30 P450scca 1028 see 3β-HSDa 1 (simple approach)
31 P45017-OH,a 140.9 see 3β-HSDa 1 (simple approach)
32 P450aroma 4.446 · 104 see 3β-HSDa 1 (simple approach)
33 preg 32.32 simple approach
34 prog 1.397 simple approach
35 17-preg 0.01874 simple approach
36 17-prog 0.5697 simple approach
37 DHEA 15.89 simple approach
38 andro 1.228 · 104 simple approach
39 test 26.27 simple approach
40 estro 0.07716 simple approach
41 estra 8.571 simple approach

32[y4] = [y5] = [y6] (1/cell)
33[y11] = [y12] = [y13] = [y14] = [y15] = [y16] = [y17] = [y18] = [y19]
34[y20] = [y21] = [y22] = [y23] (1/cell)
35[y24] = [y25] = [y26] = [y27] (1/cell)
36[y28] = [y29] = [y30] = [y31] = [y32]
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Table 5.18: Initial values.

No. (y) Name Value Unit Remark
42 P4 7.103 nmol/L 1.2 nmol/L (exp. data) in [37]
43 E2 24.34 ng/L 56.387 ng/L (exp. data) in [37]
44 17-preg 2406 ng/dL 37

45 17-prog 185.5 ng/mL 155 pg/mL (exp. data) in [48]
46 DHEA 5785 ng/mL 6450 ng/mL (exp. data) in [48]
47 andro 1368 ng/mL 1100 ng/mL (exp. data) in [48]
48 test 301.7 pg/mL 245 pg/mL (exp. data) in [48]
49 estro 87.06 pg/mL 55 pg/mL (exp. data) in [48]
50 Ih 259.8 U/L 38

37(530 + 3570)/2 = 2050 ng/dL [32] (experimental data)
38p55 + p56 · y12(0) + p57 · y17(0) + p58 · y18(0)



166 PARAMETER VALUES OF GYNCYCLE



Bibliography

[1] M. E. Andersen. Physiological modelling of organic compounds. Annals of Occu-
pational Hygiene, 35(3):309–321, 1991.

[2] L. Anderson. Intracellular mechanisms triggering gonadotrophin secretion. Re-
views of Reproduction, 1:193–202, 1996.

[3] C. T. H. Baker and F. A. Rihan. Sensitivity analysis of parameters in mod-
elling with delay-differential equations. Technical report, Manchester Centre for
Computational Mathematics, The University of Manchester, September 1999.

[4] L. W. Beineke and R. J. Wilson (eds.). Graph Connections. Oxford Science
Publications, 1997.

[5] J. J. Blum, M. C. Reed, J. A. Janovick, and P. M. Conn. A mathematical model
quantifying GnRH-induced LH secretion from gonadotropes. Am. J. Physiol.
Endocrinol. Metab., 278:E263–E272, 2000.

[6] R. J. Bogumil, M. Ferin, J. Rootenberg, L. Speroff, and R. L. vande Wiele. Math-
ematical studies of the human menstrual cycle. I. Formulation of a mathematical
model. J. Clin. Endocrinol. Metab., 35(1):126–143, 1972.

[7] R. J. Bogumil, M. Ferin, and R. L. vande Wiele. Mathematical studies of the
human menstrual cycle. II. Simulation performance of a model of the human
menstrual cycle. J. Clin. Endocrinol. Metab., 35(1):144–156, 1972.

[8] R. A. Boyd, E. A. Zegarac, and M. A. Eldon. The effect of food on the bioavail-
ability of norethindrone and ethinyl estradiol from norethindrone acetate/ethinyl
estradiol tablets intended for continuous hormone replacement therapy. J. Clin.
Pharmacol., 43:52–58, 2003.

[9] N. Chabbert-Buffet and P. Bouchard. The normal human menstrual cycle. Re-
views in Endocrine and Metabolic Disorders, 3:173–183, 2002.

[10] R. J. Chang and R. B. Jaffe. Progesterone effects on gonadotropin release
in women pretreated with estradiol. Journal of Clinical Endocrinology and
Metabolism, 47:119–125, 1978.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der Modellierung und Simulation
des weiblichen Hormonzyklus. Unter dem weiblichen Hormonzyklus versteht man die
Abläufe des Regelkreises im Körper der Frau, die im gesunden Fall in regelmäßigen
Intervallen zur Ovulation führen und damit die Reproduktion ermöglichen. Auch wenn
dieses Thema etwa die Hälfte der Bevölkerung betrifft, fand es in der mathematischen
Modellierung bislang wenig Aufmerksamkeit.

In der vorliegendenden Arbeit wurde ein mathematisches Modell, GynCycle, herge-
leitet, das die Dynamik von 49 Hormonen, Enzymen, Rezeptoren (teilweise in ver-
schiedenen Zuständen und an verschiedenen Orten), Follikelphasen und dem Pulsgen-
erator beschreibt. GynCycle besteht dabei aus Delaydifferentialgleichungen, wodurch
berücksichtigt wird, dass die Prozesse in unterschiedlichen Bereichen im Körper statt-
finden und sich zeitverzögert beeinflussen. Eine Besonderheit und ein wichtiger Be-
standteil dieses Regelkreises ist der GnRH-Pulsgenerator, der zu der pulsatilen Freiset-
zung des Hormons GnRH führt. Die Pulszeitpunkte werden dabei durch einen stochas-
tischen Prozess modelliert. Ein solches mathematisches Modell, das die Dynamik des
weiblichen Hormonzyklus in diesem Umfang und Komplexität beschreibt, hat es soweit
bekannt bislang noch nicht gegeben.

Wenn komplexe physiologische Prozesse und Regelsysteme im menschlichen Körper
wie der weibliche Hormonzyklus modelliert werden, treten viele Parameter auf. Zum
großen Teil sind ihre Werte nicht bekannt, wodurch Parameterschätzung notwendig
wird. Um dieses oft hochdimensionale Problem zu vereinfachen, wurde in der vor-
liegenden Arbeit eine Methode entwickelt, um das Modell durch Zuhilfenahme von
experimentellen Daten in mehrere kleinere Modellteile zu zerlegen. Für die einzelnen
Modellteile wurde dann nacheinander und zum Teil auch parallel Parameterschätzung
durchgeführt. Es wurden dabei nur die Parameter geschätzt, die sensitiv sind, was eine
Sensitivitätsanalyse für Delaydifferentialgleichungen erfordert. Durch anschließende
Zusammenführung der einzelnen Modellteile zu dem Gesamtmodell sind dynamische
Simulationen des Modells möglich. Für die Simulation wurde ein Integrator für steife
Delaydifferentialgleichungen verwendet (RADAR5 von Guglielmi und Hairer (2001)).
Um auch den Pulsgenerator zu berücksichtigen, wurde der Integrator erweitert.

Der Vergleich mit experimentellen Daten zeigte, dass das Modell in der Lage ist,
die Dynamik wesentlicher Elemente des Zyklus für eine virtuelle Frau, da gemittelte
experimentelle Daten vorlagen, wiederzugeben. Die Einnahme von hormonalen Kon-
trazeptiva wurde modelliert und simuliert und auch diese Ergebnisse zeugen von dem
richtigen Ansatz in der Modellierung.
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