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Abstract. In the present work we consider general relativity coupled to Maxwell’s electromag-
netism and charged matter. Under the assumption of spherical symmetry, there is a particular class
of solutions that correspond to regular charged black holeswhose interior region is de Sitter, the ex-
terior region is Reissner-Nordström and there is a charged thin-layer in-between the two. The main
physical and geometrical properties of such charged regular black holes are analyzed.
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1. INTRODUCTION

An early motivation to find regular black hole models was to get rid of spacetime
singularities. Such black holes would substitute the usualSchwarzschild and Reissner-
Nordström black holes with singularities in their center. Gliner in 1966 [1] proposed that
singularities can be avoided by matter with an inflationary equation of state, with a de
Sitter core, and that a spacetime filled with a false vacuum inside a horizon could provide
a description of the final state of gravitational collapse. Bardeen, in 1968 [2] put forward
a solution of Einstein’s equations in which there was a blackhole with horizons and
without a singularity. The matter is magnetically charged,and it yields a modification
of the Reissner-Nordström metric. Near the center it turns,in a natural smooth way, into
a de Sitter core. Gliner’s ideas were further developed by himself and Dymnikova [3],
while Bardeen’s solutions were further explored by Ayón-Beato and García [4]. There
were some tries to join directly a de Sitter vacuum onto the Schwarzschild solution,
but proved to be incorrect [5, 6] (see also [7] for further incorrect matchings). Further
developments were performed in [8]. Borde understood the topology and causality of
these regular solutions [9]. For a review see [10].

In this work we find a new regular black hole. It is a regular charged black hole in
which the interior de Sitter metric is matched to the exterior Reissner-Nordström metric.
The electric charge is in an energyless coat located at the boundary of the de Sitter
core. The paper is organized as follows. In Sec. 2 we display the basic equations of the
system. In Sec. 3 we build the regular charged black hole, andin Sec. 4 we analyze the
main properties of the solution.
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2. BASIC EQUATIONS

The cold charged fluids considered in the present work are described by Einstein-
Maxwell equations with matter,

Gµν = 8π
(

Tµν +Eµν
)

, (1)

∇νFµν = 4π Jµ , (2)

where Greek indicesµ,ν, etc., run from 0 to 3.Gµν = Rµν − 1
2gµνR is the Einstein

tensor, withRµν being the Ricci tensor,gµν the metric, andR the Ricci scalar. We have
put both the speed of lightc and the gravitational constantG equal to unity throughout.
Eµν is the electromagnetic energy-momentum tensor, which can be written in the form
4π Eµν = Fµ

ρFν ρ − 1
4gµνFρσ Fρσ , where the Maxwell tensor isFµν = ∇µAν −∇νAµ ,

∇µ representing the covariant derivative, andAµ the electromagnetic gauge field. In
addition,Jµ = ρeUµ , is the current density,ρe is the electric charge density, andUµ is
the fluid velocity.Tµν is the material energy-momentum tensor, which, for the purpose of
the present work, is taken in the form of an isotropic fluidTµν = (ρm+ p)UµUν + pgµν ,
whereρm is the fluid matter-energy density,p is the isotropic fluid pressure. We are
interested in a false vacuum state where the energy-momentum tensor satisfies the
relationsT0

0 +E0
0 = T1

1 +E1
1, andT2

2 +E2
2 = T3

3 +E3
3.

We assume that the spacetime is static and spherically symmetric, so that the metric
is conveniently written in the Schwarzschild-like form, namely,

ds2 = −B(r)dt2+A(r)dr2+ r2dΩ2 . (3)

wherer is the usual radial coordinate,A andB are function ofr only, anddΩ2 is the
metric of the unit sphere. The gauge fieldAµ and the four-velocityUµ have the form

Aµ = −φ(r)δ t
µ , Uµ = −

√

B(r) δ t
µ , (4)

whereφ(r) is the electric potential.
The relevant Einstein-Maxwell field equations for the metric (3) can now be found.

The only nonzero component of Maxwell equations (2) furnishes

Q(r) = 4π
∫ r

0
ρe(r)

√

A(r) r2dr =
r2φ ′(r)

√

B(r)A(r)
, (5)

where an integration constant was set to zero.Q(r) is the total electric charge inside the
surface of radiusr.

Thett andrr components of Einstein equations (1) furnish the followingrelations

B′(r)
B(r)

+
A′(r)
A(r)

= 8πrA(r)
[

ρm(r)+ p(r)
]

, (6)

(

rA−1(r)
)′

= 1−8π r2
(

ρm(r)+
Q2(r)
8πr4

)

, (7)
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where the prime denotes the derivative with respect to the coordinater. The conservation
equations∇νTµν = 0, together with Maxwell equations, give

2p′(r)+
B′(r)
B(r)

[

ρm(r)+ p(r)
]

−2
φ ′(r)ρe(r)
√

B(r)
= 0, (8)

which is the only non-identically zero component of the conservation equations. The
other nonzero components of Einstein-Maxwell equations give an additional relation
which is not independent of the above set of equations.

3. REGULAR CHARGED BLACK HOLES

Consider that there is matter up to the boundary radiusr0. We now do the following
hypothesis

ρm(r)+ p(r) = 0, (9)

valid for r ≤ r0, and forr ≥ r0, since vacuum always satisfies (9). With such a condition,
the metric coefficients result inB(r) = A−1(r). Moreover, after the assumption (9),
Eqs. (8) and (5) give

p′(r) =
φ ′(r)ρe(r)
√

B(r)
=

QQ′

4πr4 . (10)

This means thatp′(r) is proportional to the charge densityρe(r) and may be interpreted
as the charge density giving rise to a pressure gradient.

To complete the set up we need another input. One of the simplest ansatz one can
make is through the following equation

8πρm(r)+
Q2(r)

r4 =
3
R2 , (11)

for r ≤ r0, and whereR is a constant to be determined. This resembles the interior
Schwarzschild assumption of constant energy density.

In order for displaying the solution in a simple form, let us define, theθ function as
usual byθ(r − r0) = 1 whenr − r0 ≥ 0 andθ(r − r0) = 0 whenr − r0 < 0. Then we can
write all of the functions in succinct form. The metric is now

ds2 = −B(r)dt2+B−1(r)dr2+ r2dΩ2 , (12)

where

B(r) = Biθ(r0− r)+Be[1−θ(r0− r)] , (13)

Bi =

(

1−
r2

R2

)

, Be =

(

1−
2m
r

+
q2

r2

)

. (14)
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R thus defines a de Sitter radius. The electric potential is given by

φ(r) = −
q
r0

θ(r0− r)−
q
r

[1−θ(r0− r)] . (15)

The other important quantities can be written as follows

Q(r) = qθ(r − r0) , Q′(r) = qδ (r − r0) , ρe(r) =
q
√

B(r)

4πr2 δ (r − r0) , (16)

8πρm(r) =

(

3
R2 −

Q2(r)
r4

)

θ(r0− r) , (17)

8π p(r) =

(

−
3
R2 +

Q2(r)
r4

)

θ(r0− r) , p′(r) =
q2

4π r4 δ (r − r0) . (18)

This solution represents regular black holes with a de Sitter core, an electric energyless
matter coat atr0, and Reissner-Nordström all the way up.

The solution has four parameters:m, q, r0 andR. There are a few relations among
them. These relations follow from imposing appropriate junction conditions at the
boundaryr = r0. Indeed one can show that the boundary atr0 can be really a bound-
ary surface. For that, the metricgµν (or the first fundamental form), and the extrinsic
curvature (or the second fundamental form)Kµν , should be continuous at the surface,
i.e., g+

µν = g−µν , and the extrinsicK+
µν = K−

µν , where± represent the exterior and in-
terior regions. The matching of the first fundamental form requires that in Eq. (13)

Bi = Be, i.e., 1− r2
0

R2 = 1− 2m
r0

+ q2

r2
0
. This implies in the first relation amongm, q, r0,

andR, 1
R2 = 1

r3
0

(

2m− q2

r0

)

. The matching ofKµν implies in the continuity of the first

derivative ofBi(r) andBe(r) at r = r0, that is, r0
R2 = m

r2
0
− q2

r3
0
. This, together with the first

fundamental form equation, gives two other simplified equations (assume positiveq)

R=
√

3r2
0

1
q

, m=
2

3r0
q2 . (19)

So there are only two free parameters,r0 andq say. From Eq. (19) we see that asr0
increases the massm decreases. This is due to the fact that the pressure, and thusthe
density, decrease fast asr0 increases. When there is no charge there is no black hole
sinceq = 0 impliesm= 0, leaving a Minkowski spacetime alone.

From Eqs. (13) and (14) one can infer that

r0 ≤ R, (20)

otherwise the matter boundary would be outside its de Sitterhorizon. One can also infer

from 1
R2 = 1

r3
0

(

2m− q2

r0

)

that, whenr0 ≤ R, then 1− 2m
r0

+ q2

r2
0
≥ 0 which means that if

there are solutions these solutions are such that, eitherr0 is inside or on the inner (or
Cauchy) horizonr−, or r0 is outside or on the outer (event) horizonr+. Since we want
black holes we should search for solutions in whichr0 ≤ r−, but the procedure dictates
what kind of solutions there are.
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4. THE PROPERTIES OF THE SOLUTIONS

Since we are not interested inq= 0 we can parametrize all quantities in terms ofq. From
Eqs. (19)-(20) one finds

r0 ≥
√

3
3

q. (21)

Now, we have to comparer0 with r− andr+. In the present case, these are given by

r± = m±
√

m2−q2 =

(

2q
3r0

±

√

4q2

9r2
0

−1

)

q. (22)

These radii, together with the line forr0/q, are shown in Fig. 1. The solutions can then
be divided into four classes (for details see [11]):
1. Regular nonextremal black holes with a null boundary: When r0/q, i.e.,r0 (since we
are seeing it for fixed charge) has its minimum valuer0/q =

√
3/3, then the radius of

the matter coincides with the Cauchy horizonr−. There is matter up to the null surface
r− and then two horizons [6]. A perfectly regular black hole.
2. Regular nonextremal black holes with a timelike boundary: For largerr0/q, i.e., larger
r0, the Cauchy horizonr− grows faster and remains outside the radius of the matter,
r0 < r−. There is matter up tor0 and then outside the matter stand two horizons. Also a
perfectly regular black hole.
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FIGURE 1. A plot of several radii as a function ofr0/q. The minimum value ofr0/q is
√

3/3, and the
vertical dashed-dotted line is atr0/q = 2/3.

3. Regular extremal black holes with a timelike boundary: When r0/q = 2/3 then the
Cauchy and event horizons coincide, it is an extremal regular black hole. The horizon is
now at the furthest coordinate distance from the surface of the matter atr0. This means
thatr0 cannot be the radius of the horizon of an extremely charged Reissner-Nordström
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black hole (see Fig. 1). In fact, as found in Ref. [12], in the extremely charged limit
in which the Cauchy and the event horizons are identical,r− = r+, if the boundary of
the de Sitter region is pushed to the double horizon, i.e., inthe limit r0 → r+ = r−, the
resulting solution is a quasiblack hole, and not a regular black hole.
4. Regular overcharged stars with a timelike boundary: Forr0/q> 2/3 there are no black
holes. An overcharged star (i.e. charge greater than mass) pops up with no horizons.
They have disappeared. It is funny thatr0 of the first star is still less thanr− of the
extremal regular black hole. Perhaps this is no surprise as we are familiar with the fact
that the Reissner-Nordström solution has the same feature,after the extremal horizon
the singularity atr = 0 becomes bare.

For a range of parameters, the solution is thus a regular electrically charged black
hole. It is built from false vacuum up to, but not at,r0, at r0 there is a thin electrical
layer of an energyless field, and outside is pure Reissner-Nordström, with two horizons
at r− andr+. The radius to charge ratio and mass to charge ratio of the solution is well
defined. The metric forr < r0 is the de Sitter metric, where the isotropic pressure is
constant (p(r) = −ρm(r) = 3/8πR2) in the region inside the surfacer = r0, and goes to
zero atr0. Furthermore, since the charge densityρe(r) is a Dirac delta function centered
in r = r0, the total chargeq is distributed uniformly on the surfacer = r0. The limit of
zero charge is not a regular black hole, it is Minskowski spacetime.
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