New regular black hole solutions
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Abstract. In the present work we consider general relativity coupled/axwell’s electromag-
netism and charged matter. Under the assumption of spheyicemetry, there is a particular class
of solutions that correspond to regular charged black helesse interior region is de Sitter, the ex-
terior region is Reissner-Nordstréom and there is a chafdgedayer in-between the two. The main
physical and geometrical properties of such charged rebidak holes are analyzed.
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1. INTRODUCTION

An early motivation to find regular black hole models was td ge of spacetime
singularities. Such black holes would substitute the uSgalwarzschild and Reissner-
Nordstrom black holes with singularities in their centein@r in 1966 [1] proposed that
singularities can be avoided by matter with an inflationagyation of state, with a de
Sitter core, and that a spacetime filled with a false vacuwwidéa horizon could provide
a description of the final state of gravitational collapsa:dgen, in 1968 [2] put forward
a solution of Einstein’s equations in which there was a bllagle with horizons and
without a singularity. The matter is magnetically chargaak it yields a modification
of the Reissner-Nordstrom metric. Near the center it tuma,natural smooth way, into
a de Sitter core. Gliner’s ideas were further developed byskif and Dymnikova [3],
while Bardeen’s solutions were further explored by Ayérat®eand Garcia [4]. There
were some tries to join directly a de Sitter vacuum onto thiew&ezschild solution,
but proved to be incorrect [5, 6] (see also [7] for furtheramect matchings). Further
developments were performed in [8]. Borde understood theltgy and causality of
these regular solutions [9]. For a review see [10].

In this work we find a new regular black hole. It is a regularrgea black hole in
which the interior de Sitter metric is matched to the exteReissner-Nordstrom metric.
The electric charge is in an energyless coat located at thaedawy of the de Sitter
core. The paper is organized as follows. In Sec. 2 we displayasic equations of the
system. In Sec. 3 we build the regular charged black holejraBéc. 4 we analyze the
main properties of the solution.
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2. BASIC EQUATIONS

The cold charged fluids considered in the present work areritbesl by Einstein-
Maxwell equations with matter,

O,FHY = 4mdH ()

where Greek indicegt, v, etc., run from 0 to 3G,y = Ruy — 39uvR is the Einstein
tensor, withR,,, being the Ricci tensogy, the metric, andR the Ricci scalar. We have
put both the speed of liglttand the gravitational consta@tequal to unity throughout.
E.v is the electromagnetic energy-momentum tensor, which eanrliten in the form
ATtE,y = FuPFyp — %gqupaFPU, where the Maxwell tensor 8,y = Oy.97, — Oy.4,,
Oy representing the covariant derivative, anf} the electromagnetic gauge field. In
addition,J, = peU,, is the current densitye is the electric charge density, abg is
the fluid velocity.T,,y is the material energy-momentum tensor, which, for the psef
the present work, is taken in the form of an isotropic fltigd = (om + p) UpUv + pguv
where py, is the fluid matter-energy densitp, is the isotropic fluid pressure. We are
interested in a false vacuum state where the energy-mometgnsor satisfies the
relationsT + E§ = T{ + Ef, andT? + E5 = T3 4+ E3.

We assume that the spacetime is static and spherically stnos® that the metric
is conveniently written in the Schwarzschild-like formnmaly,

ds* = —B(r)dt? + A(r)dr? 4+ r2dQ?. (3)

wherer is the usual radial coordinat®, andB are function ofr only, anddQ? is the
metric of the unit sphere. The gauge fiel} and the four-velocityJ,, have the form

Ay =—@(r)d,, Uy=—B(r)d,, (4)

whereg(r) is the electric potential.
The relevant Einstein-Maxwell field equations for the nme{B) can now be found.
The only nonzero component of Maxwell equations (2) furessh

_ ' L A0
Q(r)_47T/0 pe(r)\/A(r)r dr_iB(r)A(r)’ (5)

where an integration constant was set to z€@) is the total electric charge inside the
surface of radius.
Thett andrr components of Einstein equations (1) furnish the followielgtions

B+ =B A [an(n)+ pir)]. ©
, 2
(rAfl(r)) = 1—8nmr? (pm(r) + gn(rr“)) , (7)
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where the prime denotes the derivative with respect to tbedooater. The conservation
equationd], THY = 0, together with Maxwell equations, give

B'(r) @'(r)pe(r)
B(r) B(r)
which is the only non-identically zero component of the @mation equations. The

other nonzero components of Einstein-Maxwell equations gn additional relation
which is not independent of the above set of equations.

2p/(r) +

[pm(r) + p(r)] -2 =0, (8)

3. REGULAR CHARGED BLACK HOLES

Consider that there is matter up to the boundary radiu$Ve now do the following
hypothesis

Pm(r)+p(r) =0, 9)

valid forr <rg, and forr > rg, since vacuum always satisfies (9). With such a condition,
the metric coefficients result iB(r) = A~1(r). Moreover, after the assumption (9),

Egs. (8) and (5) give
~@npe(r)  QQ

p(r) = B Am*

(10)

This means thap/(r) is proportional to the charge denspiy(r) and may be interpreted
as the charge density giving rise to a pressure gradient.

To complete the set up we need another input. One of the sstnaiesatz one can
make is through the following equation

Q%(r) 3
81Pm(r) + r‘(‘ ) -5,

(11)

for r <rp, and whereR is a constant to be determined. This resembles the interior
Schwarzschild assumption of constant energy density.

In order for displaying the solution in a simple form, let wfide, thef function as
usual by (r —rg) = 1 whenr —rg > 0 and@(r —ro) = 0 whenr —rp < 0. Then we can
write all of the functions in succinct form. The metric is now

ds? = —B(r)dt?+ B~ 1(r)dr2 +r2dQ?, (12)
where
B(r) =BiB(ro—r)+Be[1—6(ro—r1)] (13)
r2 2m  of
Bi:<1—@), Be:<1—7+r—2). (14)
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Rthus defines a de Sitter radius. The electric potential isrgby

o) =~ L0(ro—1)~ 1 6(r0—1)]. (15)

The other important quantities can be written as follows

QAN =a8(r—10), Q)=03(10). pelr) = L0 b —10).  (16)
2

8P (r) = (% Qrff))euo—r), a7)
2 2

op(r) = (~ 5+ ZL ) 0tro—r). P = 4l —ro). (19)

This solution represents regular black holes with a derStiee, an electric energyless
matter coat atp, and Reissner-Nordstrém all the way up.

The solution has four parameters; g, ro andR. There are a few relations among
them. These relations follow from imposing appropriatecfion conditions at the
boundaryr = ro. Indeed one can show that the boundarygatan be really a bound-
ary surface. For that, the metmg,, (or the first fundamental form), and the extrinsic
curvature (or the second fundamental fori),, should be continuous at the surface,
.e., gjy = Ouv» and the extrinsidj, = K, where+ represent the exterior and in-
terior regions. The matching of the first fundamental formquiees that in Eq. (13)

Bi = Be ie., 1— r =1- 2—m + q . This implies in the first relation amony, q, ro,

andR, ng = <2m— —2> The matchlng oK,y |mpI|es in the continuity of the first

derivative ofB,( ) andBg(r) atr = rq, that |s,;{% = r— ThIS together with the first

fundamental form equation, gives two other S|mpI|f|ed eipunat (assume positive

51 2
R—\/ﬁroq, = 3r0q (19)
So there are only two free parameteargandq say. From Eq. (19) we see that igs
increases the mass decreases. This is due to the fact that the pressure, andhihus
density, decrease fast agincreases. When there is no charge there is no black hole
sinceq = 0 impliesm = 0, leaving a Minkowski spacetime alone.
From Egs. (13) and (14) one can infer that

ro <R, (20)

otherwise the matter boundary would be outside its de $it15'zon One can also infer
2
from 2 R (Zm— —) that, whenrg < R, then 1— 2—m+ @ > 0 which means that if
0

there are solutlons these solutions are such that, en@herlnsnde or on the inner (or
Cauchy) horizomr_, orrg is outside or on the outer (event) horizon Since we want
black holes we should search for solutions in whighk< r_, but the procedure dictates
what kind of solutions there are.
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4. THE PROPERTIESOF THE SOLUTIONS

Since we are not interesteddr= 0 we can parametrize all quantities in termgofrom
Egs. (19)-(20) one finds

g. (1)

2q /4q2
m 2 — —
r- =m+ q <3r0:|: 9[’(2) 1) g. (22)

These radii, together with the line fog/q, are shown in Fig. 1. The solutions can then
be divided into four classes (for details see [11]):

1. Regular nonextremal black holes with a null boundary: Wheq, i.e.,rq (Since we

are seeing it for fixed charge) has its minimum valgég = v/3/3, then the radius of
the matter coincides with the Cauchy horizon There is matter up to the null surface
r_ and then two horizons [6]. A perfectly regular black hole.

2. Regular nonextremal black holes with a timelike bound&oy largem/q, i.e., larger

ro, the Cauchy horizom_ grows faster and remains outside the radius of the matter,
ro < r_. There is matter up toy and then outside the matter stand two horizons. Also a
perfectly regular black hole.

1.6 4

1.4 _ d

0.8l

06— <"-""""
| J—

‘Stars withg > m regiol q

0.4 L L 1 L L L L 1 T L L 1 L L L L 1 L L L
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rRegular BH regiol

FIGURE 1. A plot of several radii as a function o§/g. The minimum value ofo/q is v/3/3, and the
vertical dashed-dotted line is &t/q = 2/3.

3. Regular extremal black holes with a timelike boundary:@Why/q = 2/3 then the

Cauchy and event horizons coincide, it is an extremal redpldek hole. The horizon is
now at the furthest coordinate distance from the surfachefriatter atg. This means
thatro cannot be the radius of the horizon of an extremely chargéssRer-Nordstrom
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black hole (see Fig. 1). In fact, as found in Ref. [12], in tix¢r@mely charged limit
in which the Cauchy and the event horizons are identicak- r ., if the boundary of
the de Sitter region is pushed to the double horizon, i.@hedimitro —r,. =r_, the
resulting solution is a quasiblack hole, and not a regulackhole.

4. Regular overcharged stars with a timelike boundaryrgay > 2/3 there are no black
holes. An overcharged star (i.e. charge greater than mags) yp with no horizons.
They have disappeared. It is funny thigtof the first star is still less than_ of the
extremal regular black hole. Perhaps this is no surpriseeaares familiar with the fact
that the Reissner-Nordstrom solution has the same feattier, the extremal horizon
the singularity at = 0 becomes bare.

For a range of parameters, the solution is thus a regulatriel#ty charged black
hole. It is built from false vacuum up to, but not ag, atrg there is a thin electrical
layer of an energyless field, and outside is pure Reissnedstidm, with two horizons
atr_ andr. The radius to charge ratio and mass to charge ratio of theicolis well
defined. The metric for < rg is the de Sitter metric, where the isotropic pressure is
constant p(r) = —pm(r) = 3/8mR?) in the region inside the surface= rq, and goes to
zero atrg. Furthermore, since the charge dengityr) is a Dirac delta function centered
inr = rg, the total charge is distributed uniformly on the surfage= rq. The limit of
zero charge is not a regular black hole, it is Minskowski spiate.
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