
NEUROENGINEERING
ORIGINAL RESEARCH ARTICLE

published: 28 December 2011
doi: 10.3389/fneng.2011.00017

Parallel representation of stimulus identity and intensity in
a dual pathway model inspired by the olfactory system of
the honeybee

Michael Schmuker 1,2,3*, NobuhiroYamagata2,4†, Martin Paul Nawrot 1,3 and Randolf Menzel 2,3

1 Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin, Berlin, Germany
2 Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
3 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
4 Graduate School of Life Sciences, Tohoku University, Sendai, Japan

Edited by:

Thomas Nowotny, University of
Sussex, UK

Reviewed by:

Roberto Fernández Galán, Case
Western Reserve University, USA
Pawel Andrzej Herman, Royal
Institute of Technology, Sweden

*Correspondence:

Michael Schmuker , Neuroinformatics
and Theoretical Neuroscience,
Institute of Biology, Freie Universität
Berlin, Königin-Luise-Str. 1-3, 14195
Berlin, Germany.
e-mail: m.schmuker@fu-berlin.de
†Present address:

Nobuhiro Yamagata, Behavioral
Genetics, Max Planck Institute of
Neurobiology, Martinsried, Germany.

The honeybee Apis mellifera has a remarkable ability to detect and locate food sources
during foraging, and to associate odor cues with food rewards. In the honeybee’s olfactory
system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular
projection neurons (PNs) convey the sensory code from the AL to higher brain regions via
two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral
tract (l- and m-ACT). Neurons innervating either tract show characteristic differences in odor
selectivity, concentration dependence, and representation of mixtures. It is still unknown
how this differential stimulus representation is achieved within the AL network. In this con-
tribution, we use a computational network model to demonstrate that the experimentally
observed features of odor coding in PNs can be reproduced by varying lateral inhibition
and gain control in an otherwise unchanged AL network. We show that odor coding in the
l-ACT supports detection and accurate identification of weak odor traces at the expense of
concentration sensitivity, while odor coding in the m-ACT provides the basis for the compu-
tation and following of concentration gradients but provides weaker discrimination power.
Both coding strategies are mutually exclusive, which creates a tradeoff between detection
accuracy and sensitivity.The development of two parallel systems may thus reflect an evo-
lutionary solution to this problem that enables honeybees to achieve both tasks during bee
foraging in their natural environment, and which could inspire the development of artificial
chemosensory devices for odor-guided navigation in robots.
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INTRODUCTION
Parallel olfactory subsystems are common in vertebrate and insect
nervous systems. As Galizia and Rössler (2010) point out, two cat-
egories of parallel subsystems can be distinguished in the insect
realm: segregate and dual parallel systems. Segregate parallel sys-
tems process different chemical stimuli (e.g., pheromone subsys-
tems). In contrast, dual parallel systems analyze the same odorants,
but with different coding and processing strategies. Often, such
functional distinction is also evident in an anatomical separation.

A prominent case of a dual parallel olfactory system is found in
the order of Hymenoptera, to which bees and ants belong. In these
animals, uniglomerular projection neurons (PNs) relay olfactory
information via two anatomically distinct tracts from the anten-
nal lobe (AL) to higher brain centers, that is, the mushroom body
(MB) and the lateral horn (LH), where sensory pathways from
multiple modalities converge (see Galizia and Rössler, 2010 for a
review). Those two tracts are called the lateral and the medial
antenno-cerebral tract (l- and m-ACT), after their anatomical
location in the brain (Mobbs, 1982). These pathways are specific to
the group of hymenoptera, and hence they are not present in, for
example, Diptera (flies) or Orthoptera (locust; Galizia and Rössler,
2010).

In the honeybee Apis mellifera, uniglomerular PNs sending
their axons along either pathway innervate segregated populations
of glomeruli, the basic functional units in the AL (Abel et al., 2001).
The separation of those groups of PNs on the glomerular level may
indicate that the information they convey is processed separately
(Galizia and Rössler, 2010). The projections of PNs from both
tracts target adjacent and partially overlapping regions in the MB
and LH, suggesting that computational processes in those areas
use information from both tracts (Müller et al., 2002; Kirschner
et al., 2006).

Several studies have addressed functional differences in odor
representation across the two tracts. Müller et al. (2002) reported
that the segregation into two pathways is not related to the dis-
tinction between different odors or odors and pheromones, but
rather appears to reflect an implementation of two different odor
coding strategies. A similar observation regarding shared odor
coding in both tracts has recently been reported in ants (Brand-
stätter and Kleineidam, 2011). This finding is supported by the
observation that m-PNs exhibited complex responses to constant
odor stimuli with alternating phases of excitation and inhibition,
while l-PNs preferably showed stereotypic phasic–tonic responses
(Müller et al., 2002). Using the same recording technique, Krofczik
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et al. (2009) found that PNs in the l-ACT exhibited higher odor
specificity, while m-ACT PNs were more broadly tuned. In addi-
tion, they found that l-ACT PNs exhibited suppressive responses
to mixtures, that is, the response to the mixture was smaller than
the response to the individual components. In contrast, m-ACT
PNs showed hypoadditive mixture responses (mixture response
resembled the strongest component response). Yamagata et al.
(2009) recorded Ca2+-activity of presynaptic PN boutons in one
of their target areas, the MB calyx region. They could confirm nar-
row vs. broad odor tuning as well as suppressive vs. hypoadditive
mixture coding in l- and m-ACTs as reported by Krofczik et al.
(2009). In addition, they analyzed how the neuronal responses
in both pathways depend on odor concentration. They found
strong concentration dependence in m-ACT PN responses in the
tested concentration range, while l-ACT PN responses showed
only weak concentration dependence, but responded already at
very low concentrations.

Taken together, l-ACT PNs show narrower odor tuning, little
concentration dependence, and suppressive mixture coding, while
m-ACT PNs exhibit broader odor tuning, strong concentration
dependence, and hypoadditive mixture coding (Table 1). Hence,
it appears that PNs in the l-ACT are more suited for coding the
identity of an odorant but less so for representing its intensity,
while PNs in the m-ACT exhibit a complementary coding strategy.

In spite of the detailed morphological and functional descrip-
tions of the l- and m-ACT pathways, it is still unclear how the
characteristic coding strategies found therein are brought about.
Lateral inhibition and gain control are well-described properties
of neuronal processing in the insect AL which seem to be partic-
ularly well suited as candidate mechanisms mediating l-ACT-like
narrow odor tuning and concentration invariance. Lateral inhi-
bition has been shown to enhance odor discriminability in the
insect olfactory system (Linster and Smith, 1997; Stopfer et al.,
1997; Perez-Orive et al., 2004; Wilson and Laurent, 2005). Non-
uniform lateral inhibition acting between specific glomeruli has
been demonstrated to improve odor discrimination in a compu-
tational model (Wick et al., 2010). Computational modeling also
suggested that in honeybees, the strength of the inhibitory connec-
tion between pairs of glomeruli matches the correlation between
their response spectra (Linster et al., 2005). Correlation-dependent
lateral inhibition has been shown to significantly increase the per-
formance of a machine-learning classifier framework inspired by
the honeybee olfactory system (Schmuker and Schneider, 2007).

A second role of inhibition in the AL enables gain control,
that is, compression of dynamic range. Gain control can be
implemented by global, recurrent inhibition. Several studies have
stressed that odorant discrimination can benefit from recurrent
feedback inhibition (Stopfer et al., 2003; Olsen and Wilson,

Table 1 | Response properties of boutons in the l-ACT and m-ACT

pathways.

l-ACT m-ACT

Concentration-invariant Concentration-dependent

Narrow odor tuning Broad odor tuning

Suppressive mixture responses Hypoadditive mixture responses

2008; Asahina et al., 2009). Morphological and functional studies
showed that in Drosophila certain populations of local inhibitory
interneurons in the AL connect only specific sets of glomeruli,
while other populations exhibit non-specific projections to virtu-
ally all glomeruli (Silbering et al., 2008; Chou et al., 2010; Seki et al.,
2010), indicating that in Drosophila, specific lateral inhibition and
global gain control are probably mediated by distinct populations
of neurons, potentially belonging to two different functional sub-
systems. There is much less data available on local interneuron
morphology in the honeybee AL, but LNs in the honeybee exhibit
manifold morphology and connectivity patterns (Flanagan and
Mercer, 1989; Fonta et al., 1993; Sachse and Galizia, 2002). Some
LNs have been shown to target exclusively glomeruli in either the
l- or m-ACT part of the AL, supporting the idea of partially sep-
arated processing of odor information across pathways (Meyer,
2011).

In this contribution, we approach the question of differential
coding strategies and potential benefits in a model study. Our
specific aim was to analyze whether lateral inhibition and gain
control could mediate the different coding strategies that have
been observed in the l- and m-ACT pathways in the honeybee
brain. To this end, we developed a computational network model
that allowed us to implement a complementary odor code in dual
pathways, starting from a model that is based on the concept of
virtual sensors (Schmuker and Schneider, 2007). The model uses
a fixed network scheme and identical neuronal resources but dif-
ferent parameters for the local inhibitory processing. Moreover,
the presence of dual olfactory pathways suggests that they pro-
vide a substantial evolutionary advantage in the ecological niche
which honeybees occupy. The model we present here allowed us
to identify specific advantages of dual pathway odor coding for
odor-guided navigation and foraging.

MATERIALS AND METHODS
CONCEPT OF THE NETWORK MODEL
We based our network model on a previously published model
for processing multidimensional data inspired by the insect olfac-
tory system (Schmuker and Schneider, 2007). The model has no
temporal component and hence neglects the fine temporal scale
of odor responses. Odor-evoked activity patterns form temporal
trajectories in multidimensional space which reach a stationary
point shortly after stimulus onset (Stopfer et al., 2003; Galán et al.,
2004; Silbering et al., 2008). Activity values in our model reflect the
average activity of a neuronal population at this stationary point,
and hence capture only the spatial component of olfactory coding
across glomeruli (we elaborate on the limitations of this approach
in Discussion).

Figure 1A outlines the connectivity of the network model.
Olfactory receptor neurons (ORNs) project onto PNs and LNs
which are organized in glomeruli. LNs project inhibitory connec-
tions to PNs in other glomeruli. PNs project their output to higher
brain areas (not part of the model), but their output may undergo
global feedback inhibition, that is, gain control.

SURROGATE ORN INPUT PATTERNS
We simulated the virtual responses pattern of ORNs to a large
set of odorants as previously described (Schmuker and Schneider,
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FIGURE 1 | (A) Schematic of the network topology of the model.
ORN, olfactory receptor neuron; PN, projection neuron; LN, local
(inhibitory) neuron. ORNs project to PNs and LNs in one glomerulus. LNs
exert inhibition upon PNs in other glomeruli (Eq. 4). An inhibitory population

downstream of the lateral inhibition network takes global input and exerts
global inhibitory feedback (see Eqs 5 and 6). Some of the connections are
shaded for better overview. (B) The weight matrix C used for lateral inhibition
(cf. Eq. 4).

2007). Using the chemical structure of 836 odorants from the
Sigma-Aldrich Flavors and Fragrances Catalog (Sigma-Aldrich,
2004) we calculated a set of 184 physico-chemical descriptors
for each individual odorant using the “MOE” software package
version 2005.6 (Chemical Computing Group, Montreal). Next,
we trained a self-organizing map (SOM) on the 184-dimensional
chemical space to mimic the evolution of the olfactory receptor
repertoire using the software package SOMMER (Schmuker et al.,
2006; http://sommer.sourceforge.net). Each SOM unit was then
used as a “virtual receptor” to encode odorants. A virtual recep-
tor is a point p in data space, and its response r to an odorant s
is determined as a function of the distance between p and s. The
response ri of the ith virtual receptor – and hence the ith ORN – to
an odorant s is described by Eq. 1

ri = 1 − d
(

s, pi

) − dmin

dmax − dmin
, (1)

where pi represents the coordinates of the ith receptor, d(s, pi)
denotes the city-block distance (i.e., the sum of absolute coordi-
nate differences, Minkowski metric with k = 1), dmin and dmax are
the minimal and maximal distance between s and any pi. Hence,
ri = 0 if d(s, pi) is maximal and ri = 1 if d(s, pi) is minimal. The
number of virtual receptors can be adjusted by using an SOM with
the desired number of units. In this study, we used a toroidal SOM
layout with 5 × 7 units, resulting in 35 virtual receptors/ORNs.
The influence of receptor count on stimulus classifiability has been
studied previously (Schmuker and Schneider, 2007). Although our
model can be efficiently evaluated and supports rapid exploration
of large parameter spaces, we limited the model to use only 35
receptors, because increasing the number of receptor types from
35 to 96 yielded only a comparably small improvement in stimulus
representation.

CONCENTRATION DEPENDENCE OF PN ACTIVATION
The previous model did not take into account odor concentration,
so we needed to extend the model to support odor intensity. In

a first step, we account for dynamic range of neuronal activation
in the PN layer by expressing the presynaptic activation pattern
ξ of PNs by ORNs in terms of a logarithmic transfer function of
receptor activation pattern r

ξ = ln (r + 1) , (2)

based on experimental observations in the fruit fly where PN
responses saturate with linearly increasing ORN firing (Bhandawat
et al., 2007; Kazama and Wilson, 2008). Experimental evidence
suggests that short term depressive synapses between ORNs and
PNs provide the mechanism that underlies rate compression in the
fly (Kazama and Wilson, 2008). Logarithmic transfer functions are
also compatible with psychophysical observations as expressed in
the Weber–Fechner law.

In a second step, concentration dependence of PN responses
was modeled by scaling the presynaptic activation ξ by the decadic
logarithm of odor concentration �,

ξconc = ξ

1 − log10�
. (3)

We chose to represent odor concentration using this logarithmic
description in order to obtain concentration values that are com-
patible with the physiological study which the present work was
inspired from (Yamagata et al., 2009). In that study, odor concen-
tration was reported as a dilution factor of the odorant in solvent.
Dilutions ranged from � = 10−5 to � = 100, and we adopted these
values for the present work. In addition, this kind of scaling is
compatible with physiological measurements of concentration-
dependent responses in the honeybee AL (Sachse and Galizia,
2003), in which the magnitude of the glomerular response signal
scaled with the logarithm of odor concentration.

LATERAL INHIBITION
Many studies have shown that lateral inhibition in the AL plays
an important role in olfactory information processing (see, e.g.,

Frontiers in Neuroengineering www.frontiersin.org December 2011 | Volume 4 | Article 17 | 3

http://sommer.sourceforge.net
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Schmuker et al. Dual pathway odor coding

Stopfer et al., 1997; Perez-Orive et al., 2004; Wilson and Laurent,
2005). In this study, we used correlation-dependent lateral inhibi-
tion, as suggested by Linster et al. (2005) and in agreement with
the previous incarnation of the model (Schmuker and Schneider,
2007).

We implemented lateral inhibition by subtracting from the
activation of each PN the summed activation of all other PNs,
weighted by correlation between the ORN activations over all
odorants in the data set. Accordingly, we obtain the output
activation pattern ξpost from the concentration-dependent input
activation pattern ξconc as

ξpost = ξconc − q · C · ξconc

n
, (4)

where n is the number of virtual receptors, C is the correlation
matrix with Ci,j containing the Pearson correlation coefficient for
the responses of the ith and jth ORN, and q is a scaling factor
which allows to adjust the overall strength of inhibition. Elements
on the diagonal as well as negative entries of C were set to zero to
avoid self-inhibition and to reflect the fact that inhibited inhibitory
interneurons have no post-synaptic effect. Figure 1B depicts the
weight matrix C. It is calculated on the basis of receptor responses
to all single odorants in the data set and thus reflects the similarity
structure in the input space. It is constant throughout this study.
Note that the structure of lateral inhibition is controlled by C, but
q is factored out to allow control of the overall strength of inhibi-
tion. The factor n was introduced in the previous work to enable
comparison of q values over different receptor counts. Although n
is constant in this study, we kept it as a parameter for consistency
with previous work.

FEEDBACK INHIBITION
Our implementation of feedback inhibition was motivated by two
experimental observations. First, it has been shown that l-ACT
boutons respond to very weak odor concentrations, while m-ACT
PN boutons do not (Yamagata et al., 2009), meaning that PNs in
the l-ACT react more sensitive to weak stimuli compared to m-
ACT PNs. Second, in the honeybee, the input to l-ACT PNs in
the AL exhibits strong dependence on odor concentration. This
has been demonstrated in a study which measured the Ca2+ sig-
nal in backfilled PNs in the AL, where dendritic Ca2+ activity
likely constituted the majority of the signal (Sachse and Gal-
izia, 2003). It hence follows that gain control in the honeybee
AL must act downstream of PN dendrites, but upstream of PN
boutons.

In order to capture this behavior, we extended the model with a
two-step gain control mechanism consisting of a sensitivity boost
and subsequent feedback inhibition. Our implementation of gain
control is described as

ξout = ξpost · β

ρ
, (5)

where β denotes the sensitivity boost factor, and ρ ≥ 1 describes
the activity of a population of inhibitory neurons that mediates
global feedback inhibition on PN output (see Figure 1A) in a

divisive manner. The inhibitory population receives input from all
PNs; its activity is described as

ρ =

⎧⎪⎨
⎪⎩

1, if
∣∣∣ξpost

∣∣∣ � θ∣∣∣ξpost

∣∣∣
θ

, if
∣∣∣ξpost

∣∣∣ > θ

. (6)

|ξpost| denotes the L1-norm of the PN output pattern (the sum of
the activity of all PNs), θ the (non-zero) activation threshold of
the inhibitory neurons. The case of ρ ≡ 1 describes the case where
no feedback inhibition is present in the network. The inhibitory
population responds as total PN output exceeds θ , which we set
to the average level of PN output for all patterns in our data set
without lateral inhibition and gain control. We normalized the
amount of inhibition by θ , so that ρ ≈ 1 when |ξpost| ≈ θ . Taken
together, gain control in our model globally boosts the PN signals
if summed activity is weak and attenuates them if it the summed
response is strong.

In our physiological observations, the output from m-ACT
neurons at the highest concentration was in the same range as
the response from l-ACT neurons over concentrations (Yamagata
et al., 2009). Hence, we set β to 6 throughout this study, com-
pensating the concentration discount for the lowest concentration
(10−5) in Eq. 3. Thus, when gain control is effective, the amplitude
of an input pattern at the lowest concentration matches the ampli-
tude of the same pattern at the highest concentration without gain
control.

RESULTS
Stimulus representation differs in a characteristic way across two
parallel pathways in the honeybee olfactory system (Table 1; Yam-
agata et al., 2009). Our aim was to identify network properties
underlying the observed differential odor coding, and to investi-
gate the potential benefit of such a dual coding strategy. To this
end, we used a computational network inspired by the neural cir-
cuits in the olfactory system of the honeybee, based on a model of
olfactory processing in the AL (Schmuker and Schneider, 2007).
We investigated the roles which glomerulus-specific lateral inhi-
bition and non-specific feedback inhibition (“gain control”) may
play in creating the distinct coding properties in the l- and m-ACT.
Since comprehensive characterizations of the molecular receptive
fields of the honeybee’s ORNs are not available, we used surrogate
data as input to the AL (see Materials and Methods for details).

EFFECT OF LATERAL INHIBITION STRENGTH AND GAIN CONTROL ON
THE WIDTH OF ODOR TUNING CURVES
It has long been known that lateral inhibition effects contrast
enhancement and supports a sparse stimulus code in sensory pro-
cessing of various modalities. In the honeybee, PN boutons in the
l-ACT pathway respond to fewer odorants and thus exhibit nar-
rower odor tuning profiles than their m-ACT counterparts – in
other words, l-ACT PNs exhibit a sparser odor tuning code (Yam-
agata et al., 2009). In our model, increasing lateral inhibition in
the absence of gain control leads to an overall reduction in activity,
likely making it more difficult for downstream neurons to detect
the response patterns (Figure 2A, upper row). Obviously, gain
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control (Eqs. 5 and 6) can act as a mechanism to recover the activ-
ity pattern (Figure 2A, lower row). With gain control enabled, the
activity pattern retains its strength, even when lateral inhibition is
strong (q > 1.0). At the same time, the sparsening effect of lateral
inhibition can be observed: many PNs respond when the lateral
inhibition is weak (q is low), but when q increases the activity
pattern gets sparser and its contrast is enhanced.

We then tested whether lateral inhibition as described by Eq. 4
can account for narrow odor response profiles and sparse odor
coding in l-ACT PNs. Figure 2B illustrates the tuning profile
of a single PN with respect to the entire set of 836 odors in
our database. Without gain control, the odorant response pro-
files show overall reduced response magnitude, but their shapes
are not changed (Figure 2B, left panel). But, with gain control in
effect, odorant tuning curves become narrower as lateral inhibi-
tion is increased (Figure 2B, right panel). Thus, we could achieve
substantial narrowing of the odorant response profiles only when
gain control was in effect and, at the same time, lateral inhibition
was strong.

One might argue whether increasing input gain alone may also
be sufficient to produce narrower tuning curves in presence of
strong lateral inhibition. We tested this hypothesis by increas-
ing sensitivity alone without applying feedback inhibition (β = 6
and ρ = 1 in Eq. 6). The resulting tuning curves did not become
narrower, only their amplitude was increased (Figure 2C). This
observation further supports that both, increased input sensitivity

and gain control by feedback inhibition are required to reproduce
narrow odor tuning when lateral inhibition is strong.

Lateral inhibition affects the discriminability of odorant rep-
resentations in PNs. We used the Euclidean distance between PN
response patterns as an estimate for their discriminability. Dis-
tance was calculated for each pair of odors, so that we ended up
with 836∗835∗0.5 = 349,030 distance values for each value of lat-
eral inhibition strength q. Two observations can be made from the
distribution of distances (Figure 3). First, when gain control was
in effect, increasing the strength of lateral inhibition also caused
the distance between odorant representations to increase. Second,
when there was no gain control, the distance between odorant
representations slightly decreased with increasing lateral inhibi-
tion. This observation is a consequence of the decreasing overall
amplitude of response patterns with increasing lateral inhibition.
This result indicates that both mechanisms, gain control and lat-
eral inhibition, need to be combined to achieve improved pattern
separability, and hence discriminability by downstream neurons.

This interpretation relies on the assumption that neuronal
responses are not invariant to scaling, that is, the assumption that
small differences in the signal are more difficult to discern than
large differences. Assuming that stochastic fluctuations in the stim-
ulus, the transduction chain, synaptic release, external conditions,
etc., do not or only weakly scale with signal amplitude, they will
affect weak signals more than strong ones. In consequence, large
differences in activity between PNs will be more reliably detected

FIGURE 2 | Effect of lateral inhibition on PN response profiles. (A) The
pattern evoked by a single odor (butyl proprionate, modeled concentration
10−1) transformed by lateral inhibition of different strengths, indicated by the
factor q. Each square in the 5 × 7 grid corresponds to the PN response within
one model glomerulus. (B) Response magnitude in PN no. 17 (fourth column,
second row) for all 836 odors for three levels of lateral inhibition, without (left)

and with gain control and increased sensitivity (β = 6, right). The odors are
arranged along the abscissa with descending response strength such that the
strongest odorant is always displayed on the left. Circles denote the
magnitude of the leftmost odorant. (C) Same as (B) without gain control, but
with PN sensitivity increased by the same factor (β = 6). Note the different
scale of the ordinate.
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FIGURE 3 | Discriminability of odor representations in PNs, as

indicated by the average pairwise euclidean distance between PN

response patterns to all odorants. Dotted lines denote the median,
shaded areas denote the difference between the 10th and the 90th
percentile of the distribution of distances.

than weak differences. To demonstrate this aspect would require a
more elaborate model which is outside the scope of this study.

Taken together, lateral inhibition alone leads to reduced
responses without substantial sharpening of PN tuning curves.
It only improves odor discrimination together with gain control
in the scope of our model.

REPRODUCTION OF PHYSIOLOGICAL OBSERVATIONS
We wondered whether we could also reproduce the characteris-
tic differences in odor concentration and mixture representation
across l- and m-ACT that have been described in physiological
studies (Table 1). In the following, we describe the extent to which
our model is able to reproduce physiological observations regard-
ing representation of odor concentration and mixtures of odors.
Since we implemented gain control and lateral inhibition as sep-
arate mechanisms, we were able to gauge their effects on odor
coding separately.

In our previous physiological experiments, we observed pos-
itive concentration dependence in m-ACT PNs and no or even
negative concentration dependence in l-ACT PNs (Yamagata et al.,
2009). We first wanted to investigate to what extent gain control
alone could reproduce our experimental observations on concen-
tration and mixture coding, when there is no lateral inhibition
involved (q = 0 in Eq. 4). Without gain control, the PN responses
naturally exhibited strong concentration dependence, matching
the behavior of m-ACT PNs (upper row in Figure 4A). With gain
control, this dependence was virtually eliminated (lower row in
Figure 4A). In many cases we even observed negative concentra-
tion dependence, as for example in the upper trace in Figure 4B.
Negative concentration dependence occurs when a PN is strongly
activated by its input, but gets attenuated through feedback inhibi-
tion as the other PNs increase their responses with rising concen-
tration. It was weak in magnitude in the cases where it was present.
Negative concentration dependence was also observed physiolog-
ically in a large fraction of l-ACT PN boutons (cf. Figure 4 in
Yamagata et al., 2009).

In order to depict the general effect of feedback inhibition on
intensity representation, we followed the approach of our physi-
ological study by estimating the representation of different odor
concentrations in individual PNs. To this end, we performed lin-
ear regression of the concentration response curves (Figure 4B)
for the response of each of the 35 PNs to each of the 836 odors,
obtaining 836·35 = 29,260 slopes. We then compared the distribu-
tion of slopes for the two conditions with and without gain control
(Figure 4C). Without gain control the regression lines had strictly
positive slopes, but when gain control was enabled, the regres-
sion slopes took small values close to zero, both in the positive
and negative range. Hence, the strong concentration dependence
observed in m-ACT PNs was reproduced when gain control was
disabled, while l-ACT-like concentration coding could be achieved
with gain control through feedback inhibition.

Responses of l-ACT PNs to mixtures of two odorants have been
described to be weaker than their responses to each of the compo-
nents (suppressive mixture coding), while in m-ACT PNs mixture
responses have been observed to be as strong or stronger than
the response to each component (hypoadditive mixture coding;
Krofczik et al., 2009; Yamagata et al., 2009). We systematically var-
ied the strength of lateral inhibition in absence and in presence
of gain control to investigate the role of those network properties
in reproducing characteristic differences in mixture coding across
pathways. To this end, we implemented mixtures of two odorants
as linear superposition of their patterns (Eq. 7)

ξmix = ln (rA + rB + 1) , (7)

with rA and rB the receptor patterns of the two components A
and B, and ξmix the activity pattern in response to the mixture.
As in Eq. 2, we used a logarithmic transfer function to account
for the dynamic range of neuronal activation. Activity patterns are
combined before applying the logarithmic transfer function which
models PN activation. In the biological scope, this approach cor-
responds to linearly adding the responses on the receptor level,
which is in line with physiological findings in various organisms.
For example, Tabor et al. (2004) observed in zebrafish that activ-
ity patterns evoked by odor mixtures in afferents to the olfactory
bulb could be predicted from the component patterns, suggesting
that mixture interactions in the peripheral olfactory system exhibit
only weak non-linearity. Similar findings have been described in
Drosophila (Silbering and Galizia, 2007), the moth Spodoptera
litoralis (Carlsson et al., 2007), and the honeybee (Deisig et al.,
2006). To illustrate the effect of mixing odorants, we depict
response patterns of two odorants (acetaldehyde and butyl pro-
prionate) and their mixture without gain control in Figure 5A.
We used the (virtual) concentration of 10−1, the same concentra-
tion that we used in the mixture experiments in our experimental
study (Yamagata et al., 2009). PNs exhibited hypoadditive mixture
coding, as the response of each PN to the mixture was higher than
to each of the components, although the mixture response is not a
strictly additive superposition of both components because of the
PN’s logarithmic transfer function (Eq. 7).

We then checked the influence of gain control and lateral inhi-
bition on mixture coding. Figure 5B shows the response patterns

Frontiers in Neuroengineering www.frontiersin.org December 2011 | Volume 4 | Article 17 | 6

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Schmuker et al. Dual pathway odor coding

FIGURE 4 | Concentration dependence of PN response patterns

with and without gain control. (A) The pattern for butyl
laurate for concentrations of 10−5–100 without gain control
(upper row) and with gain control (lower row). (B) Response magnitude
of the PN in glomerulus no. 8 (the strongest responding glomerulus,

second column, third row) with and without gain control. (C) Box plot of
regression slopes of concentration response curves as in (B), but pooled for
the entire data set, over all odors, and PNs. Lines in boxes denote upper
quartile, median, and lower quartile, “whiskers” denote 10th and 90th
percentile.

for components and mixtures with gain control, and for three dif-
ferent levels of lateral inhibition (controlled by the factor q). Gain
control generally promoted suppressive mixture coding. Lateral
inhibition led to increased contrast of the components as well
as the mixtures (cf. Figure 2), but it was difficult to discern an
effect on mixture coding for q = 1. A clear effect became visible
for q = 2, but it is difficult to estimate from the visualization of the
response pattern alone whether this condition supported suppres-
sion or hypoadditivity. A significant portion of PNs were silenced
by strong lateral inhibition for q = 2, resulting in sparse activity
in the component-evoked pattern, and hence lower overall gain.
With lower total gain, gain control became less effective (see Eq.
6), and its suppressive influence on mixture representation became
smaller. This observation indicates that values of q ≥ 2 represent
an extreme case and are most likely not useful in reproducing
experimental observations.

We wanted to obtain a quantitative assessment of whether PNs
express suppressive or hypoadditive responses to a mixture of two
components A and B over a range of parameters. To this end, we
calculated for each PN the index for mixture additivity κ (Krofczik
et al., 2009; Eq. 8)

κ = ξi, mix − max
(
ξi, comp A, ξi, comp B

)

ξi, mix + max
(
ξi, comp A, ξi, comp B

) , (8)

with ξ i, comp A and ξ i, comp B the response of the PN with the index i
to the component A and B, respectively, and ξ i, mix the response of

PN i to the mixture. Hence, values of κ > 0 indicate hypoadditive
mixture representation, while values of κ < 0 indicate suppres-
sive mixture representation. Figure 5C shows the distribution of
κ across PNs for the mixture from Figure 5A, with and without
gain control, for q in the range between zero and two. Gain con-
trol supported suppressive mixture representation (κ < 0) over a
large range of q. Although the values are still close to zero, the
median as well as the 10th and 90th percentiles of the distribu-
tion of κ were below zero, indicating a clear trend to suppressive
responses. In contrast, mixtures were represented in a hypoaddi-
tive way (κ > 0) when there was no gain control. Strikingly, the
amount of lateral inhibition had virtually no effect on the mixture
responses being hypoadditive or suppressive over a large range
of inhibition strength. That stereotypic behavior began to break
down only as q approached the extreme value of 2, when no clear
trend toward hypoadditive or suppressive mixture coding could be
discerned anymore, confirming our qualitative observations from
Figure 5B. Hence, the presence of gain control appears to be the
dominant factor mediating the characteristics of mixture coding
over a large range of parameter values.

Natural odors are typically blends of many different compo-
nents (Knudsen et al., 2006; see Raguso, 2008 for a review), and
the ability to discriminate blends is important for foraging (Wright
et al., 2002). Honeybees can distinguish fine differences in blend
composition foraging (Wright et al., 2005), and it has shown that
AL processing plays an important role in mixture discrimination
(Deisig et al., 2010). As lateral inhibition and gain control enhance
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FIGURE 5 | Effect of lateral inhibition and gain control on mixture

representation. (A) Response patterns without gain control and q = 0 for
two odorants at concentration 10−1 and their mixture. (B) Response
patterns for the odorants and the mixture from (A), but with gain control
and for different values of q. Color scaling in (A,B) is identical to Figures 2A

and 4A. (C) The mixture index κ for different values of q, with and without
gain control, calculated for all glomeruli for the mixture of Acetaldehyde and
Butyl propionate. Black dotted lines indicate the median for all glomeruli, for
different values of q. Shaded areas denote the 10th and the 90th percentile
of κ. The dashed line indicates κ = 0, where mixtures of odorants evoke
exactly the same response as the strongest components, and hence
exhibit neither hypoadditive nor suppressive responses. (D) Euclidian
distance between binary mixtures with slightly different component
concentrations. Dotted line: Median of 100 randomly picked odorant pairs,
shaded areas denote 10th and 90th percentile.

pattern discriminability (cf. Figure 3), we hypothesized that these
mechanisms also affect mixture discrimination. We tested whether
our model reproduces this observation by calculating the distance
between artificial binary blends with slight differences in the pro-
portion of components. To this end, we randomly picked odorant
pairs from our data set and created two binary mixtures from each
pair that differed slightly in their component ratio. In one mix-
ture the ratio of concentration between odor A and odor B was
A:B = 10−1:10−2, while the ratio was reversed in the other mixture
(A:B = 10−2:10−1). We calculated the Euclidean distance between
the response patterns evoked by the two mixtures after process-
ing them with various levels of lateral inhibition. As with single
odors, discriminability of mixtures was enhanced for high levels of
lateral inhibition in combination with gain control (Figure 5D),
thus favoring the discrimination of weak differences in blends of
odorants.

Taken together, lateral inhibition enhanced discriminability of
mixtures on the level of PN response patterns, but it hardly affected
whether mixtures were represented in an additive or subtractive
way at single PNs. The latter aspect of mixture coding was medi-
ated mainly by the presence or absence of gain control, which is
required to avoid that the signal gets lost when lateral inhibition is
strong.

MODEL-BASED EXPLANATION OF AN ATYPICAL EXPERIMENTAL
OBSERVATION
The mechanism we suggest here helps to understand an important
detail in our previous experimental observations on PN bou-
tons in the MB. There was one odor, hexanal, which exhibited
concentration dependence more in l-ACT PN boutons than in m-
ACT boutons, and was more sparsely represented in m-ACT PN
boutons than in l-ACT PN boutons, hence exhibiting “inversed”
behavior (cf. Figure S3 in Yamagata et al., 2009). Both effects can
be explained in a straightforward manner from our model, con-
sidering the particular response pattern that hexanal evokes in the
AL. Hexanal activates comparably few glomeruli in the part of the
l-ACT that is accessible to imaging (Sachse et al., 1999). In the m-
ACT, sparse input will lead to sparse output, but in the l-ACT, PNs
in glomeruli which receive only weak excitatory input may exhibit
stronger responses at their output through the sensitivity boost
that gain control implies (factor β in Eq. 5), apparently reducing
sparseness compared to m-ACT PNs. This explains why hexanal
is sparsely represented in m-ACT PN boutons, but exhibits less
sparse representation in l-ACT PNs.

Along a similar line of thought, our model explains the other
effect we observed, namely concentration-dependent represen-
tation of hexanal in otherwise concentration-insensitive l-ACT
boutons. In the l-ACT, gain control will not exert much influence
when only few PNs are activated, as the strength of gain control
depends on the sum of activation in all PNs (Eq. 6). So gain control
is less effective for odors which activate few PNs (like hexanal), and
in consequence those odors will exhibit concentration dependence
also with l-ACT-like network parameters.

DISCUSSION
In the present study, we have analyzed putative network mech-
anisms which may generate the characteristic features of odor
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Table 2 | Network properties reproducing l-ACT and m-ACT-like coding

characteristics and their functional significance.

l-ACT m-ACT

Strong lateral inhibition

good odor discrimination

Weak lateral inhibition

weak odor discrimination

Strong gain control

weak concentration discrimination

Weak gain control

good concentration discrimination

coding that have been described across two parallel pathways in
the honeybee olfactory system. We have demonstrated that the
complementary features of odor coding at the level of the MB input
found across the two pathways (Table 1) can be captured in a single
model network by using different parameter settings (Table 2). We
could reproduce coding properties observed in PNs of the l-ACT,
namely narrow odor tuning, concentration invariance, and sup-
pressive mixture coding by strong lateral inhibition and strong gain
control in the model network. On the contrary, weak lateral inhi-
bition and absence of gain control reproduced coding properties
of PNs in the m-ACT, namely broad odor tuning, concentration-
dependent responses,and hypoadditive mixture representation. As
a result in the biological scope, this finding is compatible with the
assumption that in the honeybee AL, the l-ACT/m-ACT pathways
represent two partly segregated subnetworks where parameters are
tuned to differential functional properties using the same neu-
ronal ground plan. This constrains current hypotheses on the
connectivity within and between both pathways (see Galizia and
Rössler, 2010 for a review). Our results also suggest dual pathway
odor coding may be of particular value in odor-guided foraging,
when precise information about stimulus intensity and identity is
required simultaneously.

Several assumptions underlying our model are vital for the
validity of these interpretations. For the present study we assumed
that odor selectivity is similar for ORNs that innervate glomeruli
of the l-ACT and those innervating m-ACT. Also, we assumed
homogenous odor sensitivity in ORNs that innervate glomeruli of
either tract. In our model, tract-specific differences in odor sensi-
tivity arise only at the level of PNs and result from computations
within the AL network and (potentially) feedback from down-
stream neuron populations (see below). To our best knowledge,
there is currently no experimental evidence that contradicts any
of these assumptions.

CANDIDATE NEURON POPULATIONS IN THE HONEYBEE BRAIN
MEDIATING FEEDBACK INHIBITION ON THE AL OUTPUT
Our modeling results suggest that gain control is important to
explain the coding differences between l-ACT and m-ACT. In order
to test this hypothesis in future studies, it is important to know
which neuron populations could mediate the gain-controlling
feedback inhibition in the honeybee olfactory pathway. Evidence
from morphological and physiological studies in the honeybee
brain suggests three possibilities.

The first possibility is that gain control is provided by inhibitory
feedback neurons in the protocerebro-calycal tract (PCT). PCT
neurons have post-synaptic profiles in the alpha-lobe of the MB
and project up to the calyx region (Grünewald, 1999; Okada et al.,

2007). In the MB calyx, PCT neurons form reciprocal connections
to PN boutons within so-called microglomeruli (Ganeshina and
Menzel, 2001). At least a part of the PCT neurons are GABAer-
gic. They could mediate the observed feedback inhibition since
the physiological observations which we partly ground our model
upon are based on measurements of presynaptic PN boutons
within these microglomeruli (Yamagata et al., 2009). Dendrites
of PCT neurons span large areas in the alpha-lobe, where they can
pick up the population response from a large fraction of Kenyon
cells (KCs), which in turn may reflect the overall input of PNs
to the MB. Hence, the connection PN–KC–PCT–PN may form
an inhibitory feedback loop. Recently, a similar mechanisms has
been proposed in locust, where negative feedback from the MB
output back to its input is mediated by a large inhibitory neuron
(Papadopoulou et al., 2011), although it is unclear whether that
neuron targets only KC dendrites or if it also synapses onto PN
axonal boutons.

The second possibility is that feedback inhibition from PCT
neurons is mediated directly through the widespread axo-
dendritic ramifications that these neurons form in the calyx region.
Within microglomeruli, PCT neurons can pick up the excitatory
input directly from PNs and feed it back on the boutons through
their inhibitory synapses in the entire calyx region (Ganeshina
and Menzel, 2001; Hourcade et al., 2010). However, it is unclear
how signals traveling on the axo-dendritic structures between
microglomeruli would interfere with action potentials arriving
from the alpha-lobe.

As a third possibility, gain control could be exerted by local
inhibitory interneurons in the AL targeting the PN dendrites very
close to the integrating segment, that is, in the core region of
glomeruli (Fonta et al., 1993). The dendrites would still be showing
concentration-dependent responses, but due to hyperpolarization
close to the integrating segment, fewer action potentials might
be generated. Hence, Ca2+-imaging of backfilled PNs in the AL
would still show concentration-dependent responses, in line with
experimental observations (Sachse and Galizia, 2003). At the same
time, this arrangement would be compatible with the absence of
concentration dependence in l-ACT PN output boutons in the MB
that we observed (Yamagata et al., 2009).

The question whether gain control in l-ACT PNs is achieved
already in the AL or only at the level of the PN boutons may be
resolved by measuring the activity in axons of l-ACT PNs, for
example by measuring electrophysiological signals extracellularly
in the tract (Brill et al., 2011). Also, more detailed physiological
and morphological characterizations of local interneurons in the
honeybee AL are required (Meyer, 2011; Meyer and Galizia, 2011).

POTENTIAL RELEVANCE OF DIFFERENTIAL ODOR CODING IN
ODOR-GUIDED NAVIGATION AND FORAGING
In our model, lateral inhibition and gain control together can
enhance discriminability of single odors (Figure 3) and blends
(Figure 5D). On the other hand, gain control inevitably leads to a
loss of intensity information (Figure 4). Hence, there exists a trade-
off between discriminability of odors and representation of their
intensity. The co-existence of a concentration-invariant and highly
discriminative coding scheme in the l-ACT and a concentration-
sensitive, less discriminant coding scheme in the m-ACT might
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indicate an evolutionary adaptation of the honeybee olfactory
system to achieve both, concentration sensitivity and accurate
detection of odors even at low concentration.

Both capabilities are of vital importance for odor-guided forag-
ing. For example, a foraging bee may encounter a faint odor trace
emanating from a distant flower. Under these conditions, detec-
tion and identification of the odorant requires high sensitivity at
low odor concentrations and narrow odor tuning, as found in l-
ACT PNs. If the odor is attractive, the bee will try to approach
the odor source. Information about the distance to the source is
encoded in odor plumes in two factors: odor intermittency, that
is, the frequency at which the odor is encountered, and odor con-
centration (see Riffell et al., 2008 for a review). Although it has
been shown that odor intermittency alone can be used to success-
fully approach the source of a pheromone via “infotaxis” (Vickers,
2000; Vergassola et al., 2007; Moraud and Martinez, 2010), it is
clear that the distance to the source of an odor is also encoded
in its concentration within plume filaments (Murlis, 1997; Thistle
et al., 2004; Zollner et al., 2004) and hence odor concentration
is a powerful cue for distance to the source. Information about
concentration is encoded in m-ACT PNs. Thus, by integrating
the information about odor identity from l-ACT PNs and con-
centration from m-ACT PNs, the honeybee may be able to detect
and approach an odor source more efficiently than when relying
on infotaxis alone. In addition, odor concentration can be very
high in close vicinity to the odor source, e.g., at the blossom of a
flower. Odor discrimination (and hence odor learning) in this sce-
nario requires that the PN response is not saturated. Gain control
may counteract saturation of l-ACT PNs, enabling reliable, and
concentration-invariant encoding of odor identity even at high
concentrations. Interestingly, previous model studies have shown
that, indeed, gain control can improve learning of odor identity
(Huerta et al., 2004; Nowotny et al., 2005).

If our hypothesis is correct we may predict that a honeybee
whose l-ACT is dysfunctional will still be able to approach odor
sources, but it should exhibit severe impairments in general odor
discrimination, in odor learning at high concentrations, and in
odor detection at low concentrations. On the other hand, a hon-
eybee lacking a functional m-ACT should exhibit little impairment
in odor detection and discrimination, but it may have an impaired
ability to approach an odor source, unless the lack of intensity
information conveyed by m-ACT PNs is compensated by another
mechanism or other neurons, like for example ml-ACT PNs or
multi glomerular PNs (see Galizia and Rössler, 2010 for detailed
overview on PN types in the honeybee AL).

The latter point leads to the question why an entire odor cod-
ing system like the m-ACT should be used to represent intensity
if in principle only one channel would be necessary. However, in
an odor rich environment, where one odor needs to be identi-
fied out of many odors, and its concentration to be determined,
it may be important to have not only a plain intensity signal, but
also substantial odor information associated with it. This infor-
mation may help to bind the concentration information relayed
by the m-ACT to the odor identity information relayed by the
l-ACT in higher brain regions where both pathways converge.
Additional experimental and theoretical studies are needed to test
this hypothesis.

RELATION TO ANOTHER PROPOSED MECHANISM FOR CODING ODOR
IDENTITY VS. INTENSITY
Stopfer et al. (2003) found that in locust, odor intensity, and iden-
tity are represented in parallel within the same spike train, encoded
in temporal patterns which change dynamically during odor pre-
sentation. Locusts do not have dual olfactory pathways like the
l- and m-ACT in honeybees, so the challenge of encoding iden-
tity and intensity at the same time may be solved differently in
these animals. Nevertheless, the presence of parallel pathways for
intensity and identity in the honeybee raises the question of the
particular benefit of that dual system. One potential advantage
of having a parallel representation of those stimulus features as
opposed to encoding it in temporal features is that in a parallel
system, identity and intensity can be provided almost immediately
after stimulus onset. If those features have to be decoded from a
spatio-temporal pattern, a certain amount of time is required until
that pattern has evolved to encode a sufficient amount of infor-
mation. The olfactory system of honeybees signals the presence
of behaviorally relevant odors with very little delay in condition-
ing experiments (Strube-Bloss et al., 2011). In those experiments,
MB-extrinsic neurons which encode the value of the stimulus
(rewarded vs. non-rewarded) exhibited an odor-driven popula-
tion response 60 ms after odor onset, which is approximately
20 ms after a specific representation of the odor has built up in
the PN ensemble in the AL (Krofczik et al., 2009). Moreover, the
representation of the rewarded odor at the MB output became sig-
nificantly different from unrewarded stimuli as quickly as 140 ms
after odor onset. These findings suggest that the olfactory sys-
tem of the honeybee can indeed benefit from a rapid encoding of
odors in the input, and hence from parallel pathways. Moreover,
in a natural environment odor plumes are encountered intermit-
tently and concentration is fluctuating very fast when crossing a
filament (Murlis, 1997; Thistle et al., 2004; Zollner et al., 2004;
Riffell et al., 2008). If odorant concentration and identity are to
be linked, it is hence important to measure the maximum odor
concentration with high temporal precision. This capability may
particularly facilitate odor-guided navigation in an odor rich envi-
ronment where the animal encounters plumes from different odor
sources and needs to distinguish between them.

LIMITATIONS OF THE PROPOSED MODEL IN THE BIOLOGICAL SCOPE
The network model presented in this study considers only the spa-
tial component of the olfactory code and ignores detailed response
dynamics. The main reason for this restriction is that our model is
partly based on experimental results obtained from Ca2+ imaging
of PN boutons, which provides only poor estimates of the tempo-
ral dynamics of the neural code. However, there is much evidence
for the relevance of temporal aspects of the neural code. Stopfer
et al. (1997) have demonstrated the importance of odor-evoked
oscillations in neuronal activity in the AL for odor discrimination
in the honeybee. Krofczik et al. (2009) suggested that PNs may
employ a latency code for representing odors, where the temporal
delay between stimulus onset and PN response is characteristic for
each pair of odor and PN. The temporal structure of odor repre-
sentation in physiological recordings from AL neurons in locust
and fruit fly has been demonstrated to vary strongly with odor
identity, even under constant stimulus conditions (Müller et al.,
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2002; Stopfer et al., 2003; Wilson et al., 2004). Likewise, intensity
has been shown to affect the temporal dynamics of PN responses
in a characteristic way (Stopfer et al., 2003; Ito et al., 2009). A large
part of the temporal complexity seems to be generated already at
the level of ORNs (Raman et al., 2010). A recent modeling study
has shown how downstream neurons can extract temporal rela-
tionships between the firing of populations in the locust AL (Assisi
et al., 2011).

Most studies that deal with olfactory coding in the AL (includ-
ing the present one) have focused on either the spatial or the
temporal aspect of the spatio-temporal code while putting little
emphasis on the other. This can be partly explained by the dis-
tinct experimental approaches that provide the empirical basis for
model approaches. Imaging techniques monitor a spatial arrange-
ment, often with low temporal resolution, while electrophysiologi-
cal recordings of single neurons or few units provide high temporal
resolution but poor spatial information. The existence of a spa-
tial code in the honeybee has been repeatedly proven in glomerular
space and is reproducible across animals (Galizia et al., 1999; Wang
et al., 2003). However, glomerular response patterns have mostly
been obtained by measuring Ca2+-activity, with temporal resolu-
tion typically in the range of 5 Hz. This resolution is not sufficient
to identify temporal variations in odor representation, which have
been described to occur at frequencies starting at 20 Hz using elec-
trophysiological methods (e.g., Stopfer et al., 1997; Laurent et al.,
1998; Wilson and Laurent, 2005). On the other hand, electrophys-
iological studies either have very small spatial coverage, or lack
the possibility to determine the exact spatial location of the sig-
nal source, e.g., in the case of local field potentials. Hence, a direct
comparison of how spatial (that is, glomerular) and temporal cod-
ing interact in the insect olfactory system is still missing. Given the
current experimental evidence, it is difficult to reconcile the debate
whether the spatial or the temporal component of odor coding is
more important in odor discrimination. It is also likely that dif-
ferent insect species have evolved different odor coding strategies,
given the considerable difference in the anatomical layout of their

olfactory systems (e.g., number of glomeruli, functional separa-
tion between structural glomeruli, single vs. dual pathway systems,
multi- vs. uniglomerular PNs, see Martin et al. (2011) for a review),
possibly with different emphasis on spatial and temporal encoding
of odors.

In this context, it is interesting to note that in the honeybee,
temporally complex responses are observed frequently in m-ACT
PNs (Müller et al., 2002), but rarely in l-ACT PNs (Krofczik et al.,
2009). This observation may indicate that l-ACT and m-ACT are
not only different in the spatial component of odor representa-
tion, but also in the temporal component. Moreover, the m-ACT
is shared between locust, Drosophila, and honeybee, while the l-
ACT is unique to Hymenoptera, notably bees, and ants (Galizia and
Rössler, 2010). The difference in temporal aspects of the neural
code between l- and m-ACT will be a fascinating topic for future
studies as simultaneous observations from PNs in both pathways
with suitable temporal resolution become available (Brill et al.,
2011; Rosenbaum et al., 2011).
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