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Abstract

We develop a general nonlinear Luttinger liquid theory to describe the dynamics of one-dimensional
quantum critical systems at low temperatures. To demonstrate the predictive power of our theory we
compare results for the autocorrelation G(#) in the XXZ chain with numerical density-matrix
renormalization group data and obtain excellent agreement. Our calculations provide, in particular,
direct evidence that G(¢) shows a diffusion-like decay, G (t) ~ 1/+/t, in sharp contrast to the
exponential decay in time predicted by conventional Luttinger liquid theory.

1. Introduction

The dynamics of quantum critical systems at finite temperatures is an outstanding challenge in many-body
physics [1]. Understanding the combined effects of thermal fluctuations and interactions is crucial for the
interpretation of experiments that probe frequency-dependent responses and scattering cross sections.
Addressing this problem has become even more pressing since fascinating new experiments in cold atomic gases
[2-5] and condensed matter [6] have given us access to correlation functions directly in the time domain.

Much of the interest in real time evolution of many-body states has focused on one-dimensional (1D)
models. In particular, the difference in the nonequilibrium dynamics of integrable versus nonintegrable systems
is currently a hotly debated topic [7—11]. In parallel, studies of ground state dynamical correlations have recently
forced us to revise our understanding of quasiparticles in critical 1D systems [12—20], culminating with the
development of the nonlinear Luttinger liquid (NLL) theory [21]. This theory predicts that the long-time decay
of correlation functions is dominated by excitations involving particles or holes near band edges, explaining the
high-frequency oscillations observed numerically [22, 23] and confirmed by exact form factor
approaches [24, 25].

The purpose of this work is to extend NLL theory to describe the low temperature, long time decay of
correlation functions of 1D quantum fluids. Determining the precise effects of temperature is certainly relevant
for experiments. Another motivation for this work is to provide analytic expressions to examine numerical
results for time dependent correlation functions, accessible by finite-temperature versions [26—30] of time-
dependent [31-35] density matrix renormalization group (tDMRG) methods [36, 37], and for the thermal
broadening of edge singularities in the frequency domain [38]. To be specific, we will concentrate on the spin
autocorrelation function G(#) of the XXZ model at zero magnetic field, but our approach can easily be
generalized to other correlations and 1D models. We stress that the time decay of correlation functions in the
XXZ model at finite T'is still an open problem despite the integrability of the model [39]. The main advantage of
taking an integrable model as example is that many nonuniversal parameters in the field theory can be fixed
[40,41] allowing for a particularly rigorous numerical test. Our main results are: (i) G(f) at intermediate times ¢ is
well described by a generalization of NLL theory that takes into account the effects of irrelevant operators on the
dispersion of high-energy quasiparticles and on their coupling to low energy modes; (ii) at long times, G(¢)
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contains a non-oscillating, ~1/+/t decaying diffusion-like term, in sharp contrast to the exponential decay
predicted by Luttinger liquid theory. Diffusive behavior in spins chains has been invoked to explain the spin-
lattice relaxation rate [42] and muon-spin relaxation [43] measured in quasi- 1D antiferromagnets and is
attributed to inelastic umklapp scattering [40]. However, fingerprints of diffusion-like behavior have so far only
been found indirectly in the current—current correlation function [28, 40, 44] and in the imaginary time
dependence of the dynamical susceptibility [45]. Here we provide the first direct numerical evidence fora 1//t
long-time decay of the spin autocorrelation.

2.Model

Consider the 1D XXZ Hamiltonian

H=30(S78%1 + 8/8)1 + AS]S7), (1)

j=1

where Sj are spin-1/2 operators, A is the anisotropy parameter, and periodic boundary conditions are assumed.
This model can be realized, for instance, in the Mott insulating phase of two-component Bose mixtures in 1D
optical lattices [2, 46]. The spin autocorrelation function at temperature T'is defined by

G(t) = (S5 (1SF(0)) = Tr{ Sf(t)SjZ(O)e*H/T} /Z, )

where Z="Tr e "/7is the partition function. Via the Jordan-Wigner transformation

1 o
S — c]ch -5 S — (—=1)c] exp [chj cj], (3)
I<j
the model (1) is equivalent to spinless fermions
NI . 1 1
H= Zl[_E(CJTCjH + CJ‘IHCJ') + A(c;cj - 5)(C;+1Cj+l - 5)} (4)
=

where A plays the role of a nearest-neighbor density—density interaction. The spin inversion symmetry
§; — —§; in the spin model (in the absence of a magnetic field) implies the particle-hole symmetry

¢j — (=1)/c] in the fermionic model. The latter sets the average density at halffilling, (c/¢;) = 1/2.

3. Noninteracting case

For A =0, the XXZ model reduces to a free fermion model. The autocorrelation factorizes into a product of free
particle and hole Green’s functions and is given exactly by [48]

™ . 2
GO(t) = (¢; ()c] (0)) (c] (1)¢; (0)) = (f %fkelm) , (5)

with dispersion € = —cos k and Fermi distribution f, = 1 / (e*/T 4 1) athalf-filling.

Let us discuss an approximation that captures the asymptotic long-time decay of G (t), and also of
(87 ()S7 (0)) in the time-like regime # >> r. First note that GO (¢) oscillates at arbitrary temperatures due to
saddle points of the integrand where de;/dk = 0, which occuratk =0and k= 7. For T < 1, we can employa
mode expansion of the fermion field which keeps only states within sub-bands near the smeared Fermi surface
and near the saddle points, in the form

Cimx ~ PR (X)e™/2 4 by (x)e ™72 1 d7 (x) + e™d (x). (6)

Here t)y 1 are the low-energy right- and left-moving components, while d and d are high-energy modes: d'
creates a hole at the bottom of the band (k = 0), and d annihilates a particle at the top of the band (k = ).

The mode expansion reduces the problem to the calculation of free propagators for ¢z ; and d, d. The low
energy modes have linear dispersion, thus their propagator at T' < 1is given by the standard conformal field
theory result (¢ | (x, t)P} 1 (x, 0)) ~ 7T /sinh(7Tt). On the other hand, the high-energy modes do not feel
the temperature, up to an exponentially small correction in the Fermi distribution. Since the dispersion is
parabolic near the band edges, ¢, ~ 1 — k?/2, the propagator of d, d decays slowly,

(d(x, t)d' (x, 0) ~ e~*/./t. Substituting the contributions from low and high energy modes into equation (5),
we obtain the asymptotic decay of GO (¢):
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(O)(t) - —i2t N \/_Te i(t+m/4) T2 . (7)
Jrt sinh(7Tt) ~ sinh? (nTt)
The first term stems from the contribution in which both particle and hole are high-energy modes. The second
term is due to a high-energy particle (hole) plus a low-energy hole (particle) at either one of the Fermi points. The
latter decays exponentially for t > 1/T. The third contribution is due only to the low-energy modes 1y 1, and
decays more rapidly than the oscillating terms. Therefore, G®(¢) for t > 1/T is dominated by the term
oscillating with frequency w =2 and decaying as 1 /¢.

4. Interacting case: NLL theory

We focus on theregime 0 < A < 1 corresponding to a critical phase of fermions with repulsive interactions.
The factorization of G(¢) as in equation (5) is then a priorilost. However, we can investigate the long-time decay
of G(t) using the framework of NLL theory [21]. The idea is to keep the mode expansion, equation (6), with both
low- and high-energy modes, which are now identified as quasiparticles in a renormalized band. The ground
state is a vacuum of d and d, and the spin operator Si~ cj ¢; creates at most one d particle and /or one d hole. At
low temperatures, we neglect an exponentially small thermal population of the band edge modes. The d, d
quasiparticles can then be treated as mobile ‘impurities’ distinguishable from the low-energy modes. We note,
however, that an exponentially small relaxation rate associated with thermally activated holes near the bottom of
the band has been discussed in the context of conductance in quantum wires [18]. Such processes would only
affect the real-time dependence of correlation functions after exponentially long times and will be
neglected here.

At T'=0 the dynamics is described by an effective field theory with Hamiltonian density [22]

H= dT(a + 0; )d +d' ( fi )J + vdtd d'd
2m m
+ g[( o) + (ax¢)2] + j%{ O (d'd — 3'd). )

Here ¢ is the energy and m the absolute value of the effective mass of the band edge modes, Vis the impurity-
impurity interaction, ¢ (x) and 6 (x) are dual fields representing the bosonized low-energy modes [47] and obey
[¢p(x), 0,0 (x')] = i (x — x).vis the spin velocity, K the Luttinger parameter, and o the dimensionless
coupling constant of the impurity-boson interaction. For the integrable XXZ model one finds

yme =L mI=N g —: LZA,whlleVN —4Afor A < 1.

m ZarccosA T — Arccos.
Equation (8) must be regarded as a fixed point Hamiltonian which includes all mnarginal interactions allowed
by symmetry. This model can be solved exactly by performing a unitary transformation that decouples the
impurities from the bosonic modes, but attaches ‘string’ operators to the d, d fields [14]:

d(x) — d(x)e "I, ©
d(x) — d(x)ela? /I, (10)

The calculation of the free correlators in the effective field theory after the unitary transformation allows one to
predict the long-time decay of G(¥) at T'= 0, up to non-universal amplitudes [22].

We now extend the NLL theoryto 0 < T < ¢, where ¢ is the renormalized bandwidth. We obtain the
leading T dependence by analyzing the effects of irrelevant interactions. The leading corrections to the oscillating
terms in G(¢) allowed by symmetry (see appendix A) stem from the irrelevant dimension-three operators

§H = g[(axe)z + (&cqﬁ)z](d*d +d'd)
+ g'[(&ﬁ)z - (8x¢)2](de +d'3) — p.o20(aid — 3'd)
+ M_axe(—idTaxd +id'o.d + h.c.). (11)

Substituting the mode expansion into Hamiltonian (1) and bosonizing the low-energy modes, we find for
A<Ll:gr —A, u ~—A/J7,while g’ and pi are zero to first orderin A. The g’ interaction can be
identified with a three-body scattering process [ 16, 22] and gives rise to a nonzero impurity decay rate for T > 0
[49, 50]. By imposing nontrivial conservation laws in the XXZ model we can show that ¢’ = 0 exactly [51] (see
appendix A for details), as expected from the lack of three-body scattering in integrable models.

In contrast with the noninteracting result in equation (7), in the interacting case the irrelevant operators can
modify both frequencies and exponents of the high-energy terms of G (¢). To investigate this effect, we calculate
the impurity self-energy > and effective impurity-boson interaction & by perturbation theory in the irrelevant

3
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operators (see appendix B for details). The leading T dependence is determined by loop diagrams which contain
only one irrelevant coupling constant but arbitrary factors of the bare a. In the calculation of loop diagrams, it is
convenient to treat the quadratic term in the impurity dispersion (which is also a dimension-three operator) as a
perturbation, expanding the internal impurity propagators in powers of 1 /m. We find

Y(T) ~ = T?/v?, (12)

&T) ~ a(l + cQT/v2). (13)

The prefactors cs; and c,, are linear functions of g, 11, , j¢ . Bearinginmind that g, yi ~ O(A), p, ~ O(A?) for
A < 1, we obtain the weak coupling approximation

g a?

o R~ , 14
75 2Km (14
2
«
Co ~ —2¢ + . 15
“ £ 2mKm (15)

Omitted terms are O(A?) or higher. To first order in A, the self-energy and vertex correction are both governed
by g~ —A.For0 < A < 1, equation (13) thus implies that the effective impurity energy (T) = ¢ + X(T)
decreases ~ T2, whereas the effective coupling & increases linearly with T. Phenomenologically, we find
g= Z—?Z—; [n=o relating the coupling constant gin equation (11) to a change in the impurity energy when
applying a magnetic field h. This allows one to obtain g (A) exactly using the Bethe ansatz and Wiener-Hopf
techniques. Unfortunately, the corrections of higher order in «in equation (13) quickly become of the same
order as the O(g) term making it impossible to fix ¢, ¢, beyond the lowest order in A. Importantly however,
the T'dependence of & and & holds for arbitrary 0 < A < 1, aslongas the temperature is small enough.
The integrability of the XXZ chain suggests that one might be able to relate the oscillation frequency &(T')
with the so-called dressed energy in the thermodynamic Bethe ansatz. We will discuss this point in appendix C.
The renormalization of the impurity-impurity interaction appears at order . The basic process involves a

two-boson loop connecting two impurity lines. The correction depends on the momentum and frequency
2mg? T2w

iv“q ’
relevant regime w < vq for impurities with parabolic dispersion.

We can now describe the decay of G(#) using the methods of NLL theory with renormalized parameters at

T > 0.First, consider the contribution from the excitation with a single impurity, equivalent to the second term
in equation (7). The unitary transformation introduces a ‘string’ operator whose scaling dimension depends on
temperature through &(7T'). The resultis

exchange between the impurities: V(q, w, T) =~V +

where we simplified the result in the physically

_AM[ a7 —ifarrem
G ~—z [sinh(th)] c ’ (16

~ 2
where 7(T) = K + L[1 — @] , o(T) = I[1~7(T) — l],andA(T)istheunknown prefactor. Note that
2 2K 2 2 2

a(T) > afor0 < A < 1limplies that 7(T) decreases with temperature, slightly slowing down the decay of
G (®).

The two-impurity contribution to G (¢), analogous to the first term in equation (7), is strongly modified by
the Vinteraction. At T =0, the 1/t decay for A = 0 changes to 1/#* for A > 0and ¢ > 1/V2[22]. This
asymptotic behavior is associated with two impurities scattering in a ladder series with small energy and
momentum transfer, w ~ g2/m < e. Neglecting the renormalization of V for w < vq, we obtain the two-
impurity contribution

B(T)
Gy (1) ~ —t(z ) g-izarye, (17)

where B(T) is the unknown prefactor.

The results for the high-energy terms in equations (16) and (17) hold for the integrable XXZ model, but can
be extended to generic models by considering the effects of nonzero three-body scattering amplitude g’. The
main effect associated with integrability breaking is that the high-energy excitations acquire a finite decay rate at
0 < T < ¢.In the particle-hole symmetric case, the decay rate of both d and d modes is equivalent to the hole
relaxation rate derived in [50], 1 /7 ~ (g")?(T/¢)?. In real time, the impurity relaxation introduces an additional
exponential decay ~e~*/7 for t > 7. Atlow temperatures the effect is negligible for the one-impurity
contribution in equation (16) (which already decays exponentially within a time scale that scales linearly with T)
but should become important to analyze the two-impurity contribution in equation (17) for times t 2 .

4
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5. Diffusive decay

Attemperatures T < 1, conventional Luttinger liquid theory predicts that the non-oscillating terms in G (¢),
associated only with the low-energy modes 1/ 1 , decay exponentially

T ’ T -
G ~ A —— Bl ———| N
o [Sinh(ﬁTt)] ! [Sinh(ﬂt)] "

with known amplitudes A’, B’ [52]. However, we must also consider how irrelevant operators affect the low-
energy contributions. In [40] it was shown that the formally irrelevant umklapp scattering

§Hy = A cos(4ﬁ¢) (19)

qualitatively changes the long-time decay of the low-energy, long-wavelength contribution to G (¢). There
appears a new time scale set by the decay rate

4K—2
y=cao( )T e, 20)
where C(K) is a prefactor given by [40]

27K sin(2wK)

C(K) = ﬁ22K+1

F(% — K)F(K)B(K, 1 — 2K)cot(nK), 21)

where I'(x) denotes the gamma function and B(x, y) = I'(x)I'()/I'(x + y) is the beta function. For the XXZ
model, v can be calculated exactly using the result for the umklapp coupling constant [52]

1 2K—2
\ KIT'(K)sin(7/K) F(l * 2K — 2)

(2 - K) 2ﬁF(1+ K )
2K — 2

(22)

In [40] it was shown that including a nonzero decay rate in the boson propagator leads to the long-wavelength
term in G(¢) given by

Gq:() (t) ~

foo dew[(uﬂ + ziﬂyw)l/z + (wz — 2i’yw)l/2]. (23)

2t oo 4r 1 — e B

For y = 0 the calculation simplifies as the integrand in equation (23) only has poles in the complex plane; in this
case one recovers the standard result in equation (18). For ¥ > 0, one obtains an additional contribution from
the branch cut of the integrand. The result simplifies in the regime of very long times t > 1/ > 1/T;in
addition to equation (18) we find the extra term’
T KT [~

Gaie () = N I'= i3
More generally, in the regime |r| /v < 1/ < t one obtains (S7, . (£)S7 (0)) ~ Der/2vt / J/t. This is exactly
the behavior predicted by the phenomenological diffusion theory, based on a random walk of the magnetization
through the 1D lattice [53-55]. Note, however, that the diffusion-like decay is limited to a certain space-time and
temperature domain. The assumptions of independent modes in the phenomenological theory of spin diffusion
donothold ina 1D quantum fluid and the full space and time dependence of correlations is not captured.

The debate about the existence of spin diffusion in integrable spin chains has a long, controversial history
[26, 40,42, 48, 56—66]. At first sight, our claim that the long time decay of G (t) ~ T*K~1/2//t is diffusion-like
may sound contradictory because it has been proven recently that the critical XXZ chain exhibits a nonzero
Drude weight at arbitrarily high temperatures [67-69]. The latter implies ballistic spin transport [70, 71].
However, it is important to note that the Drude weight is related to the long-time decay of the total spin current,
whereas the diffusion-like decay arises in the correlation for the local spin density. Clearly, the conventional
phenomenology cannot account for all the dynamical properties of 1D quantum fluids atlow T. A striking
indication of this is in fact that for integrable systems ballistic transport may coexist with a diffusion-like decay in
the spin density correlation. Note that by breaking integrability, e.g. by a next-nearest neighbor interaction, the
dc conductivity will become finite while the 1/+/# decay of the spin autocorrelation is generic. To establish our
claim beyond the approximations of the field theory approach, in the following we shall exhibit direct numerical
confirmation for the diffusion-like decay in the XXZ chain.

(24)

7 . . . ..
Note that this corrects the result in [40] where a factor 27 is missing.
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Figure 1. Real part of the spin autocorrelation G(t) in the noninteracting case A = 0 for temperature T= 0.167. The DMRG data
(symbols) are in perfect agreement with the exact result (red solid line). The blue dashed line shows that the approximation,
equation (7), is excellent except for very short times. The inset shows that at long times tG(#) oscillates with constant amplitude,
confirming the dominant 1/t decay for A =0.

6. Numerical results

We now turn to a comparison of our theory with tDMRG results for finite system size. Rather than exploring the
full space—time dependence of the spin—spin correlation function, here we focus on the autocorrelation since
our main goal is to analyze the asymptotic long-time behavior where conventional Luttinger liquid theory
breaks down. (More generally, for correlations at finite distance r the high-energy contributions associated with
band edge modes are observed inside the light cone for times ¢ > r/v.) Non-zero temperatures are
incorporated via a purification of the density matrix. By using the disentangler introduced in [28] and exploiting
time translation invariance (S7 (1) S (0)) = (S; (t/2)S; (—t/2)) [30] we can substantially extend the accessible
time scale. Details of the algorithm are described in [29, 37]. The two parameters which determine the accuracy
of the DMRG results are the system size and the discarded weight. We carry out all our calculations using L = 200
sites; this is sufficient to reproduce the exact thermodynamic-limit result at A = 0 up to times =50 (see

figure 1). At finite A, we have examplarily performed calculations using L = 300 to ensure that for the
temperatures and time scales considered our results are effectively in the thermodynamic limit. For each set of
parameters { A, T}, we carry out the DMRG calculations using four discarded weights which each differ by a
factor of 10. We stop the calculation once the bond dimension reaches a value of 2000. This allows us to estimate
the truncation error, which in all cases is smaller than the symbol size.

Apart from demonstrating the accuracy of the numerical data, figure 1 also confirms that for A =0 and
T > 0 thelong-time behavior of G(#) is dominated by the two-impurity term oscillating with frequency w =2
and decayingas 1/1.

We now turn to the interacting case. We find a striking difference between the weakly interacting case,
figure 2, and the strongly interacting case, figure 3. While the data for A = 0.8 can be very well fitted by a sum of
the single impurity contribution (16) and the diffusive part (24), it is necessary to also include the two-impurity
contribution (17) for A = 0.3. In the latter case, we also allow for an additional decay rate p by multiplying
equation (17) by e#*. The fits yield very small decay rates which seem to be of order ~e~!/7 and could possibly
be related to thermal excitations at the band edges which we have neglected in our analysis (see appendix D for
details).

The values of the decay rate y due to Umklapp scattering predicted by our theory are so small that we are not
able to access the regime ¢t >> 1/ in which the simple expression (24) has been derived. (For instance, we have
1/7 =~ 55for A =0.8 and T = 0.25.) A numerical solution of equation (23), however, shows that \/t G (¢)
already reaches the plateau predicted by equation (24) at much earlier times, times which we are able to
investigate by tDMRG. In practice, we search for a diffusive-like term in the form of a nonzero asymptotic value
of Re [/t G (¢)] atlong times. At T= 0.25 we find for both A values clear evidence for a diffusion-like decay with
diffusion constants I', close to the predicted values, I'y,, see equation (24). In addition, we find numerically that

6
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Figure2. J/tG(t) at A = 0.3: tDMRG data (symbols) and fits (lines) for ¢ > 10. Here lim, .~/ G (t) = T with T3 (T = 0.07) ~ 0
[Lin(T = 0.07) = 2.1 x 107%]and I} (T = 0.25) ~ 6.3 x 1074 [[}n(T = 0.25) = 7.9 x 1074].
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Figure 3. Same as figure 2 for A = 0.8 with Tj; (T = 0.167) ~ 3.3 x 10~* [[[1,(T = 0.167) = 5.6 x 10~*]and
Ti(T = 0.25) = 9.9 x 1074 [[, (T = 0.25) = 1.3 x 1077].

in agreement with our theory the 1/+/f contribution seems to vanish for magnetic fields 4 > T where the
Umklapp term (19) is oscillating and should be dropped [40]. This is exemplarily shown in figure 4,
demonstrating that G(¢) decays faster than 1/+/¢ in this case.

The oscillation frequency &(T') and exponent 7j(T), obtained from fits of tDMRG data at A = 0.3 and zero
magnetic field, are shown in figure 5. The data confirm that # ~ —T?and 7} ~ —T while the prefactors, even
for A = 0.3, already seem to deviate significantly from the lowest order result in equation (15).

7. Conclusion

Finite temperatures and quantum fluctuations lead to large non-perturbative effects on dynamical correlations
in NLL’s. The exponents of oscillating contributions are renormalized by temperature while umklapp scattering
leads to a diffusion-like term dominating the long-time asymptotics. These predictions are in excellent
agreement with tDMRG results which provide, in particular, the first direct evidence for a diffusion-like decay of
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Figure 4. Real part of G (t) — m? for finite magnetization m. The connected part of Re[G ()] decays faster than 1//f for h > T.
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Figure 5. (T) and 7)(T) for A = 0.3 from fits of tDMRG data (symbols). Dashed lines: quadratic and linear least square fits,
respectively; solid lines: O(A) theoretical result, equation (13).

spin correlations in the XXZ model and show striking changes in the one- and two-impurity contributions as a
function of temperature and interaction strength. We expect that the coexistence of a diffusion-like decay of the
autocorrelation with a ballistic propagation of the spin current can soon be tested experimentally in cold atomic
gases [3, 5]. The theory presented here is not restricted to integrable models and can easily be extended to
systems such as Bose or Fermi gases, or to study the propagation of impurities through 1D quantum fluids at
finite temperatures. The calculation of decay rates for the Bose gas at finite T, in particular, is now within reach
which should help to shed light on the experimentally observed evolution from a prethermalized to a fully
equilibrated state following a quantum quench [72].
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Appendix A. Irrelevant impurity-boson interactions

In this section we discuss the general kinematic structure of the low-energy effective theory by considering
discrete symmetries and then show that integrability of the XXZ model further constrains the coupling constants
of irrelevant operators.

Particle-hole (C) and parity (P) transformations act on the bosonic fields and impurity fields as follows [52] :

—x
0
- 9. (A.D

—0

—¢
P
d

p:

QU S
U
WA R

Ll bl

d
d

The Hamiltonian can only contain operators that are invariant under Cand P. Let us denote by
H" = f dx H"(x), a = 1, 2,...,aparticular term in the Hamiltonian such that H is an operator with
scaling dimension n. Up to dimension four, we have a list of 14 operators allowed by symmetry:

HE = %[(axe)z + (2.0)']
HY =e(did + d'd),

HY = — (8,d'0,d + 0,4'0,d),
2m
@ _ va v 315
MY = - deo(d'd — d'd),

HP = — vd'dd'd,
HY = g[(&ﬁ)z v (ax¢>)2](d+d +d'a),

= (30 0 30)

HY = 1.0.0 0.(d'd — d'd),

HY =~ i 0.0 (d0.d — Oed’d — d'0.d + 0.d'd),

HY = 0, (d°0,d0.d’d + d'0.d0.d'd),

HY =0 (d'0.d — Oed'd)(d'0.d — 0.d'd),

HEY =i 026 (d'0ed — 0,d7d — d'0,d + 0.d'd),

HE = 20000 (d70d — Ded'd + d'0,d — 0,d'd),

HY = 130,60 (Oed D — Od'0.d). (A2)

All the operators in equation (A.2) conserve the total number of particles and holes in the high-energy subbands.
In the above list we have omitted operators which couple the impurity modes to umklapp type operators. The
lowest dimension operator in this family is (d'd + d “d)cos (47K $), whose scaling dimension varies
continuously from 5at A = 0to 3 at A = 1. The set of constraints on the coupling constants that we shall derive
in the following is not affected by this family of operators.

The integrability of the XXZ model affects the effective impurity model by constraining the coupling
constants of irrelevant interactions. Following [15], we shall examine the consequences of integrability by
imposing the existence of nontrivial conservation laws. For the XXZ model, it is fortunate that the first nontrivial
conserved quantity can be identified with the energy current operator Ji, which is defined from the continuity
equation for the Hamiltonian density [51]. In the continuum limit, the energy current density is given by

0xj (x) = i[H(x), H], (A.3)
where H = f dx H(x) = Zu f dx H, is the total Hamiltonian. The energy current operator is Jp = f dx j(x).

Let us denote by j,, ,, with a < b, the contribution to the energy current density obtained by taking the
commutator of terms H, and H,;, in the Hamiltonian as follows:

9
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Bl = i f dy { [ G, HE o) |+ [HP @, ) |
— 8| HP 0, HP0) ]} (A4)
The notation implies that when we take the commutator of a dimension-n operator with another dimension-m

operator, the corresponding contribution to Jg (when nonvanishing) has dimension n + m — 2.
To check that Jg = ZK p Ja,b 18 conserved, we need to take the commutator with all the terms in H again:

[y, 1O = [ O 0. (A.5)

We organize the expansion by operator dimension. In order to find nontrivial relations between the coupling
constants in equation (A.2), it suffices to compute [Jg, H] to the level of dimension-four operators. For this we
need to consider up to dimension-three operators in Jg. We find the following list of operators

i == v?0.00:0,

&= %(d*&xd + d'o.d),

2,3

i% = JV_Z 0.0(d'd — d'd),

=7 ij_ 0o (d'0ud — 0,d'd — d'0,d + 0.d'd),
== [ da(aod - odid) + da(d'od - 0.d'd))

JO =~ 4gv0.00.0 (d'd + d'd),

iQ =~ wrvood.(did - d'd),
i) = invo.(d'od — o.dtd - d'9.d + 0.d'd),

8 =2ed0(did — d'd),
20 v
i® = 1Y 5 00.6(did + d'd
e — ( )

- ‘*J‘%V [dfd(d*a d—0,d'3)+ (d - a)],

i = zlﬁ,g[d*d(&*axa — 0,d'd) + (d = &)],

2,11

i), = 2medegd(did — d'd),

JO = = 222000, (d'd + d'd),
jO = — ise0.(d'0ud — Od'd — d'0.d + 0.d'd). (A.6)

The calculation of the commutators in equation (A.5) is tedious but straightforward. To simplify the result,
we use the known relations for the XXZ model ¢ = 1/m = v. We find that the conservation law [Jg, H] = 0
imposes the constraints

__Y
g ik
g'=0,
av
= —=
27K
. = 261,
o’y
2= " T
2K
R3 = 0. (A7)

Most importantly, integrability rules out the g’ interaction. This is precisely the operator considered in [49]
which accounts for a finite decay rate of a mobile impurity in a Luttinger liquid at finite temperatures.

10
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Figure B1. Feynman diagrams at first order in the irrelevant impurity-boson coupling g. (a) Impurity self-energy; (b) vertex correction.
The solid line represents the free impurity propagator and the dashed line represents the free boson propagator.

Appendix B. Low temperature corrections to impurity energy and impurity-boson
interaction

Here we provide a detailed derivation of equations (12) and (13).
The irrelevant coupling constant gin equation (11) is generated to first order in the interaction term in the
XXZ model:

HinG) = Ac;fcj C;+1Cj+l. (B.1)

We now use the mode expansion for the fermion field. We bosonize the low-energy fermions in the form
YR/ (x) ~ Qra)y/ 2e=IV2m o) where g 1 (x) are chiral boson obeying
(gL (), 0o 1 (x)] = Fid (x — x’). These are related to the dual bosonic fields by

PrL x) =10 F ox)] / J2 . We focus on the term involving a high energy particle and right movers since
the other terms can be obtained by symmetry. The ginteraction is generated by taking the combination

Hine () ~ — 1AYL () d ()d" (x + Dtpp(x + 1) + hec.
_ 123 V2T 90— 27 o D I () d (x) + h.c.
v

= % : eXP{im[‘PR(X) — <,0R(x + 1)]} . dT(X)d(x) + he.
~ = A0 ) @ d ), .

where :: denotes normal ordering with respect to the boson vacuum and we have set the short-distance cutoff to
a=1.Asaresult,wefind g ~ —Afor A < 1.
The low-temperature frequency shift is determined by the self-energy ¥ (k, w, T)in

Gk w) =[w— e — Stk w, D] (B.3)

The self-energy is calculated within perturbation theory in the irrelevant operators. The marginal interaction
must be treated nonperturbatively due to the infrared singularities associated with the orthogonality catastrophe.
To first order in g the self-energy is independent of k, w. It is given by the tadpole-type diagram with a single
boson propagator illustrated in figure B1 (a). The result is simply

2
w0 <250} - £ ]
where the factor of 2 accounts for the additional contribution from left movers and e is the point-splitting
parameter. Expanding (sin E)z ~ (&)2 + %, we obtain the cutoff-independent term in the impurity self-
energy Bv e
X(T) = g7r_T2 (B.5)
3v2

The effective impurity-boson vertex is defined from the three-point function illustrated in figure B1(b). The
correction is first order in v and g:

oa(k, w, T) = —4agll(k, w), (B.6)
where I1(k, w) is the Fourier transform of
H(X, t) = <d(x7 t)dT (0’ 0)> <axS0L(x) t)axSOL(O) 0)> (B7)

The vertex correction depends on the external momenta and frequencies. However, to get the correction to the
marginal coupling constant o we can set the external momenta to be exactly at the top/bottom of the band (i.e.
the state that controls the long-time behavior). For the impurity part of the correlation function we can use the
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Figure B2. Renormalization of the impurity-boson coupling due to the impurity band curvature in the internal line.

zero temperature propagator
(Td (x, t)d" (0, 0)) = O(t)e "5 (x). (B.8)
For the free boson propagator, we use the finite temperature expression

1 (/B)*

X > X 0’ 0 == . B9
(OrpL 06 DO 0, 0)) = —o—5 =5 [7(t + x/v)/ 5] o
It follows that
Mk = 0w oy - T [ _
(k=0,w=¢) 2[321/2]; dr sinh?(7t / 3)
e (2
~ gl 2) o

Dropping the cutoff-dependent term and substituting the temperature-dependent term in equation (B.6), we
obtain

ba(T) = —2agT /v2 (B.11)
Atweak coupling, « = 27 (1 — K) =~ 4A and g ~ — A, thus
ba/a ~ 2AT. (B.12)

However, we only expect the correction to be quantitatively correct when da/a ~ 2AT < 1.

Goingbeyond first order in A, we find that the leading contributions from dimension-three operators
p_and g, to ¥ and 8o/« either vanish (in the case of 1) or are at least of order A’ (in the case of 1. ; this is
because yi, is not generated to first order in A).

There are, however, corrections at order A” stemming from the parabolic term in the impurity dispersion

§H,y = ——d'02d. (B.13)
2m

The parabolic dispersion cannot be treated perturbatively in the autocorrelation function for a free impurity,
since it is responsible for the 1/+/f decay of the propagator. However, in the calculation of the renormalized
vertex we deal with loop diagrams that contain both impurity and boson propagators integrated over distance x.

The impurity Green’s function including the dispersion is Gy (x, t > 0) = e <! s M eimx’/2t The fast

oscillation of Gjmp (x, t) as a function of x implies that integrals like f dx Gimp (x, t)F (x, t), where F (x, t)is

some correlation function involving the bosonic modes, are dominatedt by x = 0. Thus, we can approximate
[ dx Gl 0F s 02 FO, 1) [ % Ginp (3 1)
— o0 —00

= e R (0, 1). (B.14)

This is equivalent to using the impurity Green’s function in the limit m — oo, which is simply
Gimp(x, t > 0) = e”¥'§ (x), as in equation (B.8). On the other hand, expanding the impurity Green’s function
in powers of 1 /myields

Gimp (%5 ) = efietf dk eikx+ikt/2 m
2

~ eigt[é(x) _ ziaié(x) + ] (B.15)
m
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The correction involving 926 (x) within aloop diagram produces an extra power of T. We compute this
correction using perturbation theory in §H,,. The contribution to the renormalized vertex, shown in figure B2 ,
is

bdl = X A2 d2xs eff
TKm
x 9% (00 ()0 (0)) (d (1)d" (2)) (d (2)d" (3)) (d (3)d" (0)). (B.16)
The boson propagator is
) _ @ T*2 + cosh[27T (t + x/v)] o
op <8x¢(x)ax¢(0)> = oyt Snh* [T (t + x/7)] + (x x). (B.17)
Thus,
. 3 T4 t 2+ cosh(27th1)
bat = f ds f drz f I — T sinh*(7Tt)
a3 T (3
= —|—-—1+ .. B.18
2wKmy? ( € * ) (B.18)

Once again, we keep only the universal T-dependent correction.
Likewise, there is an order 1/m correction in the impurity self-energy. The result is given in equation (14) of
the main text.

Appendix C. Excitation energies from the thermodynamic Bethe ansatz

In this section we describe the calculation of dressed energies using the thermodynamic Bethe ansatz (TBA)
approach to the XXZ model [73, 74].

Bethe ansatz states are parametrized by a set of rapidities {x;" } which satisfy the Bethe equations. Here jlabels
the type of string and « specifies a particular rapidity. More precisely, x;* refers to the real part of the rapidity,
since the imaginary part is fixed by the string hypothesis [73, 74]. Strings with length r; > 1areinterpreted as
bound states of n; particles. For simplicity, we choose the anisotropy parameter tobe A = cos(7/v), with
v € Z.Inthis case, we can restrict ourselves to a finite number of strings j = 1, 2,..., . The strings with
j=1,2,..,v — lhavelength n;=jand parity v; = +1;thestringwithj=vhaslengthn, =1and parity
v, = —1.

The Bethe equations (in logarithmic form) for a chain of length N and periodic boundary conditions read

v My

Nt (x]) = 2rl] + I;;l@jk(xg —x5) a=1,.,M, (C.1)

where M;is the number of strings of type j in the Bethe ansatz state and IJ are integers (for M;odd) or half-
integers (for M; even). A particular Bethe ansatz wave function is determined by the set of IJ’s. The functions
ti(x) and the scattering phase shifts ©j (x) are given by

tj(x) :f(x; 1nj, Vj), (C.2)

O (x) = f(x; |n]- — nk|, Vij) -l—f(x; nj + ng, Vij)

Min(nj,nk)f 1

12 ZZ f(x; n — m| + 21, vjvk), (C.3)
=1
where we define the function
0, ifn/vez,
fosmv) = 2v arctan {[cot (ﬂ)]v tanh (E)}, otherwise. €4
2v 2v

In the TBA approach, we take the limit N — oo and characterize the macroscopic state by the density of
particles p (x) and density of holes p" (x) in rapidity space. The equilibrium state is obtained by minimizing the
free energy as a functional of p (x) and p" (x). This leads to a set of coupled nonlinear integral equations for the
dressed energies
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1 2

Figure C1. Energy of single one-string excitation as a function of rapidity x for A = 0.5 and three different values of temperature.
From bottom to top: T= 1073, T=0.25,and T=5.

gj(x) = — 2v sin(m/v)a;j(x)
v +00
+ 1 > u f dy Ty(x — y)ln[l + e‘ﬂ‘fk@’)], (C.5)
Bi= -
where 5 = 1/T is the inverse temperature and
(0= L (C6)
aj(x) = ——, .
! 27 dx
1 dOy
Tg(x) = ———. C.7
ik (x) Py (C.7)

Equation (C.5) can be solved numerically by iteration. In the limit T — 0, the dressed energy for j = 1 (the even-
parity one-string) reduces to the dispersion of the single-hole excitation over the ground state.

The dressed energies can be used to calculate the free energy and other thermodynamic properties [74]. They
also show up as the energies of elementary excitations over the equilibrium state [75]. The thermal excitation
spectrum for the gapless phase of the XXZ model was calculated by Puga [76]. The energy required to create a
single hole with rapidity x in the density of type-j strings is

AEj(x) = —¢j(x) + % ZM
k

= 1n[1+e—ﬂfk<°@]. (C.8)

Notice that the excitation energies AE; (x) differ from the dressed energies in equation (C.5) by a constant term
thatinvolves all strings.

Figure C1 shows the excitation energy for the j = 1 string for three different values of temperature. We are
particularly interested in the bandwidth, which is given by AE, (0). At T = 0, the bandwidth is known

analytically, limr_¢AE (0) = Za:c;)SAAZ . The important point is that the bandwidth calculated from the TBA

dressed energies increases with temperature, contrary to the behavior of the frequencies predicted by the
effective field theory and observed numerically using a tDMRG algorithm. This disagreement is rather puzzling
given that a generalized TBA approach has even been used to discuss nonequilibrium dynamics [77]. There are
two possible explanations: (I) There could be an unexpectedly large time scale required to observe the dynamics
governed by low lying TBA excitations, i.e., the TBA frequencies are relevant for the long-time dynamics but we
are unable to reach this asymptotic regime numerically. (II) The TBA energies cannot simply be interpreted as
those of elementary excitations. While the TBA approach correctly describes the thermodynamics this does not
guarantee that such a simple interpretation holds.

Appendix D. Fits of the DMRG data

We have fitted the tDMRG data using the fit function

T

JiG(t) =T + A(m

7
) o—i(zt+%) 4+ B t-3/2—2tg—pt (D.1)
where A, B, 7j, &, {, p, I" arereal fitting parameters. The first, constant term I' is the diffusive contribution.
The second term is the single impurity contribution, equation (16) in the main text, while the third term
represents the two-impurity contribution, equation (17), where we have allowed for a small decay rate which
seems to be of order ~e~!/T and might possibly be related to thermal excitations at the band edges. In table D1
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Table D1. Parameters obtained by fitting the tDMRG data presented in the main text, see figures 1 and 2

CKarrasch etal

A T Fitrange r A 7 g 1% B p
theory 0.3 0 — 0 — 0.838 1.1835 0.530 — —
th. O(A) 0.3 0.07 — 2.11 x 107 — 0.831 1.1825 0.520 — —
fit 0.3 0.07 t> 10 ~0 0.275 0.796 1.185 0.751 —0.202 0
th. O(A) 0.3 0.25 — 7.94 x 107* — 0.814 1.1709 0.493 — —
fit 0.3 0.25 t>10 6.3 x 107* 0.421 0.713 1.165 1.990 —0.242 0.016
theory 0.8 0 — 0 — 0.629 1.465 0.202 — —
th. O(A) 0.8 0.167 — 5.58 x 1074 — 0.533 1.457 0.052 — —
fit 0.8 0.167 t>15 3.26 x 1074 0.161 0.403 1.503 —0.238 0 —
th. O(A) 0.8 0.25 — 1.26 x 1073 — 0.492 1.448 —0.013 — —
fit 0.8 0.25 t>15 9.88 x 1074 0.210 0.387 1.525 —0.397 0 —
Z 6x10°f T-0.167 ]
g o T=0.167 ]
T 3x10°[ 1
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Figure D1. 1 G () at A = 0.5: tDMRG data (symbols) and fits (lines) for ¢ > 15. The fit parameters are given in table D2.
Table D2. Parameters for various fits of the tDMRG dataat A = 0.5.
A T Fitrange r A 7 g 72 B p
theory 0.5 0 — 0 — 3/4 1.30 0.393 — —
th. O(A) 0.5 0.167 — 3.98 x 107* — 0.710 1.2919 0.329 — —
fit1 0.5 0.167 t > 10 1.68 x 107* 0.277 0.575 1.294 0.853 —0.086 0.019
fit2 0.5 0.167 t>15 1.49 x 107* 0.199 0.527 1.287 1.406 —0.099 0.020
fit3 0.5 0.167 t > 20 1.51 x 1074 0.284 0.558 1.285 1.853 —0.093 0.019
th. O(A) 0.5 0.25 — 1.09 x 1073 — 0.690 1.2829 0.299 — —
fit 0.5 0.25 t>15 7.19 - 1074 0.266 0.501 1.272 2.196 —0.091 0.041

we present the fit parameters for the fits shown in figures 2 and 3. We also present the theoretical predictions for

I', equation (24), and for other parameters based on weak-coupling expressions (to first order in A) for the

coupling constants of irrelevant operators (rows labeled ‘th. O(AY).
One of our main findings based on the analysis of the numerical data is that the two-impurity contribution
becomes very small for large interaction strengths leading to a fit parameter B for A = 0.8 which is essentially
zero. To further support that B for the considered temperatures is strongly reduced with interaction, we present
in figure D1 below tDMRG data and fits for intermediate interaction strength A = 0.5.
Here a two-impurity contribution is still visible but the amplitude Bis already very small, see table D2 . In

order to illustrate the sensitivity of the fit parameters on the fit interval we concentrate on the case A = 0.5,

T=0.167 and show in table D2 parameters for fits using three different time intervals.
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Except for the phase shift (, and, to a lesser extent, the amplitude A, all fit parameters show little variation
implying, in particular, that it is possible to extract the temperature dependence of 2(T) and 7(T) with
reasonably accuracy from the tDMRG data. On the other hand, we want to emphasize that the phase shift @
cannot be fixed reliably from numerical data even at zero temperature, see [22, 23].
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