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Abstract
Wedevelop a general nonlinear Luttinger liquid theory to describe the dynamics of one-dimensional
quantum critical systems at low temperatures. To demonstrate the predictive power of our theorywe
compare results for the autocorrelationG(t) in theXXZ chainwith numerical density-matrix
renormalization group data and obtain excellent agreement. Our calculations provide, in particular,
direct evidence thatG(t) shows a diffusion-like decay,G t t1 ,~( ) in sharp contrast to the
exponential decay in time predicted by conventional Luttinger liquid theory.

1. Introduction

The dynamics of quantum critical systems atfinite temperatures is an outstanding challenge inmany-body
physics [1]. Understanding the combined effects of thermalfluctuations and interactions is crucial for the
interpretation of experiments that probe frequency-dependent responses and scattering cross sections.
Addressing this problemhas become evenmore pressing since fascinating new experiments in cold atomic gases
[2–5] and condensedmatter [6] have given us access to correlation functions directly in the time domain.

Much of the interest in real time evolution ofmany-body states has focused on one-dimensional (1D)
models. In particular, the difference in the nonequilibriumdynamics of integrable versus nonintegrable systems
is currently a hotly debated topic [7–11]. In parallel, studies of ground state dynamical correlations have recently
forced us to revise our understanding of quasiparticles in critical 1D systems [12–20], culminatingwith the
development of the nonlinear Luttinger liquid (NLL) theory [21]. This theory predicts that the long-time decay
of correlation functions is dominated by excitations involving particles or holes near band edges, explaining the
high-frequency oscillations observed numerically [22, 23] and confirmed by exact form factor
approaches [24, 25].

The purpose of this work is to extendNLL theory to describe the low temperature, long time decay of
correlation functions of 1D quantumfluids. Determining the precise effects of temperature is certainly relevant
for experiments. Anothermotivation for this work is to provide analytic expressions to examine numerical
results for time dependent correlation functions, accessible by finite-temperature versions [26–30] of time-
dependent [31–35] densitymatrix renormalization group (tDMRG)methods [36, 37], and for the thermal
broadening of edge singularities in the frequency domain [38]. To be specific, wewill concentrate on the spin
autocorrelation functionG(t) of theXXZmodel at zeromagnetic field, but our approach can easily be
generalized to other correlations and 1Dmodels.We stress that the time decay of correlation functions in the
XXZmodel atfiniteT is still an open problemdespite the integrability of themodel [39]. Themain advantage of
taking an integrablemodel as example is thatmany nonuniversal parameters in the field theory can befixed
[40, 41] allowing for a particularly rigorous numerical test. Ourmain results are: (i)G(t) at intermediate times t is
well described by a generalization ofNLL theory that takes into account the effects of irrelevant operators on the
dispersion of high-energy quasiparticles and on their coupling to low energymodes; (ii) at long times,G(t)
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contains a non-oscillating, t1~ decaying diffusion-like term, in sharp contrast to the exponential decay
predicted by Luttinger liquid theory. Diffusive behavior in spins chains has been invoked to explain the spin-
lattice relaxation rate [42] andmuon-spin relaxation [43]measured in quasi-1D antiferromagnets and is
attributed to inelastic umklapp scattering [40]. However, fingerprints of diffusion-like behavior have so far only
been found indirectly in the current–current correlation function [28, 40, 44] and in the imaginary time
dependence of the dynamical susceptibility [45]. Herewe provide the first direct numerical evidence for a t1
long-time decay of the spin autocorrelation.

2.Model

Consider the 1DXXZHamiltonian
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where Sj
a are spin-1/2 operators,Δ is the anisotropy parameter, and periodic boundary conditions are assumed.

Thismodel can be realized, for instance, in theMott insulating phase of two-component Bosemixtures in 1D
optical lattices [2, 46]. The spin autocorrelation function at temperatureT is defined by
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whereΔ plays the role of a nearest-neighbor density–density interaction. The spin inversion symmetry
S Sj

z
j
z - in the spinmodel (in the absence of amagnetic field) implies the particle–hole symmetry

c c1j
j

j -( ) † in the fermionicmodel. The latter sets the average density at half filling, c c 1 2.j já ñ =†

3.Noninteracting case

ForΔ= 0, theXXZmodel reduces to a free fermionmodel. The autocorrelation factorizes into a product of free
particle and holeGreen’s functions and is given exactly by [48]
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with dispersion kcosk = - and Fermi distribution f 1 e 1k
Tk= +( ) at half-filling.

Let us discuss an approximation that captures the asymptotic long-time decay of G t ,0 ( )( ) and also of
S t S 0j r

z
j
zá ñ+ ( ) ( ) in the time-like regime t r. First note that G t0 ( )( ) oscillates at arbitrary temperatures due to

saddle points of the integrandwhere kd d 0,k = which occur at k= 0 and k=π. ForT 1, we can employ a
mode expansion of the fermion fieldwhich keeps only states within sub-bands near the smeared Fermi surface
and near the saddle points, in the form

c x x d x d xe e e . 6j x
x

L
x x

R
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HereψR,L are the low-energy right- and left-moving components, while d̄ and d are high-energymodes: d̄†

creates a hole at the bottomof the band (k= 0), and d annihilates a particle at the top of the band (k=π).
Themode expansion reduces the problem to the calculation of free propagators forψR,L and d d, .¯ The low

energymodes have linear dispersion, thus their propagator atT 1 is given by the standard conformal field
theory result x t x T Tt, , 0 sinh .R,L R,Ly y p pá ñ ~( ) ( ) ( )† On the other hand, the high-energymodes do not feel
the temperature, up to an exponentially small correction in the Fermi distribution. Since the dispersion is
parabolic near the band edges, k1 2,k

2 » - the propagator of d d, ¯ decays slowly,
d x t d x t, , 0 e .tiá ~ -( ) ( )† Substituting the contributions from low andhigh energymodes into equation (5),
we obtain the asymptotic decay of G t :0 ( )( )
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Thefirst term stems from the contribution inwhich both particle and hole are high-energymodes. The second
term is due to a high-energy particle (hole) plus a low-energy hole (particle) at either one of the Fermi points. The
latter decays exponentially for t T1 . The third contribution is due only to the low-energymodesψR,L, and
decaysmore rapidly than the oscillating terms. Therefore, G t0 ( )( ) for t T1 is dominated by the term
oscillatingwith frequencyω= 2 and decaying as 1/t.

4. Interacting case: NLL theory

We focus on the regime 0 1< D < corresponding to a critical phase of fermionswith repulsive interactions.
The factorization ofG(t) as in equation (5) is then a priori lost. However, we can investigate the long-time decay
ofG(t) using the framework ofNLL theory [21]. The idea is to keep themode expansion, equation (6), with both
low- and high-energymodes, which are now identified as quasiparticles in a renormalized band. The ground
state is a vacuumof d and d,¯ and the spin operator S c cj

z
j j~ † creates atmost one d particle and/or one d̄ hole. At

low temperatures, we neglect an exponentially small thermal population of the band edgemodes. The d d, ¯
quasiparticles can then be treated asmobile ‘impurities’ distinguishable from the low-energymodes.We note,
however, that an exponentially small relaxation rate associatedwith thermally activated holes near the bottomof
the band has been discussed in the context of conductance in quantumwires [18]. Such processes would only
affect the real-time dependence of correlation functions after exponentially long times andwill be
neglected here.

AtT= 0 the dynamics is described by an effective field theorywithHamiltonian density [22]
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Here ε is the energy andm the absolute value of the effectivemass of the band edgemodes,V is the impurity-
impurity interaction, xf ( ) and xq ( ) are dualfields representing the bosonized low-energymodes [47] and obey

x x x x, i .xf q d¶ ¢ = - ¢¢[ ( ) ( )] ( ) v is the spin velocity,K the Luttinger parameter, andα the dimensionless
coupling constant of the impurity-boson interaction. For the integrableXXZmodel onefinds
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Equation (8)must be regarded as a fixed pointHamiltonianwhich includes allmarginal interactions allowed
by symmetry. Thismodel can be solved exactly by performing a unitary transformation that decouples the
impurities from the bosonicmodes, but attaches ‘string’ operators to the d d, ¯ fields [14]:

d x d x e , 9x Ki aq p-( ) ( ) ( )( )

d x d x e . 10x Ki aq p¯ ( ) ¯ ( ) ( )( )

The calculation of the free correlators in the effective field theory after the unitary transformation allows one to
predict the long-time decay ofG(t) atT= 0, up to non-universal amplitudes [22].

We now extend theNLL theory to T0 ,e<  where ε is the renormalized bandwidth.We obtain the
leadingT dependence by analyzing the effects of irrelevant interactions. The leading corrections to the oscillating
terms inG(t) allowed by symmetry (see appendix A) stem from the irrelevant dimension-three operators
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Substituting themode expansion intoHamiltonian (1) and bosonizing the low-energymodes, we find for
1 :D  g ,» -D ,m p» -D- while g ¢ andμ+ are zero tofirst order inΔ. The g ¢ interaction can be

identifiedwith a three-body scattering process [16, 22] and gives rise to a nonzero impurity decay rate forT 0>
[49, 50]. By imposing nontrivial conservation laws in theXXZmodel we can show that g 0¢ = exactly [51] (see
appendix A for details), as expected from the lack of three-body scattering in integrablemodels.

In contrast with the noninteracting result in equation (7), in the interacting case the irrelevant operators can
modify both frequencies and exponents of the high-energy terms of G t .( ) To investigate this effect, we calculate
the impurity self-energyΣ and effective impurity-boson interaction ã by perturbation theory in the irrelevant
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operators (see appendix B for details). The leadingT dependence is determined by loop diagramswhich contain
only one irrelevant coupling constant but arbitrary factors of the bareα. In the calculation of loop diagrams, it is
convenient to treat the quadratic term in the impurity dispersion (which is also a dimension-three operator) as a
perturbation, expanding the internal impurity propagators in powers of 1/m.Wefind

T c T v , 122 2S » S( ) ( )

T c T v1 . 132a a» + a( )˜ ( ) ( )

The prefactors cΣ and cα are linear functions of g , , .m m+ - Bearing inmind that g , , 2 m m~ D ~ D- +( ) ( ) for
1D  , we obtain theweak coupling approximation
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Omitted terms are 3 D( ) or higher. Tofirst order inΔ, the self-energy and vertex correction are both governed
by g .» -D For 0 1,< D  equation (13) thus implies that the effective impurity energy T Te e= + S˜( ) ( )
decreases T ,2~ whereas the effective coupling ã increases linearly withT. Phenomenologically, we find

g v

K h h2 0
2 2

2= p e¶
¶ =∣ relating the coupling constant g in equation (11) to a change in the impurity energywhen

applying amagnetic field h. This allows one to obtain g D( ) exactly using the Bethe ansatz andWiener-Hopf
techniques. Unfortunately, the corrections of higher order inα in equation (13) quickly become of the same
order as the g( ) termmaking it impossible tofix c c, aS beyond the lowest order inΔ. Importantly however,
theT dependence of ẽ and ã holds for arbitrary 0 1,< D < as long as the temperature is small enough.

The integrability of theXXZ chain suggests that onemight be able to relate the oscillation frequency Tẽ( )
with the so-called dressed energy in the thermodynamic Bethe ansatz.Wewill discuss this point in appendix C.

The renormalization of the impurity-impurity interaction appears at order g2. The basic process involves a
two-boson loop connecting two impurity lines. The correction depends on themomentum and frequency

exchange between the impurities:V q T V, , ,
g T

v q

2
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2 2

4w » + p w˜ ( ) wherewe simplified the result in the physically

relevant regime vqw  for impurities with parabolic dispersion.
We can nowdescribe the decay ofG(t) using themethods ofNLL theorywith renormalized parameters at

T 0.> First, consider the contribution from the excitationwith a single impurity, equivalent to the second term
in equation (7). The unitary transformation introduces a ‘string’ operator whose scaling dimension depends on
temperature through T .ã( ) The result is
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h= -˜ ( ) ˜( ) andA(T) is the unknown prefactor. Note that

Ta a>˜ ( ) for 0 1< D  implies that Th̃( ) decreases with temperature, slightly slowing down the decay of
G t .1( )

The two-impurity contribution to G t ,( ) analogous to thefirst term in equation (7), is stronglymodified by
theV interaction. AtT= 0, the 1/t decay forΔ= 0 changes to 1/t2 for 0D > and t V1 2 [22]. This
asymptotic behavior is associatedwith two impurities scattering in a ladder series with small energy and
momentum transfer, q m .2w e~  Neglecting the renormalization ofV for vq,w  we obtain the two-
impurity contribution

G t
B T

t
e , 17T t

2 2
i2» e-( ) ( ) ( )˜( )

whereB(T) is the unknown prefactor.
The results for the high-energy terms in equations (16) and (17) hold for the integrableXXZmodel, but can

be extended to genericmodels by considering the effects of nonzero three-body scattering amplitude g .¢ The
main effect associatedwith integrability breaking is that the high-energy excitations acquire afinite decay rate at

T0 .e<  In the particle–hole symmetric case, the decay rate of both d and d̄ modes is equivalent to the hole
relaxation rate derived in [50], g T1 .2 2t e~ ¢( ) ( ) In real time, the impurity relaxation introduces an additional
exponential decay e t~ t- for t .t At low temperatures the effect is negligible for the one-impurity
contribution in equation (16) (which already decays exponentially within a time scale that scales linearly withT)
but should become important to analyze the two-impurity contribution in equation (17) for times t . t
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5.Diffusive decay

At temperaturesT 1, conventional Luttinger liquid theory predicts that the non-oscillating terms in G t ,( )
associated onlywith the low-energymodesψR,L, decay exponentially
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with known amplitudes A B,¢ ¢ [52]. However, wemust also consider how irrelevant operators affect the low-
energy contributions. In [40] it was shown that the formally irrelevant umklapp scattering

Kcos 4 19Ud l p f= ( ) ( )

qualitatively changes the long-time decay of the low-energy, long-wavelength contribution to G t .( ) There
appears a new time scale set by the decay rate
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where xG( ) denotes the gamma function and B x y x y x y, = G G G +( ) ( ) ( ) ( ) is the beta function. For theXXZ
model, γ can be calculated exactly using the result for the umklapp coupling constant [52]
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In [40] it was shown that including a nonzero decay rate in the boson propagator leads to the long-wavelength
term inG(t) given by
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For γ= 0 the calculation simplifies as the integrand in equation (23) only has poles in the complex plane; in this
case one recovers the standard result in equation (18). For 0,g > one obtains an additional contribution from
the branch cut of the integrand. The result simplifies in the regime of very long times t T1 1 ;g  in
addition to equation (18)wefind the extra term7
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More generally, in the regime r v t1 g ∣ ∣ one obtains S t S t0 e .j r
z

j
z r v t22 2á ñ ~ G g

+
-( ) ( ) This is exactly

the behavior predicted by the phenomenological diffusion theory, based on a randomwalk of themagnetization
through the 1D lattice [53–55]. Note, however, that the diffusion-like decay is limited to a certain space-time and
temperature domain. The assumptions of independentmodes in the phenomenological theory of spin diffusion
do not hold in a 1Dquantumfluid and the full space and time dependence of correlations is not captured.

The debate about the existence of spin diffusion in integrable spin chains has a long, controversial history
[26, 40, 42, 48, 56–66]. Atfirst sight, our claim that the long time decay of G t T tK4 1 2~ -( ) is diffusion-like
may sound contradictory because it has been proven recently that the criticalXXZ chain exhibits a nonzero
Drudeweight at arbitrarily high temperatures [67–69]. The latter implies ballistic spin transport [70, 71].
However, it is important to note that theDrudeweight is related to the long-time decay of the total spin current,
whereas the diffusion-like decay arises in the correlation for the local spin density. Clearly, the conventional
phenomenology cannot account for all the dynamical properties of 1D quantumfluids at lowT. A striking
indication of this is in fact that for integrable systems ballistic transportmay coexist with a diffusion-like decay in
the spin density correlation. Note that by breaking integrability, e.g. by a next-nearest neighbor interaction, the
dc conductivity will become finite while the t1 decay of the spin autocorrelation is generic. To establish our
claimbeyond the approximations of the field theory approach, in the followingwe shall exhibit direct numerical
confirmation for the diffusion-like decay in theXXZ chain.

7
Note that this corrects the result in [40]where a factor 2π ismissing.
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6.Numerical results

Wenow turn to a comparison of our theory with tDMRG results forfinite system size. Rather than exploring the
full space–time dependence of the spin–spin correlation function, herewe focus on the autocorrelation since
ourmain goal is to analyze the asymptotic long-time behavior where conventional Luttinger liquid theory
breaks down. (More generally, for correlations atfinite distance r the high-energy contributions associatedwith
band edgemodes are observed inside the light cone for times t r v. )Non-zero temperatures are
incorporated via a purification of the densitymatrix. By using the disentangler introduced in [28] and exploiting
time translation invariance S t S S t S t0 2 2j

z
j
z

j
z

j
zá ñ = á - ñ( ) ( ) ( ) ( ) [30]we can substantially extend the accessible

time scale. Details of the algorithm are described in [29, 37]. The two parameters which determine the accuracy
of theDMRG results are the system size and the discardedweight.We carry out all our calculations using L= 200
sites; this is sufficient to reproduce the exact thermodynamic-limit result atΔ= 0 up to times t= 50 (see
figure 1). AtfiniteΔ, we have examplarily performed calculations using L= 300 to ensure that for the
temperatures and time scales considered our results are effectively in the thermodynamic limit. For each set of
parameters T, ,D{ } we carry out theDMRGcalculations using four discardedweights which each differ by a
factor of 10.We stop the calculation once the bond dimension reaches a value of 2000. This allows us to estimate
the truncation error, which in all cases is smaller than the symbol size.

Apart fromdemonstrating the accuracy of the numerical data, figure 1 also confirms that forΔ= 0 and
T 0> the long-time behavior ofG(t) is dominated by the two-impurity termoscillatingwith frequencyω= 2
and decaying as 1/t.

We now turn to the interacting case.Wefind a striking difference between theweakly interacting case,
figure 2, and the strongly interacting case, figure 3.While the data forΔ= 0.8 can be verywellfitted by a sumof
the single impurity contribution (16) and the diffusive part (24), it is necessary to also include the two-impurity
contribution (17) forΔ= 0.3. In the latter case, we also allow for an additional decay rate ρ bymultiplying
equation (17) by e .tr- Thefits yield very small decay rates which seem to be of order e T1~ - and could possibly
be related to thermal excitations at the band edges whichwe have neglected in our analysis (see appendixD for
details).

The values of the decay rate γ due toUmklapp scattering predicted by our theory are so small that we are not
able to access the regime t 1 g inwhich the simple expression (24)has been derived. (For instance, we have
1 55g » forΔ= 0.8 andT= 0.25.)Anumerical solution of equation (23), however, shows that t G t( )
already reaches the plateau predicted by equation (24) atmuch earlier times, timeswhichwe are able to
investigate by tDMRG. In practice, we search for a diffusive-like term in the formof a nonzero asymptotic value
of t G tRe [ ( )] at long times. AtT= 0.25wefind for bothΔ values clear evidence for a diffusion-like decaywith
diffusion constantsΓfit close to the predicted values,Γth, see equation (24). In addition, we find numerically that

Figure 1.Real part of the spin autocorrelationG(t) in the noninteracting caseΔ= 0 for temperatureT= 0.167. TheDMRGdata
(symbols) are in perfect agreement with the exact result (red solid line). The blue dashed line shows that the approximation,
equation (7), is excellent except for very short times. The inset shows that at long times tG(t) oscillates with constant amplitude,
confirming the dominant 1/t decay forΔ= 0.

6

New J. Phys. 17 (2015) 103003 CKarrasch et al



in agreementwith our theory the t1 contribution seems to vanish formagnetic fields h T where the
Umklapp term (19) is oscillating and should be dropped [40]. This is exemplarily shown infigure 4,
demonstrating thatG(t) decays faster than t1 in this case.

The oscillation frequency Tẽ( ) and exponent T ,h̃( ) obtained fromfits of tDMRGdata atΔ= 0.3 and zero
magnetic field, are shown infigure 5. The data confirm that T 2e ~ -˜ and Th ~ -˜ while the prefactors, even
forΔ= 0.3, already seem to deviate significantly from the lowest order result in equation (15).

7. Conclusion

Finite temperatures and quantum fluctuations lead to large non-perturbative effects on dynamical correlations
inNLL’s. The exponents of oscillating contributions are renormalized by temperature while umklapp scattering
leads to a diffusion-like termdominating the long-time asymptotics. These predictions are in excellent
agreementwith tDMRG results which provide, in particular, the first direct evidence for a diffusion-like decay of

Figure 2. t G t( ) atΔ= 0.3: tDMRGdata (symbols) andfits (lines) for t 10. Here t G tlimt = G¥ ( ) with T 0.07 0fitG = »( )
T 0.07 2.1 10th

5G = = ´ -[ ( ) ] and T 0.25 6.3 10fit
4G = » ´ -( ) T 0.25 7.9 10th

4G = = ´ -[ ( ) ].

Figure 3. Same asfigure 2 forΔ= 0.8with T 0.167 3.3 10fit
4G = » ´ -( ) T 0.167 5.6 10th

4G = = ´ -[ ( ) ] and
T 0.25 9.9 10fit

4G = » ´ -( ) T 0.25 1.3 10th
3G = = ´ -[ ( ) ].
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spin correlations in theXXZmodel and show striking changes in the one- and two-impurity contributions as a
function of temperature and interaction strength.We expect that the coexistence of a diffusion-like decay of the
autocorrelationwith a ballistic propagation of the spin current can soon be tested experimentally in cold atomic
gases [3, 5]. The theory presented here is not restricted to integrablemodels and can easily be extended to
systems such as Bose or Fermi gases, or to study the propagation of impurities through 1Dquantumfluids at
finite temperatures. The calculation of decay rates for the Bose gas at finiteT, in particular, is nowwithin reach
which should help to shed light on the experimentally observed evolution from a prethermalized to a fully
equilibrated state following a quantumquench [72].
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Figure 4.Real part of G t m2-( ) forfinitemagnetizationm. The connected part of G tRe[ ( )] decays faster than t1 for h T .

Figure 5. Tẽ( ) and Th̃( ) forΔ= 0.3 fromfits of tDMRGdata (symbols). Dashed lines: quadratic and linear least square fits,
respectively; solid lines: D( ) theoretical result, equation (13).
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AppendixA. Irrelevant impurity-boson interactions

In this sectionwe discuss the general kinematic structure of the low-energy effective theory by considering
discrete symmetries and then show that integrability of theXXZmodel further constrains the coupling constants
of irrelevant operators.

Particle–hole (C) and parity (P) transformations act on the bosonic fields and impurity fields as follows [52] :

C
d d
d d

P

x x

d d
d d

: , : . A.1

⎧
⎨
⎪⎪

⎩
⎪⎪

⎧
⎨
⎪⎪
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q q
f f

q q
f f
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 -
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( )

TheHamiltonian can only contain operators that are invariant underC andP. Let us denote by
H x x ad , 1, 2 ,...,a

n
a
nò= =( )( ) ( ) a particular term in theHamiltonian such that a

n( ) is an operatorwith
scaling dimension n. Up to dimension four, we have a list of 14 operators allowed by symmetry:

v

d d d d
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All the operators in equation (A.2) conserve the total number of particles and holes in the high-energy subbands.
In the above list we have omitted operators which couple the impuritymodes to umklapp type operators. The
lowest dimension operator in this family is d d d d Kcos 4 ,p f+( ¯ ¯) ( )† † whose scaling dimension varies
continuously from5 atΔ= 0 to 3 atΔ= 1. The set of constraints on the coupling constants that we shall derive
in the following is not affected by this family of operators.

The integrability of theXXZmodel affects the effective impuritymodel by constraining the coupling
constants of irrelevant interactions. Following [15], we shall examine the consequences of integrability by
imposing the existence of nontrivial conservation laws. For theXXZmodel, it is fortunate that the first nontrivial
conserved quantity can be identifiedwith the energy current operator JE, which is defined from the continuity
equation for theHamiltonian density [51]. In the continuum limit, the energy current density is given by

j x x Hi , , A.3x ¶ =( ) [ ( ) ] ( )

where H x x xd d
a a åò ò= =( ) is the totalHamiltonian. The energy current operator is J x j xd .E ò= ( )

Let us denote by ja, b, with a b,< the contribution to the energy current density obtained by taking the
commutator of terms a and b in theHamiltonian as follows:
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j dy x y x y

x y
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The notation implies that whenwe take the commutator of a dimension-n operator with another dimension-m
operator, the corresponding contribution to JE (whennonvanishing) has dimension n+m− 2.

To check that J J
a b a bE ,å= <

is conserved, we need to take the commutator with all the terms inH again:

J H x x, d . A.5a b
n m

c
l

a b c
n m l
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2
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Weorganize the expansion by operator dimension. In order tofind nontrivial relations between the coupling
constants in equation (A.2), it suffices to compute J H,E[ ] to the level of dimension-four operators. For this we
need to consider up to dimension-three operators in JE.Wefind the following list of operators
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The calculation of the commutators in equation (A.5) is tedious but straightforward. To simplify the result,
we use the known relations for theXXZmodel m v1 .e = = Wefind that the conservation law J H, 0E =[ ]
imposes the constraints

g
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Most importantly, integrability rules out the g ¢ interaction. This is precisely the operator considered in [49]
which accounts for afinite decay rate of amobile impurity in a Luttinger liquid atfinite temperatures.
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Appendix B. Low temperature corrections to impurity energy and impurity-boson
interaction

Herewe provide a detailed derivation of equations (12) and (13).
The irrelevant coupling constant g in equation (11) is generated tofirst order in the interaction term in the

XXZmodel:

j c c c c . B.1j j j jint 1 1 = D + +( ) ( )† †

Wenowuse themode expansion for the fermion field.We bosonize the low-energy fermions in the form
x 2 e ,x

R L
1 2 i 2 R Ly pa~ pj- -( ) ( ) ( ) where xR Lj ( ) are chiral boson obeying

x x x x, i .xR L R Lj j d¶ ¢ = - ¢¢ [ ( ) ( )] ( ) These are related to the dual bosonicfields by

x x x 2 .R Lj q f= ( ) [ ( ) ( )] We focus on the term involving a high energy particle and rightmovers since
the other terms can be obtained by symmetry. The g interaction is generated by taking the combination
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where :: denotes normal orderingwith respect to the boson vacuumandwe have set the short-distance cutoff to
α= 1. As a result, wefind g » -D for 1.D 

The low-temperature frequency shift is determined by the self-energy k T, ,wS( ) in

G k k T, , , . B.3k
1⎡⎣ ⎤⎦w w e w= - - S

-( ) ( ) ( )

The self-energy is calculatedwithin perturbation theory in the irrelevant operators. Themarginal interaction
must be treated nonperturbatively due to the infrared singularities associatedwith the orthogonality catastrophe.
Tofirst order in g the self-energy is independent of k,ω. It is given by the tadpole-type diagramwith a single
boson propagator illustrated infigure B1 (a). The result is simply
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where the factor of 2 accounts for the additional contribution from leftmovers and ò is the point-splitting

parameter. Expanding
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we obtain the cutoff-independent term in the impurity self-

energy
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g T

v3
. B.5

2

2

p
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The effective impurity-boson vertex is defined from the three-point function illustrated infigure B1(b). The
correction isfirst order inα and g:

k T g k, , 4 , , B.6da w a w= - P( ) ( ) ( )

where k, wP( ) is the Fourier transformof

x t d x t d x t, , 0, 0 , 0, 0 . B.7x xL Lj jP = á ñá¶ ¶ ñ( ) ( ) ( ) ( ) ( ) ( )†

The vertex correction depends on the externalmomenta and frequencies. However, to get the correction to the
marginal coupling constantαwe can set the externalmomenta to be exactly at the top/bottomof the band (i.e.
the state that controls the long-time behavior). For the impurity part of the correlation functionwe can use the

FigureB1. Feynmandiagrams atfirst order in the irrelevant impurity-boson coupling g. (a) Impurity self-energy; (b) vertex correction.
The solid line represents the free impurity propagator and the dashed line represents the free boson propagator.
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zero temperature propagator

Td x t d t x, 0, 0 e . B.8tiq dá ñ = e-( ) ( ) ( ) ( ) ( )†

For the free boson propagator, we use thefinite temperature expression
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Dropping the cutoff-dependent term and substituting the temperature-dependent term in equation (B.6), we
obtain

T gT v2 . B.112da a= -( ) ( )

Atweak coupling, K2 1 4a p= - » D( ) and g ,» -D thus

T2 . B.12da a » D ( )

However, we only expect the correction to be quantitatively correct when T2 1.da a » D 
Going beyond first order inΔ, wefind that the leading contributions fromdimension-three operators

μ−andμ+ toΣ and da a either vanish (in the case ofμ−) or are at least of orderΔ
3 (in the case ofμ+; this is

becauseμ+ is not generated tofirst order inΔ).
There are, however, corrections at orderΔ2 stemming from the parabolic term in the impurity dispersion

m
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2
. B.13m x
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The parabolic dispersion cannot be treated perturbatively in the autocorrelation function for a free impurity,
since it is responsible for the t1 decay of the propagator.However, in the calculation of the renormalized
vertexwe deal with loop diagrams that contain both impurity and boson propagators integrated over distance x.

The impurity Green’s function including the dispersion is G x t, 0 e e .t m
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This is equivalent to using the impurity Green’s function in the limit m , ¥ which is simply
G x t x, 0 e ,t
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i d> » e-( ) ( ) as in equation (B.8). On the other hand, expanding the impurity Green’s function
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Figure B2.Renormalization of the impurity-boson coupling due to the impurity band curvature in the internal line.
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The correction involving xx
2d¶ ( )within a loop diagramproduces an extra power ofT.We compute this

correction using perturbation theory in .md The contribution to the renormalized vertex, shown infigure B2 ,
is
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Once again, we keep only the universalT-dependent correction.
Likewise, there is an order 1/m correction in the impurity self-energy. The result is given in equation (14) of

themain text.

AppendixC. Excitation energies from the thermodynamic Bethe ansatz

In this sectionwe describe the calculation of dressed energies using the thermodynamic Bethe ansatz (TBA)
approach to theXXZmodel [73, 74].

Bethe ansatz states are parametrized by a set of rapidities xj
a{ }which satisfy the Bethe equations.Here j labels

the type of string andα specifies a particular rapidity.More precisely, xj
a refers to the real part of the rapidity,

since the imaginary part isfixed by the string hypothesis [73, 74]. Stringswith length n 1j > are interpreted as
bound states of nj particles. For simplicity, we choose the anisotropy parameter to be cos ,p nD = ( ) with

.n Î In this case, we can restrict ourselves to afinite number of strings j 1, 2 ,..., .n= The strings with
j 1, 2 ,..., 1n= - have length nj= j and parity 1;ju = + the string with j= ν has length nν= 1 and parity

1.u = -n

The Bethe equations (in logarithmic form) for a chain of lengthN and periodic boundary conditions read
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whereMj is the number of strings of type j in the Bethe ansatz state and I j
a are integers (forMj odd) or half-

integers (forMj even). A particular Bethe ansatz wave function is determined by the set of I j
aʼs. The functions

tj(x) and the scattering phase shifts xjkQ ( ) are given by

t x f x n v; , , C.2j j j= ( )( ) ( )

x f x n n v v f x n n v v

f x n n l v v

; , ; ,

2 ; 2 , , C.3

jk j k j k j k j k

l

n n

j k j k
1

Min , 1j k

å

Q = - + +

+ - +
=

-

( )
( )

( )
( )

( )

( )

wherewe define the function

f x n v

n

v
n x; ,

0, if ,

2 arctan cot
2

tanh
2

, otherwise.
C.4v

⎜ ⎟ ⎜ ⎟

⎧
⎨⎪

⎩⎪
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭

n

p
n

p
n

=

Î

( ) ( )

In the TBA approach, we take the limit N  ¥ and characterize themacroscopic state by the density of
particles xr ( ) and density of holes xhr ( ) in rapidity space. The equilibrium state is obtained byminimizing the
free energy as a functional of xr ( ) and x .hr ( ) This leads to a set of coupled nonlinear integral equations for the
dressed energies
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where T1b = is the inverse temperature and
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Equation (C.5) can be solved numerically by iteration. In the limitT 0, the dressed energy for j= 1 (the even-
parity one-string) reduces to the dispersion of the single-hole excitation over the ground state.

The dressed energies can be used to calculate the free energy and other thermodynamic properties [74]. They
also showup as the energies of elementary excitations over the equilibrium state [75]. The thermal excitation
spectrum for the gapless phase of theXXZmodel was calculated by Puga [76]. The energy required to create a
single holewith rapidity x in the density of type-j strings is

E x x
1

ln 1 e . C.8j j
k

kj

1

k⎡⎣ ⎤⎦åe
b p

D = - +
Q ¥

+
n

be

=

- ¥( ) ( )
( )

( )( )

Notice that the excitation energies E xjD ( ) differ from the dressed energies in equation (C.5) by a constant term
that involves all strings.

Figure C1 shows the excitation energy for the j= 1 string for three different values of temperature.We are
particularly interested in the bandwidth, which is given by E 0 .1D ( ) AtT= 0, the bandwidth is known

analytically, Elim 0 .T 0 1
1

2arccos

2

D = p


-D
D

( ) The important point is that the bandwidth calculated from the TBA

dressed energies increases with temperature, contrary to the behavior of the frequencies predicted by the
effective field theory and observed numerically using a tDMRGalgorithm. This disagreement is rather puzzling
given that a generalized TBA approach has even been used to discuss nonequilibriumdynamics [77]. There are
two possible explanations: (I)There could be an unexpectedly large time scale required to observe the dynamics
governed by low lying TBA excitations, i.e., the TBA frequencies are relevant for the long-time dynamics butwe
are unable to reach this asymptotic regime numerically. (II)TheTBA energies cannot simply be interpreted as
those of elementary excitations.While the TBA approach correctly describes the thermodynamics this does not
guarantee that such a simple interpretation holds.

AppendixD. Fits of theDMRGdata

Wehavefitted the tDMRGdata using the fit function

t G t A
T

Tt
B t

sinh
e e e D.1t t ti 3 2 2i

⎛
⎝⎜

⎞
⎠⎟

p
p

= G + +
h

e j e r- + - - -( )( )
( )

( )
˜

˜ ˜ ˜

where A B, , , , , ,h e j r G˜ ˜ ˜ are realfitting parameters. Thefirst, constant termΓ is the diffusive contribution.
The second term is the single impurity contribution, equation (16) in themain text, while the third term
represents the two-impurity contribution, equation (17), wherewe have allowed for a small decay rate which
seems to be of order e T1~ - andmight possibly be related to thermal excitations at the band edges. In tableD1

FigureC1. Energy of single one-string excitation as a function of rapidity x forΔ= 0.5 and three different values of temperature.
Frombottom to top:T= 10−3,T= 0.25, andT= 5.

14

New J. Phys. 17 (2015) 103003 CKarrasch et al



wepresent thefit parameters for thefits shown infigures 2 and 3.We also present the theoretical predictions for
Γ, equation (24), and for other parameters based onweak-coupling expressions (tofirst order inΔ) for the
coupling constants of irrelevant operators (rows labeled ‘th. D( )’).

One of ourmain findings based on the analysis of the numerical data is that the two-impurity contribution
becomes very small for large interaction strengths leading to afit parameterB forΔ= 0.8which is essentially
zero. To further support thatB for the considered temperatures is strongly reducedwith interaction, we present
infigureD1 below tDMRGdata andfits for intermediate interaction strengthΔ= 0.5.

Here a two-impurity contribution is still visible but the amplitudeB is already very small, see tableD2 . In
order to illustrate the sensitivity of the fit parameters on the fit interval we concentrate on the caseΔ= 0.5,
T= 0.167 and show in tableD2 parameters forfits using three different time intervals.

TableD1.Parameters obtained by fitting the tDMRGdata presented in themain text, see figures 1 and 2

Δ T Fit range Γ A h̃ ẽ j̃ B ρ

theory 0.3 0 — 0 — 0.838 1.1835 0.530 — —

th. D( ) 0.3 0.07 — 2.11 10 5´ - — 0.831 1.1825 0.520 — —

fit 0.3 0.07 t 10 ∼0 0.275 0.796 1.185 0.751 −0.202 0

th. D( ) 0.3 0.25 — 7.94 10 4´ - — 0.814 1.1709 0.493 — —

fit 0.3 0.25 t 10 6.3 10 4´ - 0.421 0.713 1.165 1.990 −0.242 0.016

theory 0.8 0 — 0 — 0.629 1.465 0.202 — —

th. D( ) 0.8 0.167 — 5.58 10 4´ - — 0.533 1.457 0.052 — —

fit 0.8 0.167 t 15 3.26 10 4´ - 0.161 0.403 1.503 −0.238 0 —

th. D( ) 0.8 0.25 — 1.26 10 3´ - — 0.492 1.448 −0.013 — —

fit 0.8 0.25 t 15 9.88 10 4´ - 0.210 0.387 1.525 −0.397 0 —

FigureD1. t G t( ) at 0.5:D = tDMRGdata (symbols) andfits (lines) for t 15. The fit parameters are given in tableD2.

TableD2.Parameters for variousfits of the tDMRGdata at 0.5.D =

Δ T Fit range Γ A h̃ ẽ j̃ B ρ

theory 0.5 0 — 0 — 3/4 1.30 0.393 — —

th. D( ) 0.5 0.167 — 3.98 10 4´ - — 0.710 1.2919 0.329 — —

fit 1 0.5 0.167 t 10 1.68 10 4´ - 0.277 0.575 1.294 0.853 −0.086 0.019

fit 2 0.5 0.167 t 15 1.49 10 4´ - 0.199 0.527 1.287 1.406 −0.099 0.020

fit 3 0.5 0.167 t 20 1.51 10 4´ - 0.284 0.558 1.285 1.853 −0.093 0.019

th. D( ) 0.5 0.25 — 1.09 10 3´ - — 0.690 1.2829 0.299 — —

fit 0.5 0.25 t 15 7.19 10 4-· 0.266 0.501 1.272 2.196 −0.091 0.041
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Except for the phase shift ,j̃ and, to a lesser extent, the amplitude A,˜ allfit parameters show little variation
implying, in particular, that it is possible to extract the temperature dependence of Tẽ( ) and Th̃( )with
reasonably accuracy from the tDMRGdata. On the other hand, wewant to emphasize that the phase shift j̃
cannot befixed reliably fromnumerical data even at zero temperature, see [22, 23].

References

[1] Sachdev S 1999QuantumPhase Transitions (Cambridge: CambridgeUniversity Press)
[2] Fukuhara T et al 2013Nat. Phys. 9 235
[3] KnapM,Kantian A,Giamarchi T, Bloch I, LukinMDandDemler E 2013Phys. Rev. Lett. 111 147205
[4] LangenT,Geiger R, KuhnertM, Rauer B and Schmiedmayer J 2013Nat. Phys. 9 640
[5] Hild S et al 2014Phys. Rev. Lett. 113 147205
[6] Bisogni V et al 2014Phys. Rev. Lett. 112 147401
[7] Kinoshita T et al 2006Nature 440 900
[8] RigolM,DunjkoV, YurovskyV andOlshaniiM2007Phys. Rev. Lett. 98 050405
[9] CazalillaMA2006Phys. Rev. Lett. 97 156403
[10] Gangardt DMandPustilnikM2008Phys. Rev.A 77 041604(R)
[11] Calabrese P, Essler FHL and FagottiM2011Phys. Rev. Lett. 106 227203
[12] RozhkovA 2005Eur. Phys. J.B 47 193
[13] Carmelo JMP, PencK andBoziD 2005Nucl. Phys.B 725 421

Carmelo JMP, PencK andBoziD 2006Nucl. Phys.B 737 351
[14] PustilnikM,KhodasM,KamenevA andGlazman L I 2006Phys. Rev. Lett. 96 196405
[15] Pereira RG, Sirker J, Caux J-S, Hagemans R,Maillet JM,White S R andAffleck I 2006Phys. Rev. Lett. 96 257202

Pereira RG, Sirker J, Caux J-S, Hagemans R,Maillet JM,White S R andAffleck I 2007 J. Stat.Mech.P08022
[16] KhodasM, PustilnikM,KamenevA andGlazman L I 2007Phys. Rev.B 76 155402
[17] ImambekovA andGlazman L I 2009 Science 323 228
[18] MatveevKA andAndreevAV2011Phys. Rev. Lett. 107 056402
[19] MatveevKA and Furusaki A 2013Phys. Rev. Lett. 111 256401
[20] PustilnikMandMatveev KA 2014Phys. Rev.B 89 100504(R)
[21] ImambekovA, Schmidt T L andGlazmanL I 2012Rev.Mod. Phys. 84 1253
[22] Pereira RG,White S R andAffleck I 2008Phys. Rev. Lett. 100 027206
[23] Pereira RG,White S R andAffleck I 2009Phys. Rev.B 79 165113
[24] KitanineN,Kozlowski KK,Maillet JM, SlavnovNA andTerras V 2012 J. Stat.Mech.P09001
[25] Shashi A, PanfilM, Caux J-S and Imambekov A2012Phys. Rev.B 85 155136
[26] Sirker J andKlümper A 2005Phys. Rev.B 71 241101(R)
[27] Barthel T, SchollwöckU andWhite S R 2009Phys. Rev.B 79 245101
[28] KarraschC, Bardarson J andMoore J 2012Phys. Rev. Lett. 108 227206
[29] KarraschC, Bardarson J andMoore J 2013New J. Phys. 15 083031
[30] Barthel T, SchollwöckU and Sachdev S arXiv:1212.3570
[31] Vidal G 2004Phys. Rev. Lett. 93 040502
[32] White S R and FeiguinAE 2004Phys. Rev. Lett. 93 076401
[33] Daley A, KollathC, SchollwöckU andVidal G 2004 J. Stat.Mech.P04005
[34] Schmitteckert P 2004Phys. Rev.B 70 121302(R)
[35] BañulsMC,HastingsMB,Verstraete F andCirac J I 2009Phys. Rev. Lett. 102 240603
[36] White S R 1992Phys. Rev. Lett. 69 2863
[37] SchollwöckU2011Ann. Phys. 326 96
[38] PanfilM andCaux J-S 2014Phys. Rev.A 89 033605
[39] KorepinVE, BogoliubovNMand Izergin AG1993Quantum Inverse ScatteringMethod andCorrelation Functions (Cambridge:

CambridgeUniversity Press)
[40] Sirker J, Pereira RG andAffleck I 2009Phys. Rev. Lett. 103 216602

Sirker J, Pereira RG andAffleck I 2011Phys. Rev.B 83 035115
[41] Lukyanov S 1998Nucl. Phys.B 522 533
[42] ThurberKR,HuntAW, Imai T andChou FC 2001Phys. Rev. Lett. 87 247202
[43] Xiao F et al 2015Phys. Rev.B 91 144417
[44] KarraschC,Hauschild J, Langer S andHeidrich-Meisner F 2013Phys. Rev.B 87 245128
[45] Grossjohann S andBrenigW2010Phys. Rev.B 81 012404
[46] Duan L-M,Demler E and LukinMD2003Phys. Rev. Lett. 91 090402
[47] Giamarchi T 2004QuantumPhysics inOneDimension (Oxford: Clarendon)
[48] Sirker J 2006Phys. Rev.B 73 224424
[49] CastroNetoAHand FisherMPA1996Phys. Rev.B 53 9713
[50] Karzig T, GlazmanL I and vonOppen F 2010Phys. Rev. Lett. 105 226407
[51] Klümper A and Sakai K 2002 J. Phys. A:Math. Gen 35 2173
[52] Lukyanov S andTerras V 2003Nucl. Phys.B 654 323
[53] BloembergenN1949Physica 15 386
[54] deGennes PG 1958 J. Phys. Chem. Solids 4 223
[55] SteinerM,Villain J andWindsor CG1976Adv. Phys. 25 87
[56] Carboni F andRichards PM1968 J. Appl. Phys. 39 967
[57] BöhmM, LeschkeH,HennekeM,ViswanathV S, Stolze J andMüller G 1994Phys. Rev.B 49 417
[58] BöhmM,ViswanathV S, Stolze J andMüller G 1994Phys. Rev.B 49 15669
[59] Fabricius K, LöwU and Stolze J 1997Phys. Rev.B 55 5833
[60] Fabricius K andMcCoyBM1998Phys. Rev.B 57 8340

16

New J. Phys. 17 (2015) 103003 CKarrasch et al

http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1103/PhysRevLett.111.147205
http://dx.doi.org/10.1038/nphys2739
http://dx.doi.org/10.1103/PhysRevLett.113.147205
http://dx.doi.org/10.1103/PhysRevLett.112.147401
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevA.77.041604
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1140/epjb/e2005-00312-3
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.002
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.001
http://dx.doi.org/10.1103/PhysRevLett.96.196405
http://dx.doi.org/10.1103/PhysRevLett.96.257202
http://dx.doi.org/10.1088/1742-5468/2007/08/p08022
http://dx.doi.org/10.1103/PhysRevB.76.155402
http://dx.doi.org/10.1126/science.1165403
http://dx.doi.org/10.1103/PhysRevLett.107.056402
http://dx.doi.org/10.1103/PhysRevLett.111.256401
http://dx.doi.org/10.1103/PhysRevB.89.100504
http://dx.doi.org/10.1103/RevModPhys.84.1253
http://dx.doi.org/10.1103/PhysRevLett.100.027206
http://dx.doi.org/10.1103/PhysRevB.79.165113
http://dx.doi.org/10.1088/1742-5468/2012/09/p09001
http://dx.doi.org/10.1103/PhysRevB.85.155136
http://dx.doi.org/10.1103/PhysRevB.71.241101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevLett.108.227206
http://dx.doi.org/10.1088/1367-2630/15/8/083031
http://arXiv.org/abs/1212.3570
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-5468/2004/04/p04005 
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://dx.doi.org/10.1103/PhysRevLett.102.240603
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevA.89.033605
http://dx.doi.org/10.1103/PhysRevLett.103.216602
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1016/S0550-3213(98)00249-1
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevB.91.144417
http://dx.doi.org/10.1103/PhysRevB.87.245128
http://dx.doi.org/10.1103/PhysRevB.81.012404
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevB.73.224424
http://dx.doi.org/10.1103/PhysRevB.53.9713
http://dx.doi.org/10.1103/PhysRevLett.105.226407
http://dx.doi.org/10.1088/0305-4470/35/9/307
http://dx.doi.org/10.1016/S0550-3213(02)01141-0
http://dx.doi.org/10.1016/0031-8914(49)90114-7
http://dx.doi.org/10.1016/0022-3697(58)90120-3
http://dx.doi.org/10.1080/00018737600101372
http://dx.doi.org/10.1063/1.1656346
http://dx.doi.org/10.1103/PhysRevB.49.417
http://dx.doi.org/10.1103/PhysRevB.49.15669
http://dx.doi.org/10.1103/PhysRevB.55.5833
http://dx.doi.org/10.1103/PhysRevB.57.8340


[61] StarykhOA, Sandvik AWand SinghRRP 1997Phys. Rev.B 55 14953
[62] Boucher J P, BakheitMA,NechtscheinM,VillaM, BoneraG andBorsa F 1976Phys. Rev.B 13 4098
[63] TakigawaM,MotoyamaN, EisakiH andUchida S 1996Phys. Rev. Lett. 76 4612
[64] Kikuchi J, KurataN,Motoya K, Yamauchi T andUedaY 2001 J. Phys. Soc. Japan. 70 2765
[65] TakigawaM,AsanoT, Ajiro Y,MekataMandUemura Y J 1996Phys. Rev. Lett. 76 2173
[66] Pratt F L, Blundell S J, Lancaster T, Baines C andTakagi S 2006Phys. Rev. Lett. 96 247203
[67] ProsenT 2011Phys. Rev. Lett. 106 217206
[68] Pereira RG, Pasquier V, Sirker J andAffleck I 2014 J. Stat.Mech.P09037
[69] ProsenT 2014Nucl. Phys.B 886 1177
[70] CastellaH, Zotos X and Prelovšek P 1995Phys. Rev. Lett. 74 972
[71] ZotosX,Naef F and Prelovsek P 1997Phys. Rev.B 55 11029
[72] Hofferberth S, Lesanovsky I, Fischer B, SchummTand Schmiedmayer J 2007Nature 449 324
[73] TakahashiM and SuzukiM1972Prog. Theor. Phys. 48 2187
[74] TakahashiM1999Thermodynamics of One-Dimensional SolvableModels (Cambridge: CambridgeUniversity Press)
[75] KorepinVE, BogoliubovNMand Izergin AGQuantum Inverse ScatteringMethod andCorrelation Functions (Cambridge: Cambridge

University Press)
[76] PugaMW1980 J.Math. Phys. 21 2307
[77] Caux J-S and Essler FHL 2013Phys. Rev. Lett. 110 257203

17

New J. Phys. 17 (2015) 103003 CKarrasch et al

http://dx.doi.org/10.1103/PhysRevB.55.14953
http://dx.doi.org/10.1103/PhysRevB.13.4098
http://dx.doi.org/10.1103/PhysRevLett.76.4612
http://dx.doi.org/10.1143/JPSJ.70.2765
http://dx.doi.org/10.1103/PhysRevLett.76.2173
http://dx.doi.org/10.1103/PhysRevLett.96.247203
http://dx.doi.org/10.1103/PhysRevLett.106.217206
http://dx.doi.org/10.1088/1742-5468/2014/09/p09037
http://dx.doi.org/10.1016/j.nuclphysb.2014.07.024
http://dx.doi.org/10.1103/PhysRevLett.74.972
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1063/1.524672
http://dx.doi.org/10.1103/PhysRevLett.110.257203

	1. Introduction
	2. Model
	3. Noninteracting case
	4. Interacting case: NLL theory
	5. Diffusive decay
	6. Numerical results
	7. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	References



