
6 Summary and conclusions

Family specific rates of protein evolution

Amino acid changing mutations in proteins are contstrained by purifying selection and
accumulate at different rates. Rate variations can be disentangled between different
effects: the variations among gene families, among lineages and among specific genes
in specific lineages. This thesis rests on the key observation that one can assign a
family-specific rate of evolution to individual protein families.

We analyze protein families comprising orthologous sequences from man, fugu, fly
and worm. Scatter plots comparing evolutionary distances between proteins in one
and the same family exhibit strong linear correlations. This suggests that a fast or
slow mutation rate is very much an attribute of the gene family that we can observe in
either genomic comparison. We measure family specific evolutionary rates by applying
standard maximum likelihood tree estimation procedures.

The assumption that the number of mutations per time unit is constant, the so called
molecular clock hypothesis, allows representing the evolution of the family by a rooted
ultrametric phylogenetic tree. In such a tree the edge lengths are proportional to the
estimated number of mutation events and the ultrametricity implies that all leaves
are equally distant to the root. The fact that a protein’s evolutionary rate differs for
different lineages, i.e. that the molecular clock does not hold in general, is accounted
for by reconstructing an additive tree rather than an ultrametric one. We apply both
tree models to estimate a family specific evolutionary rate. Since the two tree models
are nested models, we perform a likelihood ratio test and delineate a set of families
well fitting the molecular clock assumption. The ultrametric tree model incorporates
the Family Specific Rate as a scaling paramter. Its ML estimation yields almost the
same results as the measure of the overall length of the additive ML tree when no
prior assumption of a constant rate of evolution among lineages is made. The Family
Specific Rates and a pregiven set of divergence times are therefore used to relate
measures of amino acid replacements to historical times on a genome scale.

We analyze several of publicly available data sets with respect to the overall distribu-
tion of Family Specific Rates. First of all, we establish the relation of our rate measure
to estimated numbers of nonsynonymous substitutions measured between two nema-
todes. Compared to numbers of nonsynonymous substitutions, the Family Specific
Rate measure has the major effect of averaging over lineage specific rate variations.
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Further, we establish relationships of Family Specific Rates to the essentiality and the
dispensability of proteins in interaction networks that were assessed by RNAi knockout
experiments and high throughput 2-hybrid systems in C. elegans, respectively. Puri-
fying selection indeed acts stronger on essential genes than on nonessential ones. The
observed relationships link experimental results that were obtained for the nematode
to other eukaryotic model organisms.

The younger the faster

Interestingly, when grouping proteins according to their subcellular locale, we observe
that extra-cellular proteins are fast evolving. Extra-cellular proteins were invented
during metazoan evolution through gene duplication and domain shuffling events. We
analyze the set of extra-cellular proteins and a specific large multigene family con-
taining receptor tyrosine kinases in greater detail. From the observation that extra-
cellularity is coupled to elevated evolutionary rates, we are motivated to set up a
hypothesis: The evolutionary rate of a protein tends to be larger the more recently
the protein emerged in evolution.

We investigate the hypothesis “the younger the faster” and perform PSI-BLAST
searches of eukaryotic orthologous profiles against prokaryotic genomes. The experi-
ment approves the dependancy of our means to detect homology by sequence compar-
ison on evolutionary rates. The faster a protein evolves, the less we are able to trace
its evolutionary origin.

The evolution of novel protein functions commonly relies on reusing and recombin-
ing already existing domains. The age of an orthologous family is reflected by the
taxonomic distribution of proteins sharing the same domain architecture. Rate distri-
butions of taxon-specific sets are in accordance with “the younger the faster”.

We aim at placing an argument for the pertinence of assigning an age to an orthologous
family by the taxonomic distribution of domain architectures. Duplication events
predating the nematode-arthropode split gave rise to the emergence of new orthologous
families. We analyze multigene families and compare duplication time points between
taxon-specific sets. Duplication times are relatively small for multigene families with a
“young” least common taxon and relatively large for multigene families with an “old”
least common taxon.

Some duplication time estimates predating the earth’s putative origin demand discus-
sion. First of all, the overestimation of duplication times might be due to overestimated
divergence times that were used to calibrate Family Specific Rates. Indeed, time esti-
mates for the nematode-arthropode divergence that are obtained from molecular data
vary by a factor of 2 and range from 550 to 1170 Millions of years. The divergence
times that we used for calibration are at the upper limit.



CHAPTER 6. SUMMARY AND CONCLUSIONS 97

Second, the relative rate test is a necessary but not a sufficient requirement for rate
constancy to hold. Duplication times are overestimated when evolutionary rates along
different lineages simultaneously decrease in time. The assertion also fits the observa-
tion that Metazoa- and Bilateria-specific sets lack families that evolve at small rates.
Actually, the hypothesis “the younger the faster” implies such an assertion. The fol-
lowing interpretation for the “average protein” is plausible though speculative: Once
a novel protein emerges, the tolerance against accepting mutations is large. Later, it
occupies a specialized function and the rate decreases.

Trees on multiple genes

Correlations in evolutionary distances provide a rate independent signal of the underly-
ing organismal phylogeny. We use these correlations as well as estimated evolutionary
rates to propose two estimators for an organismal phylogenetic tree. We apply the
estimators to our data set and add a selection criterion among families to focus on
those that display rate constancy.

Selecting the families for rate constancy under a given tree model (our reference tree)
would suggest that the computation of a new tree will only reinforce the reference
tree. Interestingly, this is not the case. While the reference tree is ultrametric, the
tree we compute from the ensemble of orthologous families is not ultrametric. Its inner
edge is considerably shorter than in the reference tree. Thus, the data do not support
the evolutionary times of the reference tree. Of course, additive, non-ultrametric edge
lengths cannot be interpreted as historical times such that we are forced to assume
that there was a change in evolutionary rate in either of the lineages of the tree. We
therefore agree with the study of Peterson et al. [2004] that points to the possibility
that evolutionary rates in vertebrate lineages were decreased with regard to rates in
invertebrate lineages.
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