
2 Preliminaries

2.1 Biological Background

2.1.1 Cells

Cells are regarded as the fundamental structural units of life being capable of func-
tioning independently. They emerge by cell division of preexisting cells. Any living
organism is assembled from cells each of which contains the organism’s complete hered-
itary information that is transmitted to the next generation of cells.

According to the internal cell layout one distinguishes two kinds of organisms. While
cells of Eukaryotes contain membrane bound compartments, the organelles, the cells
of Prokaryotes lack internal compartments. Prokaryotes are unicellular colonial or-
ganisms comprising eubacteria and archaeabacteria. Eukaryotic organisms are both
unicellular as well as multicellular and include protozoa and fungi as well as plants and
animals. Figure 2.1 schematically illustrates features of an animal cell. The diameter
of such a cell ranges from 10 µm to 100 µm. About 50% of a cell’s molecules are
proteins.

2.1.2 Proteins

Life is manifested in proteins. They constitute most of our bodies’ substances and
cover a wide range of biological functions. For example, structural proteins form solid
material, hormonal proteins coordinate complex body processes, receptor proteins
detect biochemical signals, defensive proteins protect against pathogens, transport
proteins serve to transport substances and enzymes catalyse biochemical reactions.

The functional diversity of proteins is reflected by an enormous diversity of protein
structures. Proteins are macromolecules which are made up of one or more polypeptide
chains which in turn are composed of amino acids. An amino acid consists of a central
carbon atom (the alpha Carbon Cα) and an amino group (NH2), a hydrogen atom
(H), a carboxy group (COOH) and a side chain (Ri) bound to Cα (see Figure 2.2).
The covalent bond between the Carbon atom of the Carboxy group of one amino
acid and the nitrogen atom of another amino acid’s amino group by dehydration is
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Figure 2.1: Schematic representation of an animal cell. The interior of the cell is called
its cytoplasm. It consists of its insoluble constituents, including membrane bound or-
ganelles and the cytoskeleton, and the water rich cytosol. The cell membrane encloses
the cytoplasm and mediates the transport of substances as well as communication via
signal transduction proteins. The organelles perform well defined tasks. Genetic mate-
rial (DNA) is stored in the double membrane bound nucleus while the nucleolus is the
site where ribosomal RNA (rRNA) is produced. The endoplasmic reticulum (ER) con-
stitutes a network of membranous tubules that are connected to the outer membrane of
the nucleus and serve to transport proteins. Ribosomes are the sites where proteins are
synthesized. They consist of ribosomal proteins and rRNA and are either suspended to
the cytosol or attached to the rough ER. Lysosomes are digestive sacks being responsible
for degrading substances. The Golgi complex processes ribosomal proteins and sorts them
within vesicles. The cell’s energy repository in the form of ATP (adenosine triphosphate)
is produced by mitochondria.
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Figure 2.2: Two amino acids form a dipeptide.

called peptide bond. Amino acid residues connected by peptide bonds constitute
a polypeptide chain. The backbone of the polypeptide is made up of the repeated
sequence of three atoms of each residue in the chain: the amide N , the alpha Carbon
Cα and the Carbonyl C. The existence of an amino group (N-Terminal) at one end
of the chain and a carboxy group (C-Terminal) at the other end assigns a direction to
the chain. Conventionally the beginning of a polypetide chain is its N-Terminal.

Different side chains Ri make up different amino acids with different physical and
chemical properties (see appendix ??). While the side chain of the amino acid glycine
just consists out of one hydrogen atom the one of tryptophan contains two carbon
rings. Twenty amino acids constitute naturally occuring peptides.

Proteins fold in three dimensions (see Figure 2.3). The term primary structure refers
to the one-dimensional sequence of amino acid residues. Secondary structure refers to
stable local spatial structures like α-helices, β-sheets and reverse turns. Those emerge
when a lot of weak bonds between backbone atoms stabilize a specific conformation. In
contrast, a random sequence of residues is expected to adopt a random coil structure.
α-helices and β-sheets are formed by regular hydrogen bonds within a contiguous
stretch of the polypeptide chain and are preferably located at the interior of the folded
protein. Reverse turns are tight turns that reside at the surface of globular proteins
and reverse the direction of the polypeptide chain. Tertiary structure describes the
three-dimensional packing of secondary structures with respect to a whole polypeptide
chain. Often a protein consists of several polypeptide chains. The spatial arrangement
of the chains is called quaternary structure.

Specific sequences of tightly packed α-helices and β-sheets constitute structural do-
mains. Domains are assumed to fold independently of the rest of the protein, they are
the basic functional units of a protein. In a multidomain protein several domains are
linked by flexible polypeptides. Interactions between secondary structural elements
within a domain are stronger than interactions between domains.
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Figure 2.3: Tertiary structure of the inactive form of proto-oncogene tyrosine-protein kinase
Src. In the so-called ribbon diagram alpha helices are represented by coiled ribbons and
beta sheets are represented by arrows. Starting from the N-Terminal the Src protein is
composed of an SH3 domain shown in dark gray, an SH2 domain (gray) and a catalytic
Tyrosine Kinase domain (light gray). A phosphorylated tyrosine (Tyr P) in the C-terminal
tail binds to the SH2 domain. The ATP analog (AMP-PNP) is bound in a cleft of the
catalytic domain [Brown and Cooper, 1996; Abram and Courtneidge, 2000].
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(Figure adapted from Molecular Biology of the Cell, Garland Publishing Inc., New York 1994 )

Figure 2.4: a) The DNA double helix. b) Codons code for amino acids.

2.1.3 DNA and gene transcription

Each cell contains the complete genetic information needed to construct and maintain
the living organism and in particular its constituting proteins. This “blueprint of life”
is stored in the DNA (deoxyribonucleic acid). A DNA is a polymeric molecule com-
posed of a sequence of monomeric subunits called nucleotides. The nucleotides consist
of the sugar 2’-deoxyribose, a phosphate group and one out of four nitrogenous bases:
adenosine (A) and guanosine (G) are both pyrines, and thymidine (T) and cytidine
(C) are pyrimidines. Nucleotides are linked together by phosphodiester bonds where
the 5′ carbon of one phosphate residue binds to the 3′ carbon of another. Repetitions
of the sugar attached to the phosphate form the backbone the bases stick out from.
Conventionally a DNA molecule, that is a nucleotide sequence, is defined to start at
its 5′ end and to finish at its 3′ end (see Figure 2.4 a).

DNA in living cells is double stranded. Two nucleotide chains are wound around each
other and form a double helix. The double helix is held together by characteristic
hydrogen bonds between bases: while adenine pairs with thymine, cytosine pairs with
guanine. Thus the two DNA strands are complementary. Eukaryotic cells commonly
contain a couple of large DNA molecules packed in the nucleus within chromosome
territories. During mitotic cell division, the DNA is condensed to microscopically vis-
ible chromosomes and the DNA is replicated by uncoiling the double helix. Hydrogen
bonds are broken to separate the complementary strands each serving as a template
for the DNA polymerase to synthesize new DNA strands. A gene corresponds to a
region of the DNA that encodes for a regulatory function, for proteins or for RNA
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Figure 2.5: Schematic structure of a eukaryotic protein coding gene.

(ribonucleic acid) molecules.

Figure 2.5 shows the gene structure of a eukaryotic protein coding gene. The first
step in the expression of a protein coding gene is called transcription, the procedure
of copying the information contained in the DNA’s nucleotide sequence to a single
stranded mRNA molecule. Like DNA an mRNA molecule is composed of nucleotides
where the sugar is ribose and thymine (T) is replaced by uracil (U). Within eukaryotes
transcription requires binding of transcription factors to the gene’s promoter region
located at the 5′ flanking region of the gene. Transcription factors mediate activation
and attachment of the enzyme RNA polymerase II to the DNA. RNA polymerase II
catalyzes the synthesis of the RNA strand by adding to the 3’ end of the growing RNA
molecule one nucleotide at a time. The resulting RNA-molecule is sometimes referred
to as pre-mRNA as it is further processed in the nucleus. The transcribed region of a
gene consists of so-called exons and introns. In particular the processing of pre-mRNA
involves the excision of introns, a process which is referred to as splicing. However
sometimes genes are alternatively spliced and certain exons are excised from the pre-
mRNA, too. That is, alternative splicing gives rise to different mRNA molecules and
thus to different polypeptide sequences. Finally, the mature mRNA migrates out of
the nucleus destined for translation.

2.1.4 Protein synthesis and secretion

Mature mRNAs are translated to amino acid sequences on ribosomes. Ribosomes
consist of a large and a small subunit that are made of ribosomal RNAs (rRNA) and
ribosomal proteins. The mRNA specifies amino acids by triplets of nucleotides called
codons (see Figure 2.4). The mapping of codons to amino acid residues, the so-called
genetic code, is given in Table 2.1. There are 43 = 64 possible nucleotide triplets.
Three stop-codons are designated to terminate translation. Because 61 sense codons
specify only 20 amino acids, the genetic code is said to be degenerate. Transfer RNAs
(tRNA) constitute the interface between a codon and an amino acid. Translation
of mRNA is initiated when the small ribosomal subunit binds to the start codon
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Table 2.1: The genetic code.

(AUG) of the mRNA. Large and small ribosomal subunits then fit together to form a
complex. While mRNA is shifted through the ribosome, tRNA-attached amino acids
are released and catalytically added to the growing peptide chain. When the ribosome
encounters a stop-codon, there is no tRNA that associates with it and translation is
terminated. The mRNA and the polypeptide are released from the ribosome which in
turn dissociates into its two subunits. Within eukaryotic cells, extra-cellular proteins
are targeted for secretion, to the cell membrane or to lysosomes. Intracellular proteins
are targeted for the cytoplasm, to the nucleus or to mitochondria.

Secreted and transmembrane proteins exhibit an N-terminal signal peptide. The signal
peptide is made up of charged residues like Lysine and Arginine at the N-terminal
followed by 7-15 hydrophobic residues (mainly Leu, Ile, Val, Ala, Phe) and about five
polar residues. When the signal peptide is translated, it is recognized by and bound
to the signal recognition particle (SRP). Further translation is inhibited and the SRP
binds to the SRP receptor, a docking protein on the membrane of the endoplasmic
reticulum (ER) (see also Figure 2.1). The part of the ER where the complex of the
SRP and the ribosome binds is called the rough ER. Protein synthesis resumes and the
growing peptide chain is cotranslationally translocated into the ER. A signal peptidase
inside the ER cleaves the signal peptide at a specific cleave site. The completion of
protein synthesis is followed by the dissociation of the ribosomal subunits. The rest
of the peptide in the ER can either become secreted, be transferred to the Golgi



16 2.2. MOLECULAR EVOLUTION

(Figure adapted from Molecular Cell Biology, W.H. Freeman and Company, fifth edition, 2003 with permission)

Figure 2.6: The process of signal peptide recognition and translation of a peptide chain
being released into the lumen of the endoplasmic reticulum.

apparatus or a lysosome, or be retained in the ER. Figure 2.6 gives a cartoon view of
this process.

2.2 Molecular Evolution

2.2.1 Molecular Evolution

Life on earth is manifold. More than a million species are named and the number of
unnamed species remains subject to speculation. Despite life’s extraordinary diversity
all living beings have many points in common. They are assembled from cells, they
use DNA molecules to store the hereditary information and their protein synthesizing
machineries exhibit the same basic principles and molecules. The similarities among
diverse organisms feed the paradigm of evolutionary biology that all living organisms
are related and have evolved from common ancestors by modification and diversifi-
cation of the genetic material. The isolation of a population of organisms and the
continuous process of evolutionary change bring about new species. In modern evo-
lutionary theories, mutations on the molecular level of germline cells being inherited
to the offspring are considered as the ultimate source of genetic variation. The un-
derlying mechanisms of molecular mutations constitute large scale mutations on the
chromosomal as well as small scale or point mutations on the nucleotide level.
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2.2.2 Genome evolution

Large scale mutations on the chromosomal level affect a significant percentage of the
chromosome. The most dramatic changes occur when chromosomes are unequally
sorted into the two daughter cells during cell division. As a consequence whole chro-
mosomes are duplicated or lost. Polyploidy or a genome duplication occurs when all
chromosomes end up in one daughter cell. Regional changes on the chromosomal level
are caused by mechanisms like unequal crossing over or retroposition. Genomes are
said to be rearranged when pieces of chromosomes are moved or copied to another
location.

2.2.3 Point Mutations

Changes in DNA molecules affecting single nucleotides are called point mutations.
They are either caused by errors during DNA replication or by the influence of certain
so-called natural mutagenic agents like DNA reactive chemicals or ultraviolet radia-
tion. Point mutations may involve the deletion, the insertion or the substitution of
nucleotides in a DNA molecule.

The most frequently occuring type of nucleotide substitions are transitions where a
purine is replaced by another purine (A,G) or a pyrimidine is replaced by another
pyrimidine (C,T). Substitutions of a purine by a pyrimidine or vice versa are called
transversions.

Nucleotide substitutions in protein coding sequences are classified according to their
effect on the translation-product, the protein. While synonymous substitutions do
not cause a change of the specified amino acid sequence, nonsynonymous substitutions
alter the amino acid sequence. As a consequence of a nonsynonymous substitution, an
amino acid residue may be exchanged by another one in the protein, an effect which
is called amino acid replacement. Another type of nonsynonymous substitutions are
nonsense mutations changing a sense codon into a stop codon. As a consequence of a
nonsense mutation the protein is truncated.

2.2.4 Amino Acid Replacement

According to Darwins theory of evolution by natural selection, mutations in individ-
uals are positively selected and fixed in a population if they improve the individuals’
fitness, their ability to survive and to reproduce. With a small number of amino acid
sequences at hand, Kimura estimated in the late 1960ies that on average one amino
acid replacement occurs every 28 × 106 years per 100 sites of a polypeptide [Kimura,
1968]. The fact that the inferred rate of amino acid replacements was too high to be
explained by theories of natural selection prompted him to postulate the neutral theory
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of evolution: The effect of random genetic drift, that is the random fixation of neutral
mutations not affecting the individuals’ fitness, cannot be neglected. Later, DNA se-
quencing revealed that the rate of synonymous substitutions is much larger than the
rate of nonsynonymous substitutions and that Kimura even underestimated the rate
of evolution acting at the molecular level. Today, modern evolutionary theories at the
molecular level generally are consistent with both aspects of the evolutionary process,
the selective and the neutral one.

When an amino acid undergoes a radical change into a chemically dissimilar one, the
peptide may loose the ability to fold and to take a similar or modified function. As
a consequence the fitness of the organism is reduced and the organism has a high
chance to be removed from the population. Such a mutation is called deleterious and
the type of selection is called negative or purifying selection. In contrast, synonymous
substitutions are expected to be selectively neutral and exchanges of amino acids
with similar chemical and physical properties are expected to be either neutral or
advantageous. Dayhoff revealed the concrete patterns of amino acid replacement and
tabulated frequencies and types of amino acid replacements in the 1970ies [Dayhoff
et al., 1972, 1978]. She found that the acceptance of an amino acid replacement does
not primarily depend on the number of nucleotide substitutions that are required
to interchange an amino acid into another. Preferentially physicochemically similar
amino acids are exchanged. Her results reveal that natural selection is acting on amino
acid replacements.

2.2.5 Evolution of protein function

Gene families

Homologous genes have diverged from an ancestral gene. Since they are related by
evolution, they are usually grouped into a so-called gene family and the translated
proteins are said to be members of a protein family. One can distinguish two types
of homology: orthology and paralogy (see Figure 2.7). Two genes are orthologous if
they diverged from an ancestral gene by a speciation event. Paralogous genes are
descendants of an ancestral gene that has undergone one or more gene duplications
[Fitch, 1970] where the gene was directly copied within the same genome, e.g., by a
genome duplication. Gene families including paralogs are called multigene families.

Gene duplications

The evolution of multigene families plays a fundamental role for the emergence of new
gene functions. For example Li writes [Li, 1983]: ”Gene duplication is probably the
most important mechanism for generating new genes and new biochemical processes
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that have facilitated the evolution of complex organisms from primitive ones.” The
emergence of a new gene by a duplication event can be regarded as a mutation event
being either advantageous, deleterious or neutral.

Ohno formulated the most popular hypothesis concerning the fate of a duplicated
gene in 1973 [Ohno, 1973]: “The mechanism of gene duplication provides a tempo-
rary escape from the relentless pressure of natural selection to a duplicated copy of a
functional gene locus. While being ignored by natural selection, a duplicated and thus
redundant copy is free to accumulate all manner of randomly sustained mutations.
As a result, it may become a degenerate, nonsense DNA base sequence. Occasion-
ally, however, it may acquire a new active site sequence, therefore a new function
and emerge triumphant as a new gene locus.” Ohno denies the influence of natural
selection on “redundant” gene copies. His hypothesis implies that one of the two gene
copies is prone to a rapid accumulation of nonsynonymous substitutions and that func-
tional diversification of genes within multigene families occurs by chance. Indeed the
most typical scenario is that one of the copies of duplicated genes loses its function-
ality by deleterious mutations and becomes a so-called pseudogene. Yet analysis of
nonsynonymous and synonymous substitution rates in case and in large-scale studies
of functional duplicate genes provide only little support for an accelerated substitution
rate in one of the copies [Lynch and Conery, 2000; Kondrashov et al., 2002; Wagner,
2002; Raes and de Peer, 2003]. This may be due to the fact that once the duplicated
gene adapted its new function, it becomes subject to purifying selection and tests
based on nonsynonymous substitution rates can only be used in a relatively short
time (about 50 millions years) after the genes were duplicated.

The model proposed by Ohno implies that one of the genes retains its original function
while the other one acquires a new one. Case studies on the evolution of multigene
families rather support the following view [Hughes et al., 1994; Hughes, 2002]: A gene
duplication leading to functional diversification of genes is preceded by a period of gene
sharing where a single gene performs two distinct functions. After gene duplication
the two gene copies specialize in different subfunctions of their ancestor. For example,
subfunctionalization sometimes is achieved by a change in regulatory regions of the
genes leading to the expression in restricted sets of tissues [Cresko et al., 2003].

One of the most important processes acting on multigene families is concerted evo-
lution: Genetic mechanisms like unequal crossing-over and gene conversion transfer
DNA sequences between paralogous genes of a genome. As a consequence mutations
are spread to several paralogous genes that evolve together. Concerted evolution im-
poses a problem when paralogous sequences within one organism are used to estimate
the time point of a duplication event because the level of sequence divergence does
not necessarily reflect the time having passed since duplication.
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Domain shuffling and protein diversity in Metazoa

Nucleotide substitutions accumulating in a duplicated gene may alter the regulation of
the gene or the structure of the protein product. If the modifications are advantageous
for the organism, the mutations are selected for. An alternative more radical possibility
for the evolution of novel protein functions emerges when preexisting genes or exons
are joined or rearranged. The outcome of such a rearrangement eventually results in a
novel and useful combination of protein domains and becomes fixed, a process called
domain shuffling.

Domain shuffling is a common mechanism in the evolution of novel protein function.
About 65% of all prokaryotic proteins and 80% among eukaryotic proteins are sup-
posed to be composed of more than one domain. There are many domains occuring
in one or two combinations and few that occur in many combinations [Chothia et al.,
2003]. In particular during metazoan evolution, extensive domain shuffling was preva-
lent and gave rise to the enormous protein diversity of animals and the metazoan
radiation [Doolittle, 1995]. Figure 4.2 shows architectures of typical animal multido-
main proteins. The EGF-like domain, the immunoglobulin (Ig) and the fibronectin type
III (Fn3) domain were abundantly reused and combined with others to novel proteins
to regulate multicellular aspects. Other domains like the collagen triple helix repeat or
the sushi domain occur as long tandem repeats though in various combinations with
other domains.

2.3 Computational Molecular Biology

2.3.1 Pairwise sequence alignment

A sequence alignment is a scheme of writing the characters of one sequence on top of
another. Characters are either nucleotides or amino acid residues and a vertical col-
umn or a site of the alignment holds characters which are deemed to have a common
evolutionary origin. If the same character occurs in both sequences then this position
may have been conserved in evolution. If the characters differ, the two sequences
supposedly have derived from an ancestral character. Homologous sequences not nec-
essarily have the same length which is generally explained by insertions or deletions
depicted by pairing of characters with dashes or gaps in the alignment. For example
an alignment of the two sequences RDISLVKNAGI and RNILVSDAKNVGI is

... R D I S L V - - - K N A G I ...

... R N I - L V S D A K N V G I ...
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In the similarity framework one distinguishes between the different possible mis-
matches and also among different kinds of matches. For amino acids scoring matrices
have been derived that assign a score to each possible pair of amino acids. The most
famous scoring matrices are the PAM and the BLOSUM series of matrices [Dayhoff
et al., 1978; Henikoff and Henikoff, 1992]. Like the PAM matrices, the variable time
(VT) series matrices are derived from probabilistic models of amino acid replacement
[Müller and Vingron, 2000] (see Sections 2.4.5 and 2.4.5). For every matrix one needs
to specify appropriate penalties for gaps. The idea is to assign an alignment a similar-
ity score as the sum of site scores and to find the alignment being optimal with respect
to the similarity score. Dynamic programming algorithms generate a two-dimensional
matrix with values corresponding to optimal similarity scores for sequence prefixes.
Then an optimal alignment can be identified with a runtime being proportional to
the product of the two sequence lengths. Needleman and Wunsch first introduced a
dynamic programming algorithm to align two sequences over their entire length to
obtain a global alignment [Needleman and Wunsch, 1970]. In many cases sequences
share local rather than global similarities. Smith and Waterman adapted the dynamic
programming principle for computing pairwise local alignments [Smith and Waterman,
1981].

2.3.2 Fast heuristic alignment, BLAST and FASTA

Traditionally, the first step in the analysis of an uncharacterized protein sequence is
to search the protein databases for similar sequences. If the search yields significant
similarities, information from the proteins in the search results can be inferred to apply
to the query sequence. Often the biologist is interested in finding local similarities.
Heuristic database searches approximate the search for optimal local alignments and
are used to speedup the database search. The two most popular program packages
are FASTA [Pearson and Lipman, 1988] and BLAST (Basic Local Alignment Search
Tool) [Altschul et al., 1990]. Each hit in a database search comes with a raw score
and an E-value (Expect value) that describes the number of hits with such a score one
can ”expect”to see just by chance when searching a database of a particular size. Raw
scores of different database searches are not comparable since they do not incorporate
knowledge of the scoring system. Therefore it is preferable to cite the bit score which
is normalized by the statistical parameters of the scoring system and has a standard
set of units.

2.3.3 Profiles, PSI-BLAST

While BLAST and FASTA compare a single sequence against a database of sequences,
the profile concept allows to incorporate more knowledge about the query or the
database and to improve the sensitivity and the specificity of a search. A profile defined
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by Gribskov et al. [1987] represents a set of related sequences as a position-dependent
scoring matrix being constructed from a multiple alignment of the sequences. The
rows of the profile represent the sites of the alignment and the columns correspond to
the 20 amino acid residues. Matrix values M(p, a) give the score of amino acid a at
position p

M(p, a) =

20∑

b=1

W (p, b)S(a, b) ,

where W (p, b) holds the relative frequency of amino acid b at position p and S(a, b) is
the similarity score from a scoring matrix.

Profiles can be aligned against a sequence using the dynamic programming algorithm.
The similarity score for a residue in the sequence and the profile is taken from the
column of the position dependent scoring matrix corresponding to the residue and the
row representing the position in the profile.

PSI-BLAST (Position-Specific Iterated BLAST) [Altschul et al., 1997] is an extension
to BLAST. In one iteration of PSI-BLAST a BLAST search of a profile against a
database of protein sequences is performed. A new profile is automatically constructed
from significant hits of the search and used to search the database in the next iteration.
The initial query to PSI-BLAST is either a single sequence or a multiple alignment.
PSI-BLAST has proven to be sensitive in the detection of remote homologies.

2.3.4 Hidden Markov Models

Profile Hidden Markov Models

Hidden Markov Models (HMMs) are statistical, probabilistic and generative models.
They contain a doubly embedded stochastic process. While the states emitting output
symbols remain hidden, the series of output states is observed.

A profile HMM is a stochastical representation of a sequence family and was devised
in the 1990ies [Brown et al., 1993; Krogh et al., 1994]. For each column in a multiple
alignment there are match, insertion and deletion hidden states to model the evolu-
tionary divergence of the sequences. Match states are emitted according to the symbol
distribution in a column of the multiple alignment as given in a row of the profile.

Automatic learning algorithms adapt transition probabilities to best characterize the
family members. The model generates sequences by emitting different states. Thus,
each sequence has a certain probability to have been generated by the model. Profile
HMM are commonly used to search sequence databases to identify additional family
members.
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Sequences are aligned to profile HMMs in much the same way as they are aligned to a
profile. Yet the interpretation of the procedure is different. Aligning a sequence to an
HMM is to delineate the most likely series of states having produced the sequence.

HMMER

The HMMER package [Eddy, 1998] provides implementions of profile HMM tools.
Programs being mentioned later in the thesis include ”hmmpfam”to search an HMM
database for matches to a query sequence, ”hmmsearch”to search a sequence database
for matches to an HMM and ”hmmalign”to align sequences to an existing model.

Pfam

Pfam is short for ”Protein families database of alignments and HMMs”[Sonnhammer
et al., 1997, 1998a; Bateman et al., 2004]. Pfam is both, accurate as well as comprehen-
sive. It contains more than 7500 profile HMMs being built on curated alignments. 74%
of the publicly available protein sequences have at least one match to these domains.
In this thesis, we refer to Pfam release 12.0.

SMART

SMART (Simple Modular Architecture Research Tool) [Schultz et al., 1998] is a web
service allowing the identification and annotation of genetically mobile domains. The
SMART release 3.7 we refer to in the thesis includes profile HMMs of 617 domains.
The collection of SMART domains provides a lower coverage of the sequence space
than Pfam. Yet SMART is based on high-quality human crafted alignments. Domain
models come with extensive annotations as well as specific E-value cutoffs for the
detection of the lowest scoring true positive and the highest scoring false positive
hits in HMM searches. With respect to subcellular localization, SMART domains are
categorized as either being “signalling”, “nuclear”, “extra-cellular” or “others”.

TMHMM

TMHMM2 (Transmembrane HMM) is the state-of-the-art program to predict the exis-
tence and to detect the topology of transmembrane helices [Sonnhammer et al., 1998b].
The underlying HMM contains different states for the helix core, caps, loops on the
cytoplasmic and non-cytoplasmic side and for globular domains in the middle of loops.
TMHMM makes a prediction for each residue as being either inside the membrane,
outside the membrane or a part of a transmembrane helix.
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SignalP

SignalP predicts signal peptides [Nielsen et al., 1997; Nielsen and Krogh, 1998]. The
version 2.0 of the program that was applied in this thesis consists of two different pre-
dictors based on neural networks and Hidden Markov Models. Several neural networks
are trained to evaluate whether an N-terminal residue is part of a signal sequence or
a cleavage site. The HMM contains submodels for the N-terminal charged region, the
hydrophobic region, and the region around the cleavage site as well as for signal an-
chors. The latter submodel improves the prediction of signal peptides since it allows
to discriminate between signal peptides and uncleaved signal anchors.

2.3.5 Clustering homologous sequences

Sequence clustering

With the rapid growth of biological sequence databases one faces the need for proce-
dures to group evolutionary related proteins. Expert driven family databases classify
proteins according to secondary structures [Conte et al., 2000] or by dissecting them
into domains, e.g., Pfam domains. Classifying sequences on the basis of such resources
inherently requires the previously derived knowledge of the resources to apply to the
sequences. A comprehensive clustering of a sequence space including previously un-
characterized sequences still requires automatic procedures. Common sequence clus-
tering procedures are based on pairwise sequence comparisons.

Orthology detection

Orthologous proteins are related by speciation and are supposed to occupy the same
functions in different organisms. The inference of orthologous relationships among
sequences therefore is of central importance. Further, orthology is a prerequisite for
inferring organismal phylogeny from genes or proteins.

Ideally, for a given set of proteins one would like to assign each protein to a protein
family and further to have a phylogenetic tree for each family with all homology
relations being resolved into paralogy and orthology. Yet automated detection of
putative orthologs is restricted to complete proteomes, that is to organisms where the
sequences of all peptides are known.

Consider the tree shown in Figure 2.7. An ancestral gene was duplicated prior to the
divergence of species A and B. Bβ is paralogous to Aα and orthologous to Aβ. The
procedure to identify orthologous relationships is based on the following rationale:
When comparing the protein Aβ to all proteins of species B, the ortholog Bβ is
expected to exhibit the largest similarity. Vice versa Aβ is expected to provide the
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Figure 2.7: Evolutionary history of an ancestral gene embedded in the species tree for species
A and species B. Black squares represent duplications, circles represent speciations. Aα
is orthologous to Bα′ and Bα′′, Aβ is orthologous to Bβ. Aα is out-paralogous to Bα′.
Bα′ is in-paralogous to Bα′′.

best match when comparing Bβ to all proteins of species A. In practice, the analysis is
performed by BLAST searches between two proteomes. Each protein of one organism
is searched against all proteins of the other organism and vice versa. A putative pair
of orthologs is detected as the so-called reciprocal best blast hit, that is two putative
orthologs mutually and significantly find each other as best hits. If the compared
proteomes are not complete (for example consider that Aα and Bβ in Figure 2.7 are
missing), reciprocal best blast hits may link paralogous sequences.

INPARANOID, COG

The reciprocal best blast hit yields one-to-one relationships. Sonnhammer and Koonin
[2002] differentiate paralogous relationships with respect to a speciation and intro-
duced a new terminology. They refer to paralogs as in-paralogs if they arose from
a duplication after the speciation and as out-paralogs if the duplication predates the
speciation. Hence the genes Bα’ and Bα” in the tree of Figure 2.7 are in-paralogs.
Both of them are orthologous to Aα and all genes can be divided into two orthologous
groups, one containing Aα, Bα’ and Bα” and the other one containing Aβ and Bβ.
Clearly all genes in one orthologous group are out-paralogous to all genes in the other
orthologous group.

Tatusov et al. established a concept to detect in-paralogous relationships and to derive
orthologous groups called COGs (Clusters of orthologous groups of paralogs) [Tatusov
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et al., 1997]. They require the members of a COG-entry to be present in at least three
species. Here, large clusters including multidomain proteins need to be manually
resolved into smaller clusters.

A fully automated procedure for finding orthologs and in-paralogs from two species is
implemented in the INPARANOID software [Remm et al., 2001]. The authors employ
bit scores of BLAST searches between species as well as of searches within the same
species. First, reciprocal best blast hits are detected. The two putative orthologs are
called main orthologs and form the core of an orthologous group. Other sequences are
marked to be in-paralogous to one of the main orthologs and eventually added to the
orthologous group if the score to one of the main orthologs is larger than or equal to
the score between the main orthologs. The user specifies a confidence value ranging
from 0% to 100% that shows ”how orthologous”a given sequence is. 100% is assigned
to a main ortholog and 0% is assigned if the bit score of the putative in-paralogous
sequence to the main ortholog from the same species equals the score between the
main orthologs.

SYSTERS protein families

COG and INPARANOID identify sets of orthologs. These methods do not necessar-
ily assign all sequences to an orthologous group. Further, distant or out-paralogous
relationships are not resolved. The SYSTERS clustering procedure is designed to
take a whole protein sequence database as input and to hierarchically assign each se-
quence to a superfamily and a family cluster [Krause and Vingron, 1998; Meinel et al.,
2005; Krause et al., 2005]. Superfamily and family clusters are supposed to provide a
meaningful partitioning of the whole sequence space.

Meaningful clusters cannot be automatically obtained through simple database searches.
Consider a query protein and a database search to identify a group of proteins being
related to the query protein. Hits with an E-value lower than 10−20 may be con-
sidered significant and hits with an E-value larger than 0.01 generally are discarded.
E-values in between form the so-called twilight zone. Hits within the twilight zone
cannot automatically be classified as being or being not related to the query.

The original idea behind the SYSTERS procedure (SYSTERS is short for ”SYSTEm-
atic Re-Searching”) is the iteration of database searches. Consider a seed sequence for
which a set of related sequences shall be found and an E-value cutoff for significant
hits. The initial database search is performed with the seed as query. Significant hits
are first included in the set of sequences being related to the seed and second used
as queries for subsequent database searches which in turn yield significant hits. The
procedure is iterated until the set of related sequences is not extended any more.

Practically SYSTERS clustering first constructs a single linkage hierarchy built on E-
values of pairwise all-against-all comparisons. Figure 2.8 gives a schematic overview of
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(Figure kindly provided by Antje Krause)

Figure 2.8: Schematic overview of the SYSTERS clustering procedure.

the clustering procedure. Since the proteins evolve at different rates, the application of
a static cutoff to derive sets of related proteins does not yield a biologically reasonable
partitioning of the data set. Instead, the internal branching structure of the tree is
used to automatically determine superfamily specific E-value cutoffs. Here, traversing
the single linkage tree from leaf to root and comparing the sizes of merging subtrees
is the key to elucidate the twilight zone. The superfamily holds the same members
as obtained by the above described ”re-searching”procedure. For each superfamily a
superfamily distance graph is built from E-values. The superfamily distance graph in
turn is cut at weak connections to resolve the SYSTERS family clusters.

In this thesis we refer to the SYSTERS Release 4. The clustering was performed
on 1, 168, 542 sequences taken from Swiss-Prot (release 41.0) and TrEMBL (release
23.0) [Gasteiger et al., 2003] and from the peptides of several completely sequenced
organisms present in Ensembl [Hubbard et al., 2002]. The non-redundant sequence
space contains 546, 538 sequences. Those fall into 147, 796 superfamilies and 158, 153
SYSTERS family clusters. 37, 488 SYSTERS clusters contain more than one non-
redundant sequence.

2.3.6 Multiple sequence alignment

A multiple alignment of homologous sequences extends the pairwise alignment concept.
Subtle similarities being missed in pairwise comparisons become visible when observed
simultaneously among many sequences. The construction of a multiple sequence align-
ment is closely related to reconstructing the evolutionary history of homologous se-
quences and all methods to reconstruct phylogenetic trees rely on a multiple alignment
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of the sequences under study (see Section 2.4.1). Conversely the task of aligning ho-
mologous sequences of varying degree of divergence ideally relies on the knowledge of
evolutionary relationships among the sequences [Vingron and von Haeseler, 1997].

Sum of pairs- (SP) score, MSA and DCA

The most prominent scoring scheme for a multiple alignment is the sum of pairs
(SP) score where the scores of the corresponding pairwise alignments contained in
the multiple alignment are added. The MSA (Multiple Sequence Alignment) program
generalizes the global alignment algorithm for two sequences to optimize the SP-score
for more than two sequences [Lipman et al., 1989]. Each sequence to align makes up
a dimension in the dynamic programming matrix. And since the search space and
the memory requirements are multiplied by the length of every sequence to align, the
algorithm can only be run for a moderate number of sequences. For more than three
sequences algorithms have been developed that reduce the search space by considering
only alignments with a cost below some threshold only while still optimizing the given
scoring function. An alternative approach is used by DCA (Divide and Conquer Align-
ment) [Stoye et al., 1997; Stoye, 1998]. According to a Divide and Conquer strategy
the sequences are cut several times, the shortened sequences are multiply aligned and
the obtained alignments are concatenated. The user can specify a parameter called
“recursion stop size” defining the minimal length of a sequence that is not further
cut. DCA provides near-to-optimal results for sufficiently homologous sequences. The
complexity of the algorithm still depends on the number of sequences to be aligned.

Progressive profile alignment, CLUSTAL

The most common remedy to overcome the demanding time and space requirements
of a SP-optimal multiple alignment is to apply a progressive alignment strategy. Pro-
gressive alignment relies on an initial estimation of evolutionary relationships among
the sequences. For example, distances derived from pairwise sequence alignments can
be used to obtain a hierarchical guide tree. Initially the most closely related sequences
are aligned. ”Progressively”more distantly related sequences or groups of sequences
are added to the initial alignment. An already computed alignment on a subset of
sequences is interpreted as a profile and ”frozen”for the remaining computation. A
generalized scoring scheme for profiles uses average scores (see Section 2.3.3). At
each internal node of the guide tree a pairwise profile alignment using the dynamic
programming algorithm together with the scoring scheme is produced.

The above alignment strategy was outlined in [Feng et al., 1985], and implemented
in Higgins program CLUSTAL [Thompson et al., 1994; Higgins et al., 1996]. In
CLUSTALW (”W”= weighting), the most widely used program for multiple sequence
alignment, contributions of single sequences are weighted such that the information in
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the multiple alignment is adequately collected. The major problem with progressive
alignment is that the initial guide tree not necessarily reflects the true evolutionary
relationships and that errorneous assumptions in the guide tree are propagated to the
multiple alignment.

2.4 Molecular Phylogenetics

2.4.1 Inferring molecular phylogenies

The prerequisite for inferring molecular phylogenies on present day sequences is a
historically correct multiple sequence alignment in which the aligned positions share
a common ancestry. The aim of inferring molecular phylogenies is to reconstruct the
evolutionary history of the sequences in the multiple alignment. The evolutionary
history is generally modeled by a binary tree. Present day sequences are the leaves
of the tree, internal nodes represent ancestral sequences and edge lengths reflect the
amount of evolutionary change or the number of substitutions between sequences. The
tree that is shown in Figure 2.7 is a rooted tree. Sequences at leaves are supposed to
have evolved from the common ancestral sequence at the root node through a series of
speciation and duplication events. In such a tree, all edges can be assigned a direction
with respect to time.

2.4.2 The molecular clock, ultrametric and additive trees

Based on the observation that the number of substitutions between haemoglobins is
roughly proportional to divergence times, Zuckerkandl and Pauling have put forward
the molecular clock hypothesis in the early 1960s [Zuckerkandl and Pauling, 1962,
1965]. The molecular clock assumes that substitutions accumulate in all lineages at
constant rates. Assuming validity of the molecular clock is equivalent to reconstructing
a rooted ultrametric tree where all leaves are equally distant to the root.

The molecular clock assumption rarely holds. Phylogenetic methods therefore recon-
struct unrooted additive trees that allow evolutionary rates to vary among lineages.
Sometimes one intentionally adds a homologous yet distantly related sequence, a so-
called outgroup sequence, to the data set. Then, subsequent to the tree reconstruction,
a root node can be placed at the edge to the outgroup. A rooted ultrametric tree with
edges reflecting divergence times and an additive tree are shown in Figure 3.3.
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2.4.3 Character- and distance based methods

Phylogenetic tree reconstruction methods can be classified according to the type of
input data they use.

Character-based methods use a set of discrete characters. In molecular phylogenetics
the characters are nucleotides or amino acid residues at a specific site of the multiple
alignment. Maximum Parsimony tries to find the tree that explains the evolution of
present day sequences by a minimal number of substitutions along the edges of the
tree. Maximum Likelihood methods evaluate the probablility to observe an alignment
under a probabilistic model of sequence evolution (see Section 2.4.5). In principle,
character based methods evaluate each tree topology. Yet the tree search space grows
super-exponentially in the number of leaves. Computing the Maximum Parsimony
or the Maximum Likelihood tree for many sequences becomes time demanding or
untractable.

Distance-based methods use a distance matrix as input. A distance matrix can be
obtained from a multiple alignment by computing pairwise evolutionary distances
(see Section 2.4.5). Neighbor-Joining (NJ) is the most commonly used method to
reconstruct phylogenetic trees [Saitou and Nei, 1987]. NJ is a clustering method that
subsequently identifies neighbors in the tree. Its time complexity is cubic in the number
of sequences.

Sometimes prior knowledge of the relatedness among certain subgroups of sequences is
available. Then distances can also be computed between profiles and put into the NJ
algorithm. Profile Neighbor Joining (PNJ) trees have been proven to be more robust
and accurate than other reconstruction methods [Müller et al., 2003, 2004].

2.4.4 Non-parametric bootstrapping

Non-parametric bootstrapping is the most commonly used method to obtain a quan-
tity that tells us something about the uncertainty in reconstructed tree topologies
[Felsenstein, 1983]. The columns of a multiple alignment provide a sample of the
phylogeny to be estimated. The order of alignment columns is irrelevant for the out-
come of the tree estimate. Non-parametric bootstrapping generates new aligments,
the bootstrap replicates, by randomly drawing columns from the original alignment
with replacement. Typically 100 − 1000 bootstrap replicates are produced and the
tree estimation is applied to all bootstrap replicates in turn. Bootstrap values (or the
bootstrap support) are associated to the edges of the tree estimated on the original
alignment. They correspond to the relative frequency at which a bipartition of the set
of taxa (that results from cutting the tree at the edge) occurs in bootstrap replicates.
Boostrap values provide a measure of how robust an estimted tree topology is, when
the data is “disturbed”.
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2.4.5 Markovian modeling of sequence evolution

Maximum Likelihood and Maximum Parsimony

Assessing the likelihood of sequence data under one or several models is benefitial
compared to Maximum Parsimony. Maximum Parsimony relies on William of Ock-
ham’s principle that entities ought not to be multiplied unnecessarily and does not
provide a model of the underlying process. Indeed Maximum Parsimony trees and
Maximum Likelihood trees agree when the sequences’ evolutionary rate is small and
the probability for a site to have changed more than once is marginal [Felsenstein,
1973]. Yet in many data sets we see evolutionary rates that are not small. Then
Maximum Parsimony is prune to reconstructing a wrong topology. Since distances
between sequences having evolved at larger rates are underestimated, the taxa at the
tips of long branches in a model tree show the tendency to get attracted in the MP
tree (long branch attraction) [Felsenstein, 1988].

In contrast to assessing the parsimony score computing the likelihood is based on
probabilistic modeling of sequence evolution. Here phylogeny estimation implicitely
becomes a method of statistical inference. Model parameters are the distribution of
characters, substitution rates and the edge lengths and topology of the tree. Different
model assumptions are reflected in differences in the parameter space. Comparing
phylogenetic hypotheses is subject to a likelihood ratio test statistic.

Probability, likelihood and the likelihood ratio

The aim of a maximum likelihood estimation is to find parameter values that maximize
the probability to observe the data. The probability concept assumes that we know
model parameters Θ which govern the probability Pr(X |Θ) of a random experiment’s
outcome X . The sum of probabilities over all possible outcomes or data sets X adds up
to one,

∑
X Pr(X |Θ) = 1. The likelihood concept implies that we observe the outcome

of a random experiment and assess the probability L(Θ|X ) of model parameters Θ
when the observed data set X is fixed:

L(Θ|X ) = Pr(X |Θ)

The ML estimate are parameter values θ ∈ Θ where L(θ) assumes its maximum.

If competing hypotheses can be described by restricting some set of model parameters,
a likelihood ratio test (LRT) can be carried out [Felsenstein, 1981]. For example one
can test whether nucleotide data are better fit under the assumption that transitions
occur more frequently than transversions, or whether the reconstruction of an ultra-
metric tree instead of an additive one is judged, or if there act two different selective
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regimes along a sequence rather than one. The task is to compare two nested models
of sequence evolution. The simpler model with a smaller number of model parame-
ters represents the null-hypothesis. Its likelihood L0 is smaller than or equal to the
likelihood L1 of the alternative model, L0 ≤ L1. The likelihood ratio statistic ∆ is
a difference of log likelihoods ∆ = −2 log L0

L1
= 2(logL1 − logL0). Under the null-

hypothesis ∆ is (asymptotically) distributed as a chi-square variable with degrees of
freedom equal to the difference in the numbers of free parameters in the two models
[Ewens and Grant, 2001].

Time-continuous Markov processes

In the following the probabilistic model of sequence evolution is discussed. Assuming
that point mutations accumulate according to a stochastic process sequence evolution
is modeled by a Markov process acting independently on the sites of the sequence. We
shortly review the properties of Evolutionary Markov processes (EMP) [Dayhoff et al.,
1978; Müller and Vingron, 2000; Müller et al., 2002].

Let A be a finite set of states. In the context of molecular evolution, A holds the 20
amino acid residues, the 61 amino acid coding codons, or the 4 nucleotides. A time-
continuous Markov process on A is a sequence of A-valued random variables (Xt)t≥0

such that X0 is distributed as the initial distribution of states π0 (π0
i = Pr(X0 = i))

and such that the Markov property

Pr(Xtn = an|Xtn−1
= an−1, ..., Xt0 = a0) = Pr(Xtn = an|Xtn−1

= an−1)

for times t0 < t1 < ... < tn and states a1, a2, ..., an holds. The probability distribution
of future states only depends on the current state and does not depend on past states.

The Markov process is homogeneous if there exists a stochastic transition matrix

Pij(t) = Pr(Xs+t = j|Xt = i) for all s, t ≥ 0, i, j ∈ A ,

independent of s.

The transition matrix in turn satisfies the Chapman-Kolmogorov equation:

P (s + t) = P (s)P (t) . (2.1)
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The rate matrix

We assume that the transition matrix P (t) of a time continuous Markov chain is
continuous and differentiable from the right at t = 0. That is the limit

Q = lim
t↘0

P (t) − I

t

exists, where I denotes the identity matrix. Q is known as the rate matrix or the
generator of the Markov chain. For small time periods h > 0, transition probabilities
are approximated by

P (h) ≈ I + hQ

Pij(h) ≈ hQij , i 6= j. (2.2)

From equation (2.2) we see that off-diagonal entries of Q are substitution rates: The
probability for state i to reach another state j for a small time perid h is proportional
to h and Qij .

From the Chapman-Kolmogorov equation we get

d

dt
P (t) = lim

h↘0

P (t + h) − P (t)

h

= lim
h↘0

P (t)P (h) − P (t)I

h

= P (t) lim
h↘0

P (h) − P (0)

h
d

dt
P (t) = P (t)Q = QP (t) . (2.3)

The differential equation can be solved and yields

P (t) = exp(tQ) =
∞∑

k=0

Qktk

k!

under the initial condition P (0) = I.

Q provides an infinitesimal description of the process. Transition probabilities for any
t > 0 are computed from the matrix Q. From P being a stochastic matrix and with
(2.2) we gather some properties of Q for small h > 0:

Pij(h) ≥ 0 ⇒ Qij ≥ 0 for i 6= j
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∑
j Pij(h) = 1 and Qij ≥ 0, i 6= j ⇒ Qii ≤ 0

1 =
∑

j Pij(h) = 1 + h
∑

j Qij ⇒
∑

j Qij = 0, Qii = −
∑

j 6=i Qij

The Markov chain is given by (Q, π0).

Stationarity and reversibility

The distribution of states π is called stationary, if the probability to observe a certain
state remains the same for all time points, that is

πj =
∑

i∈A

πiPij(t) or π = πP (t)

for all t ≥ 0.

For small h > 0 and stationarity,

πj =
∑

i

πiPij(h) = πj + h
∑

i

πiQij

and
∑

i

πiQij = 0 or πQ = 0 . (2.4)

The rate matrix Q is called irreducible if Pij(t) > 0 for any two states i, j ∈ A and for
some t > 0. For irreducible Markov chains the limes limt→∞ Pij(t) = πj exists.

In general, π is not uniform. When reconstructing molecular phylogenies on present
day sequences we model the evolution of state i reaching state j in time t by the
same process as the evolution of state j reaching state i in time t (reversibility, see
Figure 2.9):

πiPij(t) = πjPji(t) (2.5)

Equation (2.5) is called the detailed balance.

The stationary distribution of a reversible Markov process is also called the equilibrium
distribution. When tree estimation under a reversible model is concerned, reversibility
implies that we are ignorant about the root position and the direction of time along
the edges.
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Calibration

The stationary distribution can be obtained from Q by solving equation (2.4). That is
Q provides all model parameters of a Markov process with stationary distribution π.
Multiplication of Q with any number yields a rate matrix describing the same process.
Explicit model parameters fix the speed of the process.

The rate matrix of an EMP is calibrated to PAM-units (PAM - point accepted muta-
tions). 1 PAM is the evolutionary distance where one substitution event per 100 sites
is expected to have occured. That is we calibrate Q by requiring the expected number
E of substituion events per time unit to be equal to 1

100
:

E =
∑

i

πi

∑

j 6=i

Qij = −
∑

i

πiQii =
1

100
.

Evolutionary Markov Process (Xt) with stationary distribution

We have discussed the properties of a Markov process being suited to describe the
substitution process at a site of a molecular sequence. The definition of Evolution-
ary Markov Process (Xt) with stationary distribution π (π-EMP) summarizes these
properties [Müller and Vingron, 2000; Müller et al., 2002, 2004]:

1. (Xt) is time homogeneous,

Pij(t) = Pr(Xs+t = j|Xs = i) = Pr(Xt = j|X0 = i).

2. (Xt) is stationary w.r.t. π,
πj =

∑
i πiPij(t), π = πP (t) ∀ t.

3. (Xt) is reversible, πiPij(t) = πjPji(t).

4. (Xt) is calibrated to 1 PAM, the evolutionary distance where one substitution
event per 100 sites is expected to have occured.

Nucleotide substitution models

There are two main approaches to assess the rate matrix of an EMP, the parametric
and the empirical one.

Nucleotide substitution models commonly are parametric models. Parameters specify-
ing substitution rates and nucleotide frequencies are adapted from the data set under
study. The most simple one-parametric model is the Jukes-Cantor model which as-
sumes that nucleotides are uniformly distributed and substituted by each other at
equal rates [Jukes and Cantor, 1969]. The Kimura 2-parameter model incorporates
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the transition-transversion ratio as an additional parameter [Kimura, 1980], the Felsen-
stein 81 model assumes non-uniformly distributed nucleotides [Felsenstein, 1981] and
the General time reversible model does not impose constraints on substitution rates
and the nucleotide distribution at all [Lanave et al., 1984]. Likelihood ratio tests
serve to check whether a parameter rich model fits the data significantly better than
a simpler model.

The codon substitution model

Another example for a parametric model is the codon substitution model introduced
by Goldman and Yang [Goldman and Yang, 1994]. The codon substitution model
was designed to estimate the ratio ω = dN/dS of nonsynonymous to synonymous
substitutions in protein coding nucleotide sequences. If the sequences are subject to
strictly neutral evolution, nonsynonymous substitutions are fixed at the same rate as
synonymous substitutions and ω ≈ 1 is expected. A ratio ω < 1 indicates negative or
purifying selection on deleterious amino acid changes whereas ω > 1 indicates positive
selection. The codon substitution model has a simple structure. The states of the
model are the 61 sense codons. The substitution rate from codon i to codon j is given
as

Qij =






0 if i and j differ at more than one position
µπj if i and j differ by a synonymous transversion
µκπj if i and j differ by a synonymous transition
µωπj if i and j differ by a nonsynonymous transversion
µωκπj if i and j differ by a nonsynonymous transition.

Parameters in the rate matrix Q are the rate µ for a nucleotide changing into another,
the stationary codon distribution π, the transition-transversion ratio κ and ω.

Models of amino acid replacement (Dayhoff, Müller-Vingron)

When modeling the substitution of the 20 amino acid residues, we observe that their
distribution is far from being uniform and the same holds for the replacement fre-
quencies. Further, the number of model parameters specifying transitions between
amino acids amounts to 209 and parametric amino acid substitution models therefore
are either simplistic or quite complex. Therefore the empirical approach has become
generally accepted: The rate matrix is estimated by considering a large set of aligned
sequences from a database and the obtained fixed parameter set is supposed to apply
to other datasets.

Dayhoff proposed her pioneering and prominent model of amino acid replacement in
the 1970ies from which she derived the PAM family of amino acid similarity matrices
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[Dayhoff et al., 1972, 1978]. The model is based on global alignments of closely related
sequences and the reconstruction of phylogenetic trees followed by the estimation of
ancestral sequences. Within the trees she counts the frequency of residues and residue
pairs which are used to set up the 1-step transition matrix P (1) of a time-discrete
Markov chain. Transition matrices for larger evolutionary distances are obtained from
multiples of P (1), that is by extrapolating the observed replacement frequencies be-
tween close sequences.

A drawback of the Dayhoff-model is the exclusion of divergent alignments when re-
placement frequencies are estimated. Consequently a lot of information being available
in public databases is discarded and large evolutionary distances are not adequately
fit by the model. Müller and Vingron present and apply a Maximum Likelihood (ML)
estimator for an EMP which accounts for alignments of varying degree of divergence
[Müller et al., 2002]. Estimating the rate matrix Q relies on evolutionary distance
estimates of aligned sequences. Distances in turn depend on the rate matrix. Müller
and Vingron follow an iterative strategy: they cycle between distance estimation and
updating the current rate matrix. The ML approach is computationally demanding.
Müller and Vingron provide an alternative empirical approach to estimate Q, the so
called resolvent method [Müller and Vingron, 2000; Müller et al., 2002] which approx-
imates the ML estimate. As with the ML approach divergent alignments are taken
into account. In contrast to the ML approach the resolvent method is considerably
faster.

Similarity scores for amino acids

Searching a database with a query protein commonly involves a similarity measure
between amino acid residues (see Section 2.3.1). The rationale of deriving scoring
matrices from the rate matrix of an EMP is the following: Similar residues are replaced
by each other more frequently than less similar residues. The measure of similarities
between amino acids reverses this relation [Dayhoff et al., 1978]. The similarity score
for a pair of amino acids (i, j) is defined as

Sij(t) := log
πiPij(t)

πiπj

.

The score is positive if the pair (i, j) frequently occurs in the alignments that were
used to estimate the rate matrix of the EMP.

Maximum Likelihood estimation of evolutionary distances

Homologous sequences have diverged from an ancestral sequence. To measure the
degree of their evolutionary divergence or their evolutionary distance is a fundamental
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Figure 2.9: Two homologous amino acid sequences having evolved from an ancestral se-
quence. The reversibility of the evolutionary Markov process allows interpreting the sub-
stitution pattern as the result of the process acting on the sites of one sequence.

task. There are many distance measures, see e.g. [Zharkikh, 1994] for a review.
Among those is the popular paralinear or LogDet-distance measure which applies to
cases where the character distribution is not assumed to be homogeneous in different
regions of the tree [Barry and Hartigan, 1987; Lake, 1994; Lockhart et al., 1994]. Here
we present the ML approach which is described, e.g., in [Felsenstein, 1993; Adachi and
Hasegawa, 1996; Müller and Vingron, 2000].

Consider an amino acid sequence comprising N sites and let the sequence evolve
according to a π-EMP. Let X = {x1, x2, ..., xN} denote the observed data set where xi

is a 2-dimensional vector holding the states or amino acid residues of site i at times
t0 = 0 and at time t1 = t (see Figure 2.9).

The probability that the data set X is generated by the π-EMP in time t is assessed
from the set of parameters Θ = {Q, t}:

Pr(X |t, Q) =

N∏

i=1

Pr(xi|t, Q) = L(t, Q|X ) (2.6)

For example, Pr((F, L)|Q, t) = πF · PFL(t) = πF · [exp(Qt)]FL.

Now consider that we observe two homologous sequences having evolved from an
ancestral sequence and want to estimate the evolutionary distance of the sequences if
they have evolved according to the π-EMP (see Figure 2.9). Due to the reversibility
of the process the likelihood of observing the sequences with an evolutionary distance
t is given by Pr(X |t, Q) (see equation (2.6)). The Maximum Likelihood estimate of
the evolutionary distance t̂ is the t where the likelihood function L(t) assumes its
maximum. The logarithm of the product in equation (2.6) is computationally easier
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Figure 2.10: An additive tree for four taxa.

to assess. And since the logarithm is strictly increasing, maximizing logL(t) instead
of L(t) yields the same distance

t̂ = argmax logL(t) = argmax
∑N

i=1 log Pr(xi|t, Q).
t t

Practically, t̂ is computed by numerical optimisation.

With respect to the ML distance estimation, we interpret the sites of the alignment
as samples or as outcomes of an EMP having acted on an ancestral sequence. The
limited number of samples prevents the ML estimate to assume the true or the model
distance. According to the asymptotic theory, the distances are normally distributed
and centered around the true distance with a variance equal to the inverse Fisher
information [Lindgren, 1993; Müller, 2001; Müller et al., 2002].

Maximum Likelihood estimation of phylogenetic trees

The ML estimate of an evolutionary distance is a ML estimate of a phylogenetic tree
for two taxa. The likelihood calculation for a tree with more taxa simply extends the
above calculation. Time-reversibility of the model again implies that we cannot infer
a root.

Consider four sequences and that we observe the states xi = {a1, a2, a3, a4}, ai ∈ A, at
site i of an alignment. In Figure 2.10 the states are placed at the tips of an additive
tree according to its topology T . Edge lengths of the tree are denoted by t1, ..., t5. First
assume that states k, l ∈ A at internal nodes are known. We arbitrarily choose a root
node, e.g., the one with state k. The probability to observe these states is obtained
by evolving the state of the root node according to the tree under the model:

Pr(xi, k, l) = πkPka1
(t1) Pka2

(t2) Pkl(t3) Pla3
(t4) Pla4

(t5)
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Since we are ignorant about states at internal nodes, we sum over each possible state
at internal nodes and obtain the probability to observe site i given T , edge lengths
t1, ..., t5 and the substitution model Q:

Pr(xi|t1, ..., t5, T, Q) =
∑

k∈A

πkPka1
(t1) Pka2

(t2)
∑

l∈A

Pkl(t3) Pla3
(t4) Pla4

(t5)

Sites are modeled independently of each other and the log likelihood to observe an
alignment X = {x1, x2, ..., xN} of four sequences and the tree topology T is

logL(t1, ..., t5, T ) = log Pr(X |t1, ..., t5, T, Q)

=

N∑

i=1

log Pr(xi|t1, ..., t5, T, Q). (2.7)

The maximum likelihood tree is the one with toplology T̂ and edge lengths t̂1, ..., t̂5
maximizing logL(t1, ..., t5, T ) when the substitution model is fixed.

The log likelihood of a site is efficiently computed by recursion [Felsenstein, 1981]. A
rooted tree topology is traversed from the leaves to the root. To each internal node k
a conditional likelihood Ls,k is assigned as the likelihood of the subtree rooted at k,
given that node k has state s ∈ A.

ML estimation of phylogenetic trees is computationally the most expensive tree re-
construction method. A very fast and widely used heuristic to reduce the tree search
space is Quartet Puzzling [Strimmer and von Haeseler, 1996; Schmidt et al., 2002].
The optimal tree for all quartets, that is for all subsets of sequences consisting only
of four sequences, is computed. Subsequently, the quartet trees are combined into a
larger tree for all sequences.




