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“Kollegen, wir sind ganz nahe dran, das Ratsel zu losen”, ignorierte Justus die Einwéande
des Dritten Detektivs. “Und das wird auch hochste Zeit, denn wir wissen immer noch
nicht, wo Morton steckt und ob er vielleicht in Gefahr ist. Heute Abend werden wir

uns ein weiteres Puzzleteil holen.”
Bob brachte beim Abendessen kaum einen Bissen herunter. Seine Eltern waren hocher-
freut, dass er endlich mal wieder nach Hause kam, doch er enttauschte sie durch seine
Schweigsamkeit und die standigen Blicke auf die Uhr.
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1 Introduction

1.1 Motivation

The advent of molecular sequence data affects the theory of evolution like a continuing
revolution. Already in the 1960ies Kimura demonstrated having just a few amino acid
sequences available that the rate of protein evolution is much too high to be solely
explained by the logic of natural selection. According to Kimuras theory of neutral
evolution the majority of molecular changes in evolution are randomly fixed.

Current large scale nucleic acid sequencing projects abundantly produce sequence data.
Analyzing the data is the primary challenge and a prerequisite for a better understand-
ing of the forces that drive evolutionary processes.

1.2 Overview

In this thesis the rates of protein evolution are estimated and analyzed on a genomic
scale for diverse eukaryotic model organisms. At first, Chapter 2 briefly reviews some
basics of molecular biology and molecular evolution with a focus on topics that are
relevant for the thesis. Methods, tools and information about certain database releases
that were used and are referred to in the thesis are described in Section 2.3. Markov
models of sequence evolution play a central role in the thesis. The basics of Markovian
models that are used to model sequence evolution and to estimate evolutionary rates
are reviewed in Section 2.4.5.

Chapter 3 empirically documents that rate variations among proteins are mainly driven
by family specific effects. The measure of a family specific rate is meant to describe
the slow or fast evolution of a gene family and averages over lineage specific rate
variations. Having derived an overall rate distribution, the prevalent assumption that
essential genes are more evolutionarily conserved than nonessential ones is put forward
and supported.

The observation that modern extra-cellular proteins are subject to a rapid accumula-
tion of mutations suggests the following hypothesis: Selective constraints act weaker
and evolutionary rates are larger the more recent a protein emerged in evolution.
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