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3 Relaxation

The relaxation is one of the main properties characterising a paramagnetic spin system.
In case of endohedral fullerenes, the coupling of the encapsulated spins with the
surrounding is mediated by the fullerene molecule. Especially for N@C60/70 and P@C60,
this coupling is very weak because of the lack of direct molecular bonds. Thus, long
relaxation times can be expected.

After an excitation of the spin system two processes are involved in the relaxation of the
magnetisation towards thermal equilibrium. The first describes the change of the entire
magnetisation of the spin system through spin-phonon coupling and is therefore called
spin-lattice relaxation. The time constant of this process is usually referred to as T1. The
second process only affects the phase coherence of the spins, e.g. as spin diffusion, and
contains information about the coupling between spins. Usually this spin-spin relaxation
time T2 is much smaller than T1, especially in solids at low temperatures when the
lattice vibrations are frozen out. Only in rare cases in solution T2 can equal T1.

3.1 Experimental details

All samples discussed in this chapter are powder samples. The P@C60 sample used for
the temperature dependent measurements has been prepared from “as-produced”
material dissolved in toluene, filtered once, and then dried in a rotational evaporator.
The ratio of filled to empty cages is 2.4 ·10-5 and corresponds to 2.0 ·1013 spins/mg6.
This sample will be referred to as "Phoenix".

The T1 and T2 relaxation times were measured in ESR pulse experiments. Both
techniques are based on the Hahn-Echo sequence [1], a π/2–pulse followed by a π–
pulse applied along the same axis (Fig. 3.1).

Fig. 3.1: pulse scheme of a Hahn - Echo sequence. A typical value for a π -pulse is 32 ns, and ~1 µs for
the time t between the pulses.

The effect of this pulse sequence on the spins is illustrated in Fig. 3.2. The
magnetisation along the z–axis is tipped through 90° by application of B1 along the y–

                                                
6 The error of absolute spin numbers is always quite high (at least a factor 2) because no spin standard is

similar enough to the material investigated concerning g-factor, linewidth etc.
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axis (a). The spins start to dephase coherently due to static inhomogeneities (b), e.g. due
to inhomogeneities of B0. After a time t they are refocused by a π–pulse (c-e) before
dephasing again after a time > 2t (f).

The spin–spin relaxation time is measured by changing the time t between the pulses
while recording the echo–intensity. For the measurement of the spin–lattice relaxation, a
π–pulse inverting the z–magnetisation is applied before the Hahn–Echo sequence.
While varying the time between this inversion pulse and the following two pulses (t =
const), again the echo intensity is observed thus measuring the relaxation of the
magnetisation towards thermal equilibrium. This experiment is called inversion
recovery.

Fig. 3.2: The Hahn spin–echo experiment as described in the text.  The first pulse, e.g. applied along the
y–axis as in (a), rotates the z-magnetisation to the x–axis. (b)Due to static inhomegeneities the
spins start to dephase coherently in the x,y-plane. (c) At a  time t after the first pulse, the
second pulse is applied and rotates the spins by 180°. (d,e) After the second waiting  time t the
spins are refocused at the ( -x)–axis before dephasing again (f), thus forming an echo with the
magnetisation measured along the x–axis.

3.2 Spin – lattice relaxation

Both, the absorption (real part) and dispersion (imaginary part) of the magnetisation,
can be measured with quadrature–detection. If the first shows the echo amplitude, the
latter should be zero throughout the experiment corresponding to the signal noise. In
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Fig. 3.3 the real part (a) and the imaginary part (b), blue line, of the echo amplitude of
the inversion recovery experiment at 100=T K are shown.

The real part of the data has been fitted with both a single and a double exponential
function. The corresponding residua are shown in Fig. 3.3 (b) as black (single
exponential) and red line (double exponential). The imaginary amplitude (blue line) of
the echo is shifted for better illustration. It corresponds to the signal noise and is
therefore an indicator for phase– and frequency shifts occurring during the
measurement. The units are referred to as “counts”. This is to point out that the fit
residua have the same scaling as the data and should follow the signal noise if the fit
were valid.

As can be seen, only the fit with f(t) = a + b⋅exp(-t⋅R1) + b⋅exp(-t⋅R2) yields a residuum
that varies by 0.35 counts just as the imaginary amplitude does. In contrast, the
residuum of a single exponential fit (black) shows a clear structure with a large
variation from the signal noise especially for short times (2.25 counts).

Fig. 3.3:(a) Echo amplitude measured in an inversion recovery experiment at T = 100 K.

(b)The residua of the spin-lattice relaxation at T = 100 K fitted with a single exponential
(black) and a double exponential function (red) show that relaxation of the inverted
magnetisation towards equilibrium  cannot be described by a single exponential decay. The
imaginary amplitude of the echo is shifted by –2.0 counts for better illustration (blue) and
should be constant throughout the experiment. It corresponds to the signal noise and is
therefore an indicator for phase- and baseline shifts occurring during the measurement.

A deviation from the single exponential relaxation of the magnetisation is reported also
for 14N@C60 (T < 100 K) [2] and 15N@C60 [3]. This phenomenon can originate from
different relaxation rates for the (± 3/2, ± 1/2) and (1/2, – 1/2) transitions, respectively.
This idea is further examined in chapter 4.4 using the method of transient nutation.

If the relaxation experiments are evaluated with a double exponential function as
described before, two relaxation rates are obtained. The temperature dependence of the
two spin–lattice relaxation rates is shown in Fig. 3.4 (a). At temperatures T = 250 K, the
relaxation of the magnetisation shows only single exponential characteristics indicating
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that the phase transition of C60 has an influence on the relaxation properties of the
endohedral spin. Apart from some variation R1 and R2 seem to have a fixed ratio, and
the temperature dependence of the two components is the same. This implies that there
are two relaxation processes which arise from the same origin.

Fig. 3.4(a) Temperature dependence of the two spin-lattice relaxation rates R1 (black open markers) and
R2 (blue solid markers) evaluated as described in the text. For T ≥ 250 K only one relaxation
rate is observed (black triangles).

(b)Temperature dependence of the mean relaxation rate Rmean (black markers) compared to the
fluctuations of the hyperfine coupling yielded from the temperature dependence of the
hyperfine coupling (explanation see text).

In Fig. 3.4 (b) the mean relaxation rate Rmean = (R1 + R2)/2 is compared to the mean
square amplitude of the hyperfine fluctuation ∆a2(T) = (a(T) /2πh – a0/2πh)2 with data
a(T)/2πh taken from the measurement presented in chapter 2, which yielded a ground
state hyperfine coupling constant a0/2πh = 137.32 MHz. The comparison with Rmean is
justified because the temperature dependence of the two relaxation rates is the same. It
can be clearly seen that the temperature dependence is the same for Rmean and ∆a2

within the error bars for T > 35 K indicating that the vibration of the endohedral atom is
the main source of relaxation.

We will now have a closer look at the Hamiltonian of the system because the relaxation
is due to its fluctuating fields. The Zeemann term does not contribute because changes
of B0 are homogeneous over the entire sample and therefore coherent. However,
coherent fluctuations do not cause relaxation [4].

Interactions that can cause relaxation are the hyperfine coupling Hhf, the fine structure
coupling Hfs, and dipolar couplings Hdip to other nuclear or electron spins. Exchange
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coupling will not be considered here, as the spin density on the fullerene cage is small.
With these assumptions the spin Hamiltonian relevant for relaxation reads as

STRSDSIAS ++=

++= dipfshfrel HHHH
(3.10)

where R is a 13C nuclear spin, or (depending on the concentration) the next endohedral
electron spin.

All these couplings depend on relative lattice co-ordinates. Therefore they can be
modulated by phonons and give rise to spin–lattice relaxation. In Fig. 3.5 the relevant
phonon modes for group V endohedral fullerenes in a C60 matrix are visualised.

Fig. 3.5: Scheme of the phonon modes that are relevant for relaxation. The oscillator or "inner" mode
modulates the dipolar coupling to a 13C nuclear spin on the endohedral fullerene. Since the
wavefunction of the endohedral atom is squeezed, this vibration also modulates the hyperfine
and fine structure coupling. The acoustic or "outer" mode modulates the dipolar coupling
between an endohedral electron spin and neighbouring 13C nuclear spins or another
endohedral spin.

The "inner" mode, where the endohedral atom vibrates inside the fullerene molecule, is
described by a harmonic oscillator. This is evidenced by the temperature dependence of
the hyperfine coupling. As shown in chapter 2, the ground state energy of this oscillator
is E0 ~ 15 meV. The internal oscillation can also modulate the dipolar coupling to a 13C
nuclear spin on the endohedral fullerene 7, and since the wavefunction of the endohedral
atom is squeezed, this vibration modulates the hyperfine and fine structure coupling as
well.

On the other hand, acoustic phonons can modulate the dipolar coupling to 13C nuclear
spins on neighbouring fullerene molecules, and they change the dipolar coupling
between two endohedral electron spins. The van der Waals forces between the
fullerenes induce a non–spherical charge distribution on the molecules that causes a fine
structure  splitting of the endohedral spin (see chapter 5). Lattice vibrations can
modulate the van der Waals forces and therefore the charge density on the endohedral

                                                
7 With the natural abundance of 1.11% for the 13C isotope, every second fullerene molecule contains at

least one 13C atom.
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fullerene. With this, in addition to the dipolar coupling, the fine structure coupling
might be modulated as well.

As shown in Tab. 3.1, the hyperfine and finestructure couplings are stronger by more
than one order of magnitude compared to the dipolar coupling to a 13C nuclear spin R
on the same fullerene molecule. Furthermore, this dipolar coupling is averaged out for
temperatures T > 80 K due to rotations of the C60. Thus, A and D will dominate the
relaxation process in the case of the internal oscillator.

The strength of the interactions modulated by acoustic phonons is strongly angle
dependent as all interactions are dipolar couplings with T(ϑ) = T0⋅1/2⋅(3cos2ϑ −1). For
comparison the couplings have been calculated for ϑ = 0°. The dipolar coupling is
proportional to r3, where r the distance between the spins. The shortest distance possible
between an endohedral spin S and a 13C spin R' on a neighbouring fullerene molecule is
r = 7.5 Å. This value was used calculating the maximum strength of this specific
coupling.

Tab. 3.1: Hamiltonian and coupling strength for different types of spin interactions. S and I are the
electron and nuclear spin of the endohedral atom. R and R' are the nuclear spins of a 13C on
the same and neighbouring fullerene molecule. S' is the next endohedral electron spin. The
dipolar interactions D and T depend on the angle ϑ of their main axis with respect to the
magnetic field B0.

oscillator mode Hint max. coupling strength
(ϑ = 0°)

phonon model

SAI a/2πh ~  140 MHz
SDS D/2πh ~    14 MHzinternal oscillator
STR T/2πh ~  440 kHz

harmonic oscillator

   STS' a T/2πh ~    50 MHz
   STS' b T/2πh ~      1 kHzacoustic phonon
 STR'  T/2πh ~    70 kHz

Debye

a spin concentration 100 %
b spin concentration of "Phoenix"

For the sample "Phoenix" examined in this chapter, the dipolar coupling between S and
R' is 70 times stronger than the coupling to the next endohedral spin. But with
increasing spin concentration, dipolar couplings between endohedral electron spins S
and S' will grow stronger and dominate the relaxation process. In samples with a spin
concentration of about 0.2% the coupling of the endohedral spin to S' and R' will be of
same strength.

For all samples investigated in this work, fluctuations of the hyperfine and finestructure
coupling are the main relaxation mechanisms. We will now examine, how these
mechanisms are described in terms of relaxation rates.

The relaxation rate is proportional to the transition probability Wkl between two energy
levels k and l that can be calculated using Fermi's golden rule. It is
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int ω
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FkHlWkl ⋅=
h

(3.11)

with the density of final states F(ω), that in our case corresponds to the phonon density
of states. F(ω) is a delta function in the case of a harmonic oscillator and given by the
Debye model in case of the acoustic phonons.

The hyperfine coupling gives rise to relaxation only between the two hyperfine states
1+=IM /2  and 1−=IM /2 due to its isotropic character as can be seen from the
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As described in general by Mehring in [5] and pictured in Fig. 3.6, these relaxation
paths of an eight level system give rise to two different relaxation rates Rhf  and Rfs.

Fig. 3.6: Relaxation paths corresponding to the relaxation rates Rhf (solid arrows) and Rfs (dashed
arrows). They have their origin in fluctuations of the hyperfine and fine structure Hamiltonian
as described in the text.
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As can be seen when these equations are inserted into equation (3.11), the relaxation
rates obtained from the transition probabilities are

2aRhf ∆∝  and .2
zfs DR ∝ (3.14)

Thus, not only the hyperfine fluctuation ∆a causes spin lattice relaxation, as reported for
N@C60 in [6], but also the fluctuation of the finestructure coupling Dz. The origin of the
fluctuations of the hyperfine coupling are vibrations of the endohedral nitrogen atom in
the fullerene shell as discussed in chapter 2.

These relaxation rates can be determined by measuring the relaxation of the
magnetisation

)()(1)(1)( tftfctfctm fshfz ⋅⋅−=⋅−= (3.15)

with c = 2 for an inversion recovery experiment. The relaxation function f(t) consists of
a hyperfine part
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and a fine structure part
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Thus, the double exponential decay of the signal is due only to fluctuations of the
hyperfine interaction. But due to the constant contribution in equation (3.16), the
hyperfine relaxation alone will never cause the system to reach thermal equilibrium.
Thus, both relaxation mechanisms are needed to explain the experimental data.

The relaxation mz(t) as given in equation (3.15) has been evaluated at different
temperatures yielding the two relaxation rates as shown in Fig. 3.7 (a). These rates are
very similar to those in Fig. 3.4 (a), where the data have been fitted with a heuristic
double exponential function. Though we cannot decide which function fits the data
better (as it is always the problem with multi–exponential functions), it is clear that the
relaxation rates have the same temperature dependence as the fluctuation of the
hyperfine coupling constant ∆a2 (red line). Therefore we can say, that the "inner" mode
which modulates the hyperfine and the finestructure coupling, dominates the relaxation
process for 35 K < T < 300 K.

In Fig. 3.7 (b) the mean relaxation rate of P@C60 is compared to the mean relaxation
rate of N@C60 calculated from the data in [2]. In the temperature regime where the
model of the harmonic oscillator is valid, the relaxation rate is much larger for
phosphorous as endohedral atom than for nitrogen. As the phosphorous atom is larger
than the nitrogen, the fluctuation of the coupling is larger, due to the larger overlap of
the atomic wavefunction with that of the fullerene molecule [7]. Therefore, it can be
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said that the vibration of the endohedral atom is the dominating spin–lattice relaxation
mechanism.

However, if it were the only relaxation mechanism, the spin–lattice relaxation would be
expected to decrease rapidly when these vibrations freeze out. As can be seen from the
data, this is not the fact. Instead, dipolar couplings to surrounding spins modulated by
acoustic phonons become visible. This is supported by the fact that the relaxation rates
become nearly the same for N@C60 and P@C60 although the hyperfine and finestructure
splittings are one order of magnitude larger for phosphorous than for nitrogen.

Fig. 3.7: (a) Temperature dependence of the two spin-lattice relaxation rates evaluated as described in
the text. The black line with the open markers corresponds to the hyperfine relaxation Rhf and
the blue line with the solid markers shows the relaxation due to the fine structure Rfs. For
T≥ 250 K only one relaxation rate is observed (black triangles).The relaxation rates are
compared to the modulation of the hyperfine coupling constant ∆a2, as expected from theory
(red line).

(b)Mean relaxation rate of P@C60 (squares) compared to the mean relaxation rate of N@C60

(triangles).The data points with a mono–exponential decay have black markers. Data for
N@C60 are taken from [2].

In the case of anisotropic dipolar coupling a multi–exponential decay is expected.
Unfortunately, the time dependent data cannot be fitted with the fixed amplitudes and
arguments of the exponential functions calculated in [3]. Instead, the decay of the
magnetisation could be described by a stretched exponential function

])(exp[1)( βRttm z ⋅−−= (3.18)

with β  ~ 0.5 for T ≤ 35 K for phosphorous indicating a broad distribution of relaxation
rates. Nevertheless, the coupling strength has to be the same for nitrogen and
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phosphorous, as expected from dipolar couplings to surrounding nuclear spins of 13C or
endohedral spins and, perhaps, other paramagnetic impurities.

The relaxation at T ≤ 35 K is therefore expected to depend on spin concentration,
crystallite size, sample preparation and purification. Some variations of T1 from sample
to sample at low temperatures have indeed been observed. No systematic investigation
of this phenomenon has been done.

3.3 Spin – spin relaxation

The spin–spin relaxation is perhaps the most important property of a system that is to be
used as a qubit in a quantum computer. Because phase coherence is essential in
quantum computation, T2  is the limit for the length of an algorithm.

The real part (a) and the imaginary part (b), blue line, of the echo amplitude of the
Hahn–Echo experiment done at T = 100 K are shown in Fig. 3.8. In contrast to the spin–
lattice relaxation, the spin–spin or transverse relaxation shows a single exponential
behaviour. As can be clearly seen in Fig. 3.8 (b), the residuum of the fit with a single
exponential decay (red line) follows the imaginary part of the signal corresponding to
the signal noise.

Fig. 3.8: (a) Echo amplitude measured in a Hahn-Echo experiment at T = 100 K.

(b) Residuum of the spin–spin relaxation fitted with a single exponential decay (red) compared
to the imaginary part (blue) corresponding to the signal noise. It can be clearly seen that a
simple exponential function describes the data well.

In Fig. 3.9, the temperature dependence of T2 (solid blue markers) and the mean spin–
lattice relaxation time T1 = 1/ Rmean = 2/(Rhf + Rfs) (see page 34) measured for the
sample "Phoenix" is shown. The T2 relaxation is influenced by T1 for T > 35 K and
reaches the limit of 2⋅T2 = T1 at room temperature. However, at low temperatures T < 35
K the spin-spin relaxation time is not longer affected by T1 but becomes constant with
T2 = 14 µs. So it can be said that T2 of P@C60 itself is temperature independent as it is
for N@C60 [2], and the process that gives rise to dephasing has to be temperature
independent as well.
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From N@C60 it is already known that the (temperature independent) dipolar coupling
between two endohedral electron spins affects the ESR linewidth i. e., the linewidth
increases linearly with increasing spin concentration [9]. The T2 relaxation time is anti–
proportional to the linewidth and therefore decreases with higher spin concentrations.
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Fig. 3.9: Temperature dependence of the spin-spin relaxation time T2 (solid blue markers) and the mean
spin-lattice relaxation time T1 (open black markers). The T2 relaxation is constant for T < 35 K
and dominated by T1  for T > 35 K. At T = 298 K the spin-spin relaxation time reaches the
limit of 2 ⋅T2 = T1.

A similar process seems to be valid for P@C60. In a sample with high spin concentration
(ratio of filled to empty cages ~ 10-4) the spin–spin relaxation time was as short as T2 =
1 µs even at T = 10 K. At a small spin concentration  (~ 10-6) T2 was increased up to T2

= 28 µs indicating that the measurement still does not reveal the true relaxation time for
a spin system in the "infinite dilution" limit, where coupling to other P@C60 molecules
is ineffective.

3.4 Conclusions

The properties of fullerenes in solid state remain mainly molecular. In this chapter it has
been shown that this is also true for the group–V endohedral fullerenes. The relaxation
is dominated by the "inner" modes of the molecule in a large temperature regime.

The spin–lattice relaxation is caused by fluctuations of the hyperfine and fine structure
coupling due to vibrations of the endohedral atom in the C60 shell. This explains why
the relaxation rate is much larger for P@C60 than for N@C60. Due to the larger overlap
of the wavefunctions of the endohedral atom and the fullerene molecule, the
fluctuations of the couplings are stronger in P@C60.
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For temperatures T > 35 K the temperature dependence of these fluctuations is well
described by a harmonic oscillator mode, as evidenced by a comparison to the
experimental temperature dependence of the hyperfine coupling shown in chapter 2.
However, at temperatures T < 35 K this model would lead to much smaller relaxation
rates than measured in the experiments. In this case, other interactions and external
phonon modes take over the relaxation process.

The strength of these interactions is modulated by acoustic phonons and has to be the
same for phosphorous and nitrogen in C60. This condition is fulfilled by dipolar
couplings to 13C nuclear spins on neighbouring molecules and other endohedral spins.
The coupling to 13C spins T/2πh ~ 70 kHz is much stronger than the dipolar coupling
between endohedral electron spins in as produced material (J/2πh ~ 1 kHz). When the
electron spin concentration reaches ~ 0.2%, both interactions will be of same strength.

For pure P/N@C60, the dipolar coupling between adjacent endohedral spins is 50 MHz.
As the fine structure coupling of both endohedral fullerenes is smaller, D/2πh ~ 14 MHz
for P@C60, one might expect that in this case dipolar interaction will play a major role
in the relaxation process. But as it is modulated by acoustic phonons, the temperature
dependence has to fit in the Debye model of density of states. Therefore, the relaxation
resulting from fluctuations of the dipolar coupling will always be much smaller8 than
those modulated by harmonic oscillations.

All known relaxation times of  N@C60 and P@C60 are listed in Tab. 3.2:

Tab. 3.2: Relaxation times of group-V endohedral fullerenes [2],[6], [11] 

Endohedral

fullerene

Relaxation

in solution

Relaxation

in solid C60

Relaxation

in solid C60
a

1T  (µs) 2T  (µs) 1T  (µs) 2T  (µs) 1T  (µs) 2T  (µs)

14N@C60 120 50 120 20 610≥ 20

15N@C60 Not measured 45≈ 11 610≥ 14

31P@C60 5 3 2.7 b 1.3 b 610≥  b 14 b – 28 b

a At 5=T  K. All other values are given for room temperature.
b measured in this work

The spin–spin relaxation T2 depends on the spin concentration and is temperature
independent. T2 is affected by the spin–lattice relaxation at T > 35 K for P@C60 and
15N@C60, though in the latter case the effect is very small. The relaxation time T2

increases with decreasing spin concentration. Relaxation times up to T2 = 28 µs (for
spin concentration ~10-6) have been measured.

                                                
8 even if Raman processes are taken into account
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This shows that the "infinite dilution" limit is still not reached at this spin concentration
and spin–"flipflops" due to dipolar interactions are dominating the transversal
relaxation. The dipolar coupling will be controlled in a quantum computing scheme, so
that it can be turned on an off. Therefore, the dephasing time of the quantum computing
system will be longer than 28 µs and might even reach T1 as an absolute limit.

As long as the dipolar coupling is controlled, neither the spin–lattice relaxation nor the
spin–spin relaxation will increase with increasing spin concentration. In case of a solid
state quantum computer, this means that additional qubits do not cause additional
dephasing. Since relaxation is mainly due to fluctuations of the hyperfine and
finestructure coupling, and since these values vary only slightly for endohedral adducts,
no essential change of the relaxation is expected when chemical modifications of C60

are employed, as is planned for the quantum register (see chapter 1). Thus, a quantum
computer built from endohedral fullerenes will be scalable.

For temperatures T > 35 K, the relaxation is well understood. A detailed analysis at low
temperatures, however, would require more data about different samples concerning
spin concentration, crystallite size, sample preparation and purification. At the present
state of research, more information about the relaxation at low temperatures is not
essential for the use of endohedral fullerenes for quantum computing and thus were not
in the focus of this work. Much more important is the knowledge about the spin
properties concerning single qubit operations, which will be discussed in the next
chapter.
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