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Abstract

Signaling output of bone morphogenetic proteins (BMPs) is determined by two sets of opposing interactions, one with
heterotetrameric complexes of cell surface receptors, the other with secreted antagonists that act as ligand traps. We
identified two mutations (N445K,T) in patients with multiple synostosis syndrome (SYM1) in the BMP–related ligand GDF5.
Functional studies of both mutants in chicken micromass culture demonstrated a gain of function caused by a resistance to
the BMP–inhibitor NOGGIN and an altered signaling effect. Residue N445, situated within overlapping receptor and
antagonist interfaces, is highly conserved among the BMP family with the exception of BMP9 and BMP10, in which it is
substituted with lysine. Like the mutant GDF5, both BMPs are insensitive to NOGGIN and show a high chondrogenic activity.
Ectopic expression of BMP9 or the GDF5 mutants resulted in massive induction of cartilage in an in vivo chick model
presumably by bypassing the feedback inhibition imposed by endogenous NOGGIN. Swapping residues at the mutation site
alone was not sufficient to render Bmp9 NOG-sensitive; however, successive introduction of two additional substitutions
imparted high to total sensitivity on customized variants of Bmp9. In conclusion, we show a new mechanism for abnormal
joint development that interferes with a naturally occurring regulatory mechanism of BMP signaling.
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Introduction

Bone Morphogenetic Proteins (BMPs) and the related Growth

& Differentiation Factors (GDFs) are phylogenetically conserved

signaling proteins that belong to the Transforming Growth Factor

beta (TGFb) superfamily. Originally identified for their ability to

induce bone, they were subsequently shown to be involved in

multiple aspects of body patterning and morphogenesis [1–2].

Mutations in BMPs and their receptors can cause a wide variety of

congenital and postnatal diseases [3–4]. Despite their different

functions, all BMPs share a common signaling mechanism. They

are translated as precursor proteins consisting of a prodomain,

which is released proteolytically by members of the subtilisin-like

proprotein convertase family [5], which is important to activate

signaling that is conferred through the mature domain [6]. The

highly conserved mature domain is characterized by seven cysteine

residues. Six of them form an intramolecular cysteine knot

whereas the fourth of the seven cysteines is important for the

dimerization of the BMP monomers [7]. BMPs are secreted

peptides that act as homo- or heterodimers and bind to two

different types of membrane-spanning serine/threonine kinase

receptors, the type I BMP receptors (ACVRL1, ACVR1,

BMPR1A, BMPR1B) and type II BMP receptors (BMPR2,

ACVR2). Binding of BMPs to heterotetrameric receptor com-

plexes activate the SMAD as well as other intracellular signaling

pathways, like the MAPK pathway [8]. BMP signaling is precisely

regulated by a large number of antagonists, which act extracel-

lularly, on the membrane level as well as intracellularly [9].
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Noggin (NOG; MIM *602991), one of the best characterized

extracellular BMP antagonists, was first isolated as a dorsalizing

factor secreted by Spemann’s organizer of Xenopus embryos [10]

and later shown to be required for patterning of the neural tube and

in skeletogenesis [11–12]. The crystal structure of NOG bound to

BMP7 provided the structural basis of inhibition of BMP signals,

revealing the clamp-like grip of the covalently linked homodimer on

the homodimeric ligand that blocks both pairs of receptor binding

interfaces [13]. The importance of NOG for the development of

joints was shown by the identification of mutations in NOG in

patients with symphalangism (SYM1, MIM #185800) and multiple

synostosis syndrome (SYNS1, MIM #186500) [14]. We and others

have shown that certain mutations in GDF5 (also known as

CDMP1; MIM *601146) are also associated with SYM1 and

SYNS1 [15–18]. SYM1/SYNS1 associated mutations result in

over-active GDF5 due to altered receptor binding specificity. In

contrast, loss of function mutations in GDF5 result in brachydactyly

types C or A2 (BDC, MIM #113100; BDA2 MIM #112600)

[6,19–20]. Homozygous loss of function mutations cause acrome-

somelic chondrodysplasia of the Grebe (MIM #200700), Hunter

Thompson (MIM #201250) or Du Pan (MIM #228900) types,

conditions characterized by extremely short limbs and digits [21]. A

recent and comprehensive review on the respective genotype-

phenotype correlations has just been compiled and published [4].

Here, we describe two novel GDF5 point mutations (N445K and

N445T) that are associated with a pronounced form of SYNS1.

Functional characterization of the mutants demonstrated increased

biological activity when compared to wtGdf5 due to a resistance

against inhibition by Nog. The importance of the N445 residue for

NOG function was further substantiated by identification of two

other BMPs, BMP9 and BMP10, that share the same replacement

at this site and that are also insensitive to inhibition by NOG.

Results

Mutations at position N445 in GDF5 cause multiple
synostosis syndrome

We identified a heterozygous missense mutation c.1335T.G

leading to an exchange of the hydrophilic asparagine to basic

lysine (p.N445K) in three family members with SYNS1. The

mutation segregated in an autosomal dominant manner. The

clinically unaffected mother of two affected children did not

show the p.N445K mutation arguing for the presence of a

germline mosaicism. In addition, we identified a de novo

asparagine to threonine (p.N445T) mutation (c.1334A.C) in

another patient with SYNS1. All four affected patients exhibited

the characteristic features of severe SYNS1 (Figure 1). The

radiographs showed bilateral fusions of carpal and tarsal bones as

well as proximal symphalangism in fingers and toes. Distal

phalanges of fingers and toes II to V were hypoplastic and some

nails appeared small. Fusions between humerus and radius were

present in all four patients leading to fixation of the elbow joints in

a flexed position. Mild cutaneous syndactyly was present in some

individuals. The phenotype was congenital and appeared to be

non-progressive.

N445 co-localizes within the BMP type I receptor and
NOG interaction sites

A 3D structural model of GDF5 in complex with BMPR1B

(PDB 3EVS; [22]) with homology-based binding epitopes for the

type II receptors superimposed on that for NOG shows that

asparagine 445 co-localizes within both the type I receptor and the

NOG interaction sites (Figure 2A and 2B). Sequence alignments

showed that the N445 residue is conserved in the related BMP/

GDF group, with the exception of BMP9 (K372), BMP10 (K368),

GDF9 (V398) and GDF15 (M253) (Figure 2C).

Gdf5 mutants N445K and N445T render Gdf5 insensitive
to Nog

Retroviral expression of Gdf5 in micromass cultures induces

whereas Nog inhibits chondrogenesis, which can be quantified by

Alcian blue staining of the extracellular matrix. The N445K and

N445T mutants induced chondrogenesis to a similar extent as

wtGdf5. Co-expression of Nog prevented induction of chondro-

genesis by wtGdf5, but had only a minor effect on the Gdf5

mutants, demonstrating the critical role of the asparagine residue

in the interaction of Gdf5 with Nog (Figure 3A and 3B).

BMP9 and BMP10 are naturally insensitive to inhibition
by NOG

BMP9 and BMP10 share the same amino acid residue at this

position as one of the SYNS1- associated mutants. We analyzed

Bmp9 and Bmp10 in the micromass system and observed an even

stronger chondrogenic effect than for wtGdf5, indicating that they

are potent inducers of chondrogenic differentiation. Co-expression

of Nog did not suppress chondrogenesis significantly, demonstrat-

ing that both ligands are naturally Nog-insensitive unlike most

other Bmps. To test whether the substitution shared by Bmp9 and

Bmp10 conferred resistance to Nog, we swapped the wildtype

lysine residue of Bmp9 with asparagine (K371N), the residue

shared by most Bmp family ligands, including Gdf5. This

exchange was not sufficient to transform Bmp9 into a Nog-

sensitive Bmp (Figure 4A, 4B, 4C, and 4D), indicating that

additional residues must contribute to diminished binding. Hence

two other dissimilar sites within the NOG interface, shown in

schematic and 3D surface models of BMP9 (Figure 4A and 4B),

were targeted for exchange. Introducing a second swap (YH415Q)

at a contact with the NOG N-terminal extension or ‘‘clip’’

diminished biological activity substantially upon co-expression of

Nog. A third successive mutation (K348L), located on the

periphery of the type II receptor interface, rendered Bmp9

completely Nog-sensitive relative to the control, without signifi-

Author Summary

The development of the human skeleton is regulated by
intricate signaling pathways involving secreted molecules
that bind to cell surface receptors to elicit a response in
the target cell. Bone morphogenetic proteins (BMPs) are
an important part of this process. Their signaling capacity
is regulated on several levels including the extracellular
space where inhibitors such as Noggin prevent BMPs from
binding to their cognate receptors. We here describe that
specific mutations of a single amino acid in GDF5, a
member of the BMP family, cause congenital fusion of
joints. Investigating the effect of the mutation in detail, we
can show that the mutant GDF5 is no longer inhibited by
Noggin, thus providing a functional explanation for the
patients’ phenotype. Furthermore, we show that the
mutated residue (N445) is conserved throughout the
BMP family, with the exception of BMP9 and BMP10, that
carry the same amino acid at this position as the mutant
GDF5. Both are, just as the mutant, resistant to inhibition
by Noggin. Variants of BMPs that are insensitive to
antagonists may induce bone formation more effectively,
providing a source for effective, low-dose therapeutics for
clinical applications.

GDF5 Mutations
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cantly affecting the prochondrogenic potential of the custom

variant in the absence of Nog (Figure 4C and 4D).

To analyze the relative resistance to NOG more quantitatively,

recombinant protein of one of the mutants (N445T) was produced

and dose-dependent inhibition assays performed. For this C2C12

cells that stably express Bmpr1b, the high affinity type I receptor for

GDF5, have been chosen because all analyzed proteins induced a

significant amount of ALP activity, making it a convenient and

reliable assay to analyze the inhibitory effect of NOG [16]. Dose

response curves were generated to determine optimal concentra-

tions for subsequent inhibition assays (Figure 5A). C2C12-Bmpr1b

cells were incubated with rhGDF5, rhN445T GDF5, rhBMP2 or

rhBMP9 in combination with rhNOG at increasing concentration

and ALP activity determined after three days. Although rhBMP2

was completely inhibited by equimolar rhNOG, the apparent

affinity of rhGDF5 for the antagonist was markedly less pro-

nounced, requiring super-stoichiometric ratios to achieve total

inhibition. Consistent with the effects in micromass, rhN445T

GDF5 and rhBMP9 were unresponsive to rhNOG at any

concentration (Figure 5B).

Altered signaling effect of rhN445T GDF5
RhGDF5 only slightly induced ALP activity, but effectively

inhibited myogenic differentiation of the myoblastic cell line

C2C12. In contrast, the rhN445T GDF5 mutant induced ALP

activity in a dose dependent manner in C2C12 cells, which indicates

an altered signaling effect (Figure 6A and 6B). To test possible

alterations of the interaction between the N445T mutant and the

type I receptor, we co-stimulated C2C12 cells with recombinant

proteins with soluble ectodomains (ecd) of TGFb superfamily type I

receptors and used the luciferase reportergene assay as a read out

(Figure 6C, 6D, 6E, and 6F). A direct comparison of rhGDF5 and

rhN445T GDF5 revealed that addition of BMPR1Aecd as well as

BMPR1Becd had a slightly stronger inhibitory effect on rhN445T

GDF5 than on rhGDF5. As anticipated, rhBMP2 was almost

completely inhibited by the ectodomain of rhBMPR1A and

partially by the ectodomain of rhBMPR1B [23], whereas rhBMP9

was antagonized by the ectodomain of rhACVRL1 [24]. To identify

possible differences between rhGDF5 and rhN445T GDF5 with

respect to their binding affinities to the two BMP type I receptors

BMPR1A and BMPR1B we analyzed them by using Biacore.

Figure 1. GDF5-missense mutations at position N445 are associated with multiple synostosis syndrome. Pedigrees are shown on left.
Clinical phenotypes associated with GDF5 mutations N445T (I) or N445K (II, III, IV) are shown in (A–E). Pictures in each horizontal line belong to one
patient. (I) N445T mutation in a 5 year old boy; (II), (III) N445K mutation in affected sibs, both adults; (IV) 9 year old girl with the N445K mutation. (A)
Hand radiographs show fusion and abnormal configuration of carpal bones as well as proximal symphalangism of fingers II to V in all affected. Short
first metacarpal bones are present in patient I and II, shortened first proximal phalanges are visible in patient II. (B) Clinical pictures display the
brachydactyly of fingers II to V and missing flexion creases (see II, III). Some distal phalanges are hypoplastic to variable degree (I). (C, D) Feet are
similarly affected with fusion of tarsal bones, proximal symphalangism, shortened toes or hypoplastic toenails. (E) Synostosis of humerus and radius
leading to a stiffened elbow joint.
doi:10.1371/journal.pgen.1000747.g001

GDF5 Mutations
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However, no significant changes between rhGDF5 and rhN445T

GDF5 could be observed in these experiments (Table 1).

Increased biological activity of NOG-insensitive BMPs
from bypassed feedback inhibition of Nog upregulation

Stimulation of micromass cultures with recombinant proteins

revealed stronger chondrogenic differentiation with rhN445T

GDF5 than with rhGDF5 or rhBMP2. Because of the high potency

of rhBMP9, a 1:20 dilution was employed to prevent saturation

effects (Figure 7A and 7B). Quantitative real time PCR showed that

treatment of micromass cultures with rhGDF5, rhN445T GDF5,

rhBMP2 or rhBMP9 resulted in an upregulation of Nog (Figure 7C).

Upregulation of Nog by exogenous rhBMP was also examined

in vivo. Heparin beads soaked with recombinant protein were

Figure 2. Location of N445K,T mutations within the GDF5 dimer. (A) GDF5 dimer (light, dark grey) linked via a disulfide bridge (PDB: 3EVS).
Amino acid residues predicted to form the BMP type I receptor interface are indicated in orange, the BMP type II receptor interface in green, and the
NOG interface in magenta. Amino acids that bind to BMPRI and NOG are indicated in violet, amino acids important for BMPRII and NOG binding are
indicated in cyan. Amino acid N445 is indicated in yellow. Note, the position N445 is within the receptor interaction site as well as within the NOG
interaction site. (B) Venn diagram indicates predicted GDF5 amino acids important for NOG and receptor interaction. (C) The mutated asparagine of
the GDF5 N445K,T mutants is located in the region between the third and fourth conserved cysteine of the mature domain of the TGFb superfamily,
also called the ‘‘wrist’’ epitope of the hand-like BMP/GDF monomer. Note that the divergent BMP9, BMP10 pair share a lysine at this position.
doi:10.1371/journal.pgen.1000747.g002

GDF5 Mutations
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implanted into chicken limb buds and in situ hybridization for Nog

was performed. Implantation of rhBMP9 soaked beads (0.5 mg/ml)

at day four (HH25–27) resulted in early lethality (n = 40). To avoid

this effect, the beads were implanted at a later stage (HH29/30)

containing less protein (0.25 mg/ml). In agreement with the in vitro

results, we observed a strong upregulation of endogenous Nog

surrounding beads indicating that wildtype as well as mutant BMPs

induce the expression of their inhibitor (Figure 7D). To further

evaluate and compare activity of growth factors in vivo, we

overexpressed wtGdf5, N445T Gdf5, N445K Gdf5 and Bmp9 in

developing chicken hind limb buds. Overexpression of wtGdf5

caused a general thickening of skeletal elements, with fusions of

joints as well as digits. Overexpression of N445K and N445T Gdf5

resulted in a much more severe phenotype. The entire limb

morphed into a single cartilage element, without joints or even

soft tissue. Injection of Bmp9 had a lethal effect; however the

Bmp9-infected embryos that survived (7 out of 40) showed a

phenotype similar to N445 Gdf5 mutants (Figure 8). Thus, the

increased biological activity of the GDF5 mutants as well as BMP9

may arise in large part from insensitivity to endogenously

upregulated Nog.

Discussion

Transduction of temporally and spatially specific signals

through the BMP pathway in a diverse array of cellular contexts

Figure 3. Gdf5 mutations N445T and N445K are largely Nog-insensitive in chicken micromass cultures. Chicken limb bud micromass
cultures were retrovirally infected to express the indicated proteins and stained with Alcian blue after five days of cultivation. (A) WtGdf5 and Gdf5
mutants N445T and N445K strongly stimulate chondrogenesis. Co-infection with Nog inhibits this effect in the control and wtGdf5. In contrast, the
mutants Gdf5 N445T and N445K are only slightly inhibited by Nog. (B) Quantification of Alcian blue staining after extraction and photometric
measurement at OD595 (n = 4).
doi:10.1371/journal.pgen.1000747.g003

Figure 4. Bmp9 and Bmp10 are not inhibited by Nog. Chicken limb bud micromass cultures were retrovirally infected to express the indicated
proteins and stained with Alcian blue after five days of cultivation. (A) Schematic overview of the mature domain of mouse Bmp9. Conserved
cysteines marked in black. (B) 3D surface model of a BMP9 dimer (light grey and dark grey; PDB:1ZKZ) linked via a disulfide bridge. Mut2 (K371N)
represents the homologous mutation site to GDF5 N445T and is indicated in red. Mut1 (K348L, yellow) and mut3 (YH415Q, blue) are additional sites,
which were predicted to be important for the interaction of GDF5 with NOG. (C) Expression of wtBmp9 and wtBmp10 in chicken micromass strongly
induce chondrogenesis. This effect cannot be inhibited by co-expression of Nog. The Bmp9 mutants mut1 (K348L), mut2 (K371N), mut3 (YH415Q),
mut1+2, and mut2+3 are similar to wtBmp9. In contrast, the combination of K371N and YH415Q (mut2+3) results in partial inhibition by Nog. The
combination of all three mutations (mut1+2+3) leads to a complete inhibition by Nog. (D) Quantification of Alcian blue staining after extraction and
photometric measurement at OD595 (n = 4).
doi:10.1371/journal.pgen.1000747.g004
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is achieved in part by differential affinities of the receptors of the

heterotetrameric-signaling complex for the array of ligands in the

family. However, differential affinity to secreted inhibitors that act

as ligand traps plays a reciprocal, equally important role in

context-specific tuning of BMP signals. Here, we show that single

point mutations (N445K,T) in the wrist epitope of the BMP-

related ligand GDF5 lead to a resistance to Nog, and a subsequent

dramatic increase in the intensity of the signaling output.

Moreover, we show that wildtype BMP9 and BMP10, two

divergent members of the family that harbor the asparagine for

lysine substitution, are markedly resistant to Nog in limb bud

micromass and C2C12 myoblast cell assays.

The GDF5 mutations N445K,T are associated with an

inherited skeletal disease characterized by joint fusions in fingers,

toes and elbows. This phenotype is similar to that of SYNS1,

previously associated with hypomorphic alleles of NOG. SYM1, a

less severe condition in which symphalangism is limited to the

small interphalangeal joints of the fourth and fifth finger, is also

caused by mutations in NOG. We have previously shown that a

SYM1-like phenotype can also result from gain of function

mutations in GDF5 [15–16].

GDF5 mutations described here affect the wrist epitope, which

is the polypeptide segment between the third and fourth conserved

cysteine residue that is most divergent as shown in the multiple

sequence alignment of TGFb superfamily ligands (Figure 3).

Because the wrist epitope is a key element of the type I receptor

interface, the divergence may reflect the differential affinity of the

superfamily of signaling ligands for their specific receptors. In

addition, the diversity may reflect differential affinity for the array

of secreted antagonists. For example, TGFb ligands are deposited

extracellularly as an inactive latent complex not regulated by

secreted antagonists, whereas BMP/GDF ligands can bind with

picomolar affinity, or evade inhibition almost entirely, as we have

shown here for the interaction of NOG with the divergent BMP9,

BMP10 pair [25–26].

Functional studies of the N445K,T mutations suggest a dual

effect of the mutations - an altered signaling effect on the one hand

and resistance to NOG on the other. Whereas the insensitivity

of N445K,T mutations was clearly demonstrated in retroviral

overexpression studies or by stimulation with recombinant

proteins, the altered signaling effect could not be finally clarified

on a molecular level. The fact that - in contrast to rhGDF5 - the

rhN445T GDF5 mutant induced significant amounts of ALP in

C2C12 cells prompted us to speculate on altered receptor

specificity. This hypothesis was further analyzed by neutralization

assays of different TGFbeta type 1 receptors and Biacore analyses.

RhN445T GDF5 seemed to be slightly more sensitive to the

inhibition by BMPR1Aecd and BMPR1Becd, but no significant

changes of receptor affinities were detected. The different signaling

effect might be explained either by different association and

dissociation rates of the ligand-receptor complex or by the

involvement of other co-receptors.

Interestingly, the reported R438L mutation in GDF5 lies within

the same domain, i.e. the wrist epitope (type I receptor interface as

well as NOG binding interface). Yet it results in altered receptor

specificity with increased affinity to the BMPR1A, and not

affecting the inhibition by NOG. The R438 position is not

conserved within the BMP/GDF subgroup. We demonstrated that

the rhR438L GDF5 mutant has a higher affinity for the BMPR1A

receptor than rhGDF5, giving this mutant BMP2-like properties.

BMP2 is also inhibited by NOG, which indicates that this amino

acid change seems to have an effect on the receptor specificity

only, but otherwise it is well tolerated by the BMP antagonist

NOG.

The similarity of the resulting phenotypes caused by either loss

of function NOG mutations or activating mutations in GDF5

argues in favour of GDF5 representing the most important target

for NOG during the critical phase of joint development and

indicates that SYM1/SYNS1 are associated with an increased

biological activity of GDF5.

The crystal structure of the NOG-BMP7 complex showed that

NOG, a covalently linked homodimer, inhibits BMP signaling by

blocking the molecular interfaces of the binding epitopes for both

type I and type II receptors, sequestering the covalently linked

homodimeric ligand in an inactive complex [13]. In the crystal

structure of GDF5 [27], the conserved asparagine (N445) is

located near the amino terminal end of the large helix (a3), its

amide sidechain projecting tangential to, and hydrogen bonding

with, the backbone of the long finger 2 at a main chain carbonyl

(E491) across the dimer interface. Superposition of the GDF5

crystal structure on BMP7 in the NOG-BMP7 complex provides a

model of the NOG-GDF5 complex for interpretation of the role of

the conserved asparagine and the consequences of the mutations.

In the model, just as in the NOG-BMP7 crystal structure, the

amide nitrogen of the asparagine sidechain is hydrogen bonded to

two main chain carbonyl groups, one across the dimer interface

(GDF5 E491) and one along the extended N-terminal 14 clip of

the antagonist (NOG A36). In addition to this triangulated

interaction, the carbonyl oxygen of the N445 sidechain also forms

hydrogen bonds with the main chain via the amide nitrogen of

NOG A36. Furthermore, in a superposition model of a GDF5-

type I receptor complex, the asparagine sidechain appears to

interact with E81 and G82 across the ligand-receptor interface.

Thus, loss of the amide group by substitution with a lysine or

threonine side chain in the N445K,T mutants would on the one

Figure 5. NOG insensitivity of rhN445T GDF5 in vitro. (A) ALP
activity induced in C2C12 myoblastic mouse cells overexpressing the
Bmpr1b receptor (C2C12-Bmpr1b) after three days of stimulation. All
BMPs show dose-dependent induction of ALP activity. (B) Inhibition of
rhBMP-induced ALP activity in the C2C12-Bmpr1b cell line by rhNOG.
ALP activity was measured after co-stimulation of 5 nM rhGDF5,
rhN445T GDF5, rhBMP2, and 0.05 nM rhBMP9 with up to 40 nM rhNOG
(rhBMP9 up to 0.4 nM). RhBMP2 is strongly inhibited by rhNOG. In
contrast to rhGDF5 the mutant rhN445T GDF5 shows no response to
rhNOG inhibition.
doi:10.1371/journal.pgen.1000747.g005

GDF5 Mutations
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hand disrupt two stabilizing interactions within the NOG-GDF5

complex, and, on the other hand, alter the ligand-receptor

interface resulting in a broader specificity. With respect to the

differential effects of threonine substitution on interaction with

NOG, superposition of GDF5 and BMP7 in the crystal structure

of the BMP7-NOG complex reveals a major structural difference

between the two ligands at the interface with the key residue of the

N-terminal extension of NOG, P35, also a site of several human

mutations linked to SYM1 [13,28]. Due largely to major

conformational differences in the backbone and side chains of

the short finger 1 of GDF5 relative to the BMPs, the hydrophobic

pocket that accommodates the proline side chain is predicted to be

only half formed, which would disrupt the stabilizing interaction to

Figure 6. rhN445T GDF5 has a different signaling effect than rhGDF5. (A) Differentiation of myoblastic mouse cell line C2C12 was
documented with alkaline phosphatase (ALP) staining (for osteoblasts) and immuno-myosin staining (for myoblasts) after five days of stimulation
with 10 nM of the indicated recombinant proteins. RhBMP2 and rhBMP9 strongly induced ALP activity and inhibited myoblast differentiation,
whereas rhGDF5 affected osteoblast differentiation only slightly while inhibiting myoblast differentiation. Interestingly rhN445T induced a moderate
ALP activity and showed no detectable myosin staining. (B) ALP activity induced by stimulating the C2C12 with BMPs for three days. RhN445T,
rhBMP2, and rhBMP9 showed dose-dependent induction of ALP activity whereas rhGDF5 had almost no ability to induce ALP activity. (E–G) Luciferase
reporter assay of rhGDF5, rhN445T GDF5, rhBMP2, and rhBMP9 activity co-stimulated with soluble receptor extracellular domains (ecd) of the seven
TGFb superfamily type I receptors in C2C12 cells. rhGDF5, rhN445T GDF5 as well as rhBMP2 activity was competitively inhibited by BMPR1Aecd and
BMPR1Becd, whereas luciferase activity induced by rhBMP9 was inhibited by ACVRL1ecd. Luciferase activity was normalized to Renilla. The lowest
unstimulated value was determined as 0% and BMP stimulation without receptor ecd as 100%. Statistically relevant interactions were calculated with
a two-tailed t-test and marked as: * p#0.05, ** p#0.01, *** p#0.001.
doi:10.1371/journal.pgen.1000747.g006

Table 1. Biacore interaction analysis (n = 6) showed no
binding differences for rhGDF5 and rhN445T GDF5 with
BMPR1Aecd and BMPR1Becd.

Apparent KD [nM] for immobilized receptor
ectodomains

BMPR1Aecd BMPR1Becd

rhGDF5 17,064,6 1,160,2

rhN445T 19,565,5 1,260,3

doi:10.1371/journal.pgen.1000747.t001
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a similar extent as mutation of P35. Thus, interaction between

wildtype GDF5 and NOG is anticipated to be weaker than that

between BMPs and NOG, as evidenced by our titration assays

which required super-stoichiometric ratios (cf. Figure 5B), perhaps

so much so that disruption of the adjacent interaction between the

conserved asparagine and the backbone of the N-terminal

extension (A36) is sufficient to abolish formation of the GDF5-

NOG complex. BMP9 and BMP10, which are not responsive to

inhibition by NOG, do not bear the homologous asparagine

residue. However introduction of the asparagine in BMP9 was not

sufficient to confer sensitivity to NOG. Successive introduction of

two additional GDF5-like substitutions, removal of a BMP9-

specific insert (YH415Q) and K348L, imparted near total

sensitivity. In conclusion, while substitution of the single

asparagine is sufficient to impart NOG sensitivity in GDF5, other

BMPs require further structural alteration in order to impart

sensitivity, or resistance. Because ligand-receptor and ligand-

antagonist complexes are sufficiently structurally conserved within

the BMP/GDF family, GDF5 function was successfully transferred

to BMP9 by rounds of rational design.

Currently, rhBMP2, rhBMP7, and rhGDF5 are used in clinical

applications for bone regeneration or are under investigation in

clinical trials. Although BMPs are very potent in cell culture

systems or small animal models (nanograms), significantly higher

concentrations are needed for measurable effects in humans

(milligrams). It was shown that BMP antagonists are regulated

during fracture healing [29], indicating that endogenous regula-

tion of the BMP signaling cascade may neutralize exogenously

applied rhBMPs, necessitating higher doses than required in vitro.

In keeping with this hypothesis, the in vivo and in vitro studies

presented here demonstrated induction of Nog after treatment

with rhBMPs, an apparent physiological response to regulate and

constrict BMP action. The upregulation of inhibitors in response

to exogenous growth factors may therefore also be applied for

BMP treatment, which can only be partially compensated for by

high dosage due to feedback control mechanisms [9,30–31]. Thus,

variant BMPs that are insensitive to antagonist may induce bone

formation more effectively, providing a source for effective, low-

dose therapeutics for clinical applications.

Materials and Methods

Patients and molecular analysis
All clinical investigations have been conducted according to

Declaration of Helsinki principles. The study was approved by the

local institutional review board. Patients were investigated and

radiographed by a clinical geneticist who diagnosed typical

SYNS1. Informed consent was obtained for genetic analyses from

all patients or the legal guardians. Mutation screening in GDF5

was carried out as previously described on purified DNA obtained

from blood sample [32].

Alignment and 3D structure modeling
Protein sequence alignments comprising the highly conserved

cysteine knot domains of the human TGFb superfamily were

aligned using CLUSTAL X (http://bio.ifomfirc. it/docs/clustal/

Figure 7. GDF5 mutant N445T has increased prochondrogenic activity. Stimulation of chicken micromass cultures with rhGDF5, rhN445T
GDF5, rhBMP2, and rhBMP9 at day one for 72 h with the indicated concentrations. (A) Alcian blue staining of micromass cultures at day four.
RhN445T showed a strong induction of chondrogenesis already at low concentrations. In comparison, rhBMP2 showed a strongly reduced and
rhBMP9 the highest prochondrogenic activity. (B) Quantification of the Alcian blue staining, n = 3. (C) Semi-qRT-PCR for Nog after 12 h stimulation of
one day old chicken micromass cultures with 5 nM rhGDF5, rhN445T GDF5, rhBMP2, and 0.5 nM rhBMP9. Stimulation with recombinant proteins
induces a strong upregulation of endogenous Nog expression. (D) Whole mount in situ hybridizations showing Nog expression in chicken hind limbs
after implantation of heparin beads soaked with 4 mM HCl + 0.2% BSA, 0.5 mg/ml rhGDF5, 0.5 mg/ml rhN445T GDF5, 0.5 mg/ml rhBMP2, and
0.25 mg/ml rhBMP9. Beads were implanted between HH stages 25–27 and HH29/30 (BMP9) and embryos were collected 20 h later. In contrast to the
control limb, all beads soaked with BMP induced Nog expression in the periphery.
doi:10.1371/journal.pgen.1000747.g007
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clustalx.html) [33] and colored using CHROMA (http://www.lg.

ndirect.co.uk/chroma/) [34]. GDF5-NOG complex modeling was

previously published [28]. Images of the molecular structure were

produced using the UCSF Chimera package (http://www.cgl.ucsf.

edu/chimera/) [35].

Cloning and production of retroviruses
The coding sequences of mouse (m) mBmp9, mBmp10 were amplified

by PCR on mouse embryo E14.5 cDNA and cloned into pSLAX-13

using the following primer pairs: mBmp9_BsmBI_f ACGTCTCC-

CATGTCCCCTGGGGCCTTCCG and mBmp9_BamHI_r TGGA-

TCCTACCTACACCCACACTCA, mBmp10_BsmBI_f GATACGT-

CTCCCATGGGGTCTCTGGTTCTGCC and mBmp10_XmaI_r

GATCCCCGGGCTATCTACAGCCACACTCAGAC. In vitro mu-

tagenesis for chicken (ch) chGdf5 and mBmp9 was performed with

Quickchange Kit (Stratagene) according to manufacturer’s recom-

mendations. Cloning into retroviral vector, and production of viral

supernatant in DF1 cells and concentration of viral particles was

performed as described [36]. RCAS(BP)B-Nog was a kind gift of

Andrea Vortkamp.

Recombinant proteins
RhGDF5 (Biopharm GmbH) was dissolved in 10 mM HCl,

rhNOG was a kind gift from A. Economides (Regeneron

Pharmaceuticals Inc.) and dissolved in 0.1% BSA/PBS, rhBMP2

was a kind gift from W. Sebald and dissolved in 4 mM HCl, 0.1%

BSA, rhBMP9 (R&D Systems) was dissolved in 4 mM HCl, 0.1%

BSA. RhN445T GDF5 was prepared as previously described with

minor modifications [16]. Inclusion bodies were dissolved in 8 M

Urea, 20 mM Tris HCl, 5 mM EDTA, 50 mM NaCl, and

66 mM DTT, pH 8.3. Purification was carried out on a cation

exchange column SP Sepharose FF (XK26/40, GE Healthcare)

with a gradient from 100% eluent A (6 M Urea, 20 mM Tris HCl,

1 mM EDTA, 50 mM NaCl, 10 mM DTT, pH 8.3) to 100%

eluent B (6 M Urea, 20 mM Tris HCl, 1 mM EDTA, 400 mM

NaCl, 10 mM DTT, pH 8.3), flow rate 3.5 ml/min. Eluents were

Figure 8. Gdf5 mutants N445T and N445K as well as Bmp9 cause strong chondrogenic differentiation when overexpressed in
chicken limbs. Retroviral overexpression of indicated proteins after injection into chicken hind limbs at stage HH10. The contralateral hind limb was
used as control. Embryos were harvested at day 7.5 and skeletal preparation stained with Alcian blue and Alizarin red. WtGdf5 lead to fusion of joints
in the phalanges and metatarsals. In contrast, N445T and N455K Gdf5 as well as Bmp9 overexpression in vivo caused a severe phenotype with
massive cartilage production leading to complete fusion of all skeletal elements of the limb and absence of interdigital mesenchyme. Scale: 1 mm.
doi:10.1371/journal.pgen.1000747.g008
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concentrated by ultrafiltration (Amicon, Omega 5) and adjusted to

0.5 M NaCl. This solution was dissolved 1:10 in refolding buffer

(150 mM NaGlycine, 500 mM NaCl, 20 mM 33 mM 3-(3-

cholamidopropyl) dimethylammonio-1-propanesulfonate, 3 mM

oxidized glutathione (GSSG), 1 mM EDTA, pH 9.8) under gentle

agitation so that a final protein concentration of 1 mg/ml was

reached. The solution was then isoelectric precipitated with 1.8-fold

20 mM NaH2PO4 at 4 uC for 1 hour, pH 7.4. After centrifugation

the pellet was dissolved in 0.1% trifluoroacetic acid. The dimeric

GDF5 N445T was separated from monomeric protein by RP-

HPLC (reversed phase column Source 15 RPC, fine line pilot 19

35/20 cm, GE Healthcare) with a gradient from 100% eluent A

(0.1% trifluoroacetic acid (TFA)) to 100% eluent B (0.1% TFA, 90%

CH3N), flow rate 14 ml/min.

Micromass cultures
Micromass cultures were performed as previously described

[16]. For each condition, four replicates were performed in

parallel and every experiment was done three times. Stimulation of

micromass cultures with rhGDF5, rhN445T GDF5, rhBMP2, and

rhBMP9 was performed at day one for 12 or 72 h.

Quantitative real-time PCR
Micromass cultures were lysed in Trifast (peqlab) after 12 h of

stimulations with recombinant human proteins and total RNA was

isolated according to the manufacturer’s recommendations. cDNA

synthesis was performed with Taqman Kit (Applied Biosystems)

according to manufacturer’s guidelines. Gene expression was

assessed by amplification of Nog and b-Actin as endogenous

control on a Taqman 7500 (ABI) using SYBR green. The

following primer pairs were used: chNog-526f TCTGTCCCA-

GAAGGCATGGT, chNog-590r CGCCACCTCAGGATCGT-

TAA, chActin-410f CAACAGAGAGAAGATGACACAGATCA,

chActin-484r ACAGCCTGGATGGCTACATACA.

Alkaline phosphatase (ALP) activity on different mouse
cell lines after BMP stimulation

The myoblastic mouse cell line C2C12 (ATCC) and C2C12

stably overexpressing Bmpr1b (C2C12-Bmpr1b; [37]) were seeded

in 96-well plates at a density of 1.56104/well in growth medium

(high-glucose DMEM, 10% FCS, and 2 mM L-Gln in 10% CO2).

24 h later they 20 were stimulated in starved medium (2% FCS)

for 72 h with recombinant proteins. The measurement of ALP

activity was performed by pNPP as previously described [16].

Biacore experiments
The BIA2000 system (Biacore) was used to analyze the binding

affinity of rhGDF5 and rhN445T GDF5 to immobilized receptor

ectodomains of BMPR1A and BMPR1B as described previously

[16].

Luciferase reportergene assay
The luciferase reportergene assay was performed with minor

changes as previously described [38]. C2C12 cells were grown in

DMEM high glucose with 10% FCS. SBE-pGL3 [39] and pRL-

Tk (Promega) transfected C2C12 cells were seeded at a density of

1*105 cells/96-well and stimulated one day later for 15 hours with

recombinant proteins in DMEM high glucose with 2% FCS.

Luciferase activity was determined using the Dual-Glo Luciferase

Reporter Assay System (Promega).

In vivo manipulations of chicken limb buds
Injections of RCAS(BP)A viruses into HH10 chick embryo hind

limb fields was performed as previously described [36,40]. Afterwards

embryos were harvested at day 7.5 (HH31–33) and fixed in 100%

ethanol. Skeletal preparation and staining was performed with Alcian

blue and Alizarin red [40]. Every construct was injected at least in 60

embryos. The effect of rhGDF5, rhN445T GDF5, rhBMP2, and

rhBMP9 in vivo on Nog expression was determined by implantation

of heparin-acrylic beads (Sigma-Aldrich) soaked with recombinant

human proteins in chicken limb buds. The beads were implanted

between stages HH25–27, in case of rhBMP9 at stage HH29/30 as

described [30]. After 20 to 22 h the embryos were harvested and

fixed in PFA. Every protein was implanted at least in 10 embryos.

In situ hybridization
Fixation of chicken embryos was performed with 4% PFA.

Whole mount in situ hybridization was performed as previously

described [41]. DIG-labeled probe of chNog [42] was detected with

BMPurple (Roche).
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Stricker, J Nickel, F Plöger, M Schmidt-von Kegler, M Walther. Analyzed

the data: P Seemann, A Brehm, J König, C Reissner, J Haupt, J Nickel, W
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Pohl, I Gassner, C Rusu, AR Janecke, K Dathe, S Mundlos. Wrote the

paper: P Seemann, S Mundlos.

References

1. Kishigami S, Mishina Y (2005) BMP signaling and early embryonic patterning.

Cytokine Growth Factor Rev 16: 265–278.

2. Urist MR (1965) Bone: formation by autoinduction. Science 150: 893–899.

3. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control,

cancer, and heritable disorders. Cell 103: 295–309.

4. Seemann P, Mundlos S, Lehmann K (2008) Alterations of BMP signaling pathway(s)

in skeletal diseases. In: Vukicevic S, Sarnpath KT, eds. Bone Morphogenetic Proteins:
From Local to Systemic Therapeutics. Basel/Switzerland: Birkhauser Verlag. pp

141–159.

5. Constam DB, Robertson EJ (1999) Regulation of bone morphogenetic

protein activity by pro domains and proprotein convertases. J Cell Biol 144:
139–149.
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