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Abstract

Community structure depends on both deterministic and stochastic processes. However, patterns of community
dissimilarity (e.g. difference in species composition) are difficult to interpret in terms of the relative roles of these processes.
Local communities can be more dissimilar (divergence) than, less dissimilar (convergence) than, or as dissimilar as a
hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern,
or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms
and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial
structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as
measured by dissimilarity indices (e.g. Jaccard index) using either expectations under a null model or neutral dynamics (i.e.,
based on switching off the niche effect). The strength of niche processes, dispersal, and environmental noise strongly
interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the
combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community
assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal
of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple
scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community
dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve
them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of
deterministic and stochastic determinants of community assembly in a spatially explicit and complex context.
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Introduction

Niche theories assume that species competing for a limited set of

resources can locally coexist thanks to mechanisms such as life

history trade-offs [1–3]. Within this framework, species survival is

reduced by demographic stochasticity, which sets upper limits to

species diversity [3]: as populations become smaller, demographic

stochasticity is amplified and the probability of survival is reduced.

As long as species possess niches with little overlap, due to narrow

niche breadth or relatively large distances between niche optima,

niche-based competitive exclusion will be the main process

shaping community structure [3–5]: all else being equal (e.g.

average environmental conditions at a certain scale), these

dynamics will lead the local communities of a metacommunity

to converge toward a stable composition. However, if the niches of

species overlap, their inequality will be strongly reduced and a

neutral model may offer a satisfying approximation of processes

that mostly shape community structure [4,6]. From this point of

view, limited dispersal actually produces local communities that

diverge at increasing geographical distances, with environmental

changes playing no role in terms of differences in community

structure [7]. Thus, community dynamics resulting from the

interaction of dispersal and the niche may produce patterns that

vary between matching the expectations of niche theories and

having the signature of purely neutral dynamics [8–11]. The

signature of deterministic processes can be ultimately detected in

terms of species co-occurrence patterns: local communities can

either converge or diverge in composition with respect to a neutral

counterpart or a randomly assembled metacommunity. Instead,

earlier tests of neutral theories were based on fitting the zero sum

multinomial distribution (ZSM, i.e. the neutral predictions for

SAD, i.e. species abundance distribution) to the relative abun-

dance patterns of local communities [12,13]. However, most

evidence suggests that niche and neutral processes may converge

in terms of the shape of SAD [8,14–16], which makes the

comparison of the performance of different SAD models a weak

test (but see [17,18] for recent theoretical advances). Therefore, it

has been suggested that the best approach is to focus on patterns of

species co-occurrences and whether these patterns are due to

species interaction, stochastic drift and/or habitat heterogeneity

[19,20]. Alternatively, one can use a multitude of approaches,

from indices based on taxonomic composition to phylogenetic

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e35942



community structure [11]. Regardless of the specific metric

employed to quantify community structure, one approach for

analysing data from field studies is to generate appropriate null

models [19,21] from the data matrix structure. This method is

effective when the sampling design accounts for the spatial scales

[22,23] at which the differential role of neutral and niche

dynamics leaves distinguishable signatures [20,23,24]. Along a

steep gradient, and under strong niche dynamics, species should

tend to co-occur less often than expected by chance (segregation;

e.g. [19]). The proponents of null models also argue that in real

observational data one cannot switch niche dynamics off. Thereby,

in the specific case of the niche-neutral debate, one needs to create

null matrices based on randomisation schemes that nullify the

patterns of species co-occurrence expected under species interac-

tion (e.g., competitive interaction; e.g. algorithm SIM 9 in Gotelli

[19]).

Several authors have recently proposed that neutral models

offer a more mechanistic approach for generating expectations for

patterns of community structure [17,25–28]. For instance, by

estimating the neutral diversity (h) and immigration (m) parameters

from field data (e.g. [17,28]), hypothetical data sets can be

simulated to estimate patterns of community dissimilarity and

beta-diversity expected under neutrality. The above procedures

create a neutral (i.e., based on population dynamics) expectation

that can be compared to the observed data [17,25]. In fact, some

authors proposed that null models based on randomisation of real

data [19,29] may generate unrealistic expectations because they

do not account for stochastic population dynamics [27]. The

rationale behind this idea is that classical null models based on

randomising real data do not really embody population dynamics.

Recent analyses based on simulations [4,5,11,30], field data

[20,25,31–33], and employing either null, neutral or both null and

neutral models have successfully addressed the relative roles of

stochastic and deterministic processes and distinguished their

different signatures in terms of levels of community dissimilarities.

However, we are not aware of simulation studies that explored

the effects of three key components: i) an explicit and complex

spatial structure in the niche axis that involves non-linear, periodic

terms and random noise [22]; ii) an assessment of the ability of null

models to detect non-random patterns under conditions that are

close to ecological neutrality (e.g., broad niche); and iii) a

comparison of sampling strategies that differ in terms of grain

(the size of sampling quadrat) and resolution (spatial frequency of

sampling quadrats, which determines the power to detect non-

linear periodic structures; [22,34,35]). These three factors are

important for the following reasons: i) on a certain spatial scale,

average levels of community dissimilarity, as measured by indices

such as the Jaccard index [36], depend on spatially explicit

dynamics in terms of both dispersal and the distribution of the

niche component [11]; ii) null models based on conservative

randomization schemes (low rate of Type I error; e.g. SIM 9 in

Gotelli [19]) and classical metrics such as the C score [19,29]

might not detect the signature of deterministic processes that are

actually taking place; iii) observed patterns will depend on the

spatial scales accounted for by the sampling design. However,

when the environment is characterised by complex spatial

structures, it is likely that real sampling designs can address only

some of the spatial scales at which community dynamics take place

[34]. This can lead to the failure of null models.

Here we use a heuristic simulation framework, which takes into

account all these factors. We explored patterns of community

structure that are expected in spatially structured environments

(Figure 1 and 2) by virtue of different combinations of niche

breath, dispersal limitation, and environmental stochasticity,

finding that these features interact in determining variable levels

of community dissimilarity. Indeed, neutral or null models are

useful to detect the signature of deterministic processes in terms of

local communities that diverge or converge with respect to their

neutral or null counterpart but there can be many mechanisms

behind this signature. The present study sheds light on these

mechanisms and offers a framework for synthesising the patterns

of dissimilarity they produce.

Methods

Model
We based our simulation procedures on the approaches

developed by Tilman [3] and Gravel and co-workers [4] for

formulating the continuum hypothesis: purely niche and purely

neutral dynamics actually are the two extremes of a continuum.

Between those extremes, niche and neutral processes can act

concurrently.

We implemented our simulation model in R [37] using the

package ‘‘simecol’’ [38] and in Data S1 we provide our original

code, which includes detailed technical information. The theoret-

ical basis of our work [3,4] is briefly recalled in Text S1 as well. In

summary, we generated individual-based models describing the

recruitment dynamics as a lottery process [7]. Basically, we created

a grid of 10,000 cells in a spatially explicit environment with both

the northing and easting coordinates ranging from the dimen-

sionless value 1 to 100. Each cell represents an adult picked from a

pool of 20 species. At the beginning of each simulation, individuals

were randomly drawn from the species pool in order to create

random starting assemblages. Population dynamics were: 1, adult

stochastic mortality; 2, dispersal; 3, juvenile survival dependent on

the stochastic, Gaussian niche (see also eq. 1 and 2 in Text S1; [4]),

which ultimately creates a pool of seedlings for each cell and from

which to randomly recruit in order to replace the dead adult.

Thus, the probability of a species to conquer a cell depends on its

relative abundance in the pool of seedlings and this relative

Figure 1. Typical Tuscan countryside near Siena (Italy). The
pictured landscape is known as ‘‘Le Crete’’ and is characterised by
gentle hills and slopes. This photo demonstrates the concept of an
environment with multiple spatial structures (sensu Borcard et al. 2004).
In the picture, one can clearly see a linear trend corresponding to the
average slope of the terrain but also a sinusoidal pattern in the way hills
and valleys alternate along the linear gradient. We used this view for
simulating the continuum hypothesis in a spatially structured
landscape. Credit: Giuseppe Manganelli, University of Siena.
doi:10.1371/journal.pone.0035942.g001
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abundance depends on two components: the niche and dispersal

limitations. By varying niche breadth and mean dispersal distance

(i.e., the kernel’s variance), it is possible to create scenarios that

differ in their degree of ‘‘neutrality’’ or, conversely, of niche

partitioning. Differently than the authors from whom we took

inspiration [4], spatially explicit dispersal was modelled using a

bivariate Gaussian kernel. In fact, as recently demonstrated by

Chisholm and Lichstein [18], the shape of the kernel is not

relevant to the aim of our analysis since it does not affect the

analytical relationship that links immigration rates to the mean

dispersal distance d. Given the malleability of the Gaussian, we

preferred it for mathematical convenience. Under neutrality, any

community in any closed landscape would converge on one species

[7] if there were not a metacommunity speciation term or an

external immigration flux maintaining diversity. Following Gravel

and co-workers [4], we introduced implicit immigration, which

contributed to about 10% of the propagules immigrating to each

cell [7,39]. That is to say that within each cell 90% of the

propagules came from immigration internal (i.e., spatially explicit)

to the modelled landscape while 10% were randomly sampled

from a uniform distribution (spatially implicit immigration). This

implicit immigration depends, for example, on fecundity, which

was assumed to be equal among species. Fecundity contributes to

determining the mean percent contribution of ‘‘external’’

immigrants to the pool of seedlings within each cell [4]. This is

the pool from which it is necessary to recruit after a cell occupant

happened to die by stochastic mortality (mortality rate was set to

25%). In principle, the results from any neutral model are also

sensitive to the implicit immigration rate and the distribution of

species in the source pool. However, preliminary results we used

for calibrating these model parameters (i.e., external and implicit

immigration, and mortality) confirmed that results relevant to our

aims are not sensitive to our choice of fecundity and mortality rates

or the shape of the metacommunity SAD from which spatially

implicit immigration was generated.

To model the ‘‘niche filter’’, some authors have used an

environmental grid with a mesh arbitrarily large and with each cell

having a value randomly drawn from a uniform distribution,

which ranged from 0 to 100 [4]. Then, they modelled the system

as a torus in order to avoid edge effects. Here, we assume that

natural communities are spatially constrained (e.g., soil commu-

nities in a patch of a forest surrounded by grasslands or tropical

coral reefs surrounded by sandy substrates) and within these spatial

constraints experience gradients in the spatial distributions of

resources and conditions [2,22,35]. In order to introduce this

spatial component, we associated a niche value to each individual

cell using three features ([11,22]; Fig. 2): 1, a linear trend from the

‘‘south’’ to the ‘‘north’’; 2, a periodic component that was

modelled by a sinusoidal function; 3, a random component drawn

from a uniform distribution. The random component represents

natural noise due to local irregular variation in the spatial

distribution of the niche. We also created landscapes consisting of

just the random component and compared them with the spatially

structured landscape in order to ensure that observed community

patterns actually depended on the spatial structure. This was

indeed the case (see Table S1) and we therefore report and discuss

in the main text only the results based on the 18 simulation

scenarios that were based on the parameters given below. Our aim

was to reproduce natural, virtually continuous spatial structure

such as the one pictured in Figure 1. Classically, noise has been

modelled in terms of temporal stochastic fluctuations [5].

However, it can also be introduced in terms of stochastic spatial

fluctuation of resources or conditions [22,40]. The two could also

be combined but given our aim we maintained a fixed

environment through the time steps of our simulated dynamics.

The niche optima of the 20 species were regularly spaced along the

niche axis range.

Simulation scenarios
We created 18 scenarios accounting for different combinations

of three factors, which respectively consisted of different levels of

niche breadths, dispersal and environmental noise. Niche breadth

consisted of three levels: narrow (sn = 0.5), medium (sn = 25), and

broad (sn = 50). Dispersal consisted of three levels as well: low

(sk = 5), intermediate (sk = 45), and high (sk = 85). Noise consisted

of two levels: low (range of uniform distribution = 10) and high

(range = 100). We stress that the noise level ‘‘high’’ did not nullify

small-scale patterns (as evident in Figure 2). Each scenario was

simulated for 5000 time steps, which allowed communities to

reach stability in terms of species richness and turnover (see also

[34] and examples given in Figure S1).

Sampling and data analysis
We used two different sampling approaches: one using a plot

size (grid sensu [34]) that matches the periodic structure in the

environment (fine resolution), and another using a larger plot size

(coarse resolution, Figure S2). Both approaches used the same

Figure 2. Spatial distribution of the niche axis, which is the parameter determining propagule survival (see addition methods in the
supporting information for a quantitative description). From white to black, the niche E ranges from value one to 100. On the left panel, the
systematic component in the spatial distribution of E is shown: a linear trend makes the niche having light tones in the south and progressively
darker tones toward the north; further, a periodic component was added, that generates a sinusoidal-like patterns (compare to Fig. 1). Panels in the
middle and the right sides show the effect of adding respectively low (range of uniform distribution = 10) and high noise (range = 100) to the pattern
on the left side. Even when the noise is high (right side), some spatial pattern is still visible.
doi:10.1371/journal.pone.0035942.g002
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sampling effort in terms of total sampling area. Thus, the reason

why the sampling scheme with finer grid has more resolution is

that it consists of smaller but more numerous sampling plots. This

implies that the average interval separating the sampling units is

(within a latitudinal stratum, see below) shorter than that of the

coarse sampling strategy. Thereby, this fine strategy captures the

spatial periodicity in the niche axis at the right scale. Also, this

sampling strategy is based on a definition of local community that,

in terms of size, better suits the scale at which assembly processes

are operating. These differences in sampling strategy are realistic

and account for the fact that in reality it can be difficult to decide

the right scale of the sampling strategy in terms of grid, interval

and overall extent [34]. Thus, the rationale for comparing these

sampling approaches is that we were interested in comparing

‘‘true’’ patterns of community convergence/divergence to those

that arise from a mismatch to the structure of the environment at a

fine scale (as may often occur in the field). Samples were stratified

latitudinally, dividing the landscape into thirds (excluding the ten

cells on the edge of the landscape) and focusing on the two strata

to the north and the south, and longitudinally. Each sampling

procedure was replicated six times for each of the landscapes

generated by our 18 simulation schemes and analyses were

performed at two spatial scales: between the two latitudinal strata

and within a latitudinal stratum. Sampling the same landscape

multiple times greatly reduced computational times. We could

adopt this strategy since preliminary simulations demonstrated

that replicating the sampling within a landscape gave results

comparable (no significant differences on average) to results

obtained by replicating the entire landscape and then sampling

each and every landscape only once (see example given in Table

S2 and S3).

For each sample, we conducted a null model analysis [19,21].

There are many possible options for running null model analyses,

depending on the hypothesis under investigation. In the

framework of the continuum hypothesis [4], the most relevant

approach is to focus on the effect of species co-occurrence patterns

alone. This is fairly easily achieved by fixing row and column sums

during the randomisation process (algorithm SIM9 in Gotelli

[19]). This procedure constrains randomised matrices very much

in terms of number of species per site (which is fixed) and the

number of sites where a certain species may occur (which is fixed

as well). However, the latter constraint is the fundamental one

when testing for co-occurrence patterns [19]. Thus we also tried to

constrain our randomisation scheme by only fixing rows (species;

SIM2 in [19]. In practice, we observed no differences between the

output from the two algorithms and we therefore present results

from the algorithm SIM9 [20,23]). We performed 5000 randomi-

sations in order to create null expectations for the C-score, an

index of species co-occurrence based on measuring checkerboard

patterns [19,23]. In our case, the null model generates random

patterns expected under no species interaction, which in our

scenario is indirectly accounted for by the effect of the niche axis.

However, the advantage of simulation approaches is that one can

really switch off the mechanisms that are known to create

community patterns. By nullifying species niche differences we

were able to create a neutral expectation of community patterns.

In order to do so, we ran a series of simulations creating strictly

neutral equivalents of the 18 simulation scenarios by equalising

niche optima (at the centre of the environmental niche axis) and

breadth (using sn = 25), resulting in species distributions being

determined entirely by dispersal and demographic drift. Each of

the 18 scenarios was thus compared to its neutral counterpart

generated using the corresponding dispersal range. We quantified

the difference between the ‘‘real’’ communities and their neutral

counterparts by calculating the dissimilarities (measured by

Jaccard’s index) between each pair of samples collected across

the simulated landscapes [36]. Results were not influenced by the

choice of the dissimilarity coefficient (data not shown; we tested

Bray-Curtis, Gower and Sørensen). We thus created one

distribution of dissimilarities for the ‘‘real’’ community and one

for the neutral communities. The differences between the two

distributions were quantified using t-statistics. We note that this

simulation approach has its real counterpart in model-based

neutral approaches applied to real data [17,25,28]. Of course, in

the case of real data sets one has to estimate neutral parameters

and use these estimates to generate a neutral expectation while in

the case of simulations the neutral expectation is simply based on

those spatially explicit scenarios that have been generated by

neutral dynamics (i.e., the niche mechanism is known and can be

switched off). Thus, given our aims, there was no need to estimate

neutral parameters using the model-based approach. Actually, this

would have been misleading because current neutral models that

allow testing of their fit to data are limited in that they are spatially

implicit [41] while we had to create spatially explicit neutral

scenarios.

We used linear models (ANOVA full factorial design) to

estimate the effects of sampling design and the analytical approach

(null vs neutral) on the extent to which the signal of niche-based

processes could be detected, including niche breadth (three levels),

dispersal (three levels), noise (two levels), and all two-way

interactions as factors in the model. In essence, our approach is

analogous to a meta-analysis [42] in which we used standardised

effect sizes to estimate responses (i.e. standardised C-score for null

models, t-statistic for the neutral approach), both of which are

expressions of the distance from the mean null expectation relative

to the variance in the distribution of null expectations. In practice,

in the case of the C-score, we calculated the difference between

observed and expected (i.e. the random matrices) C-score and

divided it by the standard deviation of the expected matrices. In

the case of the neutral analysis, we simply used the definition of the

t-statistic (which in practice is an effect size expressed in units of

standard deviations). Data were normally distributed. We decided

to focus on these original statistics and not on developing new

approaches (e.g., dissimilarities expected from statistical null

models) since the statistics we analyzed are the ones commonly

employed in the relevant literature. Importantly, these statistics

basically convey the same qualitative idea: local communities may

either diverge/segregate or converge/aggregate with respect to

their neutral/null counterpart.

Results

The 18 simulation scenarios generated by our approach

produced visual patterns representing varying degrees of spatial

structure in species distributions (Figure 3, 4, 5, Figure S3, S4, S5).

On the one hand, species distributions (see simulated landscapes in

Figure 3, 4, 5, Figure S3, S4, S5) clearly follow the distribution of

the niche axes (Figure 2) in scenarios based on narrow niche

breadth (Figure 3). On the other hand, species distributions are

much less spatially structured in scenarios based on broad niche

breadth (Figure 5). Intermediate levels of spatial structuring are

observed at intermediate niche breadth (Figure 4). Niche breadth

being equal, increasing dispersal distance makes species distribu-

tions less structured (e.g., Figure 5, compare the three levels of

dispersal). At high noise, spatial structures are less visible, even

when niche breath is narrow and dispersal low (compare the two

top panels of Figure 3). At the very extreme combination of high

noise, broad niche breadth and high dispersal, there is little visible

Divergence and Convergence in Community Structure
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spatial structure in species distributions (bottom right corner of

Figure 5). Regarding this specific scenario, it is instructive to

compare it with Figure 2, high noise panel, which shows the

distribution of the niche axis that underlies the dynamics of this

specific scenario. This comparison emphasizes how random

species distributions can be despite the deterministic effect of the

niche axis, which still contributes to species population dynamics.

Indeed, the high unpredictability of species distributions results

from the high levels of stochasticity introduced by high variance in

niche breadth and dispersal distance.

Spatial patterns at the scale of the landscape were generally

detected (see bar plots next to the simulated landscape in Figure 3,

4, 5 and Figure S3, S4, S5) by both null models (bars labelled

‘‘Null’’) based on randomisation of sampled data (see Figure S2 for

the sampling strategies) and neutral scenarios (Figure 3, 4, 5,

Figure S3, S4, S5), bars labelled ‘‘Neutral’’), which were obtained

by switching off the niche component (see methods for details).

Indeed (Table 1 and Table S4), niche breadth (P,0.001), dispersal

distance (P,0.001), and environmental noise (P,0.001) were

generally detected as factors significantly affecting species co-

occurrence (C-score, null model analysis based on algorithm SIM

9 in Gotelli [19]) and beta diversity as measured by the Jaccard

index (i.e., neutral analysis comparing dissimilarity in species

composition between niche based scenarios and their neutral

counterpart). Generally, for both approaches, effect sizes were

larger for more spatially structured species distributions (e.g.,

compare top panels of Figure 3 and 5). However, the most

interesting pattern is that interactions among the three simulation

factors (niche, dispersal, noise), the employed methods (sampling

vs. analytical strategy), and these two types of factors (simulation

factors vs methods) were also observed (Table 1 and Table S4).

Here, we highlight those interactions that are most relevant to

the aim of our study. Firstly, a mismatch of the plot size to the fine-

scale structure of the environment resulted in a reduced ability to

detect the ‘‘true’’ pattern of community divergence/convergence

(Figure 3, 4, 5). In fact, the coarse sampling strategy based on

relatively large plots was, in some instances, not able to detect the

effect of the periodic component in the niche axis. In scenarios

with low niche overlap and low environmental noise, this ‘‘error’’

was simply represented by a reduced effect size (Figure 3) and the

two sampling strategies were still consistent in terms of the

direction of the effect, which in this case generally was positive

(that is to say divergence for the neutral approach and species

segregation for the null model approach). However, in some

scenarios resulting in convergence between local communities

(e.g., Figure 5, bottom panels, neutral approach, light grey bar) a

mismatch between plot size and environmental structure (coarse

sampling design) resulted in an erroneous signal consistent with

Figure 3. Six of the simulated communities after 5000 time steps. Beside each simulated landscape, mean (6 S.E.) standardised effect size
are reported with data stratified by type of null hypothesis (neutral vs. null) and sampling design. For the neutral analysis, a positive effect size means
that local communities under the effect of the niche are more dissimilar than their neutral counterpart (i.e., niche switched off by nullifying niche
differences). For the null model, a positive effect size means that species are co-occurring less than expected by chance (segregation). Here we
present the results for narrow niche breadth stratified by dispersal (rows) and noise (columns). In the top left corner, low levels of dispersal and noise
produce clearly visible spatial patterns that become more confused (see also Fig. 4 and Fig. 5) as noise and dispersal are increased. In the bottom
right corner, parameter settings are opposite to the top left corner and species distributions appear highly stochastic, even though a careful visual
examination of the gray tones reveals some perceivable spatial patterns in terms of the periodic component. Results are reported for the analysis
performed between the two latitudinal strata (north and south). The results for the analysis performed within a latitudinal stratum are reported in the
supplementary material and reinforce patterns visible in this figure and Fig. 4 and 5.
doi:10.1371/journal.pone.0035942.g003
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Figure 4. As Fig. 3 but for the intermediate niche breadth.
doi:10.1371/journal.pone.0035942.g004

Figure 5. As Fig. 3 but for the broad niche breadth.
doi:10.1371/journal.pone.0035942.g005
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divergence (Figure 5, bottom panels, neutral approach, dark grey

bar). The large plot size implied sampling at a scale coarser than

the process under investigation (spatial patterns at fine scale

averaged over a coarser scale) and caused local communities to

seem more dissimilar with respect to their neutral counterpart.

Finally, in several cases coupling the coarse sampling strategy with

null model analysis resulted in no signal, even when spatial

structure was clearly visible (e.g., Figure 5, top left corner and null,

dark grey bar).

Finally, as niche breadth, dispersal and noise increased, both the

null and neutral approaches lost power (small and in some case no

significant effect size) also when spatial patterns were clearly visible

at the scale of the entire landscape (e.g., Figure 5, intermediate and

bottom panels). However, there were instances (e.g. Figure 5

bottom panels) where the null model detected no signal while the

neutral approach did.

Discussion

Neutral approach: revealing mechanisms underlying
community dissimilarity

Communities driven by a mixture of stochastic (neutral

dynamics) and deterministic (niche partitioning) dynamics produce

patterns that show the signature of the niche when there is explicit

structure in its spatial distribution, even when they can be partially

approximated by the dynamics assumed by neutral models [5,43].

As expected, in our models, niche processes caused communities

to be on average significantly more or less dissimilar than their

neutral counterpart at scales where the niche axis varied enough to

dominate population dynamics. On the one hand, communities

tended to diverge (more dissimilar than their neutral counterpart)

whenever spatial structures in species distributions were clearly

driven by the spatial structure of the niche axis (e.g. narrow niche

breadth and low dispersal, but see how high noise might reverse

the pattern: Figure 3, compare top right panel with the top left

one). On the other hand, communities tended to converge at

broad niche breadth and intermediate to high dispersal, which in

practice make the environmental filter less rigid by allowing

species to colonise environments that are relatively far from

species’ theoretical optima. This resulted in less visible spatial

structures in species distribution.

It is generally thought that neutral processes lead on average to

spatial divergence between communities since community dissim-

ilarity is determined by the strength of dispersal limitation

[7,24,44–46]. On the other hand, environmental conditions being

more or less constant across a certain scale, niche partitioning is

generally thought to lead to higher levels of community similarity

[19,20,24,47] because the assemblage deterministically converges

towards some equilibrium species composition. Our data clearly

show that, sampling strategy being equal, the real mechanisms

behind convergence and divergence actually depend on a balance

among dispersal, niche breadth and environmental noise. For

example, population dynamics being equal in terms of dispersal

and niche, communities may either diverge or converge depending

on whether noise is low or high, respectively (Figure 3: compare

top panels, neutral bars).

The direction of the effect (positive for divergence, negative for

convergence) also depends on the magnitude of dispersal and the

extent of niche overlap, indeed on their interaction (Figure 3, 4, 5;

Table 1). This result thus offers new interpretation for patterns

previously observed in the field. For instance, in an empirical

example of coral communities, Dornelas and co-workers [25]

observed mean level of community dissimilarity values and their

variances that were much higher (divergence) than the neutral

theory predicted and interpreted these results as an effect of spatio-

temporal environmental stochasticity driving patterns of diversity

in coral reefs. In fact, a disturbance regime may push local

communities toward unique composition by continuously resetting

colonisation processes. In our simulations, there were basically two

conditions analogous to spatial disturbance (high noise scenarios)

that produced divergence: either narrow niche breadth was

coupled with intermediate or high dispersal or broad niche

breadth was coupled with low dispersal. Therefore one or a mix of

these two mechanisms may have been at work in the communities

under study by Dornelas and co-workers [25]. Thus, our models

suggest that data on the extent of niche overlap and dispersal

limitation are necessary to disentangle these two mechanisms and

assess their relative effects. This will allow going from patterns

indicating the signature of deterministic processes (divergence or

convergence) to the mechanisms behind these patterns.

Null models and the effect of sampling strategy
In real systems, one may create a stochastic expectation of

community structure by either fitting a neutral model

[17,25,28,32,33] or randomising data matrices following the logic

of null models [19]. Note that fitting a neutral model, estimating

neutral parameters and generating a null expectation for observed

data is not what we have done in this study since, in our case, we

were able to create truly neutral landscapes and spatially explicit

expectations under neutral dynamics [30]. In the real world, fitting

spatially explicit neutral models still is a research frontier [41]. As

regards null model approaches, hypotheses relevant to the relative

roles of stochastic and deterministic processes of community

structure have usually been framed in terms of species co-

occurrence patterns [20] though several metrics can actually be

employed [11]. An interesting point is to address under which

conditions metrics accounting for species co-occurrence patterns

are able to detect the signature of deterministic components of

community assembly, which in our case were represented by a

Table 1. ANOVA table for the linear model with Standardised
Effect Size (between Latitudinal zones; see methods for
details) as the response variable.

Effect Df Sum Sq Mean Sq F value Pr(.F)

Method (Neutral vs Null) 1 106 106 8 ,0.001

Resolution (Fine vs Coarse) 1 1388 1388 95 ,0.001

Niche Breadth (Narrow,
Medium, Broad)

2 3892 1946 133 ,0.001

Disperal (Low, Intermediate,
High)

2 216 108 7 ,0.001

Noise (Low vs High) 1 3114 3114 213 ,0.001

Method:Niche Breadth 2 379 190 13 ,0.001

Method:Resolution 1 301 301 21 ,0.001

Resolution:Niche Breadth 2 1328 664 45 ,0.001

Niche Breadth:Dispersal 4 872 218 15 ,0.001

Resolution:Noise 1 888 888 61 ,0.001

Method:Noise 1 883 883 60 ,0.001

Residuals 413 6034 15

Factors were Method of analysis (neutral, null), Sampling design (fine, coarse),
Niche Breadth (narrow, medium, broad), Dispersal (low, intermediate, high) and
noise (low and high). This table shows overall main and interaction (:) effects.
Df, degrees of freedom; Sum Sq, sum of squares; Mean Sq, mean sum of
squares.
doi:10.1371/journal.pone.0035942.t001
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spatially structured niche axis. Our results show that non-random

patterns are detected only where the resolution of the sampling

design accounted for broad and fine scale patterns in terms of plot

size and the interval separating plots [22,34,35,48]. In fact, this is

the only way to let the sampling design match not only the linear

gradient but also the periodic component in the spatial distribution

of the niche. This result is also consistent with theoretical

predictions obtained by recent simulation studies [30] and has

been experimentally validated in terms of null model approaches

by several authors [20,23]. In addition to that, in environments

that have complex spatial structures, the ability to detect signals

using null model analysis can be constrained to a specific set of

circumstances: combining high noise with high dispersal and

broad niche breadth made null models much less powerful.

However, null model analysis of species co-occurrence was

generally able to detect the signature of deterministic processes,

especially when the sampling design matched the scale of the

process under investigation (fine resolution sampling regime).

In the few cases where null models failed to detect non-random

patterns, the neutral analysis shows that community assembly was

actually affected by the deterministic component due to the niche.

This emphasises that even when the sampling design is conceived

at the right spatial scale, null model analysis (at least in terms of

our set up: see methods) might simply not have enough power to

detect non-stochastic processes. This certainly applies to environ-

ments characterised by high noise as well as to population

dynamics close to neutrality in terms of niche breadth (broad).

Perspectives and conclusions
While we attempted to incorporate a wide range of scenarios

into our simulation framework, certain limitations may prevent

extrapolation of these results to different scenarios. In particular,

our results are of special relevance to environments that are known

to have clear spatial gradients and some periodicity in the

distribution of the co-varying variables that are hypothesised to be

the major drivers of species distributions. These features are

certainly common, for example, in terrestrial habitats such as the

soil (Fig. 1; [49]). Our interpretation is valid for community

patterns that depend on spatial structures analogous to the one we

analysed in our simulation. Even though this structure is general

enough to allow a first heuristic approach [22,35], other spatial

patterns are possible and should likewise be explored [11,30]. For

example, we explored the effect of one niche axis but our

simulation schemes can be easily extended to a multivariate system

of niche axes that could correspond to different species traits and

with variable spatial patterns. Also, we analysed niche effect in

terms of environmental filtering and we did not introduce

competition terms in an explicit way, which is perhaps more

relevant to the general debate around neutral theories [7,50].

Furthermore, we basically analysed local dynamics and assumed

an implicit, minimal source-sink mechanism necessary to maintain

the diversity of our landscape under a neutral scenario but in

nature meta-communities are much larger than the local

community, and our heuristic analysis should be extended to

include the explicit dynamics that in real landscapes link local and

metacommunities.

Despite these limitations, our results clearly showed that the

occurrence and detection of highly similar or divergent local

communities depended on interactions between niche breadth,

dispersal and environmental noise, which are all ecological

features of the community, and sampling design, which is a

general methodological aspect that addresses specific biological

features (e.g., the scale of dispersal). Indeed, the direction of the

effect we observed was dependent on the specific combination of

dispersal rate and the extent of niche overlap, which demonstrates

the importance of focusing more on the relative roles of these two

processes than on whether one or the other determines community

structure. In particular, a key conclusion is that under certain

conditions processes of community assembly can be disentangled

only by measuring traits such as niche breadth and dispersal. Our

framework thus offers a synthesis of the patterns of community

dissimilarity produced by the interaction of deterministic and

stochastic determinants of community assembly.

Supporting Information

Figure S1 Temporal dynamics in simulated communi-
ties generated under the scenario of low dispersal,
narrow niche breadth, and low environmental noise.
Local communities were sampled using the ‘‘coarse resolution’’

sampling design (see methods). The figures clearly show that an

equilibrium level of alpha- and beta-diversity (points = mean,

bars = standard error) was reached well before the communities

were sampled for the analyses reported in this paper (after 5000

generations). Equilibria were also observed for other scenarios,

although at differing levels of alpha- and beta-diversity. For clarity

of representation time points are shown that follow a geometric

progression.

(TIF)

Figure S2 The two sampling strategies: fine resolution
with smaller plots on the left and coarse resolution with
larger plots on the right. Both strategies can detect the main

environmental gradient potentially affecting community structure

and running from the south to the north (Figure 2). However, the

fine resolution strategy, total surveyed area being equal, consists of

smaller (five by five instead of ten by ten) but more densely

distributed plots, which allows to solve fine spatial patterns, in

particular the periodic component we introduced in the

distribution of the niche axis. Basically, the two sampling designs

are based on stratifying by latitude (north and south stratum), with

plots replicated longitudinally. The longitudinal replication is

spatially randomized and may lead to different outcomes in terms

of the exact position of each plot.

(TIF)

Figure S3 Results of the analysis performed within one
of the latitudinal strata for narrow niche breadth
stratified by dispersal (rows) and noise (columns). Next

to each simulated community, mean (S.E.) standardised effect size

are reported with data stratified by type of null hypothesis (neutral

vs. null) and sampling design.

(TIF)

Figure S4 Results of the analysis performed within one
of the latitudinal strata for intermediate niche breadth
stratified by dispersal (rows) and noise (columns). Next

to each simulated community, mean (S.E.) standardised effect size

are reported with data stratified by type of null hypothesis (neutral

vs. null) and sampling design.

(TIF)

Figure S5 Results of the analysis performed within one
of the latitudinal strata for wide niche breadth stratified
by dispersal (rows) and noise (columns). Next to each

simulated community, mean (S.E.) standardised effect size are

reported with data stratified by type of null hypothesis (neutral vs.

null) and sampling design.

(TIF)
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Table S1 Comparison of scenarios based on random spatial

distribution with scenarios based on a spatially structured niche

axis. Values refer to average standardised effect size (mean 6 S.E.)

of the C-score from null model analysis.

(DOC)

Table S2 Comparing results from multiple sampling within one

landscape with results from sampling replicated landscapes. Values

refer to average standardised effect size (mean 6 S.E.) of the C-

score from null model analysis.

(DOC)

Table S3 Comparing results from multiple sampling within one

landscape with results from sampling replicated landscapes. Values

refer to average standardised effect size (mean 6 S.E.) from

neutral analysis.

(DOC)

Table S4 ANOVA table for the linear model with Standardised

Effect Size (within Latitudinal zones; see methods for details) as

response. Factors were Method of analysis (neutral, null),

Sampling design (Fine, Coarse), Niche Breadth (narrow, medium,

broad), Dispersal (low, intermediate, high) and noise (low and

high). This table shows overall main and interaction (:) effects.

(DOC)

Text S1 The theoretical basis of the work is briefly recalled.

(DOC)

Data S1 The original R code used to simulate community

dynamics.

(R)
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