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Finally, as always by BRNSIDE'S lemma,

1 -
wh = 5D Z p(c) "Y;cp/c,c-
c|2D

4.3 Some computations

With the previous formulas one can compute the beginning of the various integer sequencés dheneare the
first 10 values of each one.

D [1[2]3] 4[] 5[] 6] 7] 8] 9| 10 |
Sl 1[1][L1] 2] 7| 25| 108]| 492| 2431 12371
Wl o|1]3]12|74]|647]6,961| 89,739| 1,337,152 22,609,111
o | 1|1]|2]| 6|31]|255|2788| 37,333| 578,799| 10,134,071

Remark 4.3 By similar arguments as i§3 one can show that

—nc
“p 2
oD D — oo 6.

This was first proven for the linear case byesN and EVERETT [SE], see also [S, p. 362].

Remark 4.4 The sequence of tree—connected chord diagrams was previously known. AccordiraptoedSl] it
appeared in an enumeration of planar alcohol molecules [LMi] (which correspond to tree—connected chord diagrams
by putting on each chord crossing a 'C’ and on each chord basepoint an 'H’ atom and forgetting the solid line).
Leroux and Miloudi used some more general and more elegantAtheory arguments. Our approach is however
geometrically more understandable.

5 Enumeration of chord diagrams and an upper bound for Vassiliev in-
variants

In this section, we treat an enumeration problem of chord diagrams, which is shown to yield an upper bound for
the dimension of the space of Vassiliev invariants for knots. We give an asymptotic estimate for this bound. More
precisely, we prove the upper boufd/(any given polynomial inD) for bothGp. A andGp A" (whereA and A"

are the graded algebras of chord diagrams introducgt)iand later improve it td!/1.1°. As an aside, we present

a trivial proof for the boundD!.

In the next section we will discuss further results on the dimensio. of

5.1 Factoring out 4T relations

There are three types of mutual positions of hon-intersecting chords in the LCD’s with neighboring basepoints.

.
NN e N PEENN PR
la b/ "W /77N \ s 7 \

type | type Il type llI

Itis clear that one can resolve ofiieedtype | and Il intervals using the 4T-relation. But this also works waitlsuch
intervals. This means, we have

15 A MATHEMATICA ™ package with all formulas is available on my WWW page.
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Theorem 5.1 A is generated by LCD’s without type | and Il intervals.

We will call such LCD’sregular.

Proof. We have to show that we can prform the removing of type | and Il intervaals using the 4T relation so that
this does not lead to an infinite loop. For this it suffices to define a partial ordering relation on LCD’s such that it is
always possible to transform an LCD modulo 4T into a linear combination of smaller LCD’s.

We will use the following relation.
Definition 5.2 Thelengthof a chord in an LCD is the number of enclosed intervals.

Definition 5.3 Define a half-ordering relation on LCD’s hy < b exactly if(x1(a), —x2(a)) is lexicographically
less than(x1(b), —x2(b)), where

x1(L)

xa(L)

D

> len( chordi )

i=1

# { chord intersections il } .

Look at the 4 LCD's of the 4T relationt{’(a, b)).

——— =

N
Ja b”—\\\\ -/ N7 = - ‘// N + 7 ,”\\ ) (4T(aab))

term 1 term 4 term 3 term 2

where term 1 has a type | interval. (For the type Il interval apply an analogous argument). We have

x1(term4) < xi(terml),
x1(term2) = x;(term1) and x»(term2) = yo(term1) + 1

and
x1(term3) < x;(term1),

with inequality unless all basepoints inside chérare basepoints of left-outgoing arcs with respedt (o e., their
left basepoint is left frond and their right basepoint is with#).

I. e., each time we can findandb of type | so that not all basepoints bbelong to left-outgoing arcs (with respect
to b) we have asimplifying4T relation. We can also exclude the casddgn- 1, as then term 2 & 3 cancel.

Assume we have a 4T relation to apply but no simplifying one (i.e., each type I looks as in figure 2).

Figure 2. A non-simplifying 4T relation |
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Now look at the left-most type | interval. All arcs having an endpoint withare left-outgoing with respect toand
all mutually intersect. I. e., we have something like figure 3, which we will dall

Apply in A a 4T relation ati1, as. Term 2 and 4 are simpler as above. Look at term 3, which we will&all
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Figure 3. A non-simplifying 4T relation I
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We havey;(A;) = x1(A). Now the chordz; in 4; has a right-outgoing arc, i. e. 4dy, a3) is simplifying, and
term 3 and 4 have g; less thany; (A1) = x1(A) (we will just see that in case there is agthe step we perform is
unnecessary). There remains term 2, which we will gall
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Using the same argument, repeat sliding the right basepaintaxjain to the right{, remains always right-outgoing
for a1) until a; intersects all chords intersectimg. The resulting LCD hag; equal andys higher thanA, since
now a; intersects all chords it was intersectingdnand additionally at least,. (Here we would have immediately
arrived if we had na3). Now we are done. O

From the proof one can see, that one can use enly to prove that4 is generated modulo 4T by LCD’s without
type lll.

Now comes the hard combinatorial part — the enumeration of regular linearized chord diagrams.

5.2 Regular linearized chord diagrams

We will number in an LCD the chords by the order (from left to right) of their left basepoints.
Let’s start with a simple observation: The number of LCD’s of dedpesithout one of the types |, Il or Il iD!.

To see this, for type | and Il place the chords in their reverse order and show that there areexadthy k ways
to place chord. For type Il apply mirroring of the LCD.

This way we obtain with the observation, that LCD’s without type Il are generating, a simple proof of the bdund

Let
Ep := {regularLCD'sofdegD } = ¢&p = #Ep

We would like to calculate the numbegs of regular LCD’s of degredd and compare them with Ng's bound
(D — 2)!/2 [Ng].
Unfortunately the enumeration of regular LCD’s is much harder. Let us start.

We will consider a certain map

mp : ED i ED,1 .
The image of a regular LCID with D chords undemp is obtained as follows:
1. Remove the first chord (i. e., the one, whose left basepoint is the leftmost one).

2. The resulting LCD might not be regular. But if not it has exactly one type Il interval. Note, that arcs with
left basepoint between the left basepoint of chord 2 and the right basepoint of chord 1 are right-outgoing with
respect to chord 2, so removing chord 1 we do not get a new type | interval.

3. Now mark all the chords whose left basepoints are between the left basepoint of chord 1 and the first right



urr eridrrieraort g oriord diagrairis aa asyirigotucs a vdasai evirivaildrls

basepoint of a chord on the right of the right basepoint of chord 1. E. g., in an LCD beginning like this

the marked chords will be 2 — 6.

4. Separate the marked chords into a left and a right part depending on whether their left basepoint was left or
right from the right basepoint of chord 1, e. g. in the above picture the left part would consist of chords 2 —
4, and the right one — of chords 5 and 6. Within both parts we have the property, that each two of the chords
intersect, i. e. their right basepoints lie in the same order as the left ones.

5. Now apply a shuffle permutati&hon the left basepoints of both parts, so thitmarked chords mutually
intersect. In our example this will be tt{8, 2)-shuffle34512. The resulting LCD of degre® — 1 is regular.
This is by definitionmp (L).

Consider
Epk = {regular LCD's of degD with len( chord 1) = k } Epk = #Epk

We can construct all preimages undep; of L € =p ;, by reshuffling the left basepoints of the leftmdsthords
with an(a, 8)-shuffle (for somex + 3 = k) and putting a newD + 1)t chord, which becomes in the resulting LCD
chord number 1, of length + 1.

Now comes the unpleasant detail. Not for all LCD's3p ;, and all(«, 3)-shuffles this procedure gives a regular
LCD. The problem is that the reshuffling can produce type | intervals, if both the left and right basepoints of two
marked arcs were neighboredin In this case it will be forbidden to permute the left basepoint of the lefter arc to
the right of the left basepoint of its right neighbor (see figure 4).

Figure 4. A forbidden move.

Define between the firgtarcs inL a (de)composition (a representation as sum of ordered numbers) by setting chords
[ andl + 1 to belong to the same part iff their right basepoints are also neighbored, i. e. if no right basepoints are
neighbored we get the decompositionkahto k parts of lengthl, whereas in the case that all right basepoints are
neighbored we get the decompositiorkahto 1 single part of lengtlk. We will call this decomposition thimduced
(de)compositiomf L.

Definition 5.4 A compositionP’ is rougherthan P if it can be obtained fromP by a sequence of additions of
neighbored parts of. ConverselyP’ is finerthan P. E. g., the compositiof, 2,1,1,1,3,2,1) of 12 is finer than
(1,2+1,1,14+342,1) = (1,3,1,6,1). The length lefiP) of a compositior is the number of numbers appeaing
init.

For a fixed decompositio® of & the numbeéDM of diagrams irEp ; whose induced decomposition is exactly

P, depends only oh = len(P) and can be computed using the combinatorial inclusion-exclusion principle and the
simple idea, that each diagrdmin =p j with induced decomposition rougher than one fixed decomposiiaof

k of length! bijectively corresponds to a diagram#y.;_,; by contracting chords ifi’ belonging to the same
component of the decomposition to one (see figure 5).

16For the definition and algebraic properties of shuffles see e. g. [St3, Lo, Re, BN].



SCUiorto. ArNUppPeiooura 10r vasai evirivaldrls

contracts Figure 5. Contracting neighbored chords.
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The result is

fD,k,z =0fori<0orl >k
-1

Epki= Z (l _Z 1)(_1)i€D+l—k—i,l—i ,

=0
whereD is the degreek is the length of chord 1 anids the length of the induced decomposition.

Now we determine the number of applicable shuffles for a fiked =p ;. Note that to have a preimage bfin

Ep+1,, We must havé > k' — 1 (since the new to be installed chord 1 must intersect the previous chord 1). In each
such case we apply the inverse afid— 1, k — k¥’ + 1)-shuffle on the firsk: basepointsof.. A (k' — 1,k — k' +1)-

shuffle corresponds to a coloring bthords byk — &’ + 1 black (to be reshuffled to the right) akt— 1 white (to

be reshuffled to the left) chords. The restriction is that within each component of the induced decomposition there
must be no black chord followed to the right by a white one. Since the number of LCD’s with induced compaosition
P depends only op = len(P), let us sum over all compositions of lengttand compute the number

choices ofk out of a decompositior of [
elements of lengthp, such that in each com
ponent of P all chosen elements are to the -
left

M kp =

Note that i, ., a fixed choice is counted sometimes multiple times for different decompositions!

Here is an example (where chords are replaced for simplicity by beads):

—o—o—e—f—0—0—o0—e—-f—o0-0-O0e-e|ee|-00

(l=16,P=34+4+5+2+2,p=5,k=10)
We see that such a picture can be described uniquely by the following procedure:

1. Chooséd’ components out g, where we will have at least one white mark.

2. Build a composition of: of lengthi’ with the white marks and a composition with zeros of the same length
(of some numbetl) with the black marks appearing in tifechosen components.

3. Join the compositions of the white and black marks, i. e. add parts at the same position.
4. Complete the composition bby a composition of — k — d of | — I’ parts.

In the above example

e The composition ok = 10is2 + 3 + 3 + 2,

e the choice of’ = 4 componentsoutagf = 5is{1,2, 3,5},

e the composition with zeros ef=4is1+ 142+ 0,

e the compositionof —k —d =16 — 10 — 4 =2 oflengthl — I’ =5 — 4 = 1 parts is2.

The numbet;, ; of compositions of: elements intd parts is

= (721)-
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It makes sense to set
Pyo:=1 and PF.:=0 else.

The number of compositions with zeros/ioélements intd parts isPy; ;.

So we get

k I—k
Miwp =Y Y Pow - Pajvy Pg—ap-r (ﬁ) :

I'=0 d=0
Remark 5.1 Using some combinatorial formulas the expression fonghg,’s can be a little bit simplified:

Py k=0
p

e R I e

I'=0

With some effort one can find an alternative characterization of these numbers (which is unimprtant in our context).

1 p
1— xn+1
Mkep = KZ Ty”> ] )
n=1 r kgl

where[polynomia)menomiasdenotes the coefficient of ‘monomial’ in ‘polynomial’, and we obtain

1—2z

[eS)
k., l_p __ —
77l,k, z y z - f(m)y7z L )
2 s ) ) ( y a’y )
—Tr—z

1,k,p=0

1—y 1—2xy
i. e., the numbers, ;. ,, appear as theAvLOR coefficients off (x, y, z) at (0, 0, 0).

With the previous preparations we are ready to write down the recursive formyla jor

51,1 - 1)

[u

!
{px = Z Z €D 11pMk—1p- (5.1)

I=k—1 p=1

Finally, what we seek is

D
b= Epk-
k=1

5.3 Connected regular LCD’s
With some more effort one can attack a further combinatorial task to give a way to compute the nuodreresited
regular LCD’s. By the facts recalled in section 1 this gives a bound for the primitive (additive) VI's.

The first observation we make is the following: if in a regular LCD there is one connected component enclosing
another one, then the latter is attached at a type Il interval to the first one.

So first we shall count regular LCD’s by their number of type Il intervals. For the later calculation it will turn out
more useful to use theharacteristics

x(L) = #{typelllintervals ofL } + 1
instead. So let
%, = ({regularLCD'sL ofdegD with x(L) =n } b, = =5,

—2 ._ regular LCD’sL of degD with
a len( chord 1) = kandx(L) =n

S =2

2
gD,k,n T —D,k,n
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The counting ia analogous to that &6, {p ; once one has noticed that the reattachment of chord 1 done in the
construction of the various preimagesim ;- of a regular LCDL € Zp , undermp,; increases the number of
type lll intervals of the LCD byl unless in the cask — 1 = k.

Then the formulas fo¢, ;. ,, follow directly from those ofp ..

We obtain
&hpn=0fork<0ork>Dorn<0

and else

D—1 1

2 £2 2
EDen = Z -1 1pn—1Mk—1,p tED_1 k—1,n >

=k p=1

where

éQD,k,l,n =0forl <0orl>korn <0, and else
-1

éQD,k,l,n = Z (l_il) (_1)i€2D+l—k—i,l—i,n
=0
with £p 1.1, being explained similarly tgp ;.
In order to make the recursive computation start correctly, it makes sense to Betfor
&o1:=1 and

§§7,m = 0for (k,n) # (0,1).

Finally,
D
Ebn =Y Ebjn -
k=0

Now consider

_ { regular LCD'sL of degD with I conn. comp.} \ — #A
Dn,d = Dn,l

Apns = andx(L) =n

Let
Do = ADn,1 -

For the calculation of these numbers we will proceed followingly. First we have

D
2
/\D,n,l = gD,n - § )\D7n7l :
=2

For the non-connected case look at the following picture

Choose the connected componéntf L containing chord 1. Then all remaining components are attached either to
the right ofC or at type Il intervals withinC', i. e. we have exactly(C) positions of attachment. From this we find
the following recursive formula

D—1 min(d’,n)

CITED DI DIV | CT0 L I L (5.2)

d’'=1 n/=1
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with

oo oo oo
NN ZZZ)\DMQ: yl2" .
D=0 1=0

n=0

Hered' andn’ are the degree and characteristic€ofWe use for this formula the observation that attaching (where
ever!) an LCD withy = k the total number of type Il intervals is augumented exactlycbyhere is however one
important exception — the attachment of the empty LCD does not augument this number. So it makes sense to set for
D=0

)\0’0;0 =1 and )\O,n,l := 0 for (TL, l) # (0, 0)

in order for the recursive formula (5.2) to work correctly.

The number of connected regular LCD’s of degfeés then
D
D=2 Ao
n=0

5.4 Numerical and asymptotical results

After all the considerations it is now possible to calculgte Let us compare it with the bour{® — 2)!/2 obtained
by Ng [Ng] for D < 20 (see table 1.

We see thaf, does not grow as fast &9 — 2)!/2 and our bound is better fdp > 18. It appears obvious that this
is true in general. At the end of this section we will give a (non-straight forward) proof for this fact.

Using the bounad\, for the primitive VI's, we get a sharper bouwgh for .4 andgy, for A” thanép by summing
over partitions of the degree of products of varidgss and omitting symmetry in factors of equal degreeBut
the situation with asymptotical behaviour is even more complicated. However,

Remark 5.2 Itis very likely that
A% 1

_— —_
&p D—o e

?

wheree is the BEJLER number2.71828 ... (although a proof appears very messy). This limit appears in some other
enumeration problems of chord diagrams, see [St2, St9]. (So, | don’t expect a big qualitative improvement of the
bound in this way.)

Remark 5.3 The computation oS, is the hardest one\§, took ~ 30 h total time with C++ on a Sparc10). For
D < 14 the bound is still worse than Ng's, but fér = 15 we already have an improvement in both the framed and
non-framed case.

The following table 1 compares our numbers with Ng’s bowngl for primitive VI in [Ng, theorem 4.2] and the
resulting bounds.p anda’, for A andA".

Here is a further challenge:
Problem. Is A generated by diagrams which do not posess any chord exclosing another one?
Note that for such diagrams the recursion formula (5.1) would change to
Epk = Z §p-14
1>k—1

(since there is only one way to (re)shuffle, i. e. the identity), and one easily shows by induction

épi < (QDD_ k)

17 A MATHEMATICA ™ package with all formulas will soon be available on my web page.
18This relation is extensively treated in [St10].
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Table 1. Numerical values for the various bounds.

D : (D —2)!/2 XD a’l ap : 35 25 B Bp :
1 0 1 0 1 1 1 0 1
2 1/2 1 1 2 2 1 1 2
3 1/2 1 1 3 5 2 2 4
4 1 2 3 6 15 5 6 10
5 3 4 5 11 53 16 18 28
6 12 14 18 29 217 63 72 100
7 60 54 61 90 1,014 293 321 421
8 360 332 357 447 5,335 1,561 1,680 2,101
9 2,520 2,246 2,330 2,777 31,240 9,321 9,852 11,953
10 20, 160 18, 264 18,715 21,492 201, 608 61,436 64,168 76,121
11 181, 440 164, 950 167, 783 189, 275 1,422,074 442,134 457,659 533,780
12 1, 814, 400 1,664, 354 1,686, 327 1,875, 602 10, 886, 503 3,446,077 3,543,785 4,077,565
13 19, 958, 400 18,423,144 18,615,873 20,491, 475 89,903, 100 28,905, 485 29,578,097 33,655, 662
14 239, 500, 800 222,406, 776 224,310, 263 244, 801, 738 796,713,190 259, 585, 900 264, 623, 046 298, 278, 708
15 3,113,510, 400 2,905,943, 328 2,926, 679, 435 3,171,481, 173 7,541, 889, 195 2,485,120, 780 2,525,897, 073 2,824,175, 781
16 43,589, 145, 600 40, 865, 005, 494 41,112, 186, 396 44,283,667, 569 75,955, 177, 642 25,267, 283, 367 25,622, 275, 565 28,446, 451, 346
17 653,837,184,000 | 615,376,173,184 | 618,573,033,369 | 662,856, 700,938 810,925,547,354 | 271,949,606,805 | 275,257,714,175 | 303,704,165, 521
18 || 1.046,139,4 - 1013 | 9.880,209,2-10'2 | 9.924,788,8-10'2 | 1.058,764,5- 103 | 9.148,832,1-10'2 | 3.089,330,1-10'2 | 3.122,190,8 - 102 | 3.425,895,0 - 10'2
19 || 1.778,437,1-10* | 1.684,835,1-10'* | 1.691,501,2 10" | 1.797,377,7-10™ || 1.087,597,5- 10 | 3.694,347,7-10'3 | 3.729,011,4-10'® | 4.071,600,9 - 10'3
20 || 3.201,186,8-105 | 3.041,127,5-10 | 3.051,766,5 10° | 3.231,504,3-10'° || 1.358,836,1-10'% | 4.639,430,0-10'* | 4.678,128,6-10'* | 5.085,288,7 - 1014
25 || 1.292,600,8 - 1022 | 1.240,896,8 - 10%Z | 1.243,475,7 - 1022 | 1.300,029, 2 - 1022 || 8.090,291,0- 1020 | 2.812,171,4-10%° | 2.826,415,8-10%0 | 3.021,075,6 - 1020
30 || 1.524,441,7-10%9 | 1.473,626,9-10%° | 1.475,655,8-10%° | 1.530,326,3-10%° || 1.263,341,6-10%7 | 4.439,023,6-10%6 | 4.454,162,5-10%6 | 4.707,888,4 - 1026
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and hence

. 2D + 1 -
< 2 +1
§D<D+1>< )

i. e., we would have aexponentiabound.

Conversely, it is possible to show thgs grows stronger than any exponential.

Theorem 5.5 We have
§p > B(D),

where theB(D)'’s are theBELL numbers [Ri], satisfying the recursive formula

BO)=1 and B(d) =3 (Z: ) B~ k).

d
k=1

It is possible to show using the recursive formula of the Bell numbers that they grow stronger than any exponential.
E. g., since
B(d) > (d—1)B(d-2)

we have
B(d) > (d—1)!.

More generally one has asymptoticalb(d) > (d!)*~< for eache > 0.

Theorem 5.5 follows from the following

Theorem 5.6 The Bell numbeB(D) is the number of regular LCD’& of degreeD with the following property:
Consider the sequendg = L, L1, Lo, ... of LCD’s, whereL; ; is obtained froml; by removing its first chord and
all chords intersecting or enclosed by it. Then Bjlare regular.

Not all regular LCD’s have this property. The most simple example of an LCD without this property is

P

Proof. Denote byd the degree of an LCD with the above propertykIfs the number of marked chords then the

right endpoints of the lagt — 1 marked chords can be attached at arbitrary positions in the remaining regular LCD

of degread — k except at intervals whose left end is a right basepoint of one of theé: non-marked chords. So

there aral — k + 1 positions of attachment (the position of the right end of chord 1 is determined — left from all
non-marked chords). Since the order of the right basepoints of the marked chords is equal to the order of their left
basepoints and at an interval you can put more than one new right basepoint, we have to count ordered choices with
repetitions oft — 1 out ofd — k£ + 1 elements. Since this number is

((dk+1}i+§k1)1) _ <ZD

in this way we obtain exactly the recursion formula for the Bell numbers. O

Here is an upper bound f@p, which shows the improvement we have achieved.
Theorem 5.7 £p grows more slowly tha®!/any polynomial inD.

Proof. Fix ak with 1 < &k < D and consider a regular LCD of degreeD. This means especially thathas no
type |l interval at all and no type Il intervals among the fieshtervals (i. e., between the+ 1 leftmost basepoints).
Make the following case distinction fdr.

Case 1.Among the firstt + 1 chords there exist two consecutive chords with neighbored right basepoints. The
number of such LCD’Y, is bounded by the contraction described in section 5.2 (and explained in figuré“s) by
kép_1.

9Here is the only time we use the non-existenceany type Il intervals inL; else we will use their non-existence only among the first
intervals.
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Case 2.There exist two chords which have both their left and right basepoints among the-first Then chordl
is one of these chords. Since, applying,, we shuffle maximally basepoints and the number of shuffles with
elements i2*, we obtain each LCD i&p_; maximally2* times, i. e., the number of such LCD¥sis bounded by
2k¢p_y.

Case 3.There exists no chord with both left and right basepoint among thefirst (i. e., all are left and all chords
mutually intersect). In this case the symmetric gréiyp, acts freely on the first + 1 basepoints and all LCD’s
obtained have (by exclusion of case 1) no type | intervals. Since the number of LCD’s with no typ®, Ithe
number of these LCD'¢, is bounded byD!/(k + 1)!.

Case 4.There exists exactly one chord with right basepoint among thekfitsti. Then this chord has to be chord

1. The right basepoint of chord 1 separates the left basepoint &f-theremaining chords starting at the fifst+ 1
basepoints into two parts, where within each part all chords mutually intersect. Now apply the argument in case 3
for D — 1 instead ofD and each of the two parts. For [echord 1) = I you get the bound

(D -1)!
=D (k=D
Summing over you get
(D _ ! k—1
2
(k=11
as a bound for this case.
Putting it all together, we find that
, D!
&p < (k+2")ép + — (21 +1) (5.3)

k!
foreachl < k < D.
Fix some polynomiaP (D) and assume that we find arbitrary latBewith
T (5.4)
Choosékp minimal withkp! > 2(2*2=1 4 1) P(D). Thiskp grows very slowly (more slowly thalog D for any
C >1). Then
&p < (kp+2F°)ép_q + %ﬁD

and
ép < 2(kp +2FP)ép . (5.5)

Note, that the expressidip + 2P grows less fast than any positive powerlof Furthermore, we dootuse (5.4)
for D — 1 instead ofD. This will be crucial later.

To finish the proof we consider two cases.

Case 1.For almost allD we have (5.4). By (5.5) you get for sufficiently largk say,
D
o _

Ep—1 2"’

which gives an asymptotical contradiction.

Case 2There exists a sequené®;} such that

EDi <

W.l.0.g. you can choosgD;} so that additionally

(Di + 1)!

) > -
Epit1 2 P(D; +1)

(if this is not possible, you are done). Then by (5.5) you get once again for sufficiently
largei
€p,41 < 2 (kp,41 +2MPit) &p, .
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But by the choice of D;} you get on the other hand for eacb- 0
D1 (D; +1)(1—¢)
§D7‘,

for sufficiently large; and in this way a contradiction. ]

Remark 5.4 The maximal result we can achieve with our proof is a little better. Fix sdme0. Then

D!
< 0p = 2— (2Fp71 41
¢D D ] ( +1)
with
kp =|loga D —e—1|
The proof works as above using

dpt1 1
(D+1)5D D —

and
2 (kp +2") < D(1-¢)

for somee’ > 0 and sufficiently highD.
5.5 A further improvement

It appears that our asymptotical result is very weak. The numerical computation suggests as an estimate something
like D!/1.5P. | did not manage to obtain this, but achieved a qualitatively similar result.

Theorem 5.8 £p is bounded byD! over an exponential iD.
The basic idea for our further improvement is to considducedregular LCD's.

Definition 5.9 An LCD is calledreducedf there is no pair of contractable chords (that is, intersecting chords with
both left and right basepoints neighbored).

Recall the SIRLING formula

n n
n!l =< 27m<—) n— oo,
e

basically saying that asymptotically < (2)" modulo a polynomial im.

Definition 5.10 Define thegathof an LCD L of degreeD as the sequence of paif$:, [ )}Z 1» wherel; is the length
of chordl in L;, and L; is obtained fromL by removing chords$, ... , D —i.

If L is regular we have by the previous discusdign < [; + 1. Call
a(L) = #{Z : l7;+1 :Z1+1}
theascendof L.

Recall the mapn p, which mapped regular LCD’s of degréeto those of degre® — 1 by removing chord and
reshuffling the leftmost left basepoints. We carefully studied the number of applicable shuffles for each image under
mp. If we simply takeall possible shuffles, we obtain the inequality

Epr < Z <k: i 1) Ep—1,1- (5.6)

I>k—1
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Applied this way, this does not give much because it is an expression of forgetting the type Il condition, and therefore
we getD! as bound. In fact, the numbers satisfying the equality in (5.6) aretlL®IG numbers (see [RIi]).

So we will use this formula with a certain constraint.
Proof of theorem 5.8. Fix some0 < § < 1 and distinguish two cases.

Case 1.Consider first LCD'SL with a(L) < 6D. Letk = len( chord 1) in L. Call ¢}, , the number of such LCD’s.
Expanding (5.6) recursively we obtain

D
)
STEEED SR | ()
paths{ (i, k;)}2_, of j=2
Lwith a(L) < 6D

We always havé; = 1 andkp = k.

Expanding the binomial coefficients we obtain for the above product

'k- 1 ki
J 1 J J
|| _—”—. 57
o2 1—kj+1)! k! (kj 1—kj+1)! (.7

Setk :=k; 1 —kj+1forj=2,...,n. We havek] > 0with # {j : k¥, =0} = a(L) < 6D and

kj:j_zkgzo Vji=2,...,D (5.8)
=2
Sothetermin (5.7) is
D . 7 /
i=> .k
H ki’l'ﬂ (5.9)
j=2 7

Since we have that more thah— ) D of the £’ are at least equal tb, you see that no numerators in (5.9) can be
greater thard D, while the firstd D ones are less than or equal to their indexing number. So as an estimate of the
product of numerators in (5.9) we obtéin

(6D)1=9P (5 D)1

which is by Stirling formula less than
(6D)P e=°P P(D)
for a certain polynomiaP in D.

As an estimate for the r.h.s. of (5.9) we obtain

where the summation is over &l;) with &} > 0, >k} = D —kand# {j : k; =0} = a(L). Noticing that

D
> ki =Dk
=2
(which is (5.8) forj = D) and %, = = [e*],, we have
l

D
1 1 D DP—k
k_l/! = ( Hﬁ: [(e) ]ka: D=k
v

y =2 !

o

N
||
N

(k7

20The reader might forgive us that we write down factorials of non-(necessarily) integral numbers, but as this can be corrected by a polynomial(ly
bounded) term irD and polynomials will not matter to us, this does not spoil anything.
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where the summation in the second term is oveflgliwith I, > 0 and}_ . = D — k. So (5.9) is less than

D
(1}3) DP~k gi?m P(D).

We obtain a bound fof¢, by summing ovek = 1,..., D.

5D)D
D! esD

—~

& < (D+1)P

P(D). (5.10)

The r.h.s. is by Stirling formula less than or equal to
6P e(2=9P D1 P/(D)

for a certain polynomiaP’ in D.

OS
Case 2Fora(L) > §D consider first only reduced regular LCD’s with péth_et £, be this number.

By artificially putting to the left of such a LCD a chord of length 1 we obtain a reduced regular LCD of degrde
with len( chord 1) = 1 and with a path with ascend §D. The ascend of this LCD is equal to ttstal descend

> (ki —kiy1) > 6D.

i kip1<k;

Each descend df, — 1 means letting a segment bf left neighbored basepoints to the right of the right basepoint

of the newly placed chord (which is preserved by the addition of all remaining chords) by applyihgLet the
symmetric groups of corresponding order act on such segments simultaneously. The orbits are free and, since we
consider reduced LCD’s, all LCD’s in the orbits have no type I. As we noted, the number of LCD’s with no type | is
D!. The lowest cardinality of the direct product of symmetric groups is in the case where we have 1-descends only,
which is> 2°P. So the total number of regular reduced LC'svith a(L) > 6D is

Combining both cases we find that for reduced regular LCD'’s their nuéqus

A

o _ D!
D! 1

o M e 4y

< P”(D)

Now choose so thatd < 2 and you are done for reduced LCD’s.

e

The best choice of would be one for which

5e* % = 1
=%
Call 6y this number and := A(dp).
However, our choice of will be somewhat worse in order to remove all polynomial mesPihby the exponential
correction.

The result for all regular LCD’s is now easy. We have

D—-1
o = Z (Di_l)ED—i

=0
Ay D!
< P(D)- )Y =5
zi: il \Y
!
< P(D) - e %‘.
/\O
Again, kill the polynomial by perturbing. |

Numerically we havé, ~ 0.141334, where)\q = 2% ~ 1.10292. So we have
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Theorem 5.11 The numbefp (and therefore the number of linearly independent Vassiliev invariants of énlex
asymptotically bounded by
D!
o <11

5.6 The segment length inequality

After having estabilished our result it is perhaps worth saying a word about some possibilities left open in the proof
of our bound.

The observation made in case 2 of the proof can be generalized somewhat.

Definition 5.12 Call a segmentf an LCD a maximal piece of the solid line containing left basepoints only and its
length the number of such basepoints.

Then by the argument above we have the

Theorem 5.13 (Segment length inequality)

> I[ (lengthof segment! < D!

reduced reg. segments of

LCD’s L of degD

Basically our proof was that we bounded th's with < § D factors equal to one in the product and used that the rest
appears with multiplicity at leag’” in the sum. However, many reduced regular LCD’s appear with much higher
factors and if one were able to control their number (which probably requires much labour) this would improve the
base in the denominator we obtain in case 2 (and the total one for all regular LCD's). One might even hope that one
can achieveeachbase in case 2 (and therefore as well for the total bound). But, to put an end to our dreams, recall
that we will never be able to proveé!)! < (for somee > 0) this way!

6 The dimension of a graded commutative algebra and
asymptotics of Vassiliev invariants

Here we discuss the relation between the dimension of a symmetric algebra (with the induced grading) over a graded
vector space (latter called henceforth the primitive part of the algebra), and apply it to deduce a lower bound for the
number of all Vassiliev invariants.

One of the combinatorial aspects of a commutative graded algebra (@@&~Ahe relation between the asymptotical
behaviour of its gradeded piecds, depending on their primitive part8p (d and D will denote the degree). We
will make two assumptions on such an algebra:

1) deda-b) = deda) +degb) Va,be A,

2) prime factorization is unique iA.

Consider the commutative graded Hopf algelAra- A of chord diagrams.

Recently, Chmutov and Duzhin [CD2] obtained the following result4or

Theorem 6.1 The dimension of primitive elements i, has the asymptotical lower bourfd'°s:+- P for each
e > 0.

As it was not explained by the authors which base of the logarithm we can choose, we should do this here.



