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Finally, as always by BURNSIDE’s lemma,

ωtc
D =

1
2D
·
∑
c|2D

ϕ(c) · γ̃ tc
2D/c,c .

4.3 Some computations

With the previous formulas one can compute the beginning of the various integer sequences above15. Here are the
first 10 values of each one.

D 1 2 3 4 5 6 7 8 9 10

ωtc
D 1 1 1 2 7 25 108 492 2,431 12,371
ωnc
D 0 1 3 12 74 647 6,961 89,739 1,337,152 22,609,111
ω̄nc
D 1 1 2 6 31 255 2,788 37,333 578,799 10,134,071

Remark 4.3 By similar arguments as in§3 one can show that

ω̄nc
D

σD
−−−−−→
D →∞

1
e
.

This was first proven for the linear case by STEIN and EVERETT [SE], see also [S, p. 362].

Remark 4.4 The sequence of tree–connected chord diagrams was previously known. According to SLOANE [Sl] it
appeared in an enumeration of planar alcohol molecules [LMi] (which correspond to tree–connected chord diagrams
by putting on each chord crossing a ’C’ and on each chord basepoint an ’H’ atom and forgetting the solid line).
Leroux and Miloudi used some more general and more elegant PÓLYA theory arguments. Our approach is however
geometrically more understandable.

5 Enumeration of chord diagrams and an upper bound for Vassiliev in-
variants

In this section, we treat an enumeration problem of chord diagrams, which is shown to yield an upper bound for
the dimension of the space of Vassiliev invariants for knots. We give an asymptotic estimate for this bound. More
precisely, we prove the upper boundD!/(any given polynomial inD) for bothGDA andGDAr (whereA andAr
are the graded algebras of chord diagrams introduced in§1) and later improve it toD!/1.1D. As an aside, we present
a trivial proof for the boundD!.

In the next section we will discuss further results on the dimension ofA.

5.1 Factoring out 4T relations

There are three types of mutual positions of non-intersecting chords in the LCD’s with neighboring basepoints.

−
a b

− −
type I type II type III

It is clear that one can resolve onefixedtype I and II intervals using the 4T-relation. But this also works withall such
intervals. This means, we have

15A MATHEMATICA TM package with all formulas is available on my WWW page.
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Theorem 5.1A is generated by LCD’s without type I and II intervals.

We will call such LCD’sregular.

Proof. We have to show that we can prform the removing of type I and II intervaals using the 4T relation so that
this does not lead to an infinite loop. For this it suffices to define a partial ordering relation on LCD’s such that it is
always possible to transform an LCD modulo 4T into a linear combination of smaller LCD’s.

We will use the following relation.

Definition 5.2 Thelengthof a chord in an LCD is the number of enclosed intervals.

Definition 5.3 Define a half-ordering relation on LCD’s bya ≺ b exactly if(χ1(a),−χ2(a)) is lexicographically
less than(χ1(b),−χ2(b)), where

χ1(L) :=
D∑
i=1

len( chordi )

χ2(L) := # { chord intersections inL } .

Look at the 4 LCD’s of the 4T relation (4T (a, b)).

−
a b

term 1

−
−

term 4

= −
−

term 3

+
−

term 2

, (4T (a, b))

where term 1 has a type I interval. (For the type II interval apply an analogous argument). We have

χ1(term4) < χ1(term1) ,
χ1(term2) = χ1(term1) and χ2(term2) = χ2(term1) + 1

and
χ1(term3) ≤ χ1(term1) ,

with inequality unless all basepoints inside chordb are basepoints of left-outgoing arcs with respect tob (i. e., their
left basepoint is left fromb and their right basepoint is withinb).

I. e., each time we can finda andb of type I so that not all basepoints ofb belong to left-outgoing arcs (with respect
to b) we have asimplifying4T relation. We can also exclude the case len(b) = 1, as then term 2 & 3 cancel.

Assume we have a 4T relation to apply but no simplifying one (i.e., each type I looks as in figure 2).

Figure 2. A non-simplifying 4T relation I

−

a

b

Now look at the left-most type I interval. All arcs having an endpoint withinb are left-outgoing with respect tob and
all mutually intersect. I. e., we have something like figure 3, which we will callA.

Apply in A a 4T relation ata1, a2. Term 2 and 4 are simpler as above. Look at term 3, which we will callA1.

a1
a2

a3

−−−−
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Figure 3. A non-simplifying 4T relation II

−

a1

a2

−−−

We haveχ1(A1) = χ1(A). Now the chorda1 in A1 has a right-outgoing arc, i. e. 4T(a1, a3) is simplifying, and
term 3 and 4 have aχ1 less thanχ1(A1) = χ1(A) (we will just see that in case there is noa3 the step we perform is
unnecessary). There remains term 2, which we will callA2.

a1
a2

−−−−

Using the same argument, repeat sliding the right basepoint ofa1 again to the right (a2 remains always right-outgoing
for a1) until a1 intersects all chords intersectinga2. The resulting LCD hasχ1 equal andχ2 higher thanA, since
nowa1 intersects all chords it was intersecting inA, and additionally at leasta2. (Here we would have immediately
arrived if we had noa3). Now we are done. 2

From the proof one can see, that one can use only−χ1 to prove thatA is generated modulo 4T by LCD’s without
type III.

Now comes the hard combinatorial part – the enumeration of regular linearized chord diagrams.

5.2 Regular linearized chord diagrams

We will number in an LCD the chords by the order (from left to right) of their left basepoints.

Let’s start with a simple observation: The number of LCD’s of degreeD without one of the types I, II or III isD!.

To see this, for type I and III place the chords in their reverse order and show that there are exactlyD + 1− k ways
to place chordk. For type II apply mirroring of the LCD.

This way we obtain with the observation, that LCD’s without type III are generating, a simple proof of the boundD!.

Let
ΞD :=

{
regular LCD’s of degD

}
ξD := #ΞD

We would like to calculate the numbersξD of regular LCD’s of degreeD and compare them with Ng’s bound
(D − 2)!/2 [Ng].

Unfortunately the enumeration of regular LCD’s is much harder. Let us start.

We will consider a certain map
mD : ΞD −→ ΞD−1 .

The image of a regular LCDL with D chords undermD is obtained as follows:

1. Remove the first chord (i. e., the one, whose left basepoint is the leftmost one).

2. The resulting LCD might not be regular. But if not it has exactly one type II interval. Note, that arcs with
left basepoint between the left basepoint of chord 2 and the right basepoint of chord 1 are right-outgoing with
respect to chord 2, so removing chord 1 we do not get a new type I interval.

3. Now mark all the chords whose left basepoints are between the left basepoint of chord 1 and the first right
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basepoint of a chord on the right of the right basepoint of chord 1. E. g., in an LCD beginning like this

1
2

the marked chords will be 2 – 6.

4. Separate the marked chords into a left and a right part depending on whether their left basepoint was left or
right from the right basepoint of chord 1, e. g. in the above picture the left part would consist of chords 2 –
4, and the right one – of chords 5 and 6. Within both parts we have the property, that each two of the chords
intersect, i. e. their right basepoints lie in the same order as the left ones.

5. Now apply a shuffle permutation16 on the left basepoints of both parts, so thatall marked chords mutually
intersect. In our example this will be the(3, 2)-shuffle34512. The resulting LCD of degreeD − 1 is regular.
This is by definitionmD(L).

Consider

ΞD,k :=
{

regular LCD’s of degD with len( chord 1) = k
}

ξD,k := #ΞD,k

We can construct all preimages undermD+1 of L ∈ ΞD,k by reshuffling the left basepoints of the leftmostk chords
with an(α, β)-shuffle (for someα+β = k) and putting a new(D+1)st chord, which becomes in the resulting LCD
chord number 1, of lengthα+ 1.

Now comes the unpleasant detail. Not for all LCD’s inΞD,k and all(α, β)-shuffles this procedure gives a regular
LCD. The problem is that the reshuffling can produce type I intervals, if both the left and right basepoints of two
marked arcs were neighbored inL. In this case it will be forbidden to permute the left basepoint of the lefter arc to
the right of the left basepoint of its right neighbor (see figure 4).

Figure 4. A forbidden move.

− −

Define between the firstk arcs inL a (de)composition (a representation as sum of ordered numbers) by setting chords
l andl + 1 to belong to the same part iff their right basepoints are also neighbored, i. e. if no right basepoints are
neighbored we get the decomposition ofk into k parts of length1, whereas in the case that all right basepoints are
neighbored we get the decomposition ofk into 1 single part of lengthk. We will call this decomposition theinduced
(de)compositionof L.

Definition 5.4 A compositionP ′ is rougherthan P if it can be obtained fromP by a sequence of additions of
neighbored parts ofP . Conversely,P ′ is finer thanP . E. g., the composition(1, 2, 1, 1, 1, 3, 2, 1) of 12 is finer than
(1, 2 + 1, 1, 1 + 3 + 2, 1) = (1, 3, 1, 6, 1). The length len(P ) of a compositionP is the number of numbers appeaing
in it.

For a fixed decompositionP of k the number̂ξD,k,l of diagrams inΞD,k whose induced decomposition is exactly
P , depends only onl = len(P ) and can be computed using the combinatorial inclusion-exclusion principle and the
simple idea, that each diagramT in ΞD,k with induced decomposition rougher than one fixed decompositionP ′ of
k of length l bijectively corresponds to a diagram inΞD+l−k,l by contracting chords inT belonging to the same
component of the decomposition to one (see figure 5).

16For the definition and algebraic properties of shuffles see e. g. [St3, Lo, Re, BN].
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Figure 5. Contracting neighbored chords.
contract3

chords to 1︷ ︸︸ ︷ contract2

chords to 1︷︸︸︷
− − − −− −

−→

The result is

ξ̂D,k,l = 0 for l ≤ 0 or l > k

ξ̂D,k,l =
l−1∑
i=0

(
l − 1
i

)
(−1)iξD+l−k−i,l−i ,

whereD is the degree,k is the length of chord 1 andl is the length of the induced decomposition.

Now we determine the number of applicable shuffles for a fixedL ∈ ΞD,k. Note that to have a preimage ofL in
ΞD+1,k′ we must havek ≥ k′−1 (since the new to be installed chord 1 must intersect the previous chord 1). In each
such case we apply the inverse of a(k′− 1, k− k′ + 1)-shuffle on the firstk basepoints ofL. A (k′− 1, k− k′ + 1)-
shuffle corresponds to a coloring ofk chords byk − k′ + 1 black (to be reshuffled to the right) andk′ − 1 white (to
be reshuffled to the left) chords. The restriction is that within each component of the induced decomposition there
must be no black chord followed to the right by a white one. Since the number of LCD’s with induced composition
P depends only onp = len(P ), let us sum over all compositions of lengthp and compute the number

ηl,k,p := #




choices ofk out of a decompositionP of l
elements of lengthp, such that in each com-
ponent ofP all chosen elements are to the
left


 .

Note that inηl,k,p a fixed choice is counted sometimes multiple times for different decompositions!

Here is an example (where chords are replaced for simplicity by beads):

(l = 16, P = 3 + 4 + 5 + 2 + 2, p = 5, k = 10)

We see that such a picture can be described uniquely by the following procedure:

1. Choosel′ components out ofp, where we will have at least one white mark.

2. Build a composition ofk of lengthl′ with the white marks and a composition with zeros of the same length
(of some numberd) with the black marks appearing in thel′ chosen components.

3. Join the compositions of the white and black marks, i. e. add parts at the same position.

4. Complete the composition ofl by a composition ofl − k − d of l − l′ parts.

In the above example

• The composition ofk = 10 is 2 + 3 + 3 + 2,

• the choice ofl′ = 4 components out ofp = 5 is {1, 2, 3, 5},
• the composition with zeros ofd = 4 is 1 + 1 + 2 + 0,

• the composition ofl − k − d = 16− 10− 4 = 2 of lengthl− l′ = 5− 4 = 1 parts is2.

The numberPk,l of compositions ofk elements intol parts is

Pk,l =
(
k − 1
l − 1

)
.
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It makes sense to set
P0,0 := 1 and P0,· := 0 else .

The number of compositions with zeros ofk elements intol parts isPk+l,l.

So we get

ηl,k,p =
k∑

l′=0

l−k∑
d=0

Pk,l′ · Pd+l′,l′ · Pl−k−d,p−l′
(p
l′
)
.

Remark 5.1 Using some combinatorial formulas the expression for theηl,k,p’s can be a little bit simplified:

ηl,k,p =




Pl,p k = 0
p∑

l′=0

(k − 1
l′ − 1

)(l − k + l′ − 1
p− 1

)(p
l′
)

k > 0 .

With some effort one can find an alternative characterization of these numbers (which is unimprtant in our context).

ηl,k,p =

[(
l∑

n=1

1− xn+1

1− x yn

)p]
xk·yl

,

where[polynomial]monomialdenotes the coefficient of ‘monomial’ in ‘polynomial’, and we obtain

∞∑
l,k,p=0

ηl,k,p x
k yl zp = f(x, y, z) :=

1− x
1− x− z

(
y

1− y −
x2y

1− xy
) ,

i. e., the numbersηl,k,p appear as the TAYLOR coefficients off(x, y, z) at (0, 0, 0).

With the previous preparations we are ready to write down the recursive formula forξD,k

ξ1,1 = 1 ,

ξD,k =
D−1∑
l=k−1

l∑
p=1

ξ̂D−1,l,pηl,k−1,p . (5.1)

Finally, what we seek is

ξD =
D∑
k=1

ξD,k .

5.3 Connected regular LCD’s

With some more effort one can attack a further combinatorial task to give a way to compute the number ofconnected
regular LCD’s. By the facts recalled in section 1 this gives a bound for the primitive (additive) VI’s.

The first observation we make is the following: if in a regular LCD there is one connected component enclosing
another one, then the latter is attached at a type III interval to the first one.

So first we shall count regular LCD’s by their number of type III intervals. For the later calculation it will turn out
more useful to use thecharacteristics

χ(L) := # { type III intervals ofL } + 1

instead. So let

Ξ2
D,n :=

{
regular LCD’sL of degD with χ(L) = n

}
ξ2D,n := #Ξ2

D,n

Ξ2
D,k,n :=

{
regular LCD’sL of degD with

len( chord 1) = k andχ(L) = n

}
ξ2D,k,n := #Ξ2

D,k,n
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The counting ia analogous to that ofξD, ξD,k once one has noticed that the reattachment of chord 1 done in the
construction of the various preimages inΞD+1,k′ of a regular LCDL ∈ ΞD,k undermD+1 increases the number of
type III intervals of the LCD by1 unless in the casek′ − 1 = k.

Then the formulas forξ2D,k,n follow directly from those ofξD,k.

We obtain
ξ2D,k,n = 0 for k ≤ 0 or k > D or n < 0

and else

ξ2D,k,n =
D−1∑
l=k

l∑
p=1

ξ̂2D−1,l,p,n−1ηl,k−1,p + ξ2D−1,k−1,n ,

where

ξ̂2D,k,l,n = 0 for l ≤ 0 or l > k or n < 0, and else

ξ̂2D,k,l,n =
l−1∑
i=0

(l − 1
i

)
(−1)iξ2D+l−k−i,l−i,n

with ξ̂D,k,l,n being explained similarly tôξD,k,l.

In order to make the recursive computation start correctly, it makes sense to set forD = 0

ξ20,0,1 := 1 and

ξ20,k,n := 0 for (k, n) 6= (0, 1) .

Finally,

ξ2D,n =
D∑
k=0

ξ2D,k,n .

Now consider

ΛD,n,l :=
{

regular LCD’sL of degD with l conn. comp.
andχ(L) = n

}
λD,n,l := #ΛD,n,l

Let
λc
D,n := λD,n,1 .

For the calculation of these numbers we will proceed followingly. First we have

λD,n,1 = ξ2D,n −
D∑
l=2

λD,n,l .

For the non-connected case look at the following picture

C

︸ ︷︷ ︸
χ(C)−1

Choose the connected componentC of L containing chord 1. Then all remaining components are attached either to
the right ofC or at type III intervals withinC, i. e. we have exactlyχ(C) positions of attachment. From this we find
the following recursive formula

λD,n,l =
D−1∑
d′=1

min(d′,n)∑
n′=1

λc
d′,n′ ·

[
Pλ(x, y, z)n

′]
xD−d′yl−1zn−n′

for l > 1 (5.2)
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with

Pλ(x, y, z) :=
∞∑
D=0

∞∑
l=0

∞∑
n=0

λD,n,l · xD · yl · zn .

Hered′ andn′ are the degree and characteristics ofC. We use for this formula the observation that attaching (where
ever!) an LCD withχ = k the total number of type III intervals is augumented exactly byk. There is however one
important exception – the attachment of the empty LCD does not augument this number. So it makes sense to set for
D = 0

λ0,0,0 := 1 and λ0,n,l := 0 for (n, l) 6= (0, 0)

in order for the recursive formula (5.2) to work correctly.

The number of connected regular LCD’s of degreeD is then

λc
D =

D∑
n=0

λc
D,n .

5.4 Numerical and asymptotical results

After all the considerations it is now possible to calculateξD. Let us compare it with the bound(D− 2)!/2 obtained
by Ng [Ng] forD ≤ 20 (see table 1)17.

We see thatξD does not grow as fast as(D − 2)!/2 and our bound is better forD ≥ 18. It appears obvious that this
is true in general. At the end of this section we will give a (non-straight forward) proof for this fact.

Using the boundλc
D for the primitive VI’s, we get a sharper boundβD for A andβrD for Ar thanξD by summing

over partitions of the degree of products of variousλc
D ’s and omitting symmetry in factors of equal degree18. But

the situation with asymptotical behaviour is even more complicated. However,

Remark 5.2 It is very likely that
λc
D

ξD
−−−−−→
D →∞

1
e
,

wheree is the EULER number2.71828 . . . (although a proof appears very messy). This limit appears in some other
enumeration problems of chord diagrams, see [St2, St9]. (So, I don’t expect a big qualitative improvement of the
bound in this way.)

Remark 5.3 The computation ofλc
D is the hardest one (λc

30 took≈ 30 h total time with C++ on a Sparc10). For
D ≤ 14 the bound is still worse than Ng’s, but forD = 15 we already have an improvement in both the framed and
non-framed case.

The following table 1 compares our numbers with Ng’s boundχD for primitive VI in [Ng, theorem 4.2] and the
resulting boundsαD andαrD forA andAr.
Here is a further challenge:

Problem. IsA generated by diagrams which do not posess any chord exclosing another one?

Note that for such diagrams the recursion formula (5.1) would change to

ξ̄D,k =
∑
l≥k−1

ξ̄D−1,l

(since there is only one way to (re)shuffle, i. e. the identity), and one easily shows by induction

ξ̄D,k ≤
(

2D − k
D

)
17A MATHEMATICA TM package with all formulas will soon be available on my web page.
18This relation is extensively treated in [St10].
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and hence

ξ̄D ≤
(

2D + 1
D + 1

)
< 22D+1 ,

i. e., we would have anexponentialbound.

Conversely, it is possible to show thatξD grows stronger than any exponential.

Theorem 5.5 We have
ξD ≥ B(D) ,

where theB(D)’s are theBELL numbers [Ri], satisfying the recursive formula

B(0) = 1 and B(d) :=
d∑
k=1

(
d− 1
k − 1

)
B(d− k) .

It is possible to show using the recursive formula of the Bell numbers that they grow stronger than any exponential.
E. g., since

B(d) ≥ (d− 1)B(d− 2)

we have
B(d) ≥ (d− 1)!! .

More generally one has asymptoticallyB(d) > (d!)1−ε for eachε > 0.

Theorem 5.5 follows from the following

Theorem 5.6 The Bell numberB(D) is the number of regular LCD’sL of degreeD with the following property:
Consider the sequenceL0 = L,L1, L2, . . . of LCD’s, whereLi+1 is obtained fromLi by removing its first chord and
all chords intersecting or enclosed by it. Then allLi are regular.

Not all regular LCD’s have this property. The most simple example of an LCD without this property is

.

Proof. Denote byd the degree of an LCD with the above property. Ifk is the number of marked chords then the
right endpoints of the lastk − 1 marked chords can be attached at arbitrary positions in the remaining regular LCD
of degreed − k except at intervals whose left end is a right basepoint of one of thed − k non-marked chords. So
there ared − k + 1 positions of attachment (the position of the right end of chord 1 is determined – left from all
non-marked chords). Since the order of the right basepoints of the marked chords is equal to the order of their left
basepoints and at an interval you can put more than one new right basepoint, we have to count ordered choices with
repetitions ofk − 1 out ofd− k + 1 elements. Since this number is(

(d− k + 1) + (k − 1)− 1
k − 1

)
=
(
d− 1
k − 1

)
,

in this way we obtain exactly the recursion formula for the Bell numbers. 2

Here is an upper bound forξD which shows the improvement we have achieved.

Theorem 5.7 ξD grows more slowly thanD!/any polynomial inD.

Proof. Fix a k with 1 ≤ k ≤ D and consider a regular LCDL of degreeD. This means especially thatL has no
type I interval at all and no type II intervals among the firstk intervals (i. e., between thek + 1 leftmost basepoints).
Make the following case distinction forL.

Case 1.Among the firstk + 1 chords there exist two consecutive chords with neighbored right basepoints. The
number of such LCD’sL is bounded by the contraction described in section 5.2 (and explained in figure 5) by19

kξD−1.

19Here is the only time we use the non-existence ofany type II intervals inL; else we will use their non-existence only among the firstk
intervals.
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Case 2.There exist two chords which have both their left and right basepoints among the firstk + 1. Then chord1
is one of these chords. Since, applyingmD, we shuffle maximallyk basepoints and the number of shuffles withk
elements is2k, we obtain each LCD inΞD−1 maximally2k times, i. e., the number of such LCD’sL is bounded by
2kξD−1.

Case 3.There exists no chord with both left and right basepoint among the firstk+ 1 (i. e., all are left and all chords
mutually intersect). In this case the symmetric groupSk+1 acts freely on the firstk + 1 basepoints and all LCD’s
obtained have (by exclusion of case 1) no type I intervals. Since the number of LCD’s with no type I isD!, the
number of these LCD’sL is bounded byD!/(k + 1)!.

Case 4.There exists exactly one chord with right basepoint among the firstk + 1. Then this chord has to be chord
1. The right basepoint of chord 1 separates the left basepoint of thek − 1 remaining chords starting at the firstk+ 1
basepoints into two parts, where within each part all chords mutually intersect. Now apply the argument in case 3
forD − 1 instead ofD and each of the two parts. For len( chord 1) = l you get the bound

(D − 1)!
(l − 1)! (k − l)! .

Summing overl you get
(D − 1)!
(k − 1)!

2k−1

as a bound for this case.

Putting it all together, we find that

ξD ≤ (k + 2k) ξD−1 +
D!
k!
(
2k−1 + 1

)
(5.3)

for each1 ≤ k ≤ D.

Fix some polynomialP (D) and assume that we find arbitrary lardeD with

ξD ≥ D!
P (D)

(5.4)

ChoosekD minimal withkD! > 2(2kD−1 + 1)P (D). ThiskD grows very slowly (more slowly thanlogC D for any
C > 1). Then

ξD ≤ (kD + 2kD ) ξD−1 +
1
2
ξD

and
ξD ≤ 2(kD + 2kD ) ξD−1 . (5.5)

Note, that the expressionkD + 2kD grows less fast than any positive power ofD. Furthermore, we donot use (5.4)
forD − 1 instead ofD. This will be crucial later.

To finish the proof we consider two cases.

Case 1.For almost allD we have (5.4). By (5.5) you get for sufficiently largeD, say,

ξD
ξD−1

<
D

2
,

which gives an asymptotical contradiction.

Case 2.There exists a sequence{Di} such that

ξDi ≤
Di!
P (Di)

.

W.l.o.g. you can choose{Di} so that additionally

ξDi+1 ≥ (Di + 1)!
P (Di + 1)

(if this is not possible, you are done). Then by (5.5) you get once again for sufficiently
largei

ξDi+1 ≤ 2
(
kDi+1 + 2kDi+1

)
ξDi .
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But by the choice of{Di} you get on the other hand for eachε > 0

ξDi+1

ξDi

> (Di + 1)(1− ε)

for sufficiently largei and in this way a contradiction. 2

Remark 5.4 The maximal result we can achieve with our proof is a little better. Fix someε′ > 0. Then

ξD ≤ δD := 2
D!
kD!

(
2kD−1 + 1

)
with

kD = blog2D − ε− 1c
The proof works as above using

δD+1

(D + 1) δD
−−−−−→
D →∞ 1

and
2
(
kD + 2kD

)
< D(1− ε′)

for someε′ > 0 and sufficiently highD.

5.5 A further improvement

It appears that our asymptotical result is very weak. The numerical computation suggests as an estimate something
like D!/1.5D. I did not manage to obtain this, but achieved a qualitatively similar result.

Theorem 5.8 ξD is bounded byD! over an exponential inD.

The basic idea for our further improvement is to considerreducedregular LCD’s.

Definition 5.9 An LCD is calledreducedif there is no pair of contractable chords (that is, intersecting chords with
both left and right basepoints neighbored).

− −

Recall the STIRLING formula
n! �

√
2πn

(n
e

)n
n→∞ ,

basically saying that asymptoticallyn! � (ne )n modulo a polynomial inn.

Definition 5.10 Define thepathof an LCDL of degreeD as the sequence of pairs{(i, li)}Di=1, whereli is the length
of chord1 in Li, andLi is obtained fromL by removing chords1, . . . , D − i.

If L is regular we have by the previous discussionli+1 ≤ li + 1. Call

α(L) := # { i : li+1 = li + 1 }
theascendof L.

Recall the mapmD, which mapped regular LCD’s of degreeD to those of degreeD − 1 by removing chord1 and
reshuffling the leftmost left basepoints. We carefully studied the number of applicable shuffles for each image under
mD. If we simply takeall possible shuffles, we obtain the inequality

ξD,k ≤
∑
l≥k−1

(
l

k − 1

)
ξD−1,l . (5.6)
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Applied this way, this does not give much because it is an expression of forgetting the type II condition, and therefore
we getD! as bound. In fact, the numbers satisfying the equality in (5.6) are the STIRLING numbers (see [Ri]).

So we will use this formula with a certain constraint.

Proof of theorem 5.8. Fix some0 ≤ δ ≤ 1 and distinguish two cases.

Case 1.Consider first LCD’sL with α(L) < δD. Letk = len( chord 1) in L. Call ξδD,k the number of such LCD’s.
Expanding (5.6) recursively we obtain

ξδD,k ≤
∑

paths{(i, ki)}D
i=1 of

L with α(L) < δD

D∏
j=2

(
kj−1

kj − 1

)
.

We always havek1 = 1 andkD = k.

Expanding the binomial coefficients we obtain for the above product

D∏
j=2

(kj−1)! kj
kj ! (kj−1 − kj + 1)!

=
1
k!

D∏
j=2

kj
(kj−1 − kj + 1)!

. (5.7)

Setk′j := kj−1 − kj + 1 for j = 2, . . . , n. We havek′j ≥ 0 with #
{
j : k′j = 0

}
= α(L) < δD and

kj = j −
j∑
l=2

k′l ≥ 0 ∀j = 2, . . . , D (5.8)

So the term in (5.7) is
D∏
j=2

j −∑j
l=2 k

′
l

k′j !
. (5.9)

Since we have that more than(1 − δ)D of thek′j are at least equal to1, you see that no numerators in (5.9) can be
greater thanδD, while the firstδD ones are less than or equal to their indexing number. So as an estimate of the
product of numerators in (5.9) we obtain20

(δD)(1−δ)D (δD)!

which is by Stirling formula less than
(δD)D e−δD P (D)

for a certain polynomialP in D.

As an estimate for the r.h.s. of (5.9) we obtain

D!
k!

∑
(k′i)

D∏
l=2

1
k′l!
· (δD)D

D! eδD
P (D) ,

where the summation is over all(k′i) with k′i ≥ 0,
∑
k′i = D − k and#

{
j : k′j = 0

}
= α(L). Noticing that

D∑
l=2

k′l = D − k

(which is (5.8) forj = D) and 1
k′l!

=
[
ex
]
k′l

we have

∑
(k′i)

D∏
l=2

1
k′l!
≤
∑
(l′i)

D∏
l=2

1
l′l!

=
[
(ex)D

]
D−k =

DD−k

(D − k)! .

20The reader might forgive us that we write down factorials of non-(necessarily) integral numbers, but as this can be corrected by a polynomial(ly
bounded) term inD and polynomials will not matter to us, this does not spoil anything.
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where the summation in the second term is over all(l′i) with l′i ≥ 0 and
∑
l′i = D − k. So (5.9) is less than(

D
k

)
DD−k (δD)D

D! eδD
P (D) .

We obtain a bound forξδD by summing overk = 1, . . . , D.

ξδD ≤ (D + 1)D
(δD)D

D! eδD
P (D) . (5.10)

The r.h.s. is by Stirling formula less than or equal to

δD e(2−δ)DD!P ′(D)

for a certain polynomialP ′ in D.

Case 2.Forα(L) > δD consider first only reduced regular LCD’s with pathl. Let
◦
ξ
δ̄

D be this number.

By artificially putting to the left of such a LCD a chord of length 1 we obtain a reduced regular LCD of degreeD+1
with len( chord 1) = 1 and with a path with ascend≥ δD. The ascend of this LCD is equal to itstotal descend∑

i : ki+1≤ki

(ki − ki+1) ≥ δD .

Each descend ofk′i − 1 means letting a segment ofk′i left neighbored basepoints to the right of the right basepoint
of the newly placed chord (which is preserved by the addition of all remaining chords) by applyingm−1

i . Let the
symmetric groups of corresponding order act on such segments simultaneously. The orbits are free and, since we
consider reduced LCD’s, all LCD’s in the orbits have no type I. As we noted, the number of LCD’s with no type I is
D!. The lowest cardinality of the direct product of symmetric groups is in the case where we have 1-descends only,
which is≥ 2δD. So the total number of regular reduced LCD’sL with α(L) ≥ δD is

◦
ξ
δ̄

D ≤
D!
2δD

.

Combining both cases we find that for reduced regular LCD’s their number
◦
ξD is

◦
ξD ≤ P ′′(D)

(
δD e(2−δ)DD! +

D!
2δD

)

≤ P ′′(D)
D!

λ(δ)D
, λ(δ) :=

1
max(δe2−δ, 1

2δ )
.

Now chooseδ so thatδ < 1
e2 and you are done for reduced LCD’s.

The best choice ofδ would be one for which

δe2−δ =
1
2δ
.

Call δ0 this number andλ0 := λ(δ0).

However, our choice ofδ will be somewhat worse in order to remove all polynomial mess inD by the exponential
correction.

The result for all regular LCD’s is now easy. We have

ξD =
D−1∑
i=0

(
D − 1
i

)
◦
ξD−i

≤ P (D) ·
∑
i

λi0
i !

D!
λD0

≤ P (D) · eλ0
D!
λD0

.

Again, kill the polynomial by perturbingλ0. 2

Numerically we haveδ0 ≈ 0.141334, whereλ0 = 2δ0 ≈ 1.10292. So we have
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Theorem 5.11 The numberξD (and therefore the number of linearly independent Vassiliev invariants of orderD) is
asymptotically bounded by

ξD <
D!

1.1D
.

5.6 The segment length inequality

After having estabilished our result it is perhaps worth saying a word about some possibilities left open in the proof
of our bound.

The observation made in case 2 of the proof can be generalized somewhat.

Definition 5.12 Call a segmentof an LCD a maximal piece of the solid line containing left basepoints only and its
length the number of such basepoints.

Then by the argument above we have the

Theorem 5.13 (Segment length inequality)∑
reduced reg.

LCD’sL of degD

∏
segments ofL

(
length of segment

)
! ≤ D!

Basically our proof was that we bounded theL’s with ≤ δD factors equal to one in the product and used that the rest
appears with multiplicity at least2δD in the sum. However, many reduced regular LCD’s appear with much higher
factors and if one were able to control their number (which probably requires much labour) this would improve the
base in the denominator we obtain in case 2 (and the total one for all regular LCD’s). One might even hope that one
can achieveeachbase in case 2 (and therefore as well for the total bound). But, to put an end to our dreams, recall
that we will never be able to prove(D!)1−ε (for someε > 0) this way!

6 The dimension of a graded commutative algebra and
asymptotics of Vassiliev invariants

Here we discuss the relation between the dimension of a symmetric algebra (with the induced grading) over a graded
vector space (latter called henceforth the primitive part of the algebra), and apply it to deduce a lower bound for the
number of all Vassiliev invariants.

One of the combinatorial aspects of a commutative graded algebra (CGA)A is the relation between the asymptotical
behaviour of its gradeded piecesAD depending on their primitive partsPD (d andD will denote the degree). We
will make two assumptions on such an algebra:

1) deg(a · b) = deg(a) + deg(b) ∀a, b ∈ A,

2) prime factorization is unique inA.

Consider the commutative graded Hopf algebraA = A of chord diagrams.

Recently, Chmutov and Duzhin [CD2] obtained the following result forA.

Theorem 6.1 The dimension of primitive elements inAD has the asymptotical lower boundDlog4+ε D for each
ε > 0.

As it was not explained by the authors which base of the logarithm we can choose, we should do this here.


