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Therefore
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Something more interesting happens in the casethe number of chord diagrams with chords of length 1. Looking
at (3.9) we see that we can write the ratio betwggrand thek™ term in the sum on the r.h.s.
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whereP (D) is a polynomial fraction of degre®in D bounded above by and converging to 1 foD — oco. This
means that _
b !
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wheree is the Euler numbe2.71828 .. ., and together with lemma 3.11 we get the same result for chord diagrams:
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Lemma 3.12 Asymptotically1 of all chord diagrams and LCD’s have no isolated chord (or isolated chord of length
€
1).

In fact, it is an easy exercise to convince oneself that there are “very few” degenerate chord diagrams with no chord
of length 1, that is

wD—wD — 0.
oD D — oo

Unfortunately, computing more carefully the difference
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we see that the dominating term is
1

22D — 1)’
so we cannot hope for a fast convergence.
Problem. At present | don’t know the asymptotics of)".

However, although unimportant for our context, one can obtain the following alternative expression for it.
del 5
A" = o (L 2) ) (0).

To see this, look at the nomalized generating serieg of

R

and prove thal5Wz is a solution of the differential equation

af'(z) = af(z) +22°f(z),  f(0)=1.

4 Connected and tree-connected chord diagrams

Using the methods of section 3, in this section we discuss the enumeration of two more classes of chord diagrams.
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4.1 Connected CD’s and LCD’s

Definition 4.1 A CD (or LCD ) is calledconnectedif the graph remaining after removing the solid circle line is
connected, or equivalently, the intersection graph of the dashed chords is connected.
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Recall the enumeration of degenerate chord diagrar§3.ilfhe present enumeration problem of

W :=# { non-connected CD’s ofdefy } , &'5:=+# { connected CD’s of de® }

is very similar to this?.

Start with the linear case and look for a formula for

=# { non-connected LCD’s of del } , +"7$:=+ { connected LCD’s of ded } .

Non-connected LCD’s have\drtual separating arc (i. e., they can be extended by such an arc), which means that
the arc is isolated and the enclosed and outside pieces of the LCD (with respect to this arc) are both non-empty.

Apply the inclusion-exclusion principle over theinimal virtual separating arcs (i. e., such ones which enclose
connected.CD’s). Note, that such arcs lie beside each other.

The recursive formula you obtain fgr is
=1

and
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Herei is the number of choice of minimal virtual separating chojds, . ., j; are the degrees of the LCD’s enclosed
by thei chords, and: is the degree of the remaining string link diagram. (Reg3Jlthat string link diagrams arise
from LCD’s by cutting the solid line.)

Note, that the condition of the non-emptyness of the enclosing string link diagram is necessary only in the case of 1
virtual separating chord.

The number of non-connected LCD’s is then
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Now look at the numbeﬁygfc of GLCD’s of degreed and cycl.c > 2, producing (in the sense describedsB)
non-connected chord diagrams.

L2 Al further references t@3 in this section should be understood as references to this enumeration.
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Look at the GLCD producing such a chord diagram obtained by cutting the solid line just before one of the endpoints
of such an ar®®. Such a GLCD can be incorporated into the following pattern (where the arc drawn is the virtual
one):

——m=s

whereB is arbitrary and4 has onlyo-colored chords'.

So we need to enumerate such GLCD’s as above and the ones resulting from them by the cyclic group action
described irg3.

Let us apply as in the case of degenerate chord diagrams the inclusion-exclusion principle on minimal virtual sepa-
rating chords in the GLCD. As in the case§B, minimal virtual separating chords can have wirbual colorings —

0 (as in the above picture) ard- 1 (if the action of the cyclic group has reversed the endpoint order; in this case
such a chord contains outside of itself a connected GLCD with chords colofelf bgth endpoints are on the same

side of the minimal virtual separating chord anddoy 1 otherwise).

Let us recompute the numbeifs, and¢! ; of §3 for our new case. The formulas now look this way:

k
f,d = Z H QLQJC 372Eej,k+1 (4.1)

(e1,..e1)>0 j=1

[(Plzm(xz’) _ 1)kp/\:’k+1(x)hd for 0 <k <d

k4 = 0fork>dork<0

and with

o0
Pfl&*(x) = Z fsdxd
d=0

Fyo= D (e—1)g g (4.2)
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The main differences to the previous case are

1. LCD's enclosed by virtual separating chordsaoa-emptysoe; > 0in (4.1) and analogously > 0 in (4.2).

2. You get an index translation for the string link diagram in (4.1), since the chordsraral, i. e. they do not
really belong to the GLCD.

3. Inthe case otf_f!d you must replace the facto(Ze + 1)” in §3 by “(2e — 1)”. The reason is the following: If
you allow a minimal virtual separating chord of color 1 to contain all basepoints of the LCD outside of it
ononeside only, then you can also draw a minimal virtual separating chord of 8@oyund this component.

This way you obtain diagrams with positions of minimal virtual separating chords which are not incorporated
in either countsjgd (which counts pictures like= .~ o) andgid (which counts pictures like -~ ).

13«hefore” we mean with respect to the orientation of the solid line.

M This is clear in the case where the length of the separating arc is shorter than the degree of the GLCD. In the other case note that the separating
arc intersects the one from the next cycle, and smoothing out this intersection we obtain a new separating arc whose length is exactly the degree
of the GLCD, so we get back to the picture above witlequal to the empty GLCD.
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You can avoid this by declaring that you draw a virtual separating chord of celor only if the component
outside of this chord wouldnclosét, i. e., has basepoints diothsides of the virtual separating chord (else
you draw a virtual separating chord of colbaround the component).

4. Note, that the non-emptyness of the enclosing string link diagram is not required here.

The rest of the formulas then remain the same as for degenerate chord diagrams.

k _ ¢k ek
c,d — Se,d + gc,d
d

k=1 -k
Nea =, (1) 7'k,

k=1

Then we have

Y = 1/12?2 for 2|d
Faga = 0for 2 fd
Ve = Ne,afor ¢ > 2,

and finally

1 ~
wnDC: E . %% @(C) ’ ,YSCD/QC.

4.2 Tree—connected CD’s and LCD’s

Definition 4.2 A chord diagram (or LCD ) of degre® is calledtree—connectedf it is connected and there are
exactlyD — 1 chord intersections, i. e., the intersection graph of the dashed chords is a tree.
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This definition appears in a somewhat different form in [N3&®] and [Be,§2]. See [BG] for a different application
of the labelled intersection graph of a LCD.

Remark 4.1 Don't confuse tree—connected chord diagrams with ike-€hord diagrams (which are the ones with
no chord intersections, i. e. only with isolated chords, and are call¢gl‘ffully degenerate”).

Let

W' = #{tree—connected CD's of de€g } .

Here the difference to the counting in section 3 is more substantial than in the previous subsection.
Start with the linear case. To enumerate tree—connected LCD'’s

)% = #{tree—connected LCD's of de@ } ,
use the following idea.

Start with the left-most chord of a tree—connected LCD and walk along the chord (in the direction given by the
orientation of the solid line) until you intersect a second chord, then walk (in the same direction) along this chord
until you get to a third chord, and repeat this way until you walk to the end of the last chord and land back on the
solid line. The chords (segments of which) you have passed, form a sub&Liich looks like this

TN TNV T TN T TN T TS (4-3)
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Let us denote for a moment its degreedoyAll the remaining chords are associateded aRthe 2 inner basepoints
of this sub—LCD in such a way that you obtain a (non-empty) tree-connected LCD of lower degree for the fixed
basepoint? by applying the following procedure:

1. Call a chord associated @ if it is intersecting the chord ending adf and is enclosed by the chord in (4.3),
enclosingP, or if it is intersecting another chord associatedto

2. For each of th@d — 2 inner basepoint# build the diagram made up of all chords associate# and the
chord ending orP, putting latter’'s rightmost basepoint to the left, if the basepfintas a left basepoint of a
chord in (4.3).

Here is an example:
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Conversely, from any collection @d — 2 non-empty tree-connected LCD’s you can reconstruct a tree-conn. LCD
by inverting this procedure. The recursive formulafd is then immediate:

e _ 1
D
o 2i—2
o = }:[g%¢w_m LM%QMrD>O, (4.4)
=1
with
Pje(x) := Z et
=0

Remark 4.2 LEROUX and MiLouD! [LMi, (5.16)] and also uLucQ and FENAUD [DP, theorem 2.2] found the
explicite formula

- 1 3D -3
tc __
wD_—D—l(D—2>’ D>2.
In fact, one can derive from (4.4) that
Pftc(x) - 1
g(z) = ==
x

is the solution of the equation (5.15) of [LMi]
g(x) = 1+zg°(x).

Let us now consider cyclicity > 2 and count GLCD'’s producing tree—connected CD’s. Let us adopt the convention
that we separate the solid line of a chord diagram &oequallylong arcs and draw chords alwayssasightlines.

First look at the tree—connected chord diagram (drawn this way) coming from the GLCD. Temporarily remove all
chords connecting opposite basepoints (iself-loop chords Then the center of the circle belongs to a component
of the complement of the chord diagram.

If this component is not bounded by any piece of the solid line then we have an intersection loop of chords and our
chord diagram is not tree-connected.

If there is such a piece, then there are at leasttthem and the chord diagram hasc components. In order for

the chord diagram to be connected we must connect all components by reinstalling the self-loop chords. So we need
at least 1 self-loop chord. On the other hand there are at most two self-loop chords (since three self-loop chords
produce an intersection cycle among themselves).

We have two cases.

Case 1.0ne self-loop_7 . . Cyclicity must be2 (1 self-loop chord) od (2 self-loop chords). Degree must bed.
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In this case look at the GLCD produced by cutting the chord diagram at
a position which you choose to lie on a piece of the solid line bounding
the component of the circle center created after removing the self-loop
chords (see example).

There is a bijection between such GLCD'’s and tree—connected LCD’s by
replacing the self-loop by a chord whose left end becomes the leftmost
basepoint and whose right end replaces the previous position of the

cutting point
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The orbits of the cyclic group action on these GLCD's are free (e. g., since‘theappears always at different
positions if you enumerate all basepoints from left to right), i. e., wei@g}ﬂw GLCD’s.

Case 2.Two _7 . Cyclicity must be2. Degree iven

By the procedure of case 1 you obtain a GLCD looking like this:
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If you transform the left self-loop into a chord ending on the left—-most position and the right self-loop into a chord
ending on the right—-most position, you get a bijection to diagrams obtained by multiplication of two tree—connected
LCD's. E. g., the diagram corresponding to (4.5) is

- -

- ~c—~ -~z -7~
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The number of such diagrams is
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Now let the cyclic groufZ, act on such diagrams and note that each GLCD obtained in this way is obtained always
in exactly two ways.

e If first and second component in (4.5) are equal, the actidfydias periodi/2.

o Iffirst and second componentin (4.5) are distiiZt,acts freely, but the orbit is equal to the one of the diagram
obtained from (4.5) by swapping the components.

In full completeness, we obtain the following valuesiéjjrC of in our case (compare wit§B.7).

Vi1 = 1[)};/2 for 2|d
5, =0 for2 fd
d /2
Vo = 5 > .
e=1

! 0 (1 9 2

~tc

Vi =d- 1/_)?(:”1)/2 for 2 fd

~tc

Va4 =d- Tz)zcdﬂ)/z for 2 fd
§,=0  for 2/d
Yi.=0  else
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Finally, as always by BRNSIDE'S lemma,

1 -
wh = 5D Z p(c) "Y;cp/c,c-
c|2D

4.3 Some computations

With the previous formulas one can compute the beginning of the various integer sequencés dheneare the
first 10 values of each one.

D [1[2]3] 4[] 5[] 6] 7] 8] 9| 10 |
Sl 1[1][L1] 2] 7| 25| 108]| 492| 2431 12371
Wl o|1]3]12|74]|647]6,961| 89,739| 1,337,152 22,609,111
o | 1|1]|2]| 6|31]|255|2788| 37,333| 578,799| 10,134,071

Remark 4.3 By similar arguments as i§3 one can show that

—nc
“p 2
oD D — oo 6.

This was first proven for the linear case byesN and EVERETT [SE], see also [S, p. 362].

Remark 4.4 The sequence of tree—connected chord diagrams was previously known. AccordiraptoedSl] it
appeared in an enumeration of planar alcohol molecules [LMi] (which correspond to tree—connected chord diagrams
by putting on each chord crossing a 'C’ and on each chord basepoint an 'H’ atom and forgetting the solid line).
Leroux and Miloudi used some more general and more elegantAtheory arguments. Our approach is however
geometrically more understandable.

5 Enumeration of chord diagrams and an upper bound for Vassiliev in-
variants

In this section, we treat an enumeration problem of chord diagrams, which is shown to yield an upper bound for
the dimension of the space of Vassiliev invariants for knots. We give an asymptotic estimate for this bound. More
precisely, we prove the upper boufd/(any given polynomial inD) for bothGp. A andGp A" (whereA and A"

are the graded algebras of chord diagrams introducgt)iand later improve it td!/1.1°. As an aside, we present

a trivial proof for the boundD!.

In the next section we will discuss further results on the dimensio. of

5.1 Factoring out 4T relations

There are three types of mutual positions of hon-intersecting chords in the LCD’s with neighboring basepoints.
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type | type Il type llI

Itis clear that one can resolve ofiieedtype | and Il intervals using the 4T-relation. But this also works waitlsuch
intervals. This means, we have

15 A MATHEMATICA ™ package with all formulas is available on my WWW page.



