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Therefore ∑
c|2D, c≥2

ϕ(c) γ2D/c,c

γ2D,1
≤
(
2 +
√

2
)D (2D − 1)(2D

D

)⌊D
2

⌋
!

−−−−−→
D →∞ 0 2

Something more interesting happens in the caseω1
D, the number of chord diagrams with chords of length 1. Looking

at (3.9) we see that we can write the ratio betweenλD and thekth term in the sum on the r.h.s.

λD−k,k+1 + λD−k,k
λD

=
1
k!
P (D) ,

whereP (D) is a polynomial fraction of degree0 in D bounded above by1 and converging to 1 forD → ∞. This
means that

ψ̄1
D

λD
−−−−−→
D →∞

1
e
,

wheree is the Euler number2.71828 . . . , and together with lemma 3.11 we get the same result for chord diagrams:

ω̄1
D

λD
−−−−−→
D →∞

1
e
.

Lemma 3.12 Asymptotically
1
e

of all chord diagrams and LCD’s have no isolated chord (or isolated chord of length

1).

In fact, it is an easy exercise to convince oneself that there are “very few” degenerate chord diagrams with no chord
of length 1, that is

ωD − ω1
D

σD
−−−−−→
D →∞ 0 .

Unfortunately, computing more carefully the difference

1
e
− ψ̄1

D

λD

we see that the dominating term is
1

2(2D − 1)
,

so we cannot hope for a fast convergence.

Problem. At present I don’t know the asymptotics ofσsym
D .

However, although unimportant for our context, one can obtain the following alternative expression for it.

σ
sym
D =

dD−1

dxD−1

(
(1 + x) ex+x

2
)
(0) .

To see this, look at the nomalized generating series ofγ∗,2

P̃γ∗,2(x) :=
∞∑
k=0

γk,2
k!

xk

and prove that̃Pγ∗,2 is a solution of the differential equation

xf ′(x) = xf(x) + 2x2f(x), f(0) = 1 .

4 Connected and tree-connected chord diagrams

Using the methods of section 3, in this section we discuss the enumeration of two more classes of chord diagrams.
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4.1 Connected CD’s and LCD’s

Definition 4.1 A CD ( or LCD ) is calledconnected, if the graph remaining after removing the solid circle line is
connected, or equivalently, the intersection graph of the dashed chords is connected.

Recall the enumeration of degenerate chord diagrams in§3. The present enumeration problem of

ωnc
D :=# { non-connected CD’s of degD } , ω̄nc

D := # { connected CD’s of degD }

is very similar to this12.

Start with the linear case and look for a formula for

ψnc
D :=# { non-connected LCD’s of degD } , ψ̄nc

D := # { connected LCD’s of degD } .

Non-connected LCD’s have avirtual separating arc (i. e., they can be extended by such an arc), which means that
the arc is isolated and the enclosed and outside pieces of the LCD (with respect to this arc) are both non-empty.

Apply the inclusion-exclusion principle over theminimal virtual separating arcs (i. e., such ones which enclose
connectedLCD’s). Note, that such arcs lie beside each other.

The recursive formula you obtain for̄ψnc
D is

ψ̄nc
0 = 1

and

ψ̄nc
D =

D∑
i=0

(−1)i
∑

j1, . . . , ji, k

ji > 0

k ≥ 0, k > 0 for i = 1
P
ji + k = D

λk,i+1

i∏
l=1

ψ̄nc
jl

=
D∑
i=0

(−1)i
[
(Pψ̄nc(x) − 1)i ·

(
Pλ∗,i+1(x)−

{
1 if i = 1
0 else

})]
xD

for D > 0 ,

using the characteristic series

Pψ̄nc(x) :=
∞∑
i=0

ψ̄nc
i x

i .

Herei is the number of choice of minimal virtual separating chords,j1, . . . , ji are the degrees of the LCD’s enclosed
by thei chords, andk is the degree of the remaining string link diagram. (Recall§3, that string link diagrams arise
from LCD’s by cutting the solid line.)

Note, that the condition of the non-emptyness of the enclosing string link diagram is necessary only in the case of 1
virtual separating chord.

The number of non-connected LCD’s is then

ψnc
D = λD − ψ̄nc

D .

Now look at the number̃γnc
d,c of GLCD’s of degreed and cycl.c ≥ 2, producing (in the sense described in§3)

non-connected chord diagrams.

12All further references to§3 in this section should be understood as references to this enumeration.
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Look at the GLCD producing such a chord diagram obtained by cutting the solid line just before one of the endpoints
of such an arc13. Such a GLCD can be incorporated into the following pattern (where the arc drawn is the virtual
one):

A B

,

whereB is arbitrary andA has only0-colored chords14.

So we need to enumerate such GLCD’s as above and the ones resulting from them by the cyclic group action
described in§3.

Let us apply as in the case of degenerate chord diagrams the inclusion-exclusion principle on minimal virtual sepa-
rating chords in the GLCD. As in the case in§3, minimal virtual separating chords can have twovirtual colorings –
0 (as in the above picture) andc − 1 (if the action of the cyclic group has reversed the endpoint order; in this case
such a chord contains outside of itself a connected GLCD with chords colored by0 if both endpoints are on the same
side of the minimal virtual separating chord and byc− 1 otherwise).

Let us recompute the numbersξkc,d andξ̄kc,d of §3 for our new case. The formulas now look this way:

ξkc,d =
∑

(e1,...,ek)>0

k∏
j=1

ψ̄nc
ej
· λcd−2

P
ej ,k+1 (4.1)

=
[
(Pψ̄nc(x2)− 1)

k
Pλc

∗,k+1
(x)
]
xd

for 0 ≤ k ≤ d
ξkc,d = 0 for k > d or k < 0

and with

Pξk
c,∗(x) :=

∞∑
d=0

ξkc,dx
d

ξ̄kc,d =
∑
e>0

(2e− 1) ψ̄nc
e · ξk−1

c,d−2e (4.2)

=
[(

∂

∂x

(
x · Pψ̄nc(x2)

)− 2Pψ̄nc(x2) + 1
)
· Pξk−1

c,∗
(x)
]
xd

.

The main differences to the previous case are

1. LCD’s enclosed by virtual separating chords arenon-empty, soej > 0 in (4.1) and analogouslye > 0 in (4.2).

2. You get an index translation for the string link diagram in (4.1), since the chords arevirtual, i. e. they do not
really belong to the GLCD.

3. In the case of̄ξkc,d you must replace the factor “(2e+ 1)” in §3 by “(2e− 1)”. The reason is the following: If
you allow a minimal virtual separating chord of colorc− 1 to contain all basepoints of the LCD outside of it
ononeside only, then you can also draw a minimal virtual separating chord of color0 around this component.

new v. s. chord

This way you obtain diagrams with positions of minimal virtual separating chords which are not incorporated
in either countsξkc,d (which counts pictures like ) andξ̄kc,d (which counts pictures like ).

13“before” we mean with respect to the orientation of the solid line.
14This is clear in the case where the length of the separating arc is shorter than the degree of the GLCD. In the other case note that the separating

arc intersects the one from the next cycle, and smoothing out this intersection we obtain a new separating arc whose length is exactly the degree
of the GLCD, so we get back to the picture above withB equal to the empty GLCD.
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You can avoid this by declaring that you draw a virtual separating chord of colorc − 1 only if the component
outside of this chord wouldencloseit, i. e., has basepoints onbothsides of the virtual separating chord (else
you draw a virtual separating chord of color0 around the component).

4. Note, that the non-emptyness of the enclosing string link diagram is not required here.

The rest of the formulas then remain the same as for degenerate chord diagrams.

ζkc,d = ξkc,d + ξ̄kc,d

ηc,d =
d∑

k=1

(−1)k−1
ζkc,d

Then we have

γ̃nc
d,1 = ψnc

d/2 for 2|d
γ̃nc
d,1 = 0 for 2 6 |d

γ̃nc
d,c = ηc,d for c ≥ 2 ,

and finally

ωnc
D =

1
2D
·
∑
c|2D

ϕ(c) · γ̃nc
2D/c,c .

4.2 Tree–connected CD’s and LCD’s

Definition 4.2 A chord diagram ( or LCD ) of degreeD is called tree–connected, if it is connected and there are
exactlyD − 1 chord intersections, i. e., the intersection graph of the dashed chords is a tree.

This definition appears in a somewhat different form in [NW,§3] and [Be,§2]. See [BG] for a different application
of the labelled intersection graph of a LCD.

Remark 4.1 Don’t confuse tree–connected chord diagrams with tree–like chord diagrams (which are the ones with
no chord intersections, i. e. only with isolated chords, and are called in§3 “fully degenerate”).

Let

ωtc
D := # { tree–connected CD’s of degD } .

Here the difference to the counting in section 3 is more substantial than in the previous subsection.

Start with the linear case. To enumerate tree–connected LCD’s

ψ̄tc
D := # { tree–connected LCD’s of degD } ,

use the following idea.

Start with the left-most chord of a tree–connected LCD and walk along the chord (in the direction given by the
orientation of the solid line) until you intersect a second chord, then walk (in the same direction) along this chord
until you get to a third chord, and repeat this way until you walk to the end of the last chord and land back on the
solid line. The chords (segments of which) you have passed, form a sub–LCDC which looks like this

(4.3)
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Let us denote for a moment its degree byd. All the remaining chords are associateded at the2d− 2 inner basepoints
of this sub–LCD in such a way that you obtain a (non-empty) tree-connected LCD of lower degree for the fixed
basepointP by applying the following procedure:

1. Call a chord associated toP if it is intersecting the chord ending onP and is enclosed by the chord in (4.3),
enclosingP , or if it is intersecting another chord associated toP .

2. For each of the2d − 2 inner basepointsP build the diagram made up of all chords associated toP and the
chord ending onP , putting latter’s rightmost basepoint to the left, if the basepointP was a left basepoint of a
chord in (4.3).

Here is an example:

−→

Conversely, from any collection of2d − 2 non-empty tree-connected LCD’s you can reconstruct a tree-conn. LCD
by inverting this procedure. The recursive formula forψ̄tc

D is then immediate:

ψ̄tc
0 = 1

ψ̄tc
D =

D∑
i=1

[
(Pψ̄tc(x)− 1)2i−2

]
xD+i−2

for D > 0 , (4.4)

with

Pψ̄tc(x) :=
∞∑
i=0

ψ̄tc
i x

i .

Remark 4.2 LEROUX and MILOUDI [LMi, (5.16)] and also DULUCQ and PENAUD [DP, theorem 2.2] found the
explicite formula

ψ̄tc
D =

1
D − 1

(
3D − 3
D − 2

)
, D ≥ 2 .

In fact, one can derive from (4.4) that

g(x) :=
Pψ̄tc(x) − 1

x

is the solution of the equation (5.15) of [LMi]

g(x) = 1 + xg3(x) .

Let us now consider cyclicityc ≥ 2 and count GLCD’s producing tree–connected CD’s. Let us adopt the convention
that we separate the solid line of a chord diagram into2D equallylong arcs and draw chords always asstraight lines.

First look at the tree–connected chord diagram (drawn this way) coming from the GLCD. Temporarily remove all
chords connecting opposite basepoints (i. e.,self-loop chords). Then the center of the circle belongs to a component
of the complement of the chord diagram.

If this component is not bounded by any piece of the solid line then we have an intersection loop of chords and our
chord diagram is not tree-connected.

If there is such a piece, then there are at leastc of them and the chord diagram has≥ c components. In order for
the chord diagram to be connected we must connect all components by reinstalling the self-loop chords. So we need
at least 1 self-loop chord. On the other hand there are at most two self-loop chords (since three self-loop chords
produce an intersection cycle among themselves).

We have two cases.

Case 1.One self-loop . Cyclicity must be2 (1 self-loop chord) or4 (2 self-loop chords). Degree must beodd.
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In this case look at the GLCD produced by cutting the chord diagram at
a position which you choose to lie on a piece of the solid line bounding
the component of the circle center created after removing the self-loop
chords (see example).

There is a bijection between such GLCD’s and tree–connected LCD’s by
replacing the self-loop by a chord whose left end becomes the leftmost
basepoint and whose right end replaces the previous position of the.

cutting point

←→

The orbits of the cyclic group action on these GLCD’s are free (e. g., since theappears always at different
positions if you enumerate all basepoints from left to right), i. e., we getdψ̄tc

(d+1)/2 GLCD’s.

Case 2.Two . Cyclicity must be2. Degree iseven.

By the procedure of case 1 you obtain a GLCD looking like this:

(4.5)

If you transform the left self-loop into a chord ending on the left–most position and the right self-loop into a chord
ending on the right–most position, you get a bijection to diagrams obtained by multiplication of two tree–connected
LCD’s. E. g., the diagram corresponding to (4.5) is

.

The number of such diagrams is ∑
e1 + e2 = d,

2 6 |e1, e2

ψ̄tc
(e1+1)/2ψ̄

tc
(e2+1)/2 .

Now let the cyclic groupZd act on such diagrams and note that each GLCD obtained in this way is obtained always
in exactly two ways.

• If first and second component in (4.5) are equal, the action ofZd has periodd/2.

• If first and second component in (4.5) are distinct,Zd acts freely, but the orbit is equal to the one of the diagram
obtained from (4.5) by swapping the components.

In full completeness, we obtain the following values forγ̃ tc
d,c of in our case (compare with§3.7).

γ̃ tc
d,1 = ψ̄tc

d/2 for 2|d
γ̃ tc
d,1 = 0 for 2 6 |d

γ̃ tc
d,2 =

d

2
·
d/2∑
e=1

ψ̄tc
e ψ̄

tc
d/2+1−e

=
1
2
·
[
x · ∂

∂x

(
1
x2
· (Pψ̄tc(x2)− 1)

2
)]

xd

for 2|d

γ̃ tc
d,2 = d · ψ̄tc

(d+1)/2 for 2 6 |d

γ̃ tc
d,4 = d · ψ̄tc

(d+1)/2 for 2 6 |d
γ̃ tc
d,4 = 0 for 2|d
γ̃ tc
d,c = 0 else
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Finally, as always by BURNSIDE’s lemma,

ωtc
D =

1
2D
·
∑
c|2D

ϕ(c) · γ̃ tc
2D/c,c .

4.3 Some computations

With the previous formulas one can compute the beginning of the various integer sequences above15. Here are the
first 10 values of each one.

D 1 2 3 4 5 6 7 8 9 10

ωtc
D 1 1 1 2 7 25 108 492 2,431 12,371
ωnc
D 0 1 3 12 74 647 6,961 89,739 1,337,152 22,609,111
ω̄nc
D 1 1 2 6 31 255 2,788 37,333 578,799 10,134,071

Remark 4.3 By similar arguments as in§3 one can show that

ω̄nc
D

σD
−−−−−→
D →∞

1
e
.

This was first proven for the linear case by STEIN and EVERETT [SE], see also [S, p. 362].

Remark 4.4 The sequence of tree–connected chord diagrams was previously known. According to SLOANE [Sl] it
appeared in an enumeration of planar alcohol molecules [LMi] (which correspond to tree–connected chord diagrams
by putting on each chord crossing a ’C’ and on each chord basepoint an ’H’ atom and forgetting the solid line).
Leroux and Miloudi used some more general and more elegant PÓLYA theory arguments. Our approach is however
geometrically more understandable.

5 Enumeration of chord diagrams and an upper bound for Vassiliev in-
variants

In this section, we treat an enumeration problem of chord diagrams, which is shown to yield an upper bound for
the dimension of the space of Vassiliev invariants for knots. We give an asymptotic estimate for this bound. More
precisely, we prove the upper boundD!/(any given polynomial inD) for bothGDA andGDAr (whereA andAr
are the graded algebras of chord diagrams introduced in§1) and later improve it toD!/1.1D. As an aside, we present
a trivial proof for the boundD!.

In the next section we will discuss further results on the dimension ofA.

5.1 Factoring out 4T relations

There are three types of mutual positions of non-intersecting chords in the LCD’s with neighboring basepoints.

−
a b

− −
type I type II type III

It is clear that one can resolve onefixedtype I and II intervals using the 4T-relation. But this also works withall such
intervals. This means, we have

15A MATHEMATICA TM package with all formulas is available on my WWW page.


