
4 On enumeration of chord diagrams and asymptotics of Vassili ev invariants

1 Vassiliev Invariants for knots

For many years the nature of knots has fascinated many people, especially mathematicians. Trying to rigorously
understand and describe this phenomenon led to the development of knot theory as a branch of mathematics, more
precisely of mathematical topology.

Initiated by VASSILIEV’s considerations of the homology of knot spaces [Va], in the last years the theory of VAS-
SILIEV invariants has become an interesting and intensively studied field of knot theory. It aims to approach the
problem of topological classification of knots by using simpler and easier understandable algebraic and combinatori-
cal methods. In this way this many-sided new field opens interesting relations to classical fields of mathematics, such
as the homological algebra, the theory of Lie groups, graph theory and topological quantum field theories ( TQFT’s ).

1.1 The classification problem of knots

Consider a knot, i. e. an oriented embedding ofS1 in R
3 . Let us assume, that this embedding isC1, which

particularly means tame, i. e. the knot is isotopic to a piecewise linear embedding. This does not constrain too
much the complexity of knots, it only excludes some ugly pathological cases. The following picture shows the two
simplest, but non-trivial knots.

trefoil figure 8 knot

Thinking of a knot as of a real object, say a closed piece of rope, one gets an idea of transforming one knot into
another by a sequence of pulling and twisting its strands, but not cutting the knot somewhere. One might consider
knots as equal, if they are in this sense transformable into each other. This is mathematically described by the notion
of ( ambient ) isotopy. So, in mathematical terms, knots are called topologically equal, if they are ambient isotopic,
and to topologically classify a given knot means to determine uniquely its isotopy class.

Trying to classify knots led to the search for knot invariants, which, at least in some particular cases, can distinguish
knots. Some approaches have been made to construct such invariants topologically. The most famous invariants
of this kind are the polynomial invariants like the ALEXANDER/CONWAY [Al, Co, Ka3] and HOMFLY [H, LM]
polynomials, and also CASSON’s invariant [AM]. Unfortunately, these topological approaches often meet major
difficulties, resulting from the analytical methods they involve.

On this background the main advantage of the theory of VASSILIEV invariants appears to be, that it offers a new view
of the topological structure of knots in a combinatorial and therefore more discrete and directly accessible way and
makes it possible to apply simpler algebraic methods for exploring them.

1.2 The filtration of the knot space

Consider the linear spaceV , ( freely ) generated by all the ( isotopy classes of ) knot embeddings. There is a self-
suggesting way how to denote them. Every embedding class of a knot is determined by its projection on a2-plane
in R3 , where all the crossings are transversal and equipped with the additional information, whether they are over-( )

or under-
( )

crossings. LetVp be the space of singular knots with exactlyp double points ( up to
isotopy ).

Except for the last section, it is convenient to assume it to be a vector space over a field of characteristic zero, else it
can be a module over any commutative ring with unit.

Vp can be identified with a linear subspace ofV by resolving the singularities into the difference of an over- and an
undercrossing via the rule
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= − + , (1.1)

where all the rest of the knot projections are assumed to be equal ( one can show that the result does not depend on
the order in which all the double points are resolved ). This yields a filtration ofV

V = V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ . . . (1.2)

There exists a combinatorial description of the graded vector space,

∞⊕
i=0

(
V i
/
V i+1

)
(1.3)

associated to this filtration, namely

V i
/
V i+1 ' Lin { chord diagrams of degreei }

/
4T relation
FI relation

, (1.4)

where the chord diagrams ( CD’s ) are objects like this ( an oriented circle with finitely many dashed chords in it )

( up to isotopy ) and are graded by the number of chords. The4T ( 4 term ) relations have the form

− = − + ,

and theFI ( framing independence ) relation requires, that each chord diagram with anisolatedchord ( i. e., a chord
not crossed by any of the others ) is zero.

Chord diagrams appear in two forms – circular and linearized. In the latter case they are also calledlinearized chord
diagramsor LCD’s.

In the linearized form, which we will use henceforth, the 4T relation looks this way:

−
a b

term 1

−
−

term 4

= −
−

term 3

+
−

term 2

. (4T (a, b))

(Note that the fixed end of chorda can also be to the right or within the chordb.) The meaning of the underlines
‘−’ in the previous picture is the following: if in a picture an interval of the baseline is marked by a ‘−’, we will not
allow basepoints of other chords to end within it, whereas in the other case this can be.

The map which yields this isomorphism is given by the following simple way of how to assign a chord diagram
DK to a singular knotK. Connect in the parameter space ofK ( which is an orientedS1 ) pairs of points with the
same image by a chord. Actually, the idea to describe singular knots in this way led to the representation (1.4), and,
more generally, many of the further algebraic statements are based on this idea. Once the chord diagrams have been
introduced, the4T andFI relations become self-suggesting. Look e. g. at theFI relation. If one takes a singular
knot corresponding to a diagram with an isolated chord and resolves the singularity corresponding to this chord, one
gets exactly an ambient isotopy relation of ( singular ) knots.

Note that (1.4) implies the finite dimensionality of the filtration (1.2), which considerably simplifies further algebraic
considerations.
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Definition 1.1 A VASSILIEV invariant of degreem is an elementV ∈ V∗ (whereV∗ denotes henceforth the dual
space ofV), s. t.

V Vp+1 ≡ 0 and V Vp 6≡ 0 .

It is possible in some sense to consider (1.1) as a way to “differentiate” a knot, and in this language VASSILIEV

invariant corresponds to a polynomial invariant, i. e. a function with a vanishing derivative.

This notion is interesting in connection with many other known knot invariants, such as the CONWAY and the HOM-
FLY polynomials, which have originally come about by topological considerations, but which fulfill certain relations
closely connected to (1.1). E. g., the CONWAY polynomialCK(z) of a knotK satisfies the (skein) relation

C
( )

(z) := C
( )

(z) − C
( )

(z) = z C
( )

(z) , (1.5)

from which one concludes, that

Lemma 1.2 The coefficientK 7→ [CK(z)]zk of zk in the Conway polynomial is aVASSILIEV invariant of degree at
mostk.

By similar arguments the same is true for the HOMFLY polynomial in the reparametrization introduced by Jones
[J] FK(N, ez) (and therefore, settingN = 2, for the Jones polynomial [J2] as well) and the Kauffman polynomial
[Ka2] in his version called by Kauffman the Dubrovnik polynomial [Ka]. See [BL].

In this way Vassiliev invariants generalize many known ( topological ) invariants, and that is another reason why
Vassiliev invariants are so interesting.

Note, that the grading of the chord diagrams is preserved by4T , so the linear spaceAr obtained by taking the direct
sum over alli of the right hand side of (1.4) is a finite dimensionally graded space. LetGm denote the degree-m-piece
of Ar.
By definition all VASSILIEV invariants of degree≤ m are sensitive with respect to knot classification onlymaximally
up toVm+1. However, one does not know yet, whetherall Vassiliev invariants are capable of acompletetopological
classification of knots.

Conjecture 1.3 VASSILIEV invariants separate knots.

By now conjecture 1.3 has been proved at least for pure braids [BN3, BN4] ( see section 1.5 ), but for knots we
know little about it. As it stands it sounds very appealing, but unfortunately, we cannot even yet affirm the following
weaker

Question 1.1 (see [BN2, sect. 7.2]) Do Vassiliev invariants distinguish knot orientation?

This is one of the hardest problems in knot theory. Yet, there are no easily definable invariants, as quantum and skein
invariants, which distinguish knot orientation. As pointed out by BIRMAN [Bi], the fact itself that non-invertible
knots exist has been proved only in the 60’s by TROTTER [Tr]. In [St4] I tried to enlighten the problems with
detecting orientation with Vassiliev invariants in an indepentent way from Bar-Natan’s computational arguments
(see section 1.6).

1.3 The AlgebraA
Let us for a moment forget about theFI relation and considerA as the space, obtained fromAr by not factoring out
the FI relation.

For this spaceA at least 3 other descriptions are known ( for the proof, that they are all isomorphic, see [BN2] ).

1) A = Lin
{

CCD’s ( Chinese character or
FEYNMAN diagrams )

}/
STU relation,

where a Chinese character diagram is something like
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( like a chord diagram, but with oriented internal trivalent vertices allowed, which represent singular triple
points ) and theSTU relation is

= − ,

2) A = Lin { linearized CCD’s}
/
STU relation,

where a linearized Chinese character diagram is a Chinese character diagram, with the solid line cut somewhere

−→ ,

and both spaces are graded by half the number of trivalent vertices ( internal or on the solid line ) and

3) A = Lin { CC’s ( Chinese characters )}
/
AS andIHX relation,

where the Chinese characters are objects like this

( Chinese character diagrams with the solid line removed ) and graded by half the number of vertices ( univalent
or trivalent ), and theAS ( antisymmetry ) and theIHX relations are

= − , = − .

Using the different representations ofA one can define multi- and comultiplication, which makeA into a graded
commutative and cocommutative HOPFalgebra [MM], including also a sort of ADAMS operationsψq, q ∈ Z.

1.4 Weight systems

We have defined the Vassiliev invariants in terms of spaces of knot embeddings, but we found an easier description
of these spaces by diagrams. Then is it possible to describe Vassiliev invariants by combinatorical objects defined
entirely with the help of our diagram spaces?

Definition 1.4 A weight system of degreem is an elementW ∈ (GmA)∗. LetWm be the linear space of all weight
systems of degreem.

It is easy to assign to a Vassiliev invariantV of deg≤ m a weight systemW of degreem. Consider the ( graded )
mapW∗ given by

Vm := (Vm)∗ Wm−−−→ (GmA)∗ =: Wm (1.6)

Wm(V ) (diagram of degm) := V
( one singular knot withm singula-

rities, that represents this diagram

)
(1.7)
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The kernel of this map is by definitionVm−1 = (Vm−1)∗, i. e. the space of Vassiliev invariants of deg≤ m− 1, so
we have the exact sequence

0 −→ Vm−1 ↪−→ Vm Wm−→ Wm .

Theorem 1.5 (Fundamental Theorem of Vassiliev invariants)The sequence

0 −→ Vm−1 ↪−→ Vm Wm−→ Wm −→ 0

is exact, and hence splits (over a field), i. e. there is a ( graded ) mapV

Vm : Wm −→ Vm ,

such that
Im( IdVm − V ◦W ) ⊂ Vm−1 and Wm ◦ Vm = IdWm .

Kontsevich’s result is exactly the construction of the split homomorphismV for characteristic zero. In some sense the
mapV can be considered as “integrating” a weight system. If we want to do this, we need to consider another crucial
object, closely related to this theorem. Namely, it turns out, that proving that theorem is equivalent to constructing a
universalVASSILIEV invariant, i. e. a map

V∗ V ′−→ A∗∗∗ ,

whereA∗∗ is the graded completion ofA, such that for every knotK ∈ Vm and any Vassiliev invariantV ∈ Vm
there holds (

W (V )
)
(V ′(K) ) = V (K) .

Therefore, universal Vassiliev invariants play a basic role in the theory of Vassiliev invariants. Universal Vassiliev
invariants have been constructed by many people an in different ways, e. g. [BN, Pi]. Though it is known, that the
choice of a universal Vassiliev invariant is not unique, surprisingly many of the ansatzes seem to generate the same
special one.

Summarizing, Vassiliev invariants form a commutative and co-commutative Hopf algebraA∗ which is the dual
algebra to the Hopf algebraA of chord diagrams(CD’s) modulo the 4T (4 term) relation.

The primitive (as Hopf algebra elements) Vassiliev invariantsP(A∗) are the ones behaving additively under con-
nected knot sum. Since co-commutative co-associative Hopf algebras over a field of characteristic zero are primi-
tively generated [MM, corr. 4.18], the projection fromA∗ onto

(P(A)
)∗

gives an isomorphism between
(P(A)

)∗
andP(A∗). P = P(A) is the linear subspace generated byconnectedchord diagrams.A andA∗ are finite-
dimensionally graded by the number of chords (which we will denote byD).

The degree-1-pieceI := G1A of A is one-dimensional and the algebraAr := A/IA has as dual theframing-
independentVassiliev invariants (i. e., exactly the ideal generated by FI relations).

Numerically little is known aboutA andAr. The dimension of their graded piecesGDA andGDAr is known up
to degreeD ≤ 9 [BN2]1. In general one knows some asymptotical bounds fordimGDAr. It was recently found
[CD2] thatdimGDP grows faster than any polynomial inD. The best upper bound known up to now is the one
obtained by NG [Ng, corollary 4.3]2 : (D − 2)!/2 for D > 5 (see also Ng and STANFORD [NS]), who improved the
bound(D − 1)! by CHMUTOV and DUZHIN [CD].

In section 5 we’re going to prove the upper boundD!/any given polynomial inD for bothGDA andGDAr and later
improve it toD!/1.1D.

1.5 VASSILIEV invariants for braids and string links

In the same way as for knots, the idea of constructing VASSILIEV invariants can be generalized to other “knot-like
objects”, i. e. certain classes of 1-dimensional embeddings intoR

3 , factorized by an appropriate notion of isotopy,
such as tangles, ( pure ) braids and string links. The resulting diagram spacesAT ( for tangles ),AB ( for braids ),

1Some more computational information on these algebras and their generalizations to string links [BN4] and braids [BN3] can be found in
[BN7].

2Ng proved the bound only for the non-framed case, however, with a minor modification the proof for a somewhat worse but asymptotically
equal bound also works for the framed case.
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AP = Asl ( for string links ) andApb = APhor ( for pure braids ) are constructed in the same way as for knots and
have a similar algebraic structure ( here the multiplication is given by stacking up ) and properties as the knot diagram
algebraA. Here are some typical examples for the several embedding classes and for diagrams, corresponding to
these classes.

A tangle is an oriented embed-
ding T : [ 0, 1 ] × Zn ∪
S1 ×Zm ↪→ [ 0, 1 ] ×R2,
such thatT ({0, 1} ×Zn) ⊂
{0, 1} ×R2.

Here is a singular tangle dia-
gram.

A string link is an oriented
embeddingS : [ 0, 1 ] ×
Zn ↪→ [ 0, 1 ]×R2, such that
S({i}×Zn) ⊂ {i}×R2 for
i = 0, 1.

The diagram of a string link
contains no cyclic full lines,
and all strands are vertical and
point to the top.

Here is a braid. It is a
string link with monotonous
1st component.

The diagram of a braid con-
tains no chords ending on one
strand only.

A pure braid is a braid, which
preserves the order of the
strands.

The diagram of a pure braid
can be simplified to a diagram
only with horizontal chords.

Asl is known to have also a formulation as a space of coloured Chinese characters, i. e. Chinese characters with
coloured univalent vertices [BN4].

1.6 Constructing a universalVASSILIEV invariant

There are at least 4 different approaches to this task: a naive topological approach (see [BS]), which fails but comes
close, KONTSEVICH’s integral formula [Ko], a physical and an algebraic approach. Originally due to DRINFEL’ D

[Dr] and elucidated further by BAR-NATAN [BN], latter is the probably most elegant solution. (See also [K]).

1.7 Braiding sequences

The combinatorial structure of chord diagrams and Chinese character diagrams considerably simplified our under-
standing of Vassiliev invariants and was the main tool in the proof of a series of results [BG, Vo]. Despite being
therefore much celebrated, this approach has some serious defects. Although many ways exist to prove the Funda-
mental theorem [BS], they are all rather complicated and at some point unnatural, and their connections are not yet
completely understood. So the integration of the (series of) weight system(s) to a Vassiliev invariant is far from being
routine work.

But even for itself, although simpler and much friendlier to work with, the combinatorial structure of chord diagrams
is far from being easily understandable [BN7].

In an attempt to create an alternative to the (defects of the) classical approach and generalizing some ideas of Dean
[De], Trapp [Tr] and Stanford [Sa], in [St4] I introduced the notion of a braiding sequence. It offered a simple direct
understanding of the behaviour of Vassiliev invariants on special knot classes, something, which was never worked
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out using the classical approach. Beside some other facts, it gave relatively simple proofs that the dimension of the
space of Vassiliev invariants of degree≤ n on certain knot classes is finite (arborescent knots), and in some cases
even exponential upper bounds inn for this dimension (e. g., rational knots, closed 3 braids), something, which was
not yet achieved by chord diagrams.

Moreover, while the Kontsevich-Drinfel’d approach (used in [CD]) works only over zero (field) characteristic, our
arguments with braiding sequences hold for any zero divisor free ring, in particular the fieldsZp, p prime.

Definition 1.6 For some oddk ∈ Z, ak-braiding of a crossingp in a diagramD is a replacement of (a neighborhood
of)p by the braidσk1 (see figure 1). A braiding sequence (associated to a numbered setP of crossings in a diagramD;
all crossings by default) is a family of diagrams, parametrized by|P | odd numbersx1, . . . , x|P |, each one indicating
that at crossing numberi anxi-braiding is done.

Any Vassiliev invariantv of degree at mostk behaves on a braiding sequence as a polynomial of degree at most
k in x1, . . . , x|P | (see [St4] and [Tr]), and this polynomial is called the braiding polynomial ofv on this braiding
sequence.

−→ or

Figure 1. Two ways to do a−3-braiding at a crossing.

2 The results of this thesis

The subject of the present thesis are combinatorics of chord diagrams and asymptotics of Vassiliev invariants.

In sections 3 and 4 we will derive some (purely) enumerative results on special kinds of chord diagrams. Although
not directly related to Vassiliev invariants, these results provide a glimpse of the combinatorial complexity of chord
diagrams – already for chord diagrams with properties, which are easy to define, the enumeration is rather hard and
requires additional ideas.

We show consecutively how to count in a non-brute force way all chord diagrams of given degree, all chord diagrams
up to mirroring, all chord diagrams with an isolated chord (the ones sent to zero by the FI relation), all chord diagrams
with an (isolated) chord of length one, chord diagrams, whose intersection graph is connected and those for which it
is a tree.

In section 5 we will use combinatorial techniques to relate the enumeration of special chord diagrams to the enu-
meration of Vassiliev invariants and will prove the asymptotical upper boundD!/1.1D for the number of Vassiliev
invariants in degreeD.

The basic idea for this improvement is to work with linearized chord diagrams (LCD’s) and the order of chord
basepoints from left to right.

In section 6 we will use the techniques of section 5 and the result of Chmutov and Duzhin [CD2] to deduce a lower
bound for the number of all Vassiliev invariants and discuss the relation between the asymptotics of primitive and
all Vassiliev invariants. At the same time, we give a summary on what we know about the asymptotics of Vassiliev
invariants.

Finally, in section 7 we use the rather different approach of braiding sequences to prove exponential upper bounds
for the number of Vassiliev invariants on knots with bounded braid index and arborescent knots.

Parts of this work can be found in several papers of mine [St2, St6, St8, St9, St10].
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