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Computing the equilibrium properties of complex systems, such as free energy differences, is often
hampered by rare events in the dynamics. Enhanced sampling methods may be used in order to speed up
sampling by, for example, using high temperatures, as in parallel tempering, or simulating with a biasing
potential such as in the case of umbrella sampling. The equilibrium properties of the thermodynamic state
of interest (e.g., lowest temperature or unbiased potential) can be computed using reweighting estimators
such as the weighted histogram analysis method or the multistate Bennett acceptance ratio (MBAR).
weighted histogram analysis method and MBAR produce unbiased estimates, the simulation samples from
the global equilibria at their respective thermodynamic states—a requirement that can be prohibitively
expensive for some simulations such as a large parallel tempering ensemble of an explicitly solvated
biomolecule. Here, we introduce the transition-based reweighting analysis method (TRAM)—a class of
estimators that exploit ideas from Markov modeling and only require the simulation data to be in local
equilibrium within subsets of the configuration space. We formulate the expanded TRAM (xTRAM)
estimator that is shown to be asymptotically unbiased and a generalization of MBAR. Using four
exemplary systems of varying complexity, we demonstrate the improved convergence (ranging from a
twofold improvement to several orders of magnitude) of xTRAM in comparison to a direct counting
estimator and MBAR, with respect to the invested simulation effort. Lastly, we introduce a random-
swapping simulation protocol that can be used with xTRAM, gaining orders-of-magnitude advantages over
simulation protocols that require the constraint of sampling from a global equilibrium.
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I. INTRODUCTION

The successful prediction of equilibrium behavior of
complex systems is of critical importance in computational
physics. Often, rare events in the system’s dynamics make
such estimates through direct simulations impractical. For
this reason, the past 20 years have seen vast progress in
computational techniques used for efficient sampling of
rare-event systems with complex energy landscapes. These
developments were, in particular, driven by the study of
systems such as spin glasses [1,2], quantum frustrated spin
systems [3,4], QCD [5–7], and molecular dynamics (MD)
of biomolecules [8,9].
Commonly used approaches include generalized ensem-

ble methods such as simulated tempering (ST) [10], parallel

tempering (PT) [8,9,11], or replica-exchange molecular
dynamics (REMD) [12]. Generalized ensemble methods
can greatly improve the convergence over direct simulation
for systems with high energy barriers but relatively few
degrees of freedom [13–15]. The speed of convergence
depends on the overlap of energy distributions between
adjacent temperatures, and thus efforts have been made in
choosing optimal temperature distributions [8,16–18].
Unfortunately, the number of replicas needed to fill the
relevant range of temperatures increases with the number of
degrees of freedom of the system and produces expensive
computational requirements for many-body systems such
as explicitly solvated molecules.
Once a multi-ensemble simulation is generated, there are

different estimator options that can be used for the analysis
of the simulation data in order to extract information such
as free-energy differences between conformations of inter-
est. The simplest estimator is to bin the simulation data
(in a single-order parameter or using clusters of a high-
dimensional parameter space) at the temperature of interest
and count the number of occurrences of each of the discrete
states. We will refer to this estimation method as the direct
counting estimator. An improvement over direct counting
of single-temperature histograms is the weighted histogram
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analysis method (WHAM) [19,20]. WHAM makes use of
data from all simulated temperatures by reweighting them
to the target temperature via the Boltzmann density. The
traditional WHAM formulation in multitemperature
ensembles requires one to discretize the system’s potential
energy in order to formulate a reweighting factor for
each energy bin [21]. A formulation of WHAM that avoids
the potential-energy binning is given in Ref. [22].
References [23] generalizes this concept and derives the
multistate Bennett acceptance ratio (MBAR) that produces
statistically optimal estimates of equilibrium properties
given a set of equilibrium data.
All of the above estimators assume that the data are

sampled from global equilibrium; i.e., simulations at all
temperatures have entirely decorrelated from their starting
configurations. This often requires discarding large
amounts of data for producing unbiased estimates. This
can lead to very long simulation times in order to obtain an
uncorrelated sample.
Here, we combine ideas from reweighting estimators

[24] and Markov-model theory [25–30] in order to derive a
transition-based reweighting analysis method (TRAM) for
estimating equilibrium properties from simulation data at
multiple thermodynamic states. TRAM differs from estab-
lished reweighting estimators such as direct counting,
WHAM, or MBAR, in that it uses conditional transition
probabilities between the discrete states or bins and there-
fore does not require the underlying data to be in global
equilibrium. Thus, TRAM can achieve unbiased equilib-
rium estimates for data that are not yet in global equilib-
rium, allowing accurate estimates to be obtained with
sometimes orders-of-magnitude-smaller simulation times
compared to established estimators.
Markov models are usually used for predicting long-term

kinetics from short-time simulation data [31], requiring the
use of sufficiently long lag times when computing the
conditional transition probabilities [30]. Therefore,
extracting kinetics from generalized ensemble simulations
is difficult. If desired, one either has to limit the lag time to
the short contiguous simulations times [32], or one has to
reweight entire trajectories [33,34]. However, a transition
matrix can be used to estimate the equilibriumdistribution of
a system without requiring long lag times [30]. At a given
temperature TI, the corresponding transition matrix PI

provides an estimate of the equilibrium distribution πI as
its dominant eigenvector. However, in order to exploit the
existence of high temperatures in the simulation, an esti-
mator must be constructed that connects the different
temperatures in a rigorous way. This leads to the proposal
of a TRAM.
TRAM can also be employed to get estimates from

multiple biased simulations, such as umbrella sampling
[35] or metadynamics [36], although here we will focus on
applications using multitemperature ensembles. In general,
by TRAM we refer to a class of estimators with the
following behavior:

(1) Given simulations at different thermodynamic states
I ¼ 1;…; m (temperatures, bias potentials, …), and
a configuration-space discretization into discrete
states i ¼ 1;…; n (binning along an order parameter
or clustering of a high-dimensional space), harvest
the following statistics:
(a) At each thermodynamic state I, the number of

transitions cIij is observed between configuration
states i, j at a time lag τ (here, usually the data-
storage interval).

(b) For each sample x along the trajectory, the
probability weight μJðxÞ, this configuration x
would be attributed, in each thermodynamic
state, J ¼ 1;…; m.

(2) Compute an optimal estimate of the equilibrium
probability πIi for all configuration states i at all
thermodynamic states I.

With the help of the equilibrium probabilities πIi , other
equilibrium expectations can be computed. Because of
property (1a), TRAM is a “transition-based” estimator
rather than a histogram method. Because of property
(1b), TRAM is also a “reweighting” estimator. TRAM
estimators do not depend on actual temperature transitions
in the generalized ensemble. Rather, all configurations
visited during the simulation will be used to estimate
transition probabilities between thermodynamic states.
Different implementations of TRAM estimators and

formulations of their optimality may be possible; we
therefore consider TRAM to be a class of estimators rather
than a unique method. In this paper, we propose a TRAM
estimator that formally constructs an expanded (mn ×mn)
transition matrix in the joint space of all m thermodynamic
states and n configuration states. Therefore, the present
estimator is called expanded TRAM (xTRAM). The sta-
tionary eigenvector of the xTRAM transition matrix con-
tains the equilibrium probabilities at all thermodynamic
states.
While simulation protocols such as ST, PT, and REMD

require a strong overlap of energy distributions between
neighboring temperatures to be efficient for sampling, this
is much less relevant for the usefulness of TRAM estima-
tors, as the reweighting factors are useful information even
when the transition probabilities between thermodynamic
states are small. It is thus tempting to design new simulation
protocols that achieve more efficient sampling by sacrific-
ing the asymptotic global equilibrium property achieved by
ST, PT, and REMD but can still yield unbiased estimates of
equilibrium probabilities when used in conjunction with
TRAM estimators. In this paper, we make a first attempt to
this end and propose the random-swapping (RS) simulation
method. RS achieves rapid mixing between a set of replicas
that would be too sparsely distributed for ST, PT, or REMD
because it exchanges without the Metropolis-Hastings
acceptance step. The associated violation of global equi-
librium can be approximately recovered by xTRAM
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because local equilibrium is guaranteed by adjusting lag
times τ during the estimation accordingly.
xTRAM is shown to be asymptotically unbiased.

Moreover, we show that xTRAM is a generalization of
MBAR, and they converge to identical estimators for the
free-energy differences between thermodynamic states in
the limit of global equilibrium and to identical estimators
for general equilibrium expectations in the limit of global
equilibrium and large statistics.
Using xTRAM and, in particular, the combination of

xTRAM and RS, estimates of equilibrium properties of
complex dynamical systems can be obtained with orders-
of-magnitude-fewer simulation data than that required by
conventional estimators. We illustrate the performance of
TRAM, MBAR, and direct counting on two bistable model
potentials and two explicitly solvated peptides simulated
with molecular dynamics simulations.

II. THEORY AND METHODS

A. Scope

A configuration x is a point in configuration space Ω
containing all quantities characterizing the instantaneous
state of the system, such as particle positions or spins, system
volume (in constant-pressure ensembles), and particle num-
bers (in ensembles of constant chemical potential).
We consider a set of simulation trajectories, each

sampling from Ω, at a given thermodynamic state I. A
thermodynamic state, denoted here as capital superscript
letters I, J, and K, is characterized by its thermodynamic
variables, such as temperature, pressure, or chemical
potential. The dynamics are assumed to fulfill microscopic
detailed balance at their respective thermodynamic states.
We consider Ω to be partitioned into subsets Si such that

Ω ¼ ⋃n
i¼1 Si. We subsequently refer to subsets Si as

configuration states and index them by small subscript
letters i, j, and k. This discretization serves to distinguish the
states that are relevant to the analysis. As such, it may consist
of a fine discretization of an order parameter of interest (e.g.,
magnetization in an Ising model) or a Voronoi partition
obtained from clustering molecular dynamics data, as is
frequently used for the construction of Markov models.
TRAM estimators will use statistics from transitions

among configuration states but also exploit the fact that the
statistical weight of a configuration x can be reweighted
between thermodynamic states. Consider the following two
examples: (1) In PT or REMD simulations, the weighting
occurs through the different temperatures: Given a con-
figuration x with potential energy UðxÞ, the statistical
weight at temperature TI is proportional to e−uIðxÞ using the
reduced potential energy

uIðxÞ ¼ UðxÞ
kBTI ; ð1Þ

with Boltzmann constant kB. (2) When the simulation setup
contains multiple biased simulations, such as in umbrella
sampling or metadynamics, there is usually a unique
temperature T, but different potentials UIðxÞ ¼ UðxÞ þ
BIðxÞ are employed where BIðxÞ is the Ith bias potential.
Then, the statistical weights in each of these potentials is
given by e−uIðxÞ, with

uIðxÞ ¼ UðxÞ þ BIðxÞ
kBT

: ð2Þ

We generalize this concept following the example of
Ref. [23]. In a thermodynamic state I, defined by a
particular combination of the potential energy function
UI , pressure pI , chemical potentials μIs of chemical species
s, and temperature TI, our system has a reduced potential
defined by

uIðxÞ ¼ UIðxÞ þ pIVðxÞ þP
sμ

I
sNsðxÞ

kBTI : ð3Þ

Here, VðxÞ is the volume of the system in configuration x
and NsðxÞ counts the particle numbers of species s at
configuration x. The probability density of configuration
x can, for any arbitrarily chosen thermodynamic state, be
expressed as

ρIðxÞ ¼ 1

ZI e
−uIðxÞ; ð4Þ

where ZI is the partition function of thermodynamic state I:

ZI ¼
Z
Ω
dxe−uIðxÞ: ð5Þ

The partition function of configuration state i at thermo-
dynamic state I is

ZI
i ¼

Z
Si

dxe−uIðxÞ: ð6Þ

B. Aims

Next, we define the quantities that we would like to
estimate using TRAM. The reduced free energy of thermo-
dynamic state I, fI , and the reduced free energy of
configuration state i at thermodynamic state I,fIi , here
termed the configuration free energy, are defined as

fI ≔ − lnZI; ð7Þ

fIi ≔ − lnZI
i : ð8Þ

The equilibrium probability of configuration state i, given
that the system is at thermodynamic state I, is
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πIi ≔
ZI
i

ZI ¼ ef
I−fIi : ð9Þ

Finally, we are interested in computing expectation values
of arbitrary functions of configuration state AðxÞ:

hAiI ¼
Z
Ω
dxρIðxÞAðxÞ: ð10Þ

The multistate Bennett acceptance ratio estimator [23] can
provide statistically optimal estimates for quantities in
Eqs. (7)–(10) when all samples x used from the set of
simulation data are independently drawn from the global
equilibrium distributions at the respective thermodynamic
states. This requirement can induce a large statistical
inefficiency that we will attempt to avoid by deriving an
estimator that does not rely on global equilibrium.

C. xTRAM

The expanded TRAM estimator is based on the idea of
constructing a Markov-model-like transition process in an
expanded space whose states are defined by combinations
of configuration states and thermodynamic states. An
expanded state is the pairing of thermodynamic state I
and configuration state i. We use the convention of ordering
all expanded vectors and matrices first in blocks of an equal
thermodynamic state and, within each such block, by a
configuration state.
At a given thermodynamic state I, the matrix CI ¼ ðcIijÞ

contains the number of transitions that have been observed
in the data between pairs of configuration states i and j. The
diagonal matrix BIJ ¼ diagðbIJi Þ contains transition counts
for each configuration state i from thermodynamic state
I to J that have not been observed but are constructed so as
to obey the correct reweighting between thermodynamic
states. The expanded transition count matrix ~N ∈ Rnm×nm

is given by

~N ¼

0
BBB@

C1 þB1;1 B1;2 � � � B1;m

B2;1 C2 þ B2;2 . .
. ..

.

..

. . .
. . .

.
Bm−1;m

Bm;1 � � � Bm;m−1 Cm þ Bm;m

1
CCCA:

ð11Þ
~N has a sparse structure given by diagonal blocks and off-
diagonal bands, as indicated below:

The expanded transition matrix ~P is defined as the
maximum likelihood reversible transition matrix given
~N. The key step in xTRAM is to estimate ~P from ~N so
as to compute the expanded stationary distribution
~π⊤ ¼ ~π⊤ ~P, which has the structure

~π⊤ ¼ ðw1π1;…; wmπmÞ; ð13Þ

consisting of subvectors, πI ¼ ðπI1;…; πInÞ, each contain-
ing the normalized equilibrium probabilities of configura-
tion states i given that the system is at thermodynamic state
I. The weights wI , normalized to

P
Iw

I ¼ 1, scale all
subvectors such that the expanded equilibrium vector is
also normalized,

P
i

P
I w

IπIi ¼ 1. Figure 1 illustrates how
different thermodynamic and configuration states are re-
lated by xTRAM quantities.
Data preparation and configuration-state transition

counts.—We process all trajectory data as follows. Each
sample x occurring in a trajectory at time t is selected when
a successor sample y at time tþ τ exists such that the
trajectory fragment x → y is generated using the same
dynamics (i.e., without intermediate changes of the thermo-
dynamic state).
All such samples x are sorted into sets SIi according to

their configuration state i and thermodynamic state I. The
configuration-state transition counts

FIG. 1. Illustration of the expanded transition process in
xTRAM and the symbols used: cIij and pI

ij are transition counts
and probabilities between different configuration states i, j at the
same thermodynamic state I. bIJi and pIJ

i are transition counts and
probabilities between different thermodynamic states I, J at the
same configuration state i. The latter are constructed such that
reweighting to the equilibrium densities μIx, μJx of configurations
x at different thermodynamic states I, J, occurs.
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cIij ¼ jfðx ∈ SIi ; y ∈ SjÞgj

count the number of transitions from all samples x in SIi to
target configuration state j (y itself can be at any thermo-
dynamic state as long as the dynamics to reach y from x is
realized at thermodynamic state I). These counts yield m
count matrices C1;…;Cm.
We define the total counts N, total counts at thermody-

namic state I, NI , and total counts at thermodynamic state I
and configuration state i:

NI
i ≔

X
j

cIij; ð14Þ

NI ≔
X
i

NI
i ; ð15Þ

N ≔
X
I

NI: ð16Þ

Note that the xTRAM estimations will not depend on the
choice of τ, provided that the count matrices CI are
obtained from simulations that ensure a local equilibrium
within each starting state SIi . If this is the case, τ can be
chosen arbitrarily short, e.g., equal to the interval at which
the sampled configuration is saved. In practice, deviations
from local equilibrium can be significant for certain
simulation setups and for poor choices of the discretization,
but they can be compensated by using longer lag times (see
random-swapping results below). When local equilibrium
is not ensured by the simulation setup, TRAM estimates
should be performed for a series of τ values, and then we
choose the smallest τ value for which converged estimates
are obtained.
Thermodynamic-state transition counts.—The elements

I, J of the thermodynamic-state count matrix at configu-
ration state i are constructed by attributing to each sample
x at thermodynamic state I a single count that is split to all
target thermodynamic states J proportional to the respec-
tive probability pIJðxÞ:

bIJi ¼
X
x∈SIi

pIJðxÞ; ð17Þ

where pIJðxÞ is the transition probability to thermody-
namic state J given that the system is at configuration x and
thermodynamic state I. In the example of a multitemper-
ature simulation, pIJðxÞ can be interpreted as the proba-
bility for which a hypothetical simulated tempering (ST)
trial from temperature I to J would be accepted at
configuration x. In a more general setting, the transition
probabilities between thermodynamic states can be derived
from Bennett’s acceptance ratio [24]. From

P
Jp

IJðxÞ ¼ 1,

it directly follows that NI
i ¼

P
Jb

IJ
i . Different choices for

pIJðxÞ are possible as long as they respect detailed
balance.
The statistical weights wI of thermodynamic states in the

expanded ensemble are chosen as the fraction of samples
seen at each thermodynamic state I:

wI ≔
NI

N
: ð18Þ

We will show later that this choice leads to a statistically
optimal estimator. As an example, consider a replica-
exchange simulation; all replicas I are propagated in
parallel and therefore N1 ¼ � � � ¼ Nm, resulting in equal
weights wI ¼ 1=m. When the input data stem from
simulated tempering simulations between different temper-
atures I, the fraction of time spent at each temperature
depends on the choice of the simulated tempering weights
[10] and could therefore be different. With choices given by
Eq. (18), the absolute probability of configuration x in the
expanded ensemble is

μIðxÞ ¼ wIρIðxÞ ¼ NI

N
ef

I−uIðxÞ: ð19Þ

In order for the thermodynamic-state transition process to
sample from the correct statistical weights, it must fulfill
the detailed balance equations:

μIðxÞpIJðxÞ ¼ μJðxÞpJIðxÞ: ð20Þ

Various choices for pIJðxÞ can be made that meet
these constraints. It turns out that the statistically optimal
choice is to a thermodynamic state J according to its
equilibrium probability of that state in the expanded
ensemble, i.e.,

pIJðxÞ ¼ μJðxÞP
Kμ

KðxÞ ¼
NJef

J−uJðxÞP
KN

Kef
K−uKðxÞ : ð21Þ

The choices (19) and (21) obviously fulfill the
detailed balance equations (20). Using Eq. (21) in an
implementation requires shifting the absolute energy
value in order to avoid numerical overflows when evalu-
ating the exponential (see the Appendix of Ref. [23] for a
discussion).
An alternative choice for the thermodynamic-state tran-

sition process is the Metropolis rule, which is easier to
implement and produces indistinguishable results com-
pared to choice (21) in our applications:
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pIJðxÞ ¼ NI

N
min

�
1;
NJef

J−uJðxÞ

NIef
I−uIðxÞ

�
I ≠ J

pIIðxÞ ¼ 1 −X
J≠I

pIJðxÞ: ð22Þ

Free energies.—In order to compute pIJðxÞ in Eq. (17)
using Eq. (21) or (22), an estimate of the free energies fI is
needed. At initialization, the fI’s are estimated using
Bennett’s acceptance ratio [24]. To this end, the thermo-
dynamic states at which simulations have been conducted
are sorted in a sequence ð1;…; I; I þ 1;…; mÞ, e.g.,
ascending temperatures. The free energies are then initially
set to

f1 ≔ 0; ð23Þ

fIþ1 ≔ fI − ln
1
NI

P
x∈SI minf1; euIðxÞ−uIþ1ðxÞg

1
NIþ1

P
x∈SIþ1 minf1; euIþ1ðxÞ−uIðxÞg ; ð24Þ

where the sample averages are taken over all samples
in a given thermodynamic state, as denoted by x ∈ SI. In
subsequent iterations, we can update the free energies
using

fI;new ≔ fI − ln
N
NI

X
i

~πIi : ð25Þ

The iteration is converged when in the expanded
equilibrium distribution, ~π has weights that are equal
according to the target values wI:

P
i ~π

I
i ¼ ðNI=NÞ

for all I. Equation (25) will adapt fI until this equilibrium
is achieved (see Supplemental Material [37] for details).
Estimation of the equilibrium distribution.—In every

iteration, we obtain a transition-count matrix possessing
the sparsity structures sketched in Eq. (12). Because
the theory is based on a transition matrix fulfilling
detailed balance, we can estimate ~P using the reversible
transition matrix estimator described in Ref. [30] which
also provides the expanded equilibrium distribution ~π as a
by-product.
However, we can derive a simple direct estimator for ~π

without going through ~P (see Supplemental Material [37]).
Let xIi be variables that are iterated to approximate πIi .
Iteratively updating according to (26), xIi converges towards
the maximum likelihood estimate of πIi :

xI;newi ¼ 1

2

Xn
j¼1

cIij þ cIji
NI

i
wIπIi

þ NI
j

wIπIj

þ 1

2

Xm
J¼1

bIJi þ bJIi
NI

i
wIπIi

þ NJ
i

wJπJi

; ð26Þ

πI;newi ¼ xIiP
n
j¼1 x

I
j
. ð27Þ

The xTRAM estimator is summarized in algorithm 1.

Algorithm 1: xTRAMAlgorithm for estimating the free energies
fI and equilibrium probabilities πIi .

1. Compute the largest connected set from the projection of the
multitemperature trajectory ensembles onto states. All vectors
and matrices are defined on that connected set. For all other
states, πIi is set to 0.
2. Initial guess of free energies: Set f1≔0 and for I¼1;…;m−1
set

fIþ1 ≔ fI − ln
1
NI

P
x∈SI minf1; euIðxÞ−uIþ1ðxÞg

1
NIþ1

P
x∈SIþ1 minf1; euIþ1ðxÞ−uIðxÞg :

3. Compute configuration-state countsCI ¼ ðcIijÞ. cIij is the number
of times a trajectory simulated at thermodynamic state I was
found to be at configuration state i at time t, and at state j at time
tþ τ. Define NI

i ≔
P

jc
I
ij, N

I ≔
P

iN
I
i , N ≔

P
IN

I .
4. Initial guess of equilibrium probabilities:

πIi ≔
NI

i

NI :

5. Iterate to convergence of fI:
(a) Compute thermodynamic-state counts by

bIJi ≔
X
x∈SIi

pIJðxÞ;

with pIJðxÞ from Eq. (21) or (22).
(b) Iterate to convergence of πIi using wI ≔ NI=N:

xI;newi ≔
X
j

cIij þ cIji
NI

i
wIπIi

þ NI
j

wIπIj

þ
X
J

bIJi þ bJIi
NI

i
wIπIi

þ NJ
i

wJπJi

πI;newi ≔
xIiP
jx

I
j
:

(c) Update free energies:

fI ≔ fI − ln
N
NI

X
i

πIi

Estimation of arbitrary expectation functions.—Now we
can derive an efficient estimator of the equilibrium expect-
ation values hAi of an arbitrary function AðxÞ, as defined by
Eq. (10), at an arbitrary thermodynamic state (at which it is
possibly not simulated). For this, we employ Eqs. (14) and
(15) in Ref. [23], treating every configuration state at every
thermodynamic state as a separate MBAR thermodynamic
state. We define the weights
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gðxÞ ¼ e−uðxÞP
K

P
i N

K
i e

fKi −uKðxÞ ; ð28Þ

where the configuration free energies can be computed as
fIi ¼ fI − ln πIi . As shown in the Supplemental Material
[37], the expectation values of an arbitrary function of
configuration hAi can thus be estimated as

hAi ¼
P

xgðxÞAðxÞP
xgðxÞ

; ð29Þ

where
P

x runs over all samples in the data.

D. Asymptotic correctness of the xTRAM estimator

The exact transition probability between sets Si and Sj at
thermodynamic state I is given by

pI
ij ¼

1

πIi

Z
Si

dxμIðxÞ
Z
Sj

dypIðx; y; τÞ; ð30Þ

where pIðx; y; τÞ is the probability density of the system to
be in configuration y at time tþ τ given that it is in
configuration x at thermodynamic state I at time t. By
definition, microscopic detailed balance holds for the
dynamics at thermodynamic state I: μIðxÞpIðx; y; τÞ ¼
μIðyÞpIðy;x; τÞ. Using detailed balance in Eq. (30) directly
leads to

πIip
I
ij ¼ πIjp

I
ji: ð31Þ

The exact thermodynamic state transition probability
from thermodynamic state I to J at configuration state i
is given by

pIJ
i ¼ 1

wIπIi

Z
Si

dxμIxpIJ
x : ð32Þ

Together with Eq. (20), we have detailed balance in discrete
states:

wIπIip
IJ
i ¼ wJπJi p

JI
i : ð33Þ

In the statistical limit N → ∞, which can be either realized
by trajectories of great length or by a large number of short
trajectories, our expected transition counts converge to the
following limits:

ĉIij ¼ lim
N→∞

cIij ¼ NI
ip

I
ij; ð34Þ

b̂Iij ¼ lim
N→∞

bIij ¼ NI
ip

IJ
i : ð35Þ

Plugging these counts and the reversibility conditions (31)
and (33) into the estimator of equilibrium probabilities (26),
we obtain the accurate result

xIi ¼ wIπIi : ð36Þ

Furthermore, in the statistical limit, the Bennett acceptance
ratio initialization (algorithm 1, step 2.) is exact. With result
(36), this estimate is not changed in algorithm 1, step 5c.
Thus, the xTRAM estimator converges to unbiased
estimates of all equilibrium properties (7)–(10) in the
statistical limit.

E. Special cases

With one thermodynamic state, xTRAM is a Markov
model.—Consider the situation in which simulations were
conducted at a single thermodynamic state, such as
unbiased molecular dynamics simulations of a macromol-
ecule at a fixed temperature I. The xTRAM count matrix is
now an n × n configuration-state count matrix C ¼ ðcijÞ.
We only have one free energy fI ¼ 0. Using Eq. (9), the

configuration free energies are given by fIi ¼ − ln πi, where
πi are the estimated equilibrium probabilities of discrete
configuration states i. These equilibrium probabilities can
be obtained by the special case of Eqs. (26) and (27):

xnewi ¼
Xn
j¼1

cij þ cji
Ni
πi
þ Nj

πj

; ð37Þ

πnewi ¼ xiP
n
j¼1 xj

: ð38Þ

Equations (37) and (38) are the equilibrium probability
of the maximum likelihood n × n reversible transition
matrix, given count matrix C. Therefore, in the single-
thermodynamic state case, our estimates are identical to
those of a reversible Markov model.
Standard methods can be used to compute the maximum

likelihood reversible transition matrix P [30,38]. However,
if we wish to use P to extract not only stationary but kinetic
information, the lag time τ used to obtain the count matrix
C must be chosen sufficiently large in order to obtain an
accurate estimate [30].
When all thermodynamic states are in global equilib-

rium, xTRAM is identical to MBAR in the estimation of
fI.—In order to show the relationship between TRAM and
MBAR, we use the TRAM equations (25), (26), and (27),
and specialize them using the MBAR assumption that each
thermodynamic state is sampled from global equilibrium.
This assumption can be modeled by merging all configu-
ration states to one state. When converged, the TRAM
quantities then fulfill the equations

πIpIJ ¼ bIJ þ bJI

NI

πI
þ NJ

πJ

; ð39Þ

0 ¼ − ln
N
NI π

I: ð40Þ
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By combining these equations with Eqs. (17) and (21) (see
Supplemental Material [37] for details), we obtain

fI ¼ − ln
X
allx

e−uIðxÞP
KN

Kef
K−uKðxÞ ; ð41Þ

which is identical to the MBAR estimator for the reduced
free energy of thermodynamic state I [see Eq. (11)
in Ref. [23]].
The MBAR and xTRAM estimators of πIi are consistent.—

Again using the condition that all simulations are in their
respective global equilibria and tending to the statistical
limit N → ∞ (see Supplemental Material [37] for details),
we can show that the xTRAM estimate for the equilibrium
probabilities πIi can be written as

πIi ¼
P

x∈Si
e−uI ðxÞP

K
NKef

K−uK ðxÞ

P
allx

e−uI ðxÞP
K
NKef

K−uK ðxÞ

; ð42Þ

which is identical to the MBAR expectation value for πIi [to
obtain this result, use Eqs. (14) and (15) in Ref. [23] with
the indicator function on set Si).

F. Random-swapping simulations

PT, ST, and REMD simulation protocols are constructed
such that they sample from global equilibrium at all
temperatures after a sufficiently long burn-in phase.
Global equilibrium is ensured by constructing appropriate
Metropolis acceptance criteria for temperature swaps. The
disadvantage is that to ensure a good mixing rate between
replicas, dense replica spacing is required—a problem that
becomes increasingly difficult for systems with a large
number of degrees of freedom, as is the case of biomo-
lecular simulations of 105 or more atoms.
However, because of the use of transition matrices,

xTRAM only requires local equilibrium within the discrete
configurational states rather than global equilibrium—a
much weaker requirement. It is thus tempting to consider
using a simulation protocol that is much more efficient than
PT, ST, and REMD while sacrificing the property that it
samples from global equilibrium at all temperatures. Such a
protocol would be useful if it is still possible to recover the
correct stationary probabilities using xTRAM. One can
consider the simple RS protocol, in which the replica
makes a random walk in a predefined set of temperatures
T1;…; Tm. Every so many MD/MC simulation steps, the
replica jumps up or down in temperature with equal
probability. The temperature move is always accepted,
unlike in ST. In this way, temperature and configuration
space can be efficiently sampled with very widely spaced
replicas, providing a good set of input trajectories
for xTRAM.

Because there is no Metropolis-Hastings acceptance
criterion involved, the initial samples after each temper-
ature swap are definitely out of global but also out of local
equilibrium at the new temperature. While discarding an
initial fragment of the data would seem to be a viable
option, it turns out that, instead, using larger lag times τ
appears to work much better in correcting the estimates, as
established for Markov-model construction [30]. However,
a solid theory for this observation has yet to be found and is
beyond the scope of the current paper.

III. RESULTS

To demonstrate the validity and resulting advantage of
the proposed estimator, two Langevin processes in model
potentials and two explicitly solvated molecular dynamics
processes are considered. In all cases, we compare three
different estimators, which are the newly proposed xTRAM
estimator, MBAR, and histogram counting (direct counting
estimate), each applied to the same sets of data. Both
accuracy and precision of all methods will be studied by
evaluating the systematic and statistical errors for repre-
sentative discrete states and temperatures of interest.

A. Two-well potential with solvent degrees of freedom

As a first example, we consider Langevin dynamics in an
asymmetric double-well potential [Fig. 2(a)] with the
corresponding stationary (Boltzmann) distribution PðxÞ
shown in Fig. 2(b) for the reduced temperature kBT ¼ 1.
In order to make the system more complex, we add a set of
N solvent particles. Each solvent coordinate i is subject to a
harmonic potential UðyiÞ ¼ y2i , where yi is the particle’s
position.
The state space is discretized into two states, corre-

sponding to the two potential basins. We aim to estimate the
equilibrium distribution of these two states from a set of
different multitemperature simulation protocols in combi-
nation with any of the estimators considered (xTRAM,
MBAR, and direct counting). All simulations are initiated
from a local stationary distribution in state S1, and the three
different simulation protocols chosen are PT, ST, and RS
simulations. With each simulation protocol, 100 indepen-
dent realizations were generated, and their results are
shown in Fig. 2. For all three simulation protocols, a
temperature space needs to be defined, consisting of four
exponentially spaced temperatures between kBT ¼ 1 and
kBT ¼ 10 in reduced units, for Figs. 2(c)–2(f) and six
exponentially spaced temperatures between kBT ¼ 1 and
kBT ¼ 15 in reduced units for Figs. 2(g) and 2(h). The
temperatures are chosen in such a way that barrier crossings
at the lowest temperature are very rare events. For more
details on the simulation protocols and setup, see the
Supplemental Material [37].
Figures 2(c,d) and 2(e,f) show the results of ST and

PT simulations with two solvent particles, respectively.
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The results are displayed in the form of a log-log plot of the
relative error of the estimate of π1 and its convergence
behavior with increased simulation time. The relative error
is given by

ϵ ¼
���� πðS1Þexact − πðS1Þestimate

πðS1Þexact

����: ð43Þ

The stationary distribution, at the lowest reduced temper-
ature of kBT ¼ 1, is obtained using all three estimators:
(1) direct counting, (2) MBAR, and (3) xTRAM.
Figures 2(c), 2(e), and 2(g) report averages and confidence
intervals of the time-dependent relative errors computed
from 100 realizations of each simulation. Figures 2(d), 2(f),
and 2(h) report standard deviations (σ) of the simulation
data from 100 independent realizations and their time
dependence. In panels (c) and (e), the tail of the mean
error for all three methods decays approximately equal to
b=

ffiffi
t

p
, where b is a constant related to the decorrelation

time tcorr required to generate an uncorrelated configuration
at the temperature analyzed. Arrows in panels (c) and (e)
indicate a relative error of 1. In the case of the ST
simulation, xTRAM outperforms direct counting by a
factor of 40, and in (e), for the parallel tempering
simulation, xTRAM has a gain of a factor of 5 over MBAR
estimates and a factor of 25 over direct counting estimates.
This means that the xTRAM estimates converge up to 40-
fold faster in comparison to direct counts and at least

fivefold faster in comparison to MBAR, indicating that the
decorrelation time with xTRAM can be much shorter.
Consequently, less simulation time needs to be invested
when the data are analyzed with xTRAM. Second, the
standard deviation as seen in (d) and (f) is consistently
lower for xTRAM, meaning that over independent real-
izations, the accuracy of the estimate is better in compari-
son to MBAR and direct counting.
Additional efficiency can be gained when the simple RS

simulation protocol is employed instead of ST or PT
simulations because then the number of replicas can be
reduced such that xTRAM gives good results, while ST or
PT replicas would not mix well in temperature space. In
Fig. 2(g), the results of a simulation with 50 solvent
particles are depicted. In order to achieve a good mixing
in a PT simulation, 20 temperatures exponentially spaced in
the range of 1 to 15 in reduced units need to be used, which
is compared to a six-replica RS simulation (see
Supplemental Material [37] for more details). The lag time
τ for the evaluation could actually be chosen as small as the
saving interval of the simulation in this case, resulting in the
same convergence as using larger lag times. Looking at a
relative error of ϵ ¼ 2, an extrapolation needs to be made to
compute how many simulation steps are needed for the PT
direct counting estimate. From the extrapolated conver-
gence behavior, it is found to be around 1 × 108 simulation
steps. Despite the fact that the RS protocol itself is not in
equilibrium, the correct equilibrium probabilities can be

(a)

(b)

(c)

TRAM
Histogram

MBAR

(d) (f)

S1 S2

Simulated tempering Parallel tempering Random swapsPotential

Stationary distribution

(e) (g)

(h)

FIG. 2. (a) Double-well potential UðxÞ. (b) Corresponding stationary distribution at a reduced temperature kBT ¼ 1. (c, d) Results of
the ST simulation. (c) The relative error of π1 with respect to (w.r.t.) the number of simulation steps for simulations with two solvent
particles and four temperatures. The direct histogram estimate (red, dashed line) and xTRAM (black, continuous line) are evaluated on
the same data set. (d) Standard deviation (σ) from 100 realizations w.r.t. simulation steps taken for direct count histogram (red, dashed
line) and xTRAM (black, continuous line). (e, f) Results of the PT simulation. (e) Relative error π1 w.r.t. to simulation steps from PT
simulations over 100 realizations for direct counts (red, dashed line), MBAR (blue, dashed-dotted line), and xTRAM (black, continuous
line). (f) Standard deviation from data in (e). (g, h) Results of a system with N ¼ 50 solvent particles using PT simulations for the
MBAR and a direct counting estimate and RS simulations for the xTRAM estimate. (g) Relative error as a function of the total number of
simulation steps for comparing a 20 temperature replica PT simulation, analyzed with direct count histograms (red, dashed line), and
MBAR (blue, dashed-dotted line), with the xTRAM (black, continuous line) analysis of a six-temperature RS simulation. The dashed
green line shows a fit of t−0.5 to the tail of the relative error. (h) Standard deviations of data in (g).
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recovered when used in conjunction with xTRAM. In this
case, a relative error ϵ ¼ 2 is achieved at around 1 × 105

simulation steps, indicating an efficiency gain of around 3
orders of magnitude for RS/TRAM and more than 2 orders
of magnitude over MBAR with the same PT simulation
data as for the direct counts. It should be stressed again that
for MBAR and direct counting, only simulation sampling
from a global equilibrium can be used; therefore, these
estimators are not suitable to be used in conjunction with a
random-swapping simulation. Figure 2(h) shows the stan-
dard deviation of the relative error from 100 realizations.
Initially, the standard deviation is deceptively small for
direct counts and MBAR because many of the 100
simulations have only seen state 1. The standard deviation
increases, as the second state is discovered, reaching a
peak, from which σ decreases again.

B. Simple protein-folding model

In order to illustrate the limitations of the method, we
now discuss an example where xTRAM offers no signifi-
cant advantage over the established MBAR estimator. We
consider an idealized folding potential with an energetically
stabilized native state and an entropically stabilized dena-
tured state. The state space is spanned by a vector in five
dimensions, such that x ∈ R5 and r ¼ jxj is the distance
from zero. The potential is defined as

UðrÞ ¼
�−2.5ðr − 3Þ2 if r < 3

0.5ðr − 3Þ3 − ðr − 3Þ2 if r ≥ 3
ð44Þ

and depicted in Fig. 3(a). Again, a Langevin dynamics
simulation was carried out, with more details provided in
the Supplemental Material [37]. The system is discretized
into two states: native and denatured, with a state boundary
at r ¼ 2.7, representing the distance around which the
lowest probability density is observed. All simulations are
initiated in the native state.
The potential and the exact stationary density πðrÞ at

ð1=βÞ ¼ 1.1kBT are shown in Figs. 3(a) and 3(b), respec-
tively. Note that the denatured state is stabilized by entropy,
as more microstates are available for r > 2.7 than for
r < 2.7. The convergence of the estimate of the relative
error, Eq. (43), of the unfolded state is measured for a set of
ST, PT, and RS simulations. Results are taken from 100
different realizations and six exponentially spaced temper-
atures between ð1=βÞ ¼ 1.1kBT and ð1=βÞ ¼ 1.7kBT.
Panels (c) and (d) of Fig. 3 show the results of the ST
simulation, comparing the convergence of direct counting
against xTRAM of the relative error of being in the
denatured state. As before, xTRAM is shown by the black,
continuous line, and direct counting by the dashed, red line.
Arrows indicating an error level of ϵ ¼ 0.3 are used as
guidance for the comparison of the convergence. Using
xTRAM as the estimator for the analysis of the simulation
results in a ninefold gain over direct counting. Shaded areas
indicate confidence intervals. Figure 3(d) shows the con-
vergence of the standard deviation obtained from 100
independent realizations of the ST simulation from (c).
The standard deviation of the xTRAM estimate is con-
sistently lower than for the direct counting estimate.
Figures 3(e) and 3(f) summarize the results of the parallel

(b)

(c) (e)

TRAM
Histogram

MBAR

Simulated tempering Parallel tempering Random swaps

(a)

Potential

Stationary distribution

native

denatured

(d) (f)

(g)

(h)
S1 S2

FIG. 3. (a) Potential UðrÞ. (b) Corresponding stationary distribution at ð1=βÞ ¼ 1.1kBT. Results are shown in terms of the relative
error ϵ of the probability of being in the “denatured” state versus the number of simulation steps required. (c, d) Results of the ST
simulation. (c) xTRAM estimate (black, continuous line) and direct counting estimate (red, dashed line). Arrows indicate an ϵ ¼ 0.3
error level (d) standard deviation of the 100 realizations (c) for both estimators. (e, f) Results of the parallel tempering simulation.
(e) MBAR estimate (blue, dashed-dotted line), with arrows indicating the ϵ ¼ 0.2 error level. (f) Standard deviation of data in (e) from
100 realizations. (g, h) Comparison of the RSþ xTRAM estimate to the PT estimate using MBAR and direct counts in (e). Arrows
indicate the ϵ ¼ 0.2 error level. (h) Standard deviation of the data in (g) over 100 realizations.
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tempering simulations. Here, an 11-fold gain is observed
when using xTRAM over direct counting, but MBAR and
xTRAM perform almost equally as well, indicated by the
arrows shown at an error level of ϵ ¼ 0.2. This behavior
suggests that in this model, samples from the local and
global equilibria are generated at the same rate. Figure 3(f)
shows the standard deviation of the data in (e) from the 100
independently generated simulations.
Figures 3(g) and 3(h) compare the direct counting and

MBAR estimate of (e) with an RS simulation using only a
single replica and four exponentially spaced temperatures
in the range kBT ¼ ½1.1−1.7�. Now, xTRAM has a twofold
gain over MBAR.
As xTRAM is a local-equilibrium generalization of

MBAR, it is guaranteed to have equal or better estimation
accuracy. However, the results above indicate that the
accuracy gain of xTRAM over MBAR can be small in
some systems. In the folding potential, this is presumably
due to the fact that the different temperatures not only help
in barrier crossing but also give rise to vastly different
equilibrium probabilities of the folded state (stable at low
temperatures) and the unfolded state (stable at high temper-
atures). Thus, even at short simulation times, both the
folded and unfolded states are present in the replica
ensemble and can successfully be reweighted using
MBAR without relying on too many actual configuration-
state transitions. xTRAM will gain efficiency in situations
where the state space exploration is slowed down by
higher friction or additional barriers, as often found in
macromolecules.

C. Alanine dipeptide

In order to test the xTRAM estimator on a system with
many degrees of freedom, we turn to MD simulations using
an explicit solvent model. To this end, we study solvated
alanine dipeptide, a small and well-studied peptide with
multiple metastable states [27,39–41] and around 6000
degrees of freedom in the case of the system setup used
here. Alanine dipeptide was prepared using an explicit
water model and simulated in the MD software package
OpenMM [42]. All the necessary simulation details are
provided in the Supplemental Material [37].
The dominant conformations of this system are the

different rotamers set by the dihedral angles ψ and ϕ.
This means we are interested in estimating the free-energy
surface in ϕ=ψ space at a low temperature of interest.
Again, we are interested in extracting the stationary

probabilities of metastable basins at different temperatures.
However, the system at T ¼ 300 K is not very metastable;
thus, we introduce an artificial metastability to the torsional
angles. For this purpose, we add a potential to the minima
of the ϕ and ψ dihedral angles in order to extend the time
the system stays in a particular angular configuration. The
ideal choices for such an additional potential are periodic
von Mises potentials of the form

UðδÞ ¼ ϵ exp

�
κ cosðδ − δ0Þ

2πI0

�
; ð45Þ

where I0 is a zeroth-order Bessel function and δ is the angle
to which the additional potential is added. For more details,
see the Supplemental Material [37]. We use two different
types of multitemperature simulations: a set of ten inde-
pendent realizations of a 33-temperature REMD simulation
with temperatures exponentially spaced in the range
of T ¼ ½300 K–600 K� and a set of independent realiza-
tions of a 13-temperature RS simulation, where only every
third temperature out of the REMD multitemperature
ensemble was used. From the ten REMD trajectories,
the last 1 ns of each was used to estimate the free-energy
surface in dihedral ϕ and ψ space, as shown in Fig. 4(a).
From the free-energy surface, four discrete states could be
defined, numbered, and highlighted by the white boxes. All
simulations were initiated in state IV and 5ns long trajec-
tories at each temperature were generated. Discretizing
simulation trajectories then allows for a stationary estimate
through direct counts of the frequency of each state visited
along the trajectory (in the case of the REMD simulation).
The same discrete trajectories are also used for xTRAM and
MBAR estimation.
For the RS simulation, the total simulation time was less,

as only 13 instead of the 33 parallel replicas were
simulated. Confidence intervals are indicated by the shaded
regions calculated over the independent realizations of
every simulation type. In order for the RS simulation to
produce valid results, the lag time at which transition
counts are evaluated needs to be adjusted. Here, τ ¼ 1 ps,
is used, while temperature switches were carried out every
10 ps; for more details on the RS simulation, refer to the
Supplemental Material [37].
Figures 4(b), 4(d), 4(f), and 4(h) show the convergence

results of the REMD simulation. While all estimators
yield similar (and inaccurate) estimates for very short
simulation times, xTRAM exhibits considerable advan-
tages over MBAR and direct counting after 10 ns of
simulation time. The fastest-converging estimator (see
below) produces stable equilibrium probabilities of about
(0.57,0.25,0.13,0.1) for states I–IV at 100 ns of accumu-
lated simulation time. Using REMD data, xTRAM con-
verges to within about 10% of these values with roughly 1
order of magnitude simulation data compared to MBAR
and direct counting (20 ns versus 200 ns).
Figures 4(c), 4(e), 4(g), and 4(i) compare the perfor-

mance of the RS simulations when analyzed with xTRAM,
with respect to the standard REMD simulations. As a result
of the smaller number of replicas required and the enhanced
mixing properties, another order of magnitude is gained
with the RS protocol when compared to the xTRAM
estimate of the REMD simulations. Since xTRAM is
currently the only available estimator to unbias RS simu-
lations, the advantage of xTRAM over MBAR and direct
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counting amounts to 2 orders of magnitude (xTRAM
with RS versus MBAR with REMD). This advantage of
xTRAM in conjunction with RS can be much larger for
systems with many degrees of freedom, where a REMD
simulation would need many closely spaced replicas, thus
resulting in vast computational effort and slow exchange
dynamics.

D. Deca-alanine

Finally, we consider the ten amino-acid long deca-
alanine (Ala10). This peptide is known to undergo a
helix-coil transition, which has been studied extensively
[43–46]. Ten independent runs of all-atom replica-
exchange simulations were conducted with the
GROMACS software MD package, each using 24 expo-
nentially spaced temperatures ranging from T ¼ 290 K to
400 K [47]. We ran the simulation for 40 ns total simulation
time per replica and conducted ten independent realizations
of these. For a more detailed description of the simulation
details, see the Supplemental Material [37].
In this larger molecular system, the discretization of

configuration space is no longer trivial. For this purpose,
we use time-lagged independent component analysis
(TICA) on the replica trajectories of the set of Cα distances,
omitting nearest-neighbor distances along the peptide chain
[48]. TICA is useful to identify the subspace in which the
slowest transitions occur. Here, we chose three leading
TICA coordinates and used a regular spatial clustering on
these with a minimum distance cutoff of three, yielding 44
discrete clusters. This analysis was carried out using the
Markov-model package EMMA [49]. See Supplemental
Material [37] for more details.
xTRAM, MBAR, and histogram counting were used in

order to estimate the equilibrium probabilities on the 44
discrete configuration states. In order to obtain a simple
representation of the results, the equilibrium probabilities
summed over all α-helical states are shown in Fig. 5(b). As
before, we are interested in the analysis at the lowest
simulation temperature (T ¼ 290 K).
As seen in Fig. 5(a), the advantage gained from TRAM

in comparison to MBAR and direct counting in this case is
only about twofold. However, this can be attributed to the
fact that the system does not display a very strong
metastability, and the slowest time scale, computed inde-
pendently with a Markov-state model on direct 290-K
trajectories, is only 14 ns. Moreover, like the simple folding
model above, Ala10 has the same property that the temper-
atures stabilize the folded and unfolded states quite differ-
ently, leading to simultaneous observation of folded and
unfolded states at early stages of the replica simulation, and
also to the fact that significantly many transitions between
folded and unfolded states occur only in a very small part of
the replica ensemble (in the replicas around the melting
point). As a result, the advantage of taking configuration-
state transitions into account is smaller in this case
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FIG. 4. (a) Free energy with a 10 kJ=mol cutoff, indicating
discrete states. (b, d, f, h) REMD simulation convergence of state
probability over ten realizations. Estimates are obtained from
xTRAM (black, continuous line), MBAR (blue, dashed-dotted
line), and direct counting (red, dashed line). (c, e, g, i) RS simulation
convergence of state probabilities over five realizations, compared
to REMD simulation estimates using MBAR and direct counts.

ANTONIA S. J. S. MEY, HAO WU, AND FRANK NOÉ PHYS. REV. X 4, 041018 (2014)

041018-12



compared to systems at which the different metastable
states are present at a larger range of temperatures. As
demonstrated for the simple folding model above, larger
gains of computational efficiency can still be obtained by
reducing the number of replicas, e.g., by employing the RS
protocol in conjunction with the xTRAM estimator.

IV. DISCUSSION AND CONCLUSION

Expanded TRAM can be used to obtain estimates of
equilibrium properties from any set of simulations that
were conducted at different thermodynamic states, such as
multiple temperatures, Hamiltonians, or bias potentials,
which we demonstrated here for multiple temperature
simulations. It is therefore applicable to generalized ensem-
ble simulations such as replica-exchange and parallel or
simulated tempering, as well as umbrella sampling or
metadynamics. The quantities estimated can include free-
energy differences, equilibrium probabilities, or equilib-
rium expectations of functions of a configuration state. As
such, xTRAM has the same application scope as existing
reweighting estimators (e.g., WHAM and MBAR).
In contrast to WHAM and MBAR, xTRAM does not

assume that simulation data are generated from global
equilibrium. Rather, xTRAM combines ideas from
MBAR and Markov modeling into an estimator that makes
use of both, Boltzmann reweighting of sampled configura-
tions between thermodynamic states and transition count
statistics between different configuration states generated by
contiguous trajectory segments. Compared to MBAR, esti-
mates obtained from xTRAM can be more accurate, as they
suffer less from data that have not yet decorrelated from the

initial configurations, as well as more precise, as the statistics
in the simulation data can be used more efficiently when
every conditional independent transition count, rather than
only every globally independent count, is useful.
xTRAM is an asymptotically correct estimator; i.e., its

estimates converge to the exact values in the limit of long or
many simulation trajectories. We have also shown that in
the special case when simulation data are at global
equilibrium, we can derive the MBAR equations from
the expectation values of the xTRAM equations. MBAR is
thus a special case of xTRAM, suggesting that the accuracy
of xTRAM estimates should be at least equally good as
those of MBAR estimates but may be significantly better
when parts of the simulation data are not in global
equilibrium. The applications shown here confirm this
result, sometimes exhibiting order-of-magnitude more
accurate estimates when xTRAM is employed and there-
fore allowing the use of shorter simulation times while
maintaining the same accuracy in the estimate.
While MBAR provides statistically optimal (i.e.,

minimum-variance) estimates under the condition that data
are in global equilibrium, it is currently not known whether
xTRAM is also statistically optimal. However, the appli-
cations in this paper suggest that the variances of xTRAM
estimates are, in most cases, significantly better than those
of MBAR or direct counting.
An interesting aspect of xTRAM is the fact that it does

not rely on the data being at global equilibrium, thus
opening the door to consider new simulation methods that
deliberately sacrifice global equilibrium for enhanced
sampling. This feature reflects the Markov-model nature
of the configuration-state statistics in xTRAM—Markov
models also allow us to obtain unbiased estimates from
short trajectories that are not sampling from global equi-
librium, as long as they sample from local equilibrium
within each configuration state. We have demonstrated this
ability by using xTRAM to unbias simple random-
swapping simulations that exchange temperature replicas
in complete ignorance of the Metropolis acceptance prob-
ability. The hope is that with such a setup, large systems can
be simulated with very few widely spaced replicas, which
would be inappropriate for a PTor ST simulation that needs
energy overlap between adjacent replicas. It was shown
that with a sufficiently large lag time τ for evaluating the
transition counts, xTRAM provided accurate estimates with
such a protocol, while achieving a sampling efficiency that
is orders of magnitude more efficient than classical replica-
exchange or parallel tempering simulations. In the future, it
will be necessary to develop a theory that quantifies the
local equilibrium error made by brute-force sampling
protocols such as random swapping in order to put them
to use on solid ground.
An implementation of xTRAM will be available for

download through the python free energy analysis toolkit
(pyfeat) at [50].

(a)

(b)

TRAM
Histogram
MBAR

FIG. 5. (a) Convergence of the probability of the system being
in a helical state with respect to the total simulation time per
replica. The xTRAM estimate is given by the continuous black
line, the histogram count by the dashed red line, and the MBAR
estimate by the dashed-dotted blue line. Confidence intervals are
obtained from ten independent REMD simulations. (b) Structure
averages of the helix state whose convergence is shown in (a).
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