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Abstract

The golgin family gives identity and structure to the Golgi apparatus and is part of a complex protein network at the Golgi
membrane. The golgin p115 is targeted by the GTPase Rab1a, contains a large globular head region and a long region of
coiled-coil which forms an extended rod-like structure. p115 serves as vesicle tethering factor and plays an important role at
different steps of vesicular transport. Here we present the 2.2 Å-resolution X-ray structure of the globular head region of
p115. The structure exhibits an armadillo fold that is decorated by elongated loops and carries a C-terminal non-canonical
repeat. This terminal repeat folds into the armadillo superhelical groove and allows homodimeric association with important
implications for p115 mediated multiple protein interactions and tethering.
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Introduction

Membrane trafficking in eukaryotic cells is an example for the

modular organization of cellular activity. The formation and

delivery of transport intermediates to specific cellular locations are

complex processes that can be divided into several stages [1]. In

this modular organization the first interaction of a vesicle and its

target membrane is termed tethering. It depends on a heteroge-

neous group of proteins called ‘tethers’ [2]. They can be divided

into multi-subunit tethering complexes and proteins containing an

extended coiled-coil region.

The golgin p115, which forms stable homodimers, is recruited

to membranes in a nucleotide-dependent manner by the

guanosine triphosphatase (GTPase) Rab1a [2,3] and belongs to

the family of tethers containing an extended coiled-coil region.

p115 is among the best characterized representatives of long

coiled-coil tethers. The architecture of p115 comprises a long

central coiled-coil region, a large globular N-terminal domain and

a C-terminal acidic region. The central region mediates homo-

dimerization and contains the Rab1a binding site. Interaction of

Rab1a and p115 is thought to tether coat-protein complex II

(COP II) vesicles to each other, thus promoting homotypic vesicle

fusion [3]. The C-terminal region of p115 binds to GM130 and

giantin, two further coiled-coil tethers localized at the Golgi

membrane [4].

p115 binds to a specific set of soluble N-ethylmaleimide-

sensitive-factor attachment protein receptors (SNAREs), aiding

formation of a cis-SNARE complex that promotes the antero-

grade ER-to-Golgi transport by targeting COP II vesicles to the

Golgi apparatus [3]. In addition to its major role in exocytotic

transport (5), p115 functions in retrograde Golgi-to-ER trans-port,

intra-Golgi transport and Golgi biogenesis [6] of the Golgi

apparatus, due to essential interactions with the coat-protein

complex I (COP I) subunit b-COP [7] and the conserved-

oligomeric-Golgi complex (COG) subunit COG2 [8].

To understand how these different activities are combined in

one p115 molecule, we embarked on its structure analysis. We

used a construct comprising the globular head region of p115

(p115GHR, residues Asp54 to Tyr629) for crystallization (Fig. 1).

The fragment lacks 53 N-terminal residues that are predicted to be

disordered [9] and the C-terminal coiled-coil domain (p115CC).

Results and Discussion

Structure of the p115 globular head region
p115GHR consists of a multi-helical b-catenin-like armadillo fold

arranged in a regular right-handed superhelix (Fig. 2A). We

observe 10 classical armadillo repeats (ARM1-ARM10) [10–12]

and one non-canonical repeat which we termed USO repeat, after

the yeast homolog of p115, Uso1p. Each armadillo repeat is

composed of three a-helices (H1–H3) and has a distinct

hydrophobic core. ARM1 and ARM2 are connected by a highly

acidic and flexible loop (residues 92–110), which is not visible in

the electron density. Structure-based sequence alignment reveals a

number of highly conserved amino acids (Fig. 2B).

The N-terminal region of p115GHR (Fig. 2C left) is remarkably

similar to other armadillo-fold proteins [11,13] of different

subfamilies (b-catenin, p120/catenin d-1, and karyopherin-a/

importin-a), although these proteins show low sequence conser-

vation. The C-terminal region (ARM7-USO) of p115GHR differs

from other members of armadillo-protein subfamilies (Fig. 2C

right). The armadillo repeats exhibit long loops (5 to 13 residues)

in ARM5-ARM9. This structural motif of elongated loops

culminates in the formation of a short helix inserted in the H2-
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H3 loop (37 residues) of the terminal USO repeat which we named

the USO helix. This USO repeat does not follow the rule of

classical armadillo repeat proteins that form a right-handed

superhelix. It folds back into the superhelical groove, leading to a

globular C-terminus of p115GHR and covering helices H3 of

ARM8-ARM9, while the USO helix points into the center of the

groove.

These unique characteristics of the C-terminus allow to

structurally separate the protein in an armadillo helical domain

(ARM1-ARM6, residues 54–342) and an Uso1 head domain

(ARM7-USO, residues 343–629), which clearly distinguishes the

head region of p115 from any other armadillo-fold protein. The

Uso1 head domain identifies a group of proteins which are

described as general vesicular transport factors, transcytosis

associated proteins (TAP) or vesicle docking proteins [14].

Interaction of p115GHR and the COG complex subunit
COG2

Uso1p and p115 share a similar domain structure, a large

globular head region with a long coiled-coil domain and an acidic

patch on the C-terminus of the protein with an overall sequence

identity of 25%. Two highly conserved homologous regions HR1

(residues 21–54) and HR2 (residues 200–247) were shown to bind

to the appendix domain of the COP I subunit b-COP and the

COG complex subunit COG2, respectively (see Fig. 1). HR1 is

predicted unordered and missing in our structure. The HR2 is

mapped to ARM4 and ARM5 of the N-terminal armadillo like

helical domain. The armadillo fold is found in more than 240

proteins that mostly serve as scaffolds for the assembly of

multiprotein complexes. They often mediate complex formation

by polar interactions. Interestingly, the armadillo helical domain

shows large negatively charged patches (Fig. 3a), and additionally

we observe a conserved, highly charged surface patch of ARM4 in

HR2 [15,16] which indicates that COG2 binding arises mainly

from polar interactions [Fig. 3b].

Dimeric arrangement of the p115 globular head region
p115, like other golgins, is a stable homodimer with an N-

terminal globular head domain and a C-terminal coiled-coil

domain of 45 nm length as determined by rotary-shadowing

electron microscopy [17]. We have observed p115GHR to be

monomeric in solution by gel-filtration experiments (not shown).

In the crystal structure, a dimeric arrangement between p115GHR

molecules results from their packing along a dyad axis (Fig. 4A).

Depending on the orientation, the crystallographic dimer has a

single-head or double-lobed globular appearance (Fig. 4B). The

extended loops point towards the exposed surface, and the large

superhelical groove of one molecule is covered by the groove of the

second molecule in the dimeric arrangement. Interestingly, the

p115GHR groove is less charged compared to b-catenin and

karyopherin-a (Fig. 5) which there serves as a binding site for

interaction partners in these proteins. In the dimeric p115GHR

assembly as observed in the crystal the monomers are twisted

around each other, keeping the USO helices, which form the

interface of the head dimer, in the center. The USO helix and the

USO repeat helix H2 are part of the dimer interface which covers

only 635 Å2 (,2.6%) of the total 24,000 Å2 of solvent-accessible

surface (SAS). This contact area is relatively small, indicating that

in solution the globular head domains might be connected flexibly,

if at all.

A Model for p115 full length protein
Although the observed crystallographic dimer might not exactly

reflect the protein structure in the cell, we suggest a model of the

overall fold of the full-length p115 (Fig. 6). We note the distinct

shape similarity between the dimer arrangement of p115GHR and

EM images of intact dimeric p115 [17] and Uso1p [18]. In

agreement with this observation, the C-termini of both p115GHR

monomers are aligned in parallel in the crystal structure which

would allow continuation into the coiled-coil of p115.

The different members of armadillo subfamilies like b-catenin,

karyopherin-a and p115GHR define a conserved architecture and

provide a scaffold for the assembly of protein complexes with

different functions. Interestingly, the C-terminal region of

p115GHR, in comparison to full-length b-catenin [19] shows how

the architecture of an armadillo domain is altered to serve in, what

we propose, a hinge-linkage between the subunits of the dimeric

p115 head domain. Further high-resolution structures of

p115GHR/CC and binding partner complexes combined with

characterization of structure based mutants in cell-based assays

will be required to understand how p115 carries out its tethering

function.

Materials and Methods

Protein expression and purification
A fragment of the human p115 gene, encoding amino-acid

residues 54–628 (p115GHR), was cloned into the bacterial

Figure 1. Schematic overview of full-length p115. The construct comprising p115GHR used for crystallization is shown in gray.
doi:10.1371/journal.pone.0004656.g001
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expression vector pGEX-4T1 (GST Gene Fusion System, GE

Healthcare) and expressed in Superior Broth (SB) medium with

1 mM isopropyl-1-thio-b-D-galactopyranoside. p115GHR was

purified with GST-affinity chromatography subjected to size-

exclusion chromatography after tag cleavage by thrombin and

concentrated to 20.0 mg ml21. Selenomethionine-labeled p115

was produced by using metabolic inhibition of the methionine

pathway according to the protocol of Van Duyne et al., [20].

Figure 2. Crystal structure of p115GHR. (A) Stereo view of the overall structure. The protein is composed of 11 armadillo repeats. (B) Structure-
based sequence alignment of the p115 armadillo repeats and the loop regions. Consensus residues that define the conserved hydrophobic residues
of each armadillo repeat are highlighted in blue; amino acids that define conserved polar, neutral residues are highlighted in green. Glycine and
proline residues are highlighted in brown and olive, respectively. The repeat numbers are shown on the left. The sequences that form helices H1, H2,
and H3 are indicated as green, blue and yellow cylinders. The corresponding ARM loops are marked on top, the USO helix is indicated as red cylinder.
(C) N-terminal armadillo-like helical domain (left) and C-terminal Uso1 head domain (right) of p115GHR, elongated loops with at least 5 residues are
colored in red (H1 green, H2 blue, H3 yellow).
doi:10.1371/journal.pone.0004656.g002
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Crystallization and data collection
p115GHR crystals were grown at 4uC by the sitting-drop method

using a semi-automated dispensing system [21]. Crystals for X-ray

measurements were obtained in 25% PEG 550 MME, 0.1 M

HEPES pH 7.5. The best crystals were flash-cooled at 100 K in

mother liquor containing 20% sucrose. Data from a native crystal

to 2.2 Å and a crystal from selenium-labeled p115GHR to 2.8 Å

resolution were collected at 100 K at the Protein Structure Factory

beamline 14.2 of the Freie Universität Berlin [21] at BESSY

(Berlin, Germany). The same space group, C2, was obtained for

Figure 3. Interaction of p115GHR and the COG complex subunit COG2. (A) Electrostatic surfaces of p115GHR. The amino terminus of the
molecule is at the top of the figure. Blue indicates positive charge and red negative charge at the level of 10 kT/e. (B) Conserved residues of p115 and
the yeast homolog Uso1p form a highly charged surface of exposed helices which define the COG2 binding site.
doi:10.1371/journal.pone.0004656.g003
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the native and selenomethionyl proteins, with one molecule per

asymmetric unit. Data were reduced and scaled using HKL2000

[22]. Data collection statistics are listed in Table 1.

Structure determination and refinement
For structure determination of p115GHR, selenium-peak wave-

length data to 2.8 Å resolution were used for single-wavelength

anomalous diffraction phasing (SAD) to determine the positions of

15 selenium sites. Initial phases were calculated and improved

using PHENIX [23]. The initial model was automatically built

with ARP/wARP [24] and manually improved using the program

COOT [25]. The model was placed into the unit cell of the

higher-resolution native protein and subsequently refined using

REFMAC5 [26]. During several rounds of iterative model

building and refinement (including TLS), the model was extended

to 553 residues per asymmetric unit, and three polyethylene glycol

and 123 water molecules were placed into the electron density.

The p115GHR structure has a final Rwork = 21.9% and

Rfree = 26.9%, and the quality of the model was excellent as

assessed with the program Molprobity [27]. The coordinates and

diffraction amplitudes were deposited in the Protein Data Bank

with accession code 2w3c. Refinement statistics are summarized in

Table 1.

Figure production
All pictures were prepared using PyMOL [28] and the APBS

tool [29]. The sequence alignment was prepared with ClustalW

[30].

Figure 4. Dimeric arrangement of the p115 globular head region. (A) B-factor representation (‘‘S-‘‘ and ‘‘W-view’’) of p115GHR molecules
aligned by crystal symmetry. The intermolecular contact area (blue) is among the most rigid parts of the structure. (B) Depending on the orientation,
the crystallographic dimer of p115GHR has a single-head (‘‘O-view’’) or double-lobed globular appearance (‘‘W-’’ and ’’V-view’’).
doi:10.1371/journal.pone.0004656.g004

Unusual Armadillo Fold in p115

PLoS ONE | www.plosone.org 5 February 2009 | Volume 4 | Issue 2 | e4656



Figure 5. Electrostatic surfaces comparison of the superhelical grooves of the p115GHR, b-catenin and karyopherin-a. Blue indicates
positive charge and red negative charge at the level of 10 kT/e. The amino terminus of the molecule is at the top of the figure.
doi:10.1371/journal.pone.0004656.g005

Figure 6. Model of the overall fold of the full-length p115. Surface and cartoon representations of a model of the full-length general vesicular
transport factor p115 generated by manually fitting a coiled-coil of appropriate length to the C-termini of p115GHR in the crystallographic dimer. The
different views of the p115 model closely resemble published electron micrographs of p115 and Uso1p.
doi:10.1371/journal.pone.0004656.g006
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