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Abstract
We propose to use a comprehensive path model of vocal emotion communication, encom-

passing encoding, transmission, and decoding processes, to empirically model data sets

on emotion expression and recognition. The utility of the approach is demonstrated for two

data sets from two different cultures and languages, based on corpora of vocal emotion

enactment by professional actors and emotion inference by naïve listeners. Lens model

equations, hierarchical regression, and multivariate path analysis are used to compare the

relative contributions of objectively measured acoustic cues in the enacted expressions and

subjective voice cues as perceived by listeners to the variance in emotion inference from

vocal expressions for four emotion families (fear, anger, happiness, and sadness). While

the results confirm the central role of arousal in vocal emotion communication, the utility of

applying an extended path modeling framework is demonstrated by the identification of

unique combinations of distal cues and proximal percepts carrying information about spe-

cific emotion families, independent of arousal. The statistical models generated show that

more sophisticated acoustic parameters need to be developed to explain the distal under-

pinnings of subjective voice quality percepts that account for much of the variance in emo-

tion inference, in particular voice instability and roughness. The general approach

advocated here, as well as the specific results, open up new research strategies for work in

psychology (specifically emotion and social perception research) and engineering and com-

puter science (specifically research and development in the domain of affective computing,

particularly on automatic emotion detection and synthetic emotion expression in avatars).

Introduction
Accurately inferring the emotions of others in social interactions is extremely important, as it
permits an understanding of the expresser's reaction to preceding events or behaviors and a
prediction of the expresser's action tendencies and thus facilitates communication and inter-
personal adjustment [1,2]. In consequence, the study of emotion expression and perception
has become a major research area over the last 60 years and has played an important part in
the development of emotion psychology as an interdisciplinary research area.

Emotions can be successfully communicated through vocal expressions alone (see reviews
in [3–5]), but we still know little about the processes and mechanisms that allow humans to
communicate emotions through vocal expressions [6]. In particular, the nature of voice
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characteristics (also referred to as vocal cues or vocal features) responsible for successfully
expressing and recognizing emotions in vocal utterances are not yet well understood.

The study of nonverbal communication of emotion through voice and speech has been
examined in past decades by focusing on either acoustic descriptions (e.g. [7–11]; and Table A
in S1 File—Appendix) or recognition of emotions by listeners (e.g. [12–16]). Reviews of the
field [3–5] often refer to these two approaches as encoding studies, focusing on the acoustic
description of emotional vocalizations, and decoding studies, focusing on emotion recognition
or discrimination by listeners.

A recent, comprehensive review of studies on facial, vocal, gestural, and multimodal emo-
tion communication [5] calls attention to the following concerns: 1) Emotion expression
(encoding) and emotion perception (decoding) are rarely studied in combination (and recogni-
tion studies are far more numerous than studies on the production of emotional expressions).
As a consequence of the separation of these two central aspects of the communication process
the underlyingmechanisms, especially the nature of the cues used in emotion perception and
inference, cannot be appropriately assessed. 2) Both encoding and decoding studies tend to
focus on highly prototypical expressions of a handful of basic emotions. This raises important
concerns: Prototypical expressions tend to increase the risk of stereotypical use of major emo-
tion dimensions—especially valence (e.g., pleasantness-unpleasantness; [17]) in the case of
facial expression and arousal in the case of vocal expression (see Table A in S1 File—Appen-
dix). Arousal refers primarily to the physiological activation associated with emotional reac-
tions and can be considered as a dimension ranging from intense activation to calmness or
even sleep [18]. This bias, in addition to the few emotion alternatives generally provided for
judgment in recognition studies, may lead to guessing and classification by exclusion in recog-
nition studies ([5]; p. 415). Thus, the state of the art of research on vocal communication can
be briefly characterized as follows: A handful of encoding studies shows that actors vocally
enacting a relatively small number of basic emotions produce differentiated patterns of vocal
parameters for different emotions (with a preponderance of arousal-related parameters). A
rather large number of decoding or recognition studies shows that naïve judges recognize por-
trayals of a relatively small number of basic emotions with better than chance accuracy
(although effects of guessing and classification by exclusion, based on arousal cues, cannot be
excluded). Therefore a more comprehensive, integrative approach is needed to advance
research on the mechanisms underlying the vocal communication process.

Here we examine the utility and feasibility of studying the encoding, transmission, and
decoding phases of the vocal emotion communication process by using a Brunswikian lens
model approach which is particularly well suited for this purpose as it allows combining encod-
ing and decoding processes. In particular, we show that comprehensive models and their quan-
titative testing provide an important impetus for future research in this area, not only by
providing a more theoretically adequate framework that allows hypothesis testing and accumu-
lation of results, but also by pointing to areas where further method development is urgently
required (e.g. the development of reliable measurement for new acoustic parameters that can
be expected to correlate with voice quality perception).

We first describe the general framework provided by the lens model (with a focus on the
variants of the model that are used for the analysis presented in this article). We then outline
the statistical models that can be used for empirical model testing.

Theoretical models–from Brunswik's lens model to the TEEP
Brunswik [19] proposed that successful adjustment to an uncertain, constantly changing world
requires the organism to rely on probabilistic inference mechanisms using multiple pieces of
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uncertain evidence (proximal cues) about the world (the distal object). He illustrated this pro-
cess by a lens-shaped model in which a fan-shaped array of probabilistic sensory cues for a dis-
tal object are utilized to form a singular judgment about the object. The fit of this subjective
judgment with world reality he called ecological validity. Brunswik originally focused on visual
perception, but already proposed several variants of his lens model applied to the study of
interpersonal perception. The simplest version of the lens model in this domain includes (a) a
distal “object” (when applied to vocal communication of emotion, the emotion experienced by
the speaker), (b) a number of observable and measurable cues (the vocal features affected by
the emotion and used by the listener to infer the emotion), and (c) a perception or perceptual
judgment from a human observer (the emotional attributions made by the listener). Examples
of studies of interpersonal perception that make explicit reference to the lens model include
analysis of the nonverbal communication of interpersonal dispositions [20], perception of
intelligence from audio-video recording [21], perceived “quality of relationship” [22], and sev-
eral recent studies on personality expression and inference, such as self-other agreement at
zero acquaintance [23], hindsight effects and knowledge updating [24], the perception of trust-
worthiness from faces [25], behavioral cues of overconfidence [26], and vocal cues of hierarchi-
cal rank [27]. Juslin and his collaborators have used this functional approach to cue utilization
in studying emotion communication in music performances [28–31] and for the encoding and
decoding of vocal emotions [32].

In an early study on the expression and perception of personality in the speaking voice,
Scherer [33] proposed and tested an extension of the lens model in which the cue domain is
separated into (a) distal, objectively measurable cues (such as acoustic voice parameters for the
speaker) and (b) subjective, proximal percepts of these cues (such as voice quality impressions
formed by the listener). The major justification for this extension is that in perception and
communication, the objectively measurable cues in nonverbal behavior are subject to a trans-
mission process from sender to receiver (often adding noise) and need to be processed and ade-
quately transformed by the sensorium of the receiver. A comprehensive model of the
communication process requires conceptualization and empirical measurement of this trans-
mission process ([4]; see also [34, 35]).

More recently, Scherer [36] has formalized the earlier suggestion for an extension of the
lens model as a tripartite emotion expression and perception (TEEP) model (see Fig 1). The
communication process is represented by four elements (emoter/sender, distal cues, proximal
percepts and observer) and three phases (externalization driven by external models and inter-
nal changes, transmission, cue utilization driven by inference rules and schematic recognition).
Applying this model to our specific research questions, the internal state of the speaker (e.g. the
emotion process) is encoded via distal vocal cues (measured by acoustic analysis); the listener
perceives the vocal utterance and extracts a number of proximal cues (measured by subjective
voice quality ratings obtained from naive observers); and, finally, some of these proximal cues
are used by the listener to infer the internal state of the speaker based on schematic recognition
or explicit inference rules (measured by naive observers asked to recognize the underlying
emotion). The first step in this process is called the externalization of the internal emotional
state, the second step the transmission of the acoustic information and the forming of a percep-
tual representation of the physical speech/voice signal, and the third and last step the inferential
utilization and the emergence of an emotional attribution.

Next we describe the statistical models that have been used in earlier studies for Brunswi-
kian lens modeling, with a focus on the two models that are used in the empirical part of the
present article.

Vocal Emotion Communication

PLOS ONE | DOI:10.1371/journal.pone.0136675 September 1, 2015 3 / 29



Statistical Paradigms for Lens Modeling
The dominant statistical paradigm in work informed by a Brunswikian approach is the lens
model equation (LME [37]), originally developed by Hammond, Hursch, and Todd [38] and
Tucker [39]. The LME is essentially based on two regression equations and two correlations.
Fig 2 provides a graphical illustration adapted to the vocal communication of emotion. In a
first regression equation, objectively measurable cues are predictors for the distal criterion
(expressed emotion in Fig 2). The corresponding multiple correlations (Re) on the left side of
the graph represent the ecological validity (i.e. the extent to which the measured cues account
for the variance in the distal criterion). The second regression equation uses the same cues as
predictors for the proximal judgments of an individual with regard to the distal criterion. The
corresponding multiple correlation (Rs) on the right side of the graph indicate the extent to
which the cues in the model can account for the listeners’ attributions (cue utilization). The
weights of individual cues in the regressions are not part of the LME itself, but are sometimes
considered in order to investigate the independent contribution of various cues in the models
(both with respect to ecological validity and with respect to cue utilization). A correlation coef-
ficient (between criterion and judgment) is used to represent accuracy (Ra in Fig 2). Another

Fig 1. The tripartite emotion expression and perception (TEEP) model (based on Brunswik's lens
model). The terms “push” and “pull” refer to the internal and the external determinants of the emotional
expression, respectively, distinguished in the lower and upper parts of the figure. D = distal cues;
P = percepts. Adapted from p. 120 in Scherer [36].

doi:10.1371/journal.pone.0136675.g001

Fig 2. Graphic illustration for the Lens Model Equation.

doi:10.1371/journal.pone.0136675.g002
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correlation coefficient is used to assess the correspondence between the two regressions (G in
Fig 2). Juslin and collaborators [28,30,31] have adopted this paradigm in their work on emo-
tional communication in music performances.

In Scherer’s [33] extension of the Brunswikian lens model (in his work on the expression
and perception of personality in vocal communication), an early version of path analysis (as
proposed by Duncan [40]) was used (see Fig 3) in which the accuracy coefficient (i.e., the corre-
lation between expressed and perceived emotion) can be split into (a) the contributions of the
postulated central indirect paths, (b) peripheral indirect paths (either distally based, bypassing
the percept component, or proximally based, bypassing the distal cue component), and (c) the
remaining direct path (i.e., the variance explained that is not accounted for by the mediation).

The present article describes a first attempt to demonstrate the plausibility of the model
assumptions by examining how well the model can account for empirical data on the emotion
expression in the voice (externalization) and the corresponding inferences made by naive
observers (utilization). An ancillary question that has hardly been addressed in the literature
concerns cue transmission—the degree to which the proximal cues appropriately reflect emo-
tion-differentiating distal cues and what the nature of the mapping is. For this purpose, we
examined the respective contributions of the LME (Fig 2) and the statistical model derived
from the TEEP (path analysis illustrated in Fig 3) in a re-analysis of two corpora of vocal emo-
tion portrayals, using an exploratory approach. Specifically, we attempt to empirically deter-
mine the relative importance of different variables and their associations rather than testing
specific hypotheses.

The data used for the re-analyses have been collected in two consecutive research programs
with different corpora of vocal expressions enacted by professional actors using Stanislavski
techniques (reconstituting vivid feelings by recalling past emotional experiences; [41]). The
results reported here are the product of studies conducted over a period of 15 years, during
which the two corpora were recorded with professional actors (the “Munich” corpus [MUC]

Fig 3. Graphic illustration for an extendedmodel (path analysis with separate distal and proximal cues).

doi:10.1371/journal.pone.0136675.g003
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[9]; and the “Geneva” corpus [GVA], Geneva Multimodal Emotion Portrayals—GEMEP [42]);
appropriate stimuli were selected for ground truth and authenticity [43]; acoustic analyses
were developed, applied, and validated [9,10]; and a new subjective voice rating scale was devel-
oped and validated [44]. It was only after this preliminary work that all the necessary elements
were available to proceed to an overall modeling of the TEEP model applied to vocal emotion
communication. Although some of the raw data here have been used for earlier reports on
development and validation, so far there has been no attempt to link the expression, or encod-
ing, side to the inferential, or decoding, side using both distal acoustic parameters and subjec-
tive proximal ratings as mediators. In consequence, the analyses and results presented here are
original to the current article.

Methods

Description of the Corpora Used in the Analyses
Detailed descriptions of speech recording, analysis and ratings are described in [42] and [44].
In consequence, we limit the description of the methods to an overview of the procedures that
are essential for understanding the main features of the data used for the Brunswikian re-analy-
sis (further details can be found in the original papers or in the supplementary information in
S1 File–Appendix).

Selection of Emotion Portrayals
The recordings of emotion portrayals used from the MUC corpus were produced by German-
speaking professional actors who enacted all emotions while articulating two meaningless
pseudo-speech sentences (without any semantic content): (a) “hät san dig prong nju ven tsi”
and (b) “fi gött laich jean kill gos terr” [9]. For the current analyses, 144 expressions from this
corpus have been used, corresponding to 16 portrayals produced by nine actors (four men and
five women) for eight emotions (hot and cold anger, elation and calm joy, despair and sadness,
panic fear and anxiety). Each pair of emotions listed corresponds to one family (anger, happi-
ness, sadness, and fear). The first member of the pair is defined as involving high emotional
arousal, whereas the second member of each pair involves low emotional arousal.

The recordings used from the GVA corpus were produced by French-speaking actors who
enacted all emotions, coached by a professional director, while articulating two meaningless
pseudo-speech sentences: (a) “ne kal ibam soud molen” and (b) “koun se mina lod belam”

[44]. The eight emotions with the closest possible match to those in the MUC corpus were cho-
sen. The GVA corpus was recorded to include emotions equivalent to those that were used in
the MUC corpus. Different labels were used because the actors/encoders producing the por-
trayals in both corpora spoke different languages (German for MUC and French for GVA), but
essentially the definitions of emotions used were similar, with the exception of “pleasure”
(“plaisir” in French) and “calm joy” (“Stille Freude” in German), which were not defined as
corresponding to identical states, but which were nevertheless both intended to be positive
emotions with low arousal. From the GVA corpus, 160 expressions were used, corresponding
to 10 actors (five women) who portrayed the eight emotions by using the two pseudo-speech
sentences.

Objective Acoustic Measures (Distal Cues)
Distal voice cues are general assessed via objective acoustic measurement of vocalizations.
Given the complexity of this domain we cannot describe the measures and procedures in detail
(see [6, 9, 10] for more extensive discussions). Parameter extraction for both corpora was
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performed with the open source speech analysis program PRAAT [45]. The extraction proce-
dures are described in [44] (methodological details on the acoustic extractions are also pro-
vided in S1 File—Appendix). Acoustic parameters to be extracted for the MUC corpus were
chosen from the extensive list in Banse and Scherer [9]. Two of these measures (spectral slope
and jitter) were excluded after extraction based on the assessment of reliability carried out for
all measures. As the 44 extracted parameters extracted showed a high degree of collinearity (in
the MUC corpus) a principal component analysis was calculated in order to select a reduced
number of acoustic parameters. This analysis showed that nine factors allowed accounting for
80% of the variance present in these data. The full results of the PCA are available in Tables
B-D in S1 File—Appendix. Nine parameters were selected (one for each factor in the analysis;
see Table D in S1 File—Appendix). Acoustic intensity did not constitute an independent factor
in the analysis, but given its importance for emotion expression and communication, the
parameter "mean intensity" was added to this list. Two initially selected parameters did not dif-
ferentiate the expressed emotions and were therefore discarded. The acoustic parameters
included in the present analyses are shown in Table 1, indicators of fundamental frequency
(F0), acoustic intensity, duration of speech segments (tempo) and measures of spectral energy
distribution. As formant analyses were not carried out on the recordings of the MUC corpus,
articulatory effects could not be assessed.

As there is sizeable and systematic variation in acoustic features across speakers (e.g. female
voices having much higher fundamental frequency than male voices) all acoustic parameters
were standardized within speaker (for both corpora) to control for these extraneous sources of
variance.

The parameters listed in Table 1 were used for the LME analyses. The same set of parame-
ters was used for the computation of the path analyses, except for two parameters which were
excluded to reduce the number of variables to be included in the models: the relative duration
of voiced segments and the proportion of energy between 600 and 800 Hz (chosen because
these rarely used parameters partly overlapped with other parameters and thus did not provide
incremental contributions to the variance in the LME analyses).

Subjective Voice Quality Ratings (Proximal Percepts)
The procedures used to collect ratings of proximal voice cues have been described and justified
in detail in Bänziger et al. [44] (see also S1 File—Appendix). Here we describe only the essential
aspects needed to understand and interpret the models we present in the current article.

Several groups of participants were recruited to assess the proximal voice cues in successive
rating studies for both corpora. All ratings were collected in small laboratories dedicated to per-
ception/judgment studies at the University of Geneva. Individual computers and closed-ear
headphones were used to present the vocal portrayals, and computer interfaces were created to
record the raters’ answers. The raters were all students at the University of Geneva and were
compensated for their services, either in the form of course credit or financial remuneration.
Average ratings are used for the analyses presented in the current paper. The averages were
obtained from 61 raters (48 women, average age 21 years) for the MUC corpus, but with only
15 or 16 ratings for each stimulus. Different raters provided ratings for various subsets of the
corpus. For the GVA corpus, 19 participants (10 women, average age 22 years) provided rat-
ings for all scales. Further details on the rating procedures have been published in [44]. Table E
in S1 File—Appendix provides the details of the composition of the various groups of raters
involved in rating proximal voice cues in both corpora and displays the estimates of inter-rater
reliabilities obtained for the various ratings. The level of reliability of the ratings ranged from
very good to satisfactory (all Cronbach's alpha values were larger than .80). The proximal voice
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scales to be rated were selected in a series of pilot studies designed to identify vocal dimensions
that could be assessed by untrained raters with acceptable consistency. Eight vocal dimensions
were chosen to be included in the Geneva Voice Perception Scale (GVPS; see [44]) and were
used for both corpora described in this article. The eight scales are shown in Table 2.

Assessment of Perceived (Attributed) Emotions
For the MUC corpus, the perceived (attributed) emotions for each stimulus were assessed by
asking groups of raters to judge the perceived intensity of fear, anger, happiness, and sadness
by using the recursive stimulus ranking procedure described earlier for the ratings of perceived
voice cues. The ratings were provided by 56 participants (45 women, average age 22 years).

Table 1. Eight acoustic parameters selected for the LME analyses.

Domain Description Label

Fundamental frequency (F0) Minimum or 5th percentile of the F0 represents
the floor/level of the fundamental frequency.

F0 floor / F0 5th
percentilea

Range (difference between minimum and
maximum) represents the variability of the
fundamental frequency.

F0 range

Intensity Mean represents the acoustic intensity level. Intensity mean

Range (difference between minimum and
maximum) represents the variability in acoustic
intensity.

Intensity range

Duration Total duration (of the utterance) represents the
speech rate (all utterances have the same
number of syllables).

Acoustic
duration

Relative duration of voiced segments on
speech segments (duration of voiced divided
by the sum of the duration of voiced and
unvoiced segments, i.e. excluding phonetic
interruptions) represents the relative duration of
voiced speech segments (i.e. a variable related
to accentuation; prolonged vocals reflect more
accentuated speech).

Relative
duration

Distribution of energy in the long-term
averaged spectrum (voiced segments
only)

0–1000 Hz (relative to 0–8000 Hz) represents
the proportion of spectral energy in “low”
frequency regions (i.e. a variable that reflects
voice quality—a sharp voice is characterized
by increased energy in the higher frequency
regions).

Relative energy
<1000

600–800 Hz (relative to 0–8000 Hz) represents
voice quality changes; this variable was
selected because it was only mildly correlated
with LTSv < 1000, and it loaded on an
independent factor in the PCA computed on all
acoustic variables extracted on the MUC
corpus.

Relative energy
<800

LME = lens model equation; LTSv = long-term averaged spectrum (voiced segments); PCA = principal

component analysis.
a For the MUC corpus, the F0 contours were manually corrected (for extraction mistakes, such as octave

jumps and detection of periodicity in unvoiced segments). For the GVA corpus, no such corrections were

made. Consequently, the absolute minimum of F0 detected in each utterance was used for the MUC

corpus, whereas the 5th percentile of the automatically extracted F0 was used for the GVA corpus.

doi:10.1371/journal.pone.0136675.t001
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Different raters provided ratings for various subsets of the corpus; 14 ratings were collected for
each stimulus. The ratings were made on visual analogue scales and the answers were rescaled
to vary between 0 and 100 (0 = the emotion is absent, 100 = extreme emotional intensity).

For the GVA corpus, emotion recognition accuracy was assessed by asking 23 raters (13
women, average age 29 years) to listen to all emotional expressions included in the larger data-
base (in random order but grouped for each speaker) and to produce a categorical rating (selec-
tion of one emotional category among 18 alternatives, or no emotion present) and an intensity
rating for each portrayal (the procedure and detailed results have been reported in [44]; see
also S1 File—Appendix). Recognition accuracy estimates were computed as the proportion of
raters providing an accurate answer (i.e. selecting the emotion category matching the expres-
sive intention of the actor). Arcsine transformations were then applied to the proportional
emotion recognition scores (resulting in a score between 0 and 100). None of the raters assess-
ing emotions participated in the assessment of the GVPS (i.e. ratings on emotions and GVPS
are obtained independently for both corpora). Table E in S1 File—Appendix provides informa-
tion on the groups of raters involved and the estimated inter-rater reliabilities. Reliabilities ran-
ged from very good to satisfactory (all alpha values larger than .80).

Assessment of Perceived Emotional Arousal
One of the aims of the present analyses was to examine the role of arousal in the vocal commu-
nication process. In consequence, we obtained ratings of the arousal manifested by the speak-
ers. For the MUC corpus, a separate group of 24 raters (all women, 22 years old on average; not
involved in the ratings of emotions or GVPS) assessed the degree of perceived emotional
arousal in all portrayals, using the recursive stimulus ranking procedure described earlier for
the GVPS.

For the GVA corpus, the proximal voice ratings (GVPS) and the arousal ratings were
obtained from the same 19 raters. After providing the ratings for the eight voice scales, the
emotional expressions were presented again (in a new random order for each rater), and the

Table 2. Scales used for the voice ratings, translations, and terms used in the study with French-speaking raters.

English translation French scale names (used in the study)

Scale Direction Scale Direction

Pitch low $ high Hauteur grave $ aiguë

Loudness soft $ loud Volume faible $ forte

Intonation monotonous $ accentuated Mélodie monotone $ modulée

Speech rate slow $ fast Vitesse lente $ rapide

Articulation poor $ good articulation articulation mal $ bien articulée

Instability steady $ trembling stabilité ferme $ tremblante

Roughness not rough $ rough qualité rauque non rauqe $ rauque

Sharpness not sharp $ sharp qualité perçante non perçante $ perçante

The GVPS was used for the ratings in both corpora, but the procedures involved in collecting the ratings differed slightly. For the MUC corpus, the

perceived voice ratings were collected by a stimulus ranking procedure of the emotion portrayals, separately for each speaker. On a computer screen,

raters arranged icons representing the audio stimuli (which they could listen to repeatedly) recursively on a continuum that was consequently recoded to a

score ranging from 0 to 100. For the corpus, a more conventional rating procedure was involved, with raters using a visual analogue scale on the screen

immediately after listening to each portrayal (later recoded to a score ranging from 0 to 100). All participants provided ratings for all voice scales

sequentially and in random order (stimuli were also presented in random order for assessment within each scale).

doi:10.1371/journal.pone.0136675.t002
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raters had to assess arousal on a visual analogue scale presented on the screen. Table E in
S1 File—Appendix provides the information on the raters involved and the estimated inter-
rater reliability which was equally large in both corpora (alpha = .98).

The results showed that the ratings obtained for the two different data sets with the different
rating procedures were remarkably similar [44]. In the analyses reported in the following sec-
tions, we used aggregated scores in the form of the mean values reported for each portrayal on
each rating scale (GVPS; emotional intensity/accuracy and arousal ratings). For the path analy-
ses, we standardized the average ratings obtained on the GVPS.

Methods of Statistical Modeling
As described in the introduction, we used two different approaches for modeling: (a) the
Brunswikian LME and (b) path analysis with both distal and proximal cues into a single model
(as shown in the TEEP model; Fig 1). For ease of comprehension, we provide the details on the
modeling paradigms and the statistical operations in the Results section before the description
of the results, separately for each of the two approaches.

Ethical statement
This work has been performed under strict observance of the ethical guidelines elaborated by
the Ethics Committee of the Department of Psychology at the University of Geneva. Specifi-
cally, the Ethics Committee requested that we submit a detailed description of all studies to be
conducted in the research program “Production and perception of emotion” funded by the
European Research Council (ERC). We described all procedures in detail and confirmed that
we would follow the instructions of the Ethics Committee concerning the procedure to obtain
informed consent. Based on this declaration, the procedures in the series of studies were
approved. For the professional actors we obtained informed consent to produce the required
emotion enactments and that we could use these for research purposes. The remaining partici-
pants produced only ratings of the actor-expressed emotions. In consequence, they were not
subject to any experimental manipulation. Raters were recruited from the student body of the
University of Geneva via posted announcements describing the aim of the study and the proce-
dures used for the ratings. They recorded their agreement to produce the ratings against pay-
ment or course credit on enrollment sheets which provided a detailed description of the rating
procedure. All raters were informed of their right to abandon their rating activity at any time.
Raters choosing to be paid recorded their consent to have their data used for research purposes
by their signature on a form sheet that also served to document payment received for the rat-
ings. Raters choosing to obtain course credit signed a consent form that stipulated that the data
would be stored anonymously and course credit was granted based on the enrollment sheets
specifying their choice of compensation (names were registered separately of the data recorded
during the study).

In all cases, age, gender and native language of the raters were recorded along with the data
collected during the rating sessions. The students were also required to report if they had any
form of diagnosed deficit in auditory perception (without having to provide any further details;
their reply to this question was recorded along with their ratings, anonymously).

It should be noted that some actor recordings and some rating studies for the MUC corpus
were performed before the existence of an ethics committee in the Department of Psychology
at the University of Geneva. However, the procedures used were identical to those later
approved by the current ethics committee.
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Results

LMEModeling
The LME ([39, 46]; see Eq 1 and Fig 2) computes communication achievement (ra, i.e. the cor-
relation between the expressed and perceived emotion) as the sum of two components: the lin-
ear component (i.e. the component of the correlation derived from the linear contributions of
the variables entered in the model) and the unmodeled component (which includes systematic
and unsystematic variance not accounted for by the linear component). The linear component
is a product of speaker consistency (Re, which corresponds to the multiple correlation of enacted
emotion on the variables in the model), rater consistency (Rs, i.e. the multiple correlation of per-
ceived emotion on the variables in the model), andmatching (G, i.e. the correlation between
the predicted values of the expressed emotion model and the predicted values of the perceived
emotion model).

ra ¼ G� Re � Rs þ C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Re

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rs

2
p

ð1Þ

The unmodeled component is the product of three parameters represented in the second
term of the addition in Eq 1. Parameter C corresponds to the correlation between the residuals
of the two multiple regressions, it can be derived from the values of the other parameters of the
equation that are reported in the result Tables for the LME. In this model, a value close to 1 for
parameter G indicates a good match in terms of the use of vocal features on the two sides of the
model. In contrast, a value close to 0 for this parameter indicates that the use of vocal features
is different for encoding and decoding. Low values (approaching zero) for the parameters Re

and Rs may be the consequence of several factors that the model does not allow considering
separately: (a) The vocal features in the model are used inconsistently; (b) the vocal features in
the model are used in a nonlinear way (i.e. nonlinear functions of these features might allow
prediction of the emotion enacted and the emotion perceived); (c) the vocal features important
for encoding or decoding are not included in the model; and (d) the measurement errors are
large for the variables considered.

This model provides indices that are essentially descriptive. All indices are correlations or
multiple correlations and therefore represent effect sizes (proportion of variance shared/
explained between the respective variables). In the result tables, we include the ratio of (G ×
Re × Rs)/ra. This ratio represents the proportion of the relationship between the expressed and
perceived emotion that is accounted for by the voice features included in the model. All regres-
sion coefficients for the LME analyses including levels of significance are provided in Table A
of S2 File—Data.

We computed separate LMEs for each corpus, for each of the four emotion families, and
for distal cues and proximal percepts. The results for both corpora and all emotion families
and arousal are shown in Table 3 (for both distal cues and proximal percepts). These tables
include the parameters that compose the linear component of the LME: achievement (ra, the
correlation between emotion enacted and emotion perceived), ecological validity (Re, the multi-
ple correlation between the acoustic parameters or the perceived vocal features, and the emo-
tion enacted), functional validity (Rs, the multiple correlation between the acoustic parameters
or the perceived vocal features, and the emotion perceived),matching (G, the correlation
between the variables predicted derived from the regression of the acoustic parameters or the
perceived vocal features on the emotion enacted and on the emotion perceived), and the ratio
of (G × Re × Rs)/ra, which represents the proportion of the relationship between the expressed
and perceived emotion that is accounted for by the respective voice features included in the
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model. Fig A in S2 File—Data illustrates the case of anger. The standardized beta coefficients
for the regressions obtained for these models are reported in Table A of S2 File—Data.

The data shown in Table 3 allow several types of comparison. The most important informa-
tion is the proportion of the relationship between the emotion family expressed and the emo-
tion family inferred (“achievement,” shown as the correlation between these two variables in
the first column) that is accounted for by the mediating variables in the model (this proportion
is displayed in the last column of Table 3). While the values for achievement are the same, the
values for the proportion accounted for show major differences for the distal and the proximal
models. In all cases except for arousal, where both models perform about evenly, the proximal
model explains more variance than the distal model, in some cases accounting for almost dou-
ble the variance. This discrepancy cannot be accounted for by a lower level of matching
between expression and inference, as index G is quite comparable for both models. In other
words, the respective cues, distal or proximal, are appropriately used in inference, in line with
the information they contain. Rather, the comparison of the models shows, on average, both
lower ecological validity (i.e. captures less distinctiveness among the emotions expressed) and
lower functional validity (i.e. contributes less to the variance in the inference) for distal cues
than for proximal cues. This discrepancy seems somewhat more pronounced in the case of
GVA corpus for anger, fear, and sadness. It is unlikely that the expressions in this corpus carry
less acoustic information, since there are no such differences in the proportion accounted for
between the corpora for the proximal model (except in the case of sadness), which suggests
that the information is available and is correctly interpreted. Methodological issues can be

Table 3. Summary of five LMEs (four emotion families and arousal) for both corpora based on eight acoustic parameters (same parameters used
in all models) or eight averaged voice ratings (same voice scales in all models).

Emotion families and arousal Corpus ra Re Rs G Re×Rs×G/ra

Achievement Ecological validity Functional validity Matching

Models based on eight acoustic parameters (distal cues)

anger MUC .764 .702 .763 .828 0.58

GVA .843 .501 .652 .949 0.37

fear MUC .670 .558 .598 .826 0.41

GVA .784 .455 .545 .937 0.30

happiness MUC .735 .238 .365 .304 0.04

GVA .896 .498 .514 .943 0.27

sadness MUC .774 .549 .670 .896 0.43

GVA .786 .380 .388 .926 0.17

arousal MUC .723 .776 .891 .953 0.91

GVA .860 .891 .952 .988 0.97

Models based on eight perceived voice cues (proximal cues)

anger MUC .764 .756 .858 .841 0.71

GVA .843 .799 .870 .948 0.78

fear MUC .670 .582 .773 .788 0.53

GVA .784 .617 .751 .942 0.56

happiness MUC .735 .494 .686 .775 0.36

GVA .896 .541 .598 .977 0.35

sadness MUC .774 .680 .829 .956 0.70

GVA .786 .448 .631 .953 0.34

arousal MUC .723 .812 .961 .927 1.00

GVA .860 .897 .965 .971 0.98

doi:10.1371/journal.pone.0136675.t003
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excluded, as the same acoustic parameters were used, calculated with the same software. How-
ever as a relatively high amount of statistical error variance cannot be ruled out, any further
attempts at interpretation seem moot.

The results observed for the arousal ratings shown in Table 3 are highly similar in both cor-
pora and strongly corroborate the dominant role of arousal in vocal emotion communication.
For both the distal and proximal models, the parameters show almost complete explanation of
the achievement by the respective variables. In other words, arousal differences in vocal emo-
tion expressions are well captured by acoustic variables and voice ratings and play a powerful
role in the inference by listeners.

Apart from some level differences, the values for the two corpora were highly comparable
(profile correlations on the LME parameters are r = .55 for the models based on distal cues and
r = .72 for models based on proximal cues). Kolmogorov-Smirnov-Tests were computed for all
variables over the two datasets to test the equality of the probability distributions. All of the
tests yielded statistically non-significant results. In consequence, it was decided to combine the
two data sets for the following analyses, which include both distal and proximal cues, as the sta-
tistical tests of the TEEP model with path analyses requires more observations to obtain suffi-
cient statistical power, given the larger number of variables and covariates.

Path Analysis Based on the TEEPModel
We adopted the path analysis approach described by Scherer [33] (based on [40]) to model the
vocal communication of emotion for the merged corpora with a total of 304 vocal emotion por-
trayals. It should be noted that even the pooled sample size is still low with respect to the num-
ber of parameters to be estimated in the path model (df = 204). Lei and Wu [47] recommend a
minimum of 5 cases per estimated parameter. In the path model described below, we used
expressed happiness as a reference category (a separate analysis for happiness, compared with
the other expressed emotions, can be found in Tables D and E in S2 File—Data).

Fig 4 illustrates the conceptualization of the TEEP path model for the current analysis. The
leftmost box, labeled “expressed emotions,” represents the binary coded emotions enacted by
the actors (as well as the operationally defined expressed level of arousal).

The second box, labeled “acoustic measures”, represents the extracted acoustic characteris-
tics (i.e. the distal cues in the TEEP). The z-standardized acoustic cues used are mean intensity,
intensity range, F0 floor 5th percentile, F0 range, acoustic duration, and relative energy< 1000
(see Table 1).

Fig 4. Conceptual representation of the TEEP path model.

doi:10.1371/journal.pone.0136675.g004
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The third box represents the perceived characteristics of the vocal portrayals (i.e. the proxi-
mal percepts in the TEEP model), consisting of the z-standardized voice quality ratings: into-
nation, loudness, pitch, roughness, speech rate, and instability. The rightmost box represents
the perceived emotion(s) and the perceived arousal level. An arcus-sinus-square root transfor-
mation was applied to these variables, which were originally bound between 0 and 1.

The arrows in Fig 4 show the effects that were included in the model: (a) the direct path
from the expressed to the perceived emotion (D); (b) paths from the expressed emotions to the
proximal percepts bypassing the acoustic measures (EP); (c) paths from the acoustic measures
to the perceived emotions bypassing the proximal percepts (AP); and (d) all paths via both the
distal and the proximal cues (M1 to M3). The path group M1 allows one to assess how a certain
emotional state of the sender is encoded into objectively measurable acoustic parameters, the
path group M2 allows assessment of how the physical characteristics of the voice signal are
translated into proximal percepts (transmission), and the last path group M3 is indicative of
how the proximal percepts are used to infer an emotional state of the sender from the signal
(decoding). Clearly, perfect mediation in the TEEP model would be indicated by all effects
passing fromM1 to M3 with no effects for the paths AP, EP, and particularly for the direct
path D. In addition to analyzing all direct and indirect paths, we estimated covariances between
all dependent variables belonging to the same variable group (acoustic measures, proximal per-
cepts, perceived emotions) with the software Mplus [48], using the estimation procedure with
robust standard errors. The input instructions for the model are documented in Table B and
excerpts of the output in Table C in S2 File—Data.

As the model is fairly large, the results are presented in three separate tables. Only paths
reaching a significance level of p< .02 are reported to guard against overinterpretation. These
significant paths are also illustrated by a series of separate figures (one for each negative emo-
tion and one for arousal), in order to facilitate interpretation. Table 4 shows the path groups
M3, AP, and D (as illustrated in Fig 4) with the perceived emotions as dependent variables.
The path group M3 allows assessment of cue utilization in the Brunswikian sense. For
example, the detection of anger is predicted by perceived loudness (b = .296), low perceived
instability (b = -.257), and high roughness (b = .177). The path group AP allows assessment of
the contribution of the acoustic measures to the detection of anger. The results indicate that
the acoustic measures included in the model contribute only to the prediction of perceived
arousal. Finally, the path group D indicates the direct effects from expressed emotions to per-
ceived emotions. For example, perceived anger is predicted by expressed anger (b = .566) and
expressed fear (b = .145). The high path coefficients for expressed anger as a predictor indicates
that not all information regarding the expressed emotion is mediated through the acoustic
measures and the proximal percepts. The high path coefficients for expressed fear indicates
that it may sometimes mistakenly be identified as anger.

Table 5 shows the results for the path groups M2 and EP (defined in Fig 4) with the proxi-
mal percepts as the dependent variable. The path group M2 allows assessment of the contribu-
tions of the distal cues with regard to the proximal percepts or, in terms of the TEEP model,
the transmission process. For example, intonation is predicted by mean intensity (b = .305),
intensity range (b = .127), fundamental frequency (F0 floor 5th percentile; b = .176), and fre-
quency range (F0 range; b = .288). The path group EP shows the importance of the expressed
emotions for predicting a proximal percept in addition to the acoustic measures. Intonation,
for example, is predicted by low anger (b = -.180), low sadness (b = -.252), low fear (b = -.187),
and high arousal (b = .172). No strict one-to-one relationship between acoustic measures and
proximal counterpart is detected except for perceived mean intensity—loudness and duration
—speech rate.
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Table 4. Prediction of perceived emotions by proximal percepts, distal cues, and expressed emotions, including standardized partial regression
coefficients, R2, and incremental R2.

Perceived emotion (DV) Significant predictors (p = < .02) Standardized partial regression coefficient b R2 ΔR2

Perceived anger Proximal percepts (M3) .638***

Loudness .296**

Instability -.257***

Roughness .177***

Distal cues (AP) .655*** .017**

Expressed emotion (D) .762*** .107***

Expressed anger .566***

Expressed fear .145**

Perceived fear Proximal percepts (M3) .487***

Speech rate .168**

Instability .356***

Distal cues (AP) .521*** .034***

Expressed emotion (D) .713*** .192***

Expressed fear .668***

Expressed anger .130*

Expressed sadness .257***

Perceived happiness Proximal percepts (M3) .265***

Intonation .205**

Distal cues (AP) .269*** .004

Expressed emotions (D) .620*** .351***

Expressed anger -.717***

Expressed sadness -.654***

Expressed fear -.652***

Perceived sadness Proximal percepts (M3) .414***

Intonation -.208**

Loudness .284*

Speech rate -.211**

Instability .279***

Distal cues (AP) .450*** .036***

Expressed emotions (D) .660*** .210***

Expressed sadness .630***

Expressed fear .164**

Perceived arousal Proximal percepts (M3) .905***

Loudness .681***

Speech rate .119***

Instability .181***

Distal cues (AP) .914*** .009***

F0 floor .069**

F0 range .063*

Relative energy -.078*

Expressed emotions (D) .925*** .011***

Expressed sadness -.060*

Expressed anger .105**

Expressed fear .074*

(Continued)
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Table 6 shows the relationship between the expressed emotions and the acoustic measures
as the dependent variable. The path group M1 describes the externalization process in terms
of the TEEP model. For example, mean intensity (loudness) is positively associated with anger
(b = .340), negatively associated with sadness (b = -.135), and highly positively associated with
arousal (b = .766).

In Tables 4 to 6, we computed for each dependent variable the amount of variance that is
explained by the respective set of predictors in a stepwise regression. For example, Table 4 indi-
cates that the amount of variance in perceived anger that is explained by the proximal percepts
is R2 = .638. If the distal cues are added, this amount increases to R2 = .655. Adding the
expressed emotions increases the R2 to .762. Although anger and arousal (R2 = .905) are rela-
tively well explained by the model, this is only moderately the case for happiness (R2 = .265).
For the proximal percepts, Table 5 shows that roughness is accounted for only marginally by
the predictors (R2 = .160), and for the acoustic measures, Table 6 indicates that mean intensity
(acoustic loudness) is well explained by the expressed emotions (R2 = .748), whereas this is not
the case for acoustic duration (R2 = .068).

The incremental R2 values in Table 4 are especially interesting in judging the importance of
the distal cues and the expressed emotions once the proximal percepts are taken into account
to explain the perceived emotions. As Table 4 shows, adding the distal cues does not improve
the prediction of the perceived emotions and arousal substantially.

Figs 5 and 6 show the specific models for anger and arousal. From the graph for anger, it is
evident that the most dominant path chain from expressed anger to perceived anger runs from
high acoustic intensity to high perceived loudness and from there to the inference of perceived
anger. However, the direct path from expressed anger to perceived anger is relatively strong,
indicating that the acoustic measures and the proximal percepts do not carry all the informa-
tion that is used to infer the emotion. Fig 6 for arousal shows that high arousal is reflected in
specific changes in almost all acoustic measures except for relative energy and duration. On the
proximal side of the model, it is mostly loudness that is used to infer perceived arousal. Figs 7
and 8 show the results for fear and sadness. Fig 7 shows that fear portrayals differ from happi-
ness portrayals by a lower F0 range, a higher F0 floor and lower duration. Expressed fear is neg-
atively associated with duration, suggesting higher tempo. Correspondingly, duration is
negatively associated with perceived speech rate and positively with perceived instability.
Finally, high perceived instability and high perceived speech rate are associated with perceived
fear. Fig 8 shows that the acoustic measures included in the model are only weakly associated
with expressed sadness. The strongest paths between the acoustic measures and proximal per-
cepts run from mean intensity to intonation and loudness. Perceived sadness is negatively asso-
ciated with intonation modulation and speech rate, and positively with perceived instability.

Table 7 shows the direct, total indirect, and total effects for the emotion families (the effects
are estimated with Mplus using robust standard errors, which are shown in parentheses in

Table 4. (Continued)

Perceived emotion (DV) Significant predictors (p = < .02) Standardized partial regression coefficient b R2 ΔR2

Expressed arousal .125***

Note:

* = p < .02

** = p < .01

*** = p < .001.

Only p-values < .02 are reported.

doi:10.1371/journal.pone.0136675.t004
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Table 5. Prediction of proximal percepts by distal cues and expressed emotions, including standardized partial regression coefficients, R2, and
incremental R2.

Proximal percept (DV) Significant predictors (p = < .02) Standardized partial regression coefficient b R2 ΔR2

Intonation Distal cue (M2) .630***

Intensity mean .305***

Intensity range .127**

F0 floor .176***

F0 range .288***

Expressed emotion (EP) .684*** .054***

Anger -.180***

Sadness -.252***

Fear -.187***

Arousal .172**

Loudness Distal cue (M2) .916*** .

Intensity mean .752***

Intensity range .095***

Relative energy -.082**

Expressed emotion (EP) .919*** .003*

Expressed anger .077**

Pitch Distal cues (M2) .645***

Intensity mean .388***

F0 floor .374***

F0 range .322***

Expressed emotion (EP) .697*** .052***

Anger -.325***

Fear -.096*

Roughness Distal cue (M2) .078***

Intensity range -.167*

Duration .167*

Relative energy -.243**

Expressed emotion (EP) .160*** .082***

Anger .346***

Sadness .224**

Fear .171**

Arousal .295**

Speech rate Distal cues (M2) .644***

F0 range .104*

Duration -.542***

Expressed emotion (EP) .711*** .067***

Fear .289***

Instability Distal cues (M2) .314***

F0 floor .174**

F0 range .181***

Duration .223***

Expressed emotion (EP) .616*** .302***

Anger -.421***

Sadness .274***

Fear .184***

(Continued)
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Table 7; total effect = total indirect effects + direct effect). The total indirect effects reflect medi-
ation via the acoustic measures and the proximal percepts to detect an emotion. These coeffi-
cients are relatively low except for arousal. In addition, the relatively high direct effects indicate
that the communication process is not sufficiently captured by the variables used. Mediation
for happiness could not be assessed, as happiness was used as a reference category. An analysis
for happiness (contrasted with all other emotions) is provided in the Supplementary Informa-
tion (Tables D and E in S2 File—Data).

Table 5. (Continued)

Proximal percept (DV) Significant predictors (p = < .02) Standardized partial regression coefficient b R2 ΔR2

Arousal .214**

Note:

* = p < .02

** = p < .01

*** = p < .001.

Only p-values < .02 are reported.

doi:10.1371/journal.pone.0136675.t005

Table 6. Prediction of distal cues by expressed emotions including standardized partial regression coefficients andR2.

Distal cue (DV) Significant predictors (p = < .02) Standardized partial regression coefficient b R2

Intensity mean Expressed emotion (M1) .748***

Anger .340***

Sadness -.135***

Arousal .766***

Intensity range Expressed emotion (M1) .321***

Anger .160**

Arousal .519***

F0 floor Expressed emotion (M1) .508***

Fear .195***

Arousal .684***

F0 range Expressed emotion (M1) .298***

Anger .148**

Fear -.148**

Arousal .477***

Duration Expressed emotion (M1) .068***

Anger -.176**

Fear -.283***

Relative energy Expressed emotion (M1) .516***

Anger -.317***

Sadness .108**

Arousal -.619***

Note:
* = p < .02

** = p < .01

*** = p < .001.

Only p-values < .02 are reported.

doi:10.1371/journal.pone.0136675.t006
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Discussion
Overall, the results show that (a) the selected vocal parameters (distal/acoustic and proximal/
perceived) are differentially related to different emotions and (b) they allow a more compre-
hensive account of the communication of the arousal dimension than of the differential quality
of the emotion families (with the exception of anger). In what follows, we briefly discuss the
main findings, first for the LME and then for the path analysis.

LMEModeling
The results obtained for the analyses with the classical LME indicate that the vocal communica-
tion of emotion can be largely accounted for within the framework of the Brunswikian lens
model. In both data sets, the receiver’s emotional attributions could be partly accounted for
either by the objectively measured acoustic parameters, or by the proximal percepts (as indi-
cated by large Rs coefficients). Likewise, the sender’s expressed emotion could be partly
accounted for by the acoustic parameters or by the proximal percepts (as indicated by large Re

coefficients). The large coefficients of communication achievement (ra) indicate that the
intended emotional expressions of the speakers were to a large extent recognized by the decod-
ers. The matching coefficients (G) were overall also very large, indicating that the use of the
voice cues in emotion externalization (expression) is symmetric to the use of the voice cues on
the receiver side (for emotional attributions). This observation supports hypotheses postulating
symmetrical processes in expressive behavior on the one hand and in perception on the other.

Fig 5. Standardized path coefficients of the estimated model for anger (data merged for MUC and GVA).Only significant path coefficients are shown
(p < .02). Significant paths with an absolute value > .2 are depicted in black, significant paths with an absolute value < .2 are depicted in black. int. = intensity;
r. energy = relative energy.

doi:10.1371/journal.pone.0136675.g005
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High coefficients for speaker and rater consistency (Re, Rs) show that the externalized emotions
and the participant’s emotional attributions are relatively strongly related to the eight acoustic
parameters or the perceived voice cues, respectively.

In both data sets, the perceived voice cues appeared to be better predictors for the expressed
emotions and the emotional attributions than the distal acoustic parameters. This observation
is consistent with the results of van Bezooijen [49], who reported that ratings of vocal cues
could better discriminate emotional expressions than could ratings of acoustic cues. This obser-
vation is interesting, given that subjective ratings are a priori less reliable measures (due to
inter-individual differences, biases in ratings, and intrapersonal inconsistency issues) than
objectively measured acoustic parameters.

Path Analysis Based on the TEEPModel
One of the central questions in this research concerns the degree to which the voice cues (distal
or proximal) can account for the variance in perceived emotions. The results (see Table 5)
show that overall, the R2 are large: For all emotion families, about 60% to 70% of the variance
(more than 90% in the case of arousal) can be explained by the complete predictor set, which
includes also expressed emotions and expressed arousal. In contrast, there are marked differ-
ences between emotions in the degree to which the mediating predictors, distal and proximal
variables, account for the explanatory power. The results for the hierarchical regression analy-
sis allow partitioning of the total R2 into the relative contribution of the respective predictor

Fig 6. Standardized path coefficients of the estimated model for arousal (data merged for MUC and GVA).Only significant path coefficients are shown
(p < .02). Significant paths with an absolute value > .2 are depicted in black. Significant paths with an absolute value < .2 are depicted in black. int. = intensity;
r. energy = relative energy.

doi:10.1371/journal.pone.0136675.g006
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sets (see Table 7). The proximal percepts were entered into the hierarchical regressions first,
accounting for 91% of the variance for arousal and 64% for anger, followed by 49% for fear and
41% for sadness and 27% only for happiness.

Compared with the LME approach (where separate analyses had to be computed for proxi-
mal and distal variables), the TEEP model allows a more integrative approach. The results gen-
erally show that, for all emotions, the distal variables do not explain much of the variance once
the proximal variables are entered into the model. This corresponds to theoretical expectations,
as one can assume that the proximal cues, the voice percepts, are in fact directly based on the
acoustic information carried by the wave form. Most of the valid information provided by the
acoustic cues ought to be available in the proximal percepts, provided that they reflect the same
vocal features. Tables 4 to 6 show the details of these relationships. The results show three
important patterns:

1. There are only a few one-to-one relationships (i.e. a particular acoustic parameter exclu-
sively corresponding to a parallel dimension in voice perception). With the exception of
acoustic intensity or energy (intensity mean) accounting for most of the loudness judg-
ments, in all other cases, the subjective voice perception dimensions are determined by sev-
eral acoustic parameters, suggesting that the perceptual dimensions important for emotion
recognition in the voice are defined by interactions between different acoustic cues.

2. The combination of acoustic parameters that best predicts a proximal percept varies over
different proximal scales.

3. Except in the case of loudness, the distal cues account only for 60% or less of the variance in
the proximal percepts (only about 30% for instability and a very low 8% for roughness).
This means that additional acoustic parameters need to be identified and measured in order
to understand how exactly distal acoustic cues determine the subjective impression of voice

Fig 7. Standardized path coefficients of the estimated model for fear (data merged for MUC and GVA).Only significant path coefficients are shown (p <
.02). Significant paths with an absolute value > .2 are depicted in black. Significant paths with an absolute value < .2 are depicted in black.

doi:10.1371/journal.pone.0136675.g007
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and speech quality. This is particularly true for voice quality dimensions such as instability
and roughness that are not easily characterized on the acoustic level in running speech.
Most likely, the subjective judgments on these scales depend on complex combinations of
acoustic cues, including parameters that have not been included in the current analysis such
as perturbation measures, indices of glottal functioning [11], or articulatory phenomena like
mouth shape variations that change radiation. Part of the variance not explained by the
measured acoustic cues carries important information concerning the type of expressed
emotion, as shown by the fact that additional variance in the proximal percepts is explained
by direct paths from one or more expressed emotions after the effect of the acoustic cues has
been partialed out (see Table 5).

Fig 8. Standardized path coefficients of the estimated model for sadness (data merged for MUC and GVA).Only significant path coefficients are
shown (p < .02). Significant paths with an absolute value > .2 are depicted in black. Significant paths with an absolute value < .2 are depicted in black.

doi:10.1371/journal.pone.0136675.g008

Table 7. Standardized direct, total indirect, and total effects from expressed emotion to perceived emotion.

Effects Anger Fear Sad Arousal

Total indirect effects .274*** (0.038) .161*** (0.030) .115*** (0.029) .664*** (0.031)

Direct effect .566*** (0.050) .668*** (0.046) .630*** (0.049) .125*** (0.029)

Total effect .840*** (0.030) .829*** (0.034) .746*** (0.038) .789*** (0.022)

Total indirect effects/Total effect .326 .194 .183 .842

Note:
*** = p < .001.Standard errors in brackets.

doi:10.1371/journal.pone.0136675.t007
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The graphic representation of the results for negative emotions and arousal in Figs 5–8 dem-
onstrates the advantages of the TEEP model as outlined in the introduction. It charts the com-
plete process of expression, transmission, and inference and allows one to determine where the
model supports earlier predictions and where further improvements need to be made.

For anger (Fig 5), the strongest complete mediation path (M1+M2+M3 in Fig 4) is found
for the expression of anger through high acoustic intensity, leading to the impression of a loud
voice giving rise to the inference of anger. A second such path is constituted by flattening of the
spectral slope (i.e. a decrease in relative energy in the frequencies below 1000 Hz with a corre-
sponding increase of the higher frequencies), which might, together with other changes, lead to
an increase in the perception of “roughness” of the voice and then also be interpreted as anger.
Both of these paths have been theoretically postulated. Thus, Scherer (see Table 6 in [50]) pre-
sented a complete set of theory-based acoustic predictions for major emotions, in which an
increase in intensity and high frequency energy is predicted for anger (although the mediation
through proximal percepts was not yet specified). An additional prediction suggested an
increase in F0 range and variability. This is also confirmed by the present data for the distal
path, anger expression leading to an increase in the range of F0. All of these predictions have
also been empirically confirmed in the literature (see for example the review by Juslin &
Laukka, [3]; see also Table A in S1 File—Appendix). In the present case, these acoustic parame-
ters may contribute to the proximal impression of instability in the voice, which is interpreted
as a counter indication of the presence of anger (negative path coefficient).

This apparently discrepant result demonstrates another advantage of the path analytic
TEEP model—the generation of new research questions. As noted earlier, the instability
dimension is currently not well explained by acoustic parameters and it is thus difficult to
interpret the reason for the apparent discrepancy. Most likely, there is an interaction between
F0 range on the one hand and F0 floor and acoustic duration on the other, as all three parame-
ters show a positive effect on instability (i.e. high F0 floor and high variability with a slow
speech rate are seen as instable). However, anger produces faster speech (as also predicted by
Scherer [50], and empirically confirmed in earlier studies [3]). It is difficult to interpret these
inconsistencies given our current knowledge. Further research is required to disentangle the
sources of vocal instability perception and to identify further parameters, including perturba-
tion measures such as jitter, shimmer, or the harmonic-to-noise ratio. The strongly negative
semi-direct path EP, bypassing the distal level, from expressed anger to instability, shows that
an angry voice is not perceived as instable, which is consistent with the negative effect of insta-
bility on anger perception. In any case, these inconsistencies may have reduced the amount of
variance explained by the complete indirect mediation paths of type M1+M2+M3, thus
accounting for the relatively strong direct path D. On the whole, however, the model is success-
ful for anger and provides strong support for both the feasibility of the modeling of the infer-
ence process by the TEEP model and for the earlier predictions based on the component
process model of emotion (as described in [50]).

The model provides an excellent account for the communication of emotional arousal (as
shown in Fig 6). Here both the direct (D) and semi-direct paths (EP and AP) are of little
import, with over 90% of variance being explained by the indirect mediation paths (M1+M2
+M3), essentially through the loudness and instability percepts and due to the strong effects of
expressed arousal on the underlying acoustic parameters F0 and intensity, both with respect to
mean and range. This underlines the important role of strong distal connections between dif-
ferent emotions and specific configurations of acoustic parameters. The indirect mediation
paths also provide some indication that, in this case, there is a more coherent meaning for the
instability dimension, a consistent clustering of F0 floor and range as well as duration (slow
speech rate), even though there is no relationship of the latter with expressed arousal.
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These results reflect the strong evidence from past work in this area suggesting that the
voice is the privileged modality for the expression and communication of arousal and activa-
tion, whereas the face is vastly superior with respect to valence [5]. It seems plausible that stud-
ies involving “extreme” emotional variation (emotion portrayals are often exemplars of very
strong and prototypical emotions) will always find emotional arousal to be a “higher order fac-
tor” in the voice, given that more emotional arousal is likely to be translated in increased vocal
effort and faster speech, which in turn affects many vocal cues. The lack of clearly identified
valence cues is also brought out clearly by the current results, the modeling of the happiness
family being by far the least satisfactory. This is despite the fact that the accuracy scores for
happiness are not much below the average of the other emotions. To the extent that results can-
not be explained by guessing strategies given the small number of positive emotions, listeners
seem to have been able to correctly infer happiness from voice and speech in our corpora (sug-
gesting that relevant cues were available to them). However, so far we have little evidence con-
cerning the distal and proximal cues that the inference process is based on. One possibility
might be the change in lip radiation patterns while speaking with a smile [51], or the size-code
hypothesis [52] which implies that higher sociability (and positive emotionality) may be indi-
cated by higher F0 level and larger formant spacing consecutive to shortening of the vocal tract
[53].

The results for sadness and fear are somewhat better than for happiness, but in each case,
the variance explained by the indirect paths explains less than 50% of the variance in the per-
ceived emotions. The differentiation is provided by acoustic duration/speech rate, decreasing
for sadness and increasing for fear (as reported in earlier studies [3]). In both cases, perceived
instability is involved, with an increase making both fear and sadness judgments more likely.
This, and the negative relationship for anger, might suggest that perceived instability is seen as
an indicator of low power or helplessness. It seems promising to examine this dimension of
voice perception more closely.

Limitations
The expression corpora and corresponding data sets used for the analyses reported here are the
first to allow integration of the four sets of measures (expressed emotions, distal cues, proximal
cues, and perceived emotions) into single models of vocal emotion communication. However,
the nature of the two data sets used here also imposes limitations on our analyses. Sources of
limitations, imposed by the established design of emotion recognition studies, include the use
of binary variables (present/absent) for the operationalization of expressed emotions, the
absence of neutral comparison stimuli (all portrayals represent emotional expressions), and the
sample sizes, which are small in relation to the large number of potentially relevant cues.

The ratings of voice cues and ratings of emotions have been obtained from different raters,
using a design that a priori precludes the possibility that the emotional ratings might have con-
ditioned the ratings of voice cues. However, it cannot be excluded that the participants who
rated the voice cues were influenced by spontaneously occurring implicit emotion judgments.

Furthermore the use of independent ratings (for voice cues and perceived emotions) does
not allow modeling the perception process with respect to individual listeners (and variance
across listeners). In the current models the variance was considered only across emotion por-
trayals, individual perceptual processes are not addressed.

The optimal choice of vocal cues (usually acoustic summaries of the speech signal) is a
recurrent problem in this research domain. There is an urgent need to develop a principled
selection method to allow testing of specific hypotheses. In particular, it seems that different
sets of cues might be distinctive for different emotions and that more work is needed to identify
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the vocal cues that are best suited to describe various emotions in speech. The choice of acous-
tic measures included in the models described above was limited, lacking, for example, mea-
sures relative to formants or voicing stability. Some frequently used spectral measures were
included, but there is certainly room for refinement. In general, the field needs a better map-
ping of the pertinent vocal features involved in the communication of emotion (see Eyben et al.
[54] for a concerted action of the voice research community in this respect).

Furthermore, the acoustic variables included in our analyses have not been selected (or
transformed) for perceptual relevance or saliency. For example, the variations induced by emo-
tion in some of the parameters might fall below discrimination thresholds. Further research
should consider adding a psychoacoustic level of representation to the model, situated between
the distal and the proximal cues. This could consist of appropriate transformations of the
acoustic variables in order to make them more perceptually relevant (e.g. represent F0 in semi-
tones or integrate spectral measure with amplitude measures in order to better approximate
perceived loudness).

Finally, in recent years the use of emotion portrayals has become a common concern. How-
ever, the use of enactedmaterial, in an attempt to get as close as possible to natural expressions,
is obligatory in this research domain, as it is practically and ethically impossible to obtain a
large set of vocalizations for 12 to 18 emotions from the same person in real life. Using a conve-
nience sample of vocal emotion expressions from different individuals recorded on the fly is
ruled out by the fact that individual voice qualities are extremely variable, making it impossible
to compare acoustic emotion variations across speakers.

Conclusion
The promise of using mediational analysis (in particular path analysis) to understand the pro-
cesses of expression and impression in social perception—in contrast to designs focusing only
on expression or encoding or only on inference and decoding—is increasingly recognized.
Most importantly, such research designs focus on the identification of the cues that carry the
pertinent information. This approach is of particular importance in the area of vocal markers
of identity, personality and emotion given the wealth of information provided by the voice and
the complexity of the acoustic markers [6]. A pertinent example is a recent study showing that
women listeners use sexually dimorphic voice cues which correlate with speakers' variation in
stature and hormonal status to judge the masculinity of male speakers, highlighting the inter-
dependence of physiological, acoustic and perceptual dimensions [55].

In a similar vein, the present paper shows the utility of applying a modified Brunswikian
lens model (TEEP) that separately measures both distal and proximal voice cues to assess the
transmission and recoding process, to the vocal communication of emotion. We reported sec-
ondary analyses of two data sets that include proximal/perceived voice cues and distal/acoustic
measures obtained for two corpora of vocal emotion portrayals. Our main goal was to highlight
how the communication process and the contribution of various cues (distal or proximal) can
be represented by using LMEs and path analyses.

The statistical models (LME and path analysis) presented in this paper indicate that this
approach to the study of vocal communication of emotion is highly feasible and that the distal
and proximal variables used in the models mediate the communication of arousal and negative
emotions to a large extent. From the set of proximal percepts, only intonation modulation was
indicative for perceived happiness, reflecting the frequently observed absence of specific
valence cues in the voice. However, recognition accuracy was comparably large for all emo-
tions, as reflected by strong direct paths from expressed to perceived emotion.
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The expected arousal dominance showed up clearly in our models (in the LME and the path
analysis). However, the current results contribute to our understanding of the underlying
mechanisms. Emotions characterized by high arousal are characterized by high intensity and
high F0 floor and range on the distal side, with corresponding perceptions of loudness and
high pitch. This evidence for highly efficient information transmission suggests the existence of
inference rules that directly correspond to the empirical associations we found. In contrast,
high speech rate, often predicted as a marker of arousal, does not consistently produce the
same pattern.

Importantly, the current work has increased our understanding of the cues that are specific
to emotion families, independent of potential arousal differences among the family members
(e.g. irritation, cold anger vs. rage, hot anger). We suggest that the cues specific to the anger
family as a whole, irrespective of arousal differences, are the following: a comparatively high
intensity, a flat spectral slope (perceived as roughness), and a firm, steady voice (the acoustic
correlates of which remain unclear for the moment, although perturbation is a likely
candidate).

In sum, we have shown that accounting for the process of vocal emotion communication
using the Brunswik-based TEEP model is a promising approach to understanding the processes
of emotion production and recognition. It provides insight into which specific cues are used to
express an emotion, how the distal indicator variables map to proximal percepts, and which
proximal percepts are used to recognize a certain emotion. In particular, our results encourage
the search for hitherto unexploited distal voice cues associated with emotions, carrying essen-
tial discrimination information for proximal percepts (e.g. instability). A first step in this direc-
tion is currently undertaken in the form of the specification of a standardized set of acoustic
parameters for research on vocal expression of emotion [54]. This is particularly pertinent in
the case of positive emotions, which have been repeatedly shown to be difficult to characterize
by acoustic parameters despite the fact that raters can identify them rather accurately. Distal
acoustic cues with a better match to speech production and/or speech perception mechanisms
will be needed to improve our models. Correspondingly, further studies of perceived voice cues
need to be conducted to be able to include not only a complete set of distal, but also appropriate
proximal measures in such models. The TEEP model also suggests new possibilities for
research designs using increasingly sophisticated technological tools for voice manipulation
through synthesis and morphing, as based on emotion portrayals or realistic speech data.
Although this article has focused on vocal communication, this framework can be extended to
other areas of interpersonal communication such as the nonverbal communication of emotions
in facial or gestural expressions.

The study of the perception and inference of emotion from nonverbal expressions continues
to be highly popular in psychological emotion and social perception research. Unfortunately,
much of this research is narrowly confined to the study of recognition accuracy, with little con-
cern for the underlying mechanisms and processes or the nature of the acoustic cues and their
perception by listeners. The widening gulf between production studies (which are relatively
rare) and recognition studies (which exist in abundance) constitutes a major limitation for
progress in this field, particularly with respect to understanding the underlying communication
process. Arguably, this research could greatly benefit by a comprehensive, process-oriented
approach informed by a theoretical framework and incorporating production and transmission
as well as perception and inference. Similarly, the recent surge of activity in the domain of affec-
tive computing (involving both engineering and computer sciences), could benefit from the
type of modeling described here. This is particularly true for machine learning approaches to
automatic emotion detection in the voice and for realistic vocal emotion expression synthesis
for avatars in the context of robotics or human-machine-interaction. It is to be hoped that the
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demonstration of the utility and feasibility of a comprehensive path modeling approach moti-
vates researchers from a wider area in perception and cognition to turn to this important aspect
of emotion communication in human social interaction.
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