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Abstract
Background: Ceramide (Cer) and sphingosine (Sph) interfere with critical cellular functions 
relevant for cancer progression and cell survival. While Cer has already been investigated as a 
potential drug target for lymphoma treatment, information about the potency of sphingosine 
is scarce. The aim of this study therefore was to evaluate Sph and its synthetic stereoisomer 
L-threo-sphingosine (Lt-Sph) as potential treatment options for aggressive lymphomas. 
Methods: Diffuse large B cell lymphoma (DLBCL) cell lines were incubated with Sph and Lt-
Sph and consequently analysed by flow cytometry (FACS), enzyme-linked immunosorbent 
assay (ELISA), liquid chromatography coupled to triple-quadrupole mass spectrometry (LC/
MS/MS), electron microscopy, and Western blot. Results: Sph induced cell death and blocked 
cell growth independently of S1P receptors in different DLBCL cell lines. Three different modes 
of Sph-mediated cell death were observed: Apoptosis, autophagy, and protein kinase C (PKC) 
inhibition. Generation of pro-apoptotic Cer accounted only for a minor portion of the apoptotic 
rate. Conclusion: Sph and its analogues could evolve as alternative treatment options for 
aggressive lymphomas via PKC inhibition, apoptosis, and autophagy. These physiological 
responses induced by different intracellular signalling cascades (phosphorylation of JNK, 
PARP cleavage, LC3-II accumulation) identify Sph and analogues as potent cell death inducing 
agents. 
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Introduction

DLBCL is the most common of the aggressive lymphomas with estimated 70.000 
new cases and 19.000 deaths in the United States in 2013 [1]. It is characterized by highly 
heterogenous morphology, biology, and clinical presentation [2]. Different patterns of gene 
expression give rise to 2 distinct subtypes of DLBCL: Germinal center-like (GCB) and activated 
B cell-like (ABC) [3]. A major characteristic of ABC DLBCL is the constitutive activation of 
the nuclear factor-kappa B (NF-кB) pathway [4]. A majority of GCB DLBCL was found to be 
dependent on the phosphatidylinositide 3-kinase (PI3K) and protein kinase B (Akt) pathway 
[5]. In contrast to slow-growing indolent non-Hodgkin’s lymphomas (NHL), rapidly growing 
DLBCL is often curable with a success rate greater than 50% [1]. ABC DLBCL has the worst 
prognosis with 3-year overall survival rates of around 40% [6]. 

Sphingolipids like Sph, sphingosine 1-phosphate (S1P), and Cer are important 
determinants for cell fate [7, 8]. While S1P signalling through G protein-coupled cell 
surface S1P receptors is considered as a pro-survival factor [9], Cer and Sph both induce 
cell death, albeit using different signalling pathways [7, 8]. The exact mechanisms of both 
lipids are not completely understood (reviewed in [10, 11]) . Cer for example interferes with 
mitochondrial functions [12, 13], but also upregulates apoptosis-inducing proteins like Bcl-
xS and caspase-9 [14]. It directly activates PKC-zeta and binds to cathepsin D to support its 
proteolytic maturation and activation [15, 16]. Cer also induces autophagy. Dependent on the 
cell system used, the mechanism involves the induction of ER stress [17], suppression of Akt 
[18], activation of JNK [19], up-regulation of Beclin 1 [20], and expression of the mitochondrial 
BH3-only protein BNIP3 [21]. Little is known about the signalling pathways that transmit 
Sph-induced apoptosis. It inhibits PKC and mitogen-activated protein kinase (MAPK) [22, 
23], but may also act through ceramide synthase-dependent conversion to Cer [24]. It can be 
rapidly phosphorylated by sphingosine kinases (SphK) type 1 and 2 to S1P [25, 26] which 
has antiapoptotic functions predominantly by activating S1P receptors [9, 27]. These two 
different metabolic conversions may explain antipodal observations demonstrating down- 
or upregulation of antiapoptotic Bcl-2 proteins in different cell systems [28, 29]. 

The generation of pro-survival S1P by SphKs supports tumor growth (reviewed in [30]). 
Current strategies for cancer treatment therefore include inhibition of SphKs, particularly 
SphK1, as a potentially new therapeutic avenue [31]. While prevention of S1P generation 
is generally regarded as the main anti-cancer effect due to abrogation of pro-survival S1P 
signalling, the effect of concomitant Sph accumulation has typically not been considered 
as being effective. Different interventions in sphingolipid metabolism like deficiency of 
SphK2 [32] or the S1P degrading enzyme S1P-lyase [33] however result in increased Sph 
concentrations. Moreover sphingosine analogues were tested for their ability to inhibit 
SphKs [34]. SphK inhibitors that are structurally related to Sph may not only prevent Sph 
phosphorylation, but could also share functional properties of Sph. We therefore investigated 
the effect of Sph on different DLBCL in order to better understand the idiosyncratic functions 
of Sph in the context of aggressive lymphomas, and to explore Sph accumulation and Sph 
analogues as alternative treatment options for aggressive lymphomas.

Materials and Methods

Chemicals
The following chemicals were used throughout the study: S1P (Sigma), Sph (Sigma), Lt-Sph (Avanti 

Polar Lipids), C17-Sph (Avanti Polar Lipids) sphinganine (Avanti Polar Lipids), C15-Cer (Matreya), 
C16-Cer (Matreya), phosphatidylserine (PS, Sigma), camptothecin (Sigma), fumonisin B1 (Cayman), 
4-deoxypyridoxine (DOP, Sigma). 

Cell culture
HT, HBL-1, and U2932 cells were grown in RPMI 1640 (Life Technologies) and OciLy19 in Iscove’s 

modified Dulbecco’s medium (IMDM) with 10% fetal bovine serum (FBS, Biochrom), 1 mM sodium 
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pyruvate (PAA Laboratories), 100 units/ml penicillin G (PAA Laboratories), 100 µg/ml streptomycin (PAA 
Laboratories), and 2 mM L-glutamine (PAA Laboratories) [35]. 

Analysis of cell growth
Cells were plated in 96-well plates at 100,000 cells/well and treated with the indicated concentrations 

of the respective compound. Immediately and 1-4 days later, cells were lysed with CellTiter-Glo luminescent 
cell viability assay reagent according to the manufacturer’s protocol (Promega), and the resulting 
luminescence was determined with the Victor3 plate reader (PerkinElmer).

Determination of apoptosis by FACS
Cells were plated in 24-well plates at 100,000 cells/ml and treated with 3 µM (OciLy19) or 5 µM (HT, 

HBL-1, U2932) Sph and Lt-Sph, and with 20 µM camptothecin for 4 h. Subsequently cells were washed twice 
with ice-cold binding buffer (0.01 M Hepes/NaOH (pH 7.4), 0.14 M NaCl, 2.5 mM CaCl2).  Five µl fluorescein 
conjugated annexin V (annexin V-FITC, Immunotools) was added to 100 µl cell suspension in binding buffer 
and incubated at room temperature for 15 min. Five µl of 50 µM propidium iodide was added immediately 
before FACS analysis using the FACSCalibur (Becton Dickinson).

Lipid quantification
Lipid quantification was done as described [36, 37]. Biological samples (1 ml of medium or 10E6 cells) 

were adjusted to 1 ml sample volume with 1 M NaCl in H2O and transferred into a glass centrifuge tube. 
After addition of 1ml of methanol and 200 ml of 6 M HCl, the samples were vortexed. Chloroform (2 ml) was 
added, and the samples were again vigorously vortexed for 2 min. After the samples were centrifuged for 3 
min at 1,900 xg, the lower chloroform phase was transferred to another glass centrifuge tube. After the lipid 
extraction was repeated with 2 ml of chloroform, the chloroform phases were combined and vacuum dried 
in a speed-vac for 45 min at 50 °C. The QTrap triple-quadrupole mass spectrometer (ABSciex) interfaced 
with a Merck-Hitachi Elite LaChrom chromatograph and autosampler was used for electrospray ion (ESI) 
LC/MS/MS analysis. Positive ion ESI LC/MS/MS analysis was employed for detection of all analytes. The 
multiple reaction monitoring transitions for the detection were as follows: C17-Sph m/z 286/268, C15-
Cer m/z 524/264, Sph m/z 300/282, sphinganine m/z 302/284, S1P m/z 380/264, C16-Cer m/z 538/264 
C24-Cer m/z 650/264. Liquid chromatographic resolution of all analytes was achieved using a MultoHigh 
RP 18-3 µm column (2 mm x 60 mm, CS Chromatographie Service). The elution protocol was composed of 
a 9 min column equilibration with 10% solvent A (methanol) and 90% solvent B (1% formic acid) followed 
by sample injection and a 20 min period with 100% solvent A. Samples were infused into the ESI source 
through an electrode tube at a rate of 300 µl/min. Standard curves were generated by adding increasing 
concentrations of the analytes to 300 pmol of C17-Sph and C15-Cer (internal standards). Linearity of 
the standard curves and correlation coefficients were obtained by linear regression analyses. All mass 
spectrometry analyses were performed with Analyst 1.4 (ABSciex).

Cell cycle analysis
Cells were plated in 24-well plates at 100,000 cells/ml and treated with 3 µM (OciLy19) or 5 µM (HT, 

HBL-1, U2932) Sph and Lt-Sph in the presence or absence of 15 µM PS for 3 days. Cells were harvested 
and resuspended in 400 µl hypotonic lysis buffer (50 µg/ml propidium iodide in 0.5 phosphate buffered 
saline (PBS) and 0.1% Triton X-100). After incubation at room temperature for 1 h, the liberated nuclei were 
analyzed by FACS with the FACSCalibur (Becton Dickinson). 

Staining of acidic vesicular organelles
Cells were plated in 24-well plates at 100,000 cells/ml and treated with 3 µM (OciLy19) or 5 µM (HT, 

HBL-1, U2932) Sph and Lt-Sph, and with 10 µM camptothecin for 1 day. Subsequently acridine orange was 
added to the cell suspension at a final concentration of 1 µg/ml for 15 min. Cells were washed twice with 
ice-cold PBS and analyzed by FACS with the FACSCalibur (Becton Dickinson).

Electron microscopy
Samples were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) overnight. Samples 

were washed, postfixed with 2% osmium tetroxide in 0.1 M cacodylate buffer for two hours, dehydrated 
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with graded ethanol solutions, and embedded in Epon (SERVA). Semithin sections were stained with 
Richardson’ stain [38]. Ultrathin sections were stained with uranyl acetat and lead citrate [39]. The samples 
were analyzed on a transmission electron microscope EM 906 (Zeiss, Oberkochen). Sample preparation was 
done by Petra Schrade (Electron Microscopy Facility, Charité - University Medical School Berlin, Germany).

PKC activity assay
PKC activity was tested using the PepTag fluorescent protein kinase assay (Promega) according to 

the manufacturer’s protocol. All PepTag PKC assay reaction components were combined on ice, and PKC 
activity was assayed in a final volume of 25 µl of the following mixture: 5 µl of 5x PKC reaction buffer (100 
mM HEPES, pH 7.4, 6.5 mM CaCl2, 5 mM dithiothreitol, 50 mM MgCl2, 5 mM ATP), 5 µl of PepTag C1 peptide 
(PLSRTLSVAAK, 0.4 µg/µl in water), 5 µl of freshly sonicated PKC activator solution (1 mg/ml PS in water), 
1 µl of peptide protection solution, 3.75 µl of water, 1.25 µl of either vehicle (methanol), Sph, or Lt-Sph, and 
4 µl of supplied PKC (2.5 µg/ml in PKC dilution buffer containing 100 µg/ml FBS and 0.05% Triton X-100. 
Before adding PKC, the mixture was preincubated at 30 °C for 2 min. After the addition of PKC, the entire 
reaction mixture was incubated at 30 °C for 30 min. The reaction was stopped by incubation at 95 °C for 10 
min. Before loading samples on an agarose gel (0.8% agarose in 50mMTris-HCl buffer, pH 8.0), 2 µl of 80% 
glycerol was added to the sample. Electrophoresis was run at 100 V for 30 min in 50 mM Tris-HCl, pH 8, and 
was imaged immediately under UV light. Signals were quantified using ImageJ (NIH).

Quantification of IL-10
Enzyme-linked immunosorbent assay (ELISA) was used to quantify human interleukin-10 (IL-10) in 

the supernatant of DLBCL cell lines. 300,000 HBL-1 cells/300 µl were grown for 24 h and 60,000 U2932 
cells/300 µl were grown for 6 h in 96-well plates (TPP) in the presence and absence of 3-5 µM Sph and Lt-Sph. 
Subsequently cells were centrifuged at 300 xg and the supernatant was harvested. Maxisorp 96-well plates 
(NUNC) were coated with the coating antibody provided by the IL-10 ELISA set and processed according 
to the manufacturer’s protocol (Immunotools). Plates were developed with 3,3',5,5'-tetramethylbenzidine 
(TMB) substrate solution (eBioscience). The reaction was stopped with 1N HCl. Absorbance at 450 nm was 
detected with the Victor3 plate reader (PerkinElmer). Standard curves were generated with 3-300 pg/ml 
IL-10 and used for quantification. 

Determination of AKT phosphorylation and PARP cleavage
Cells were plated in 6-well plates at 100,000 cells/ml and treated with 3 µM (OciLy19) or 5 µM (HT, 

HBL-1, U2932) Sph and Lt-Sph. Subsequently cells were transferred into 96-well plates at a density of 
100.000 cells per well and tested for the presence of AKT (protein kinase B), phospho-AKT (pAKT), cleaved 
poly (ADP ribose) polymerase (PARP), and tubulin with colorimetric in-cell ELISA kits according to the 
manufacturer’s protocol (Pierce Biotechnology). Normalization was performed by whole cell staining with 
Janus green.

Determination of mTOR and JNK phosphorylation
Cells were plated in 6-well plates at 100,000 cells/ml and treated with 3 µM (OciLy19) or 5 µM (HT, 

HBL-1, U2932) Sph and Lt-Sph. After harvesting they were tested for the presence of the c-Jun N-terminal 
kinase (JNK), phospho-JNK (pJNK), and Ser2448 phosphorylated mammalian target of rapamycin (mTOR) 
with ELISA kits according to the manufacturer’s protocol (Abcam). Protein concentrations were 130 µg/ml 
(OciLy19) and 190 µg/ml (HT, HBL-1, U2932) for JNK measurements, 650 µg/ml (OciLy19) and 950 µg/ml 
(HT, HBL-1, U2932) for pJNK measurements, and 160 µg/ml (OciLy19) and 450 µg/ml (HT, HBL-1, U2932) 
for mTOR measurements, respectively.

Western-blot analysis
Western blots were performed according to standard protocols. Cells were plated in 6-well plates 

at 100,000 cells/ml and treated with 3 µM (OciLy19) or 5 µM (HT, HBL-1, U2932) Sph and Lt-Sph. After 
harvesting, 200.000 cells were lysed in 20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, pH 8.0, 1% 
Triton-X- 100, 20 mM NaF, 0.1 mM Na3VO4, and complete protease inhibitor cocktail (Roche Applied  Science). 
Lysates (12 - 23 μg) were subjected to 8-16% Bis-Tris gels (GE Healthcare) according to the manufacturer's 
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protocol, and proteins were transferred to Hybond-P polyvinylidene difluoride (PVDF) membranes (GE 
Healthcare) by wet blotting. Membranes were subsequently blocked with 5% SlimFast chocolate powder 
(Allpharm-Vertriebs-GmbH) in Tris-buffered saline and probed with 1:1000 dilutions of the following 
primary antibodies (Cell Signaling Technology) overnight at 4 °C: Rabbit anti-LC3A (clone D50G8), rabbit 
anti-calnexin (clone C5C9), rabbit anti-Ero1-Lα, or rabbit anti-IRE1α (clone 14C10). After incubation with a 
specific horseradish peroxidase (HRP)-labeled secondary antibody against rabbit (Cell Signaling Technology 
#7074, 1:2000 dilution), signals were visualized with the enhanced chemiluminescent detection system 
(ECL) according to the manufacturer's instructions (GE Healthcare). 

Statistical analysis
A two-tailed unpaired Student t test was used to determine the significance of differences (*p<0.05, 

**p<0.01, and ***p<0.001).

Results

Sph inhibited cell growth and induced apoptosis in DLBCL cell lines
To investigate the impact of cellular Sph accumulation on lymphoma cell growth, different 

DLBCL cell lines (OciLy19, HT, HBL-1, U2932) were incubated with increasing concentrations 
of Sph. Determination of cell growth each day over 4 days revealed concentration-dependent 
growth inhibition after treatment with Sph in all DLBCL cell lines tested, with HBL-1 cells 
being most resistant to higher Sph concentrations, which were thus treated with 2-fold 
higher sphingolipid concentrations (Fig. 1A). All DLBCL cell lines also responded to Lt-Sph 
with decreased growth, with HT cells showing a lower impact of Lt-Sph than Sph. Lt-Sph is a 
stereoisomer of naturally occurring D-erythro-sphingosine (Sph). It can be phosphorylated 
by cells, but the resulting Lt-S1P does not bind and activate S1P receptors, excluding their 
role in Lt-Sph-induced growth inhibition [40-42].

To test the onset of apoptosis as one possible reason for the observed growth retardation 
in examined cells, DLBCL cell lines were treated for 4 h with Sph and Lt-Sph, and with 20 
µM camptothecin as positive control. Camptothecin is a cytotoxic quinoline alkaloid which 
induces apoptosis by inhibiting the topoisomerase type 1 (topo1) [43]. All cell lines were 
treated with 5 µM Sph and Lt-Sph except OciLy19, which were more sensitive to Sph and 
Lt-Sph incubation and were therefore treated with 3 µM Sph and Lt-Sph. Apoptosis was 
detected by FACS after staining apoptotic cells with annexin V and dead cells with propidium 
iodide. All DLBCL cell lines responded with 28-59% apoptosis to camptothecin after 4 h. Sph 
also induced a high apoptotic rate of 23-32%, while Lt-Sph was less efficient with apoptotic 
rates between 12-22% (Fig. 1B). U2932 cells did not respond to Lt-Sph treatment with 
apoptosis at all (Fig. 1B). Most of the propidium iodide and annexin V double-positive cells 
after Lt-Sph treatment did not pass the annexin V single-positive stage and were therefore 
not considered as apoptotic cells.

Apoptosis is mainly driven by activation of death proteases known as caspases [44], 
although caspase-independent apoptosis has also been described [45]. Caspases cleave 
proteins that are essentially required for cellular function and cell survival. One of these 
many target proteins of caspases is PARP, and cleaved PARP is commonly used as an indicator 
for caspase-induced apoptosis [46]. Incubation of DLBCL cell lines with Sph and Lt-Sph as 
mentioned before induced significant PARP cleavage only in OciLy19 DLBCL predominantly 
after Sph treatment (Fig. 1C). A significant but less pronounced increase in PARP cleavage 
was also found after Lt-Sph treatment. No important differences in PARP cleavage were 
observed in similarly treated HT, HBL-1, and U2932 DLBCL cell lines (Fig. 1C). A related 
pattern was observed for JNK phosphorylation (Fig. 1D). pJNK was significantly increased 
only in OciLy19 DLBCL treated with Sph, but not Lt-Sph. Both stimuli did not induce pJNK 
in HT, HBL-1, or U2932 DLBCL cell lines, which obviously depended on different signalling 
pathways.
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The role of ceramide in Sph-induced apoptosis
Sph can either be phosphorylated to S1P, which binds and activates S1P receptors, 

or it can be acylated to ceramide, which also exerts pro-apoptotic activities using caspase 
dependent and –independent pathways. To test the relevance of ceramide generation for 
apoptosis induction after Sph treatment, DLBCL cell lines were treated with the ceramide 
synthase inhibitor fumonisin B1. The apoptotic rate of OciLy19, HT, and U2932 cell lines 
after treatment with camptothecin, Sph, and Lt-Sph was not significantly altered by addition 
of 25 µM fumonisin B1, while HBL-1 cells showed a significant decrease of the apoptotic rate 
in Sph treated cells after fumonisin B1 treatment (Fig. 2A). The activity of fumonisin B1 was 
confirmed by LC/MS/MS quantification of the ceramide synthase substrate sphinganine in 
control and fumonisin B1 treated cells. Fumonisin B1 was shown to increase the amount of 
sphinganine via inhibition of ceramide synthases [47]. All DLBCL cell lines demonstrated 
a significant increase in sphinganine levels after treatment with fumonisin B1 (Fig. 2B). 
Increases were 2.5-fold and 10-fold for HT and OciLy19, and 32-fold and 39-fold for HBL-
1 and U2932 cells, respectively. Triple-quadrupole mass spectrometry revealed similar 
Sph and S1P accumulation with and without fumonisin B1 in all DLBCL cell lines (Fig. 2C). 
Intracellular Cer accumulation was only detectable in Sph treated HBL-1 and U2932, but not 

Fig. 1. Impact of Sph and Lt-Sph on cell growth and survival of different DLBCL cell lines (OciLy19, HT, HBL-
1, and U2932). (A) Analysis of cell growth in the course of 4 days after treatment with indicated concentra-
tions of Sph and Lt-Sph. Shown are means ± SD, n=2. (B) Annexin V and propidium iodide staining of cells 4 h 
after treatment with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph and Lt-Sph, and 20 µM camptothecin 
(CPT). Shown are representative FACS histograms and the percentages of apoptotic (Annexin V positive) 
and dead (Annexin V and propidium iodide double-positive) cells of 3 individual experiments, *p<0.05, 
**p<0.01, ***p<0.001. (C) Analysis of cleaved PARP by colorimetric in-cell ELISA (Pierce Biotechnology) 4 
h after treatment with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph and Lt-Sph. Shown are means ± 
SD of cleaved PARP normalized to α-tubulin values, untreated control = 1.0, n=3, *p<0.05, ***p<0.001. (D) 
Analysis of pJNK by ELISA (Abcam) 4 h after treatment with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) 
Sph and Lt-Sph. Shown are means ± SD of pJNK values normalized to JNK values, untreated control = 1.0, 
n=3, *p<0.05.
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in HT and OciLy19 DLBCL cell lines (Fig. 2D). It was efficiently blocked by 25 µM fumonisin 
B1 (Fig. 2D). Thus, intracellular Cer accumulation was only evident in Sph-treated HBL-1 
and U2932 DLBCL and did not account for most of the the observed apoptosis except for 
HBL-1 cells which showed significantly reduced apoptosis. OciLy19 and HT DLBCL did not 
show any alterations in ceramide levels nor in the apoptotic rate after ceramide synthase 
inhibition.

Autophagy contributed to Sph-induced cell death
In order to find out more about the underlying mechanisms involved in Sph-induced cell 

death, we looked for the development of acidic vesicular organelles 1 day after addition of 
Sph, Lt-Sph, and camptothecin. Acidic vesicular organelles are characteristic for autophagy 
and can be detected by FACS with acridin orange, which accumulates in acidic compartments 
and produces bright red fluorescence. All 4 tested DLBCL cell lines demonstrated an increase 

Fig. 2. The role of ceramide in Sph-induced apoptosis. (A) Apoptosis detected by FACS 4 h after treatment 
with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph and Lt-Sph, and 20 µM camptothecin (CPT) in the 
presence and absence of 25 µM of the ceramide synthase inhibitor fumonisin B1 (FB1). Shown are means ± 
SEM of 3 individual experiments representing the percentage of annexin V positive apoptotic cells, *p<0.05, 
**p<0.01, ***p<0.001 compared to control, and #p<0.05 compared to corresponding sample without FB1 
treatment. (B) LC/MS/MS analysis of the cellular content of sphinganine in DLBCL untreated and treated 
with 25 µM fumonisin B1. Shown are means ± SD of 3 individual experiments, *p<0.05, ***p<0.001. (C, D) 
LC/MS/MS analysis of the cellular content of Sph and S1P (C) and C16-Cer and C24-Cer (D) in DLBCL un-
treated and treated with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph in the presence and absence of 
25 µM fumonisin B1. Shown are means ± SD of 3 individual experiments, *p<0.05 for C16-Cer values.
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Fig. 3. Analysis of autophagy in DLBCL treated with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph and 
Lt-Sph, and 10 µM camptothecin. (A) FACS analysis of acidic vesicular organelles stained with acridine or-
ange 1 day after treatment. Shown are histograms of 1 representative experiment out of 3, and linear means 
± SD of 3 experiments, normalized to control (=100), *p<0.05, **p<0.01, ***p<0.001. (B) Electron micros-
copy pictures of untreated U2932 cells (control) and U2932 cells treated with 5 µM Sph for 1 and 3 days. 
Potential autophagic vesicles are marked with an arrow. Potential autophagosomal structures in colored 
squares are shown at higher magnification (m) in equivalently colored frames to demonstrate the pres-
ence of double membranes characteristic for autophagosomes. (C) Western-blot analysis of the autophagic 
marker LC3-II and the ER stress markers PERK, calnexin, Ero1-Lα, and IRE1α in combination with ELISA 
results of the phosphorylated signaling molecules pAKT and mTOR (pSer2448) 4 h after treatment with 3 
µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph and Lt-Sph with and without prior addition of 25 µM fu-
monisin B1 (FB1). Shown are representative Western-blot results from 2-3 independent experiments and 
means ± SD of ELISA results for AKT and mTOR phosphorylation, untreated control = 1.0, n=3. pAKT values 
were normalized to AKT values, the relative density of LC3-II Western blot signals was normalized to the 
respective beta-actin expression.
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of red fluorescence as determined by FACS after treatment with Sph and Lt-Sph, but not with 
camptothecin (Fig. 3A). While HBL-1 and U2932 DLBCL cell lines responded equally well 
to both stimuli, OciLy19 and HT revealed a greater shift in the red fluorescence after Lt-Sph 
stimulation than after Sph-stimulation. U2932 cells did not respond to Lt-Sph treatment with 
apoptosis (Fig. 1B, 2A), but they showed a similar increase in acidic compartments compared 
to Sph treatment (Fig. 3A). Electron microscopy of U2932 cells 1 and 3 days after treatment 
with Sph uncovered the presence of potential autophagosomes or secondary lysosomes, 
respectively. In comparison to control cells, Sph-treated cells developed increased vacuole 
formation one and three days after Sph addition (Fig. 3B). Examination of these vacuoles at 
higher magnification revealed the presence of double-membranes which are characteristic 
for autophagosomes (Fig. 3B). The presence of these double-membrane vesicles together 
with the observed increase in acidic compartments are in support for the additional 
induction of autophagy after treatment with Sph and Lt-Sph (Fig. 3A-B). Further evidence 
derived from the analysis of the autophagy marker light chain 3 (LC3), which is cleaved at 
the carboxy terminus to the LC3-I form immediately after its synthesis. LC3-I is converted 
to LC3-II via lipidation and becomes associated with autophagic vesicles. The conversion of 
LC3 to the lower migrating form LC3-II is indicative for ongoing autophagy in Western blot 
analyses [48]. Treatment of DLBCL cell lines with Sph and Lt-Sph led to an increase of LC3-II 
in U2932 DLBCL, while no specific signal was observed in OciLy19, HT, and HBL-1 DLBCL 
cell lines (Fig. 3C). LC3-II formation was not inhibited by fumonisin B1 (Fig. 3C). Neither the 
protein kinase AKT nor its downstream target molecule and suppressor of autophagy mTOR 
were influenced by Sph or Lt-Sph treatment, indicating the dispensability of the AKT/mTor 
signalling pathway in this context (Fig. 3C). Further analysis of markers for endoplasmic 
reticulum (ER) stress signalling including PKR-like ER kinase (PERK), calnexin, endoplasmic 
oxidoreducin-1 (Ero1), and the inositol-requiring enzyme 1 (IRE1) also eliminated a 

Fig. 4. Influence of Sph and Lt-Sph on PKC activity 
and IL-10 production in DLBCL cell lines. (A) Mea-
surement of PKC activity in the presence and ab-
sence of indicated molar ratios of PS/Sph and PS/
Lt-Sph. Shown are means ± SEM, n=2, *p<0.05. (B) 
Measurement of IL-10 in the supernatant of HBL-
1 and U2932 DLBCL cell lines after treatment with 
the indicated µM concentrations of Sph and Lt-Sph. 
Shown are means ± SD, n=3, ***p<0.001.
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pertinent role of ER stress-related pathways for induction of the observed cell death (Fig. 
3C). Thus, U2932 DLBCL responded to Sph and Lt-Sph treatment with increased autophagy-
related LC3-II generation, while no detectable changes of this protein were observed with 
OciLy19, HT, and HBL-1 DLBCL cell lines.

PKC inhibition by Sph and Lt-Sph
The observed differences of DLBCL cell lines to respond to Sph and Lt-Sph persuaded us 

of investigating PKC signalling as a third potential contributor to Sph and Lt-Sph induced cell 
death. Recent findings indicated that PKC signalling is an important survival factor of ABC, 
but not GCB DLBCL [4]. In vitro PKC activity assays demonstrated that both Sph and Lt-Sph 
inhibited PKC in a concentration-dependent manner, with Sph being more effective than Lt-
Sph in competing with the PKC activator PS for binding to the C1 domain (Fig. 4A). Since PKC 
signalling was shown to induce the production of the downstream effector cytokine IL-10, 
which promotes proliferation and survival of B cells, quantification of IL-10 was performed 
by ELISA. While the DLBCL cell lines OciLy19 and HT hardly produced any IL-10 (data not 
shown), the DLBCL cell lines HBL-1 and U2932 produced IL-10 at physiologically relevant 
levels. Addition of Sph and Lt-Sph reduced the amount of secreted IL-10 within 4 hours 
(Fig. 4B). The effect was similar with Sph and Lt-Sph, and HBL-1 cells were more sensitive 
than U2932 cells in this assay. PKC activity was therefore compromised by Sph and Lt-Sph 
treatment, and addition of Sph and Lt-Sph reduced the amount of IL-10 release in the IL-10 
expressing DLBCL cell lines HBL-1 and U2932.

The PKC activator PS partially rescued HBL-1 and U2932 DLBCL from cell death
To test the relevance of PKC inhibition for Sph and Lt-Sph induced cell death, OciLy19, 

HT, HBL-1, and U2932 DLBCL cell lines were incubated with 15 µM of the PKC activator PS 
in order to compete with the PKC inhibitors Sph and Lt-Sph for binding to the C1 domain 
[22]. As part of the regulatory domain or the amino-terminus of the PKCs, the C1 domain 

Fig. 5. Competitive effect of the PKC activator PS on Sph and Lt-Sph induced cell death in ABC DLBCL. 
(A) Cell cycle analysis of DLBCL cell lines treated for 3 days with 3 µM (OciLy19) and 5 µM (HT, HBL-1, 
U2932) Sph and Lt-Sph in the presence and absence of 15 µM PS. Shown are histograms of 1 representative 
experiment out of 3. (B) Quantification of cell populations in different cell cycle stages 3 days after treatment 
with 3 µM (OciLy19) and 5 µM (HT, HBL-1, U2932) Sph and Lt-Sph in the presence and absence of 15 µM PS. 
Bars represent differences between cell populations with and without PS co-treatment. Shown are means 
± SEM, n=2-3.
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is present in all PKC isoforms. PS was ineffective on OciLy19 and HT DLBCL cell lines, but 
HBL-1 and U2932 were partially rescued from Lt-Sph induced cell death in the presence of 
15 µM PS. A significant amount of HBL-1 and U2932 cells remained in the G1 phase of the 
cell cycle 3 days after co-treatment with 5 µM Lt-Sph and 15 µM PS, while the same cells 
treated with Lt-Sph alone were mostly shifted to the sub-G1 phase (Fig. 5A). PS similarly 
rescued HBL-1, but not U2932 cells from cell death during co-treatment with 5 µM Sph, 
again indicating the activity of additional pathways leading to cell death in U2932 cells after 
Sph treatment. Quantitative analysis of several different experiments demonstrated 20-30% 
decrease of HBL-1 and U2932 cells in the sub-G1 phase and a similar increase of both DLBCL 
cell lines in the G1 phase after co-treatment with 5 µM Lt-Sph and 15 µM PS compared to 
single treatment with 5 µM Lt-Sph alone (Fig. 5B). No significant changes were observed 
with OciLy19 and HT DLBCL cell lines. Sph-induced cell death was prevented by PS only in 
HBL-1 cells, with 40-50% less cells in the sub-G1 phase and equivalently more cells in the 
G1 phase. 

Discussion

Sphingolipids like S1P, Sph, and ceramide have long been implicated as regulators of 
cell fate [7, 8]. Ceramide was suggested as a target molecule to combat drug resistance of 
tumors [49], and an anti-S1P antibody is currently a promising candidate for treatment of 
solid tumors [50]. Cell culture experiments with DLBCL cell lines that were incubated with 
Sph and Lt-Sph manifested significant inhibition of cell growth (Fig. 1A), while incubation 
of cells with similar concentrations of S1P was ineffective (data not shown). These results 
suggest that Sph accumulation could be an alternative treatment option for DLBCL. To this 
end we investigated several different signaling pathways that are potentially involved in Sph- 
and Lt-Sph-induced cell death (Table 1).

	 Apoptosis induced by Sph has been described before [23, 24, 29], but the 
physiological relevance remained unclear. The Sph analog FTY720 also induces apoptosis, 
but only at concentrations similar to Sph, which are never reached during treatment [51]. 
But how could relevant Sph concentrations been attained in vivo? One possible way would 
be the pharmacological inhibition of the S1P-lyase. Sph concentrations reach levels after 
S1P-lyase inhibition up to 100 µmol/kg tissue weight in mice, which would be sufficient 
for the described cell death inducing effects in aggressive lymphomas [33]. LX2931 is an 
S1P-lyase inhibitor that passed phase 2a clinical studies for treatment of the autoimmune 
disease rheumatoid arthritis [52]. Our results suggest that Sph accumulation by S1P-lyase 
inhibition is a so far unappreciated effect that may be beneficial for DLBCL treatment. On the 
other hand S1P-lyase inhibition results in an even more dramatic increase of S1P, and S1P 
was shown to activate pro-survival signaling pathways in cells. Some of these effects were 
attributed to S1PR1 signaling [9], while others may be induced by additional S1PRs [27] 
or by intracellular targets of S1P [53]. These pro-survival activities of S1P may therefore 
compensate for the lethal effects of Sph. It should be noted however that excess amounts of 

Table 1. Summary of effects of Sph and Lt-Sph on investigated DLBCL cell 
lines. * Acridine orange staining only; # IL-10 production only; + strong 
response; o weak response; - no response

D
ow

nl
oa

de
d 

by
: 

F
re

ie
 U

ni
ve

rs
itä

t B
er

lin
   

   
   

   
   

   
   

   
   

   
 

87
.7

7.
11

8.
21

2 
- 

1/
19

/2
01

5 
9:

52
:4

3 
A

M

http://dx.doi.org/10.1159%2F000366370


Cell Physiol Biochem 2014;34:1686-1700
DOI: 10.1159/000366370
Published online: November 07, 2014

© 2014 S. Karger AG, Basel
www.karger.com/cpb 1697

Bode et al.: Sphingolipids Affecting Aggressive Lymphomas

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

S1P result in prolonged internalization and functional inhibition of S1PR1 [33], which may 
also disrupt pro-survival signaling of S1P, at least partially.

	 Genetic profiling of the cell lines used indicated that OciLy19 and HT belong to the 
group of GCB-DLBCL, while HBL-1 and U2932 share main characteristics with ABC-DLBCL 
[35, 54]. This likely explains the different PKC-mediated responses in OciLy19 and HT versus 
HBL-1 and U2932 DLBCL cell lines since survival of ABC-DLBCL is much more reliant on 
constitutive PKC signaling than GCB-DLBCL. Intriguingly HBL-1 and U2932 cell lines also 
produced more Cer than OciLy19 and HT upon incubation with Sph, and  Cer production 
contributed to Sph-induced apoptosis in HBL-1 cells (Fig. 2A). Several reports indicate that 
Cer activates PKCζ [16, 55], which may contribute to constitutive PKC signaling in ABC-DLBCL. 
Sph itself was able to interfere with PKC signaling (Fig. 4A) and counteracted pro-survival 
signals of PKC as a competitive inhibitor of the PKC activator PS. Lt-Sph also inhibited PKC in 
vitro, but with lower efficacy (Fig. 4A). Lt-Sph was more stable than Sph in cell culture (data 
not shown), which may explain its similar efficacy as competitive PKC inhibitor in HBL-1 
cells and even better efficacy in U2932 cells compared to Sph.

Besides accumulation of endogenous Sph by S1P-lyase inhibition, SphK inhibitors may 
also be used for DLBCL treatment due to their structural similarities to Sph [34]. Potential 
effects of those inhibitors certainly need to be tested individually. This study provides the 
basis to specifically look at apoptosis, PKC-inhibition, and autophagy in DLBCL. Since S1P 
is typically considered as a pro-survival factor [7], increased cell death observed after 
treatment with inhibitors of the S1P-producing SphKs are usually assigned to the presence of 
lower S1P levels. This study however demonstrates that accumulation of the SphK substrate 
Sph can significantly impair DLBCL growth and survival, suggesting that SphK inhibiting 
analogues of Sph may be similarly effective. Agents enhancing endogenous cellular Sph 
levels like LX2931 [52] and Sph analogues like Safingol [56] may achieve their activity not 
only by altering S1P levels and signaling, but also by inducing apoptosis, PKC-inhibition, and 
autophagy as shown in this study. Future drug candidates in the sphingolipid field for cancer 
treatment may therefore shift from inhibitors of S1P signaling to non-phosphorylatable 
Sph analogues. An autonomous phosphorylation independent inhibitory activity of Sph and 
FTY720 was also demonstrated for the TRPM7 channel [57], which further supports specific 
cellular activity of Sph.

	 Sph induced cell death and blocked proliferation by various means, including 
apoptosis, autophagy, and PKC inhibition. This variability of cellular functions seems to be 
important for the overall efficacy of Sph to prevent lymphoma cell growth. Despite striking 
differences in the efficacy of Sph and Lt-Sph on different DLBCL, the final impact on cell 
growth and mortality was similar due to the combined activity of different cellular pathways. 
The broadband impact of Sph across different types of DLBCL introduces sphingosine as a 
cytostatic drug for lymphoma treatment. Current targeting strategies include the disruption 
of cancer-specific cellular functions like PKC signalling in ABC DLBCL [35]. Sphingosine 
accumulation e.g. by S1P-lyase inhibition or by application of Sph analogues provides a 
different strategy which could be an interesting alternative for combination therapy. 
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