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A human genome-wide loss-of-function screen
identifies effective chikungunya antiviral drugs
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Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no

commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to

identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the

cellular pathways in which human proviral genes are involved and identify druggable targets.

Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral

factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified

inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two

of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA,

have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-

of-function screening and pathway analysis for the rational identification of small molecules

with therapeutic potential and pave the way for the development of new, host-directed,

antiviral agents.
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C
hikungunya virus (CHIKV) is a mosquito-borne alpha-
virus that causes chikungunya fever, an acute infection
characterized by arthralgia and frequently complicated by

chronic joint symptoms1. Originating from Africa, CHIKV has
spread to Asia, emerged in Southern Europe and reached the
Americas1. Despite its severe health and economic impact, little is
known about the cell biology of CHIKV infection and, as for all
emerging infections, neither prophylactic nor therapeutic
strategies are available on the market1. In the absence of
available therapeutics and vaccines, there is an urgent need for
antimicrobial agents to combat emerging infections2. As
illustrated by the latest generation of drugs available to treat
human immunodeficiency virus (HIV)-infected or hepatitis C
virus (HCV)-infected patients, deciphering that the biology of
infections has proven successful for the development of highly
effective drugs targeting different viral proteins3,4. However, this
virus-directed strategy for drug discovery is time-consuming and
not rapidly applicable to emerged pathogens2. In the context of
emerging infections, targeting host factors critical to infection is a
promising approach5–7. Indeed, this host-directed antiviral design
can be coupled with a drug repositioning strategy8 that could lead
to the rapid identification of antiviral agents.

RNA interference (RNAi)-mediated loss-of-function screens
have enabled the identification of novel host factors and pathways
that are either important for replication (proviral) or limit
replication (antiviral) of different viruses9–14, and therefore
represent potential target for therapeutic purposes. Here we
perform a host genome-wide loss-of-function screen to identify
the host factors implicated in CHIKV replication in human cells.
We analyse the cellular pathways and factors necessary for
CHIKV infection and identify antiviral drugs with both in vitro
and in vivo efficacy.

Results
Identification of CHIKV pro- and anti-viral factors. A host
genome-wide loss-of-function screen was performed by reversely
transfecting a genome-wide library of B60,000 short interfering
RNAs (siRNAs) targeting B17,000 annotated and B6,000
predicted genes into CHIKV-permissive human cells (HEK-293)
for 3 days. Transfected cells were infected with a recombinant
CHIKV-expressing green fluorescent protein (GFP) (CHIKV-GFP)
in infected cells. At 18 h post infection (p.i.), cells were fixed and
analysed by automatic fluorescence microscopy to quantify the ratio
of infected to uninfected cells (Fig. 1a). To reduce the number of
false-positive hits, 7,561 non-expressed genes (Supplementary
Fig. 1a) and 3,274 toxic siRNAs (Supplementary Fig. 1b,c) were
excluded following transcriptional microarray and viability ana-
lyses, respectively. RNAi data were then analysed statistically using
cellHTS2 (ref. 15), and normalized using as positive control, an
siRNA targeting the viral E1 gene, and as negative control AllStars
siRNA (Supplementary Fig. 1d). A Z-score transformation was
applied to center and scale the plate-wise data (Supplementary
Fig. 1d), and the medians of resulting values of at least three
independent replicates were used for redundant siRNA activity
(RSA) analysis16. Using RSA log P values of r� 2 as cutoff, we
identified 279 proviral and 269 antiviral factors (Supplementary
Fig. 1e,f). To minimize off-target false positives, we further validated
these hits with three additional siRNAs per gene. On the basis of
the calculated cSSMD (collective strictly standardized mean
difference) values, which reflect effect strength and significance17

(Supplementary Fig. 1g,h), we validated 156 proviral and 41
antiviral host factors (Fig. 1b; Supplementary Data 1 and 2).
Strikingly, 66 of these proviral genes have been identified in
previous screens with influenza A virus (IAV)9,14, HCV18,19,
sindbis virus (SINV)10,11, dengue virus (DENV)20, West Nile virus

(WNV)21, HIV-1 (refs 13,22) or vaccinia virus (VACV)23 (Fig. 1c;
see Supplementary Data 3 for details and references). Moreover, 16
factors are relevant for multiple viruses (white boxes in Fig. 1c),
therefore representing the central biological nodes for broad-
spectrum antiviral therapeutic intervention.

To definitely validate these 16 factors, we used an independent
method, the CRISPR/Cas9 technology, to generate cells deficient
for each of these genes. We observed a significant reduction of
CHIKV replication with guide RNAs (gRNA)-transduced Cas9-
expressing cells for 14 out of 16 genes, establishing that
they are proviral factors (Fig. 1d,e; Supplementary Fig. 1i,j;
Supplementary Data 4) and highlighting the strong reliability of
the RNAi-validated hits of our study. Among the proviral factors,
the three largest protein–protein interaction networks are
involved in transcription, translation and signalling, respectively
(Supplementary Fig. 1k). Gene enrichment analysis revealed
biological processes (Fig. 2a) and molecular functions (Fig. 2b)
required for infection, including cell metabolism, post-transcrip-
tional and post-translational modifications, and cellular
function and maintenance (Fig. 2a,b; Supplementary Fig. 2a–d).
Genes associated with lipid metabolism, in particular fatty acid
synthesis, were statistically overrepresented within the hits
(Fig. 2b; Supplementary Fig. 2c).

Fatty acid synthesis is required for CHIKV replication.
Cytosolic fatty acid synthesis involves the following three
enzymes: (i) ATP citrate lyase (ACLY), needed for the formation
of acetyl CoA, (ii) acetyl CoA carboxylase (ACC), which trans-
forms acetyl CoA into malonyl CoA, and (iii) fatty acid synthase
(FASN), which converts acetyl and malonyl CoA into palmitate
(Supplementary Fig. 2c). Both FASN and ACLY were unambig-
uous hits (Figs 1b and 3a; Supplementary Fig. 2c). Interestingly,
FASN activity is required for the replication of other enveloped
viruses24,25 and both the enzymes are present in late replication
complexes (Rc) of a closely related alphavirus (Semliki Forest
virus)26. To analyse the functional implication of lipid
metabolism in CHIKV replication, we used a CHIKV replicon,
allowing measurement of genomic and subgenomic viral RNA
(vRNA) expression simultaneously (Supplementary Fig. 3a).
Consistent with the screening results, the expression of both the
vRNA forms was impaired in HeLa cells depleted in either
FASN or ACLY, but not in cells depleted in ACC (Fig. 3b,c).
Immunofluorescence analysis further showed that Rc co-localized
with FASN (Fig. 3d,e; Supplementary Fig. 3b). We next inde-
pendently confirmed these results pharmacologically. Infected
HeLa cells were exposed to cerulenin (FASN inhibitor),
5-tetradecyloxy-2-furoic acid (TOFA, ACC inhibitor), BMS-
303141 (ACLY inhibitor) or vehicle only (dimethylsulphoxide,
DMSO). All three inhibitors induced a significant and dose-
dependent reduction in genomic and subgenomic vRNA
synthesis (Fig. 3f), with no deleterious effect on cell viability
(Fig. 3g). Together, these results show that fatty acid synthesis is
necessary for CHIKV vRNA replication.

Rational identification of antiviral drugs. On the basis of the
demonstration of the antiviral activity of all lipid biosynthesis
inhibitors targeting the proviral factors identified by the host
genome-wide loss-of-function screen, we next considered all the
other hits as putative drug targets. Therefore, to exploit the
translational potential of our screen, we systematically assessed
the antiviral activity of chemical compounds targeting
the identified proviral factors involved in CHIKV replication.
We interrogated specialized databases (www.drugbank.ca27;
lincs.hms.harvard.edu/kinomescan28; www.ebi.ac.uk/chembl29),
linking several drugs to their experimentally proven target
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proteins/genes, and identified 52 compounds interacting with the
gene products of 14 distinct CHIKV proviral genes. In addition,
we generated three compounds against the CDC-like kinase 1
(CLK1), a proviral factor for CHIKV, IAV and WNV (Fig. 1c;
Supplementary Data 3; Supplementary Methods). Of these, 20
compounds—8 of them already Food and Drug Administration
approved—interacting with six distinct proviral factors or
pathways (Table 1) potently inhibited CHIKV replication with
no significant toxicity (Table 1; Supplementary Fig. 4;
Supplementary Data 5). These antiviral compounds inhibit the
following targets and pathways: (i) the vacuolar-type Hþ
ATPase (vATPase); (ii) CLK1; (iii) the fms-related tyrosine
kinase 4 (FLT4 or VEGFR3); (iv) calmodulin signalling; (v) fatty
acid synthesis; (vi) the K (lysine) acetyltransferase 5 (KAT5 or
TIP60; see Supplementary Data 6 for more details).

Since five of these six druggable hits were also identified as
proviral factors in other RNAi screens (Fig. 1c; Supplementary
Data 3), we sought to characterize the efficacy of inhibitors of

these hits on the replication of a wide spectrum of viral species.
Cells were treated with specific inhibitors of fatty acid synthesis,
calmodulin signalling, FLT4 and vATPase, and infected with
cytosolic double-stranded DNA virus (cowpox, CPXV), nuclear
double-stranded DNA virus (herpes simplex type 1, HSV-1, or
adenovirus type 5, Ad5) or negative-stranded segmented RNA
virus (IAV) (Fig. 4). Interestingly, differences in the antiviral
activity of these compounds were observed between viral species,
suggesting that the identified cellular pathways are required for
the replication of several, but not all virus types, and that the
antiviral effect observed for CHIKV is genuine and not the
consequence of a general toxic effect on cell metabolism induced
by the inhibitors.

In vitro characterization of the antiviral compounds. To get
some insight into the mechanism of action of the identified
antiviral compounds, we investigated which stage of the viral life
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Figure 1 | Primary screen for CHIKV host cell factors. (a) Outline of screening procedure. (b) Heatmap of all identified proviral and antiviral hits showing

replication data (Z-scores) of the four most efficient siRNAs. Arrowheads indicate genes experimentally characterized in this study. (c) Requirement of

identified proviral factors for other viruses based on published loss-of-function studies. Viruses other than CHIKV are indicated by specific colours, and

colour-coded boxes contain genes shared between CHIKV and the corresponding virus. White boxes contain genes shared between CHIKV and more than

one other virus. Full details in Supplementary Data 3. (d) Heatmap illustrating the replication capability of CHIKV in Cas9-positive HEK-293T cells

expressing the indicated gRNAs. Cells were infected with CHIK-GFP at MOI 6 for 24 h (n¼9). (e) Validation of CLK1 as CHIKV relevant host factor.

Infection rate of A549 cells depleted for CLK1 by CRISPR/Cas9 (see Supplementary Fig. 1j for more details) and infected with CHIKV-GFP for the indicated

periods of time (n¼ 9 for each data set). Data represent the means±s.e.m. of three independent experiments and were analysed using one-way analysis of

variance with Tukey’s post test. (*Po0.05; NSPZ0.05). CTRL, control; NS, not significant.
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cycle was affected by inhibition of each of these six distinct
druggable targets. In a first set of experiments, single-cycle
CHIKV infection was measured before or after viral entry
(Fig. 5a). Infectivity of the supernatants of post-entry-treated cells
was also measured to detect the possible defects on late-stage
CHIKV life cycle. As expected for the control of vacuolar pH by
vATPase30, its inhibitor bafilomycin specifically blocked CHIKV
entry (Fig. 5b). In contrast, the drugs targeting the other proviral
hits all affected the CHIKV cycle post entry (Fig. 5c–g). This was
also true for the specific calmodulin inhibitor (W7), included in
the experiment as a specificity control for this pathway (Fig. 5e).
Because of the incomplete inhibition observed with the CLK1
inhibitor KH-CB19 at early times p.i., we were not able to
precisely determine the step of infection controlled by CLK1
(Supplementary Fig. 5a). Importantly, consistent with the mecha-
nism of action of the FLT4 inhibitors that are known to
suppress FLT4 phosphorylation, using validated specific
antibodies (Supplementary Fig. 5b), we observed increased
FLT4 phosphorylation in cells infected with CHKV (Supple-
mentary Fig. 5c).

One of the druggable targets (KAT5) is part of the acetylation
complex Tip60-EP400, recently described as a general antiviral
factor31. Since, somewhat surprisingly, several components of this
complex were identified as proviral factors in our screen

(Supplementary Fig. 2a), we further investigated this target
using three siRNAs against different subunits (Supplementary
Fig. 5d) in HeLa and HEK-293T cells. We observed that the
pro- or anti-viral contribution of the Tip60-EP400 complex was
cell line specific for both CHIKV and SINV (Supplementary
Fig. 5e), and therefore did not pursue this lead.

We next characterized the step in CHIKV replication cycle
targeted by the specific inhibitors of fatty acid synthesis,
calmodulin signalling and FLT4 that act after entry. Infected
HeLa cells were exposed to cerulenin, TOFA, pimozide, W7,
tivozanib or vehicle only (DMSO). All the tested inhibitors
significantly reduced vRNA synthesis (Fig. 5h) and strongly
inhibited viral release in the supernatants (Fig. 5i), with no
detectable cell toxicity (Fig. 5j) when applied following 1-h
infection with wild-type CHIKV isolate C21. Of note, a delayed
treatment (6–8 h p.i.) had only a minor impact on vRNA
replication but induced a major defect in viral release (Fig. 5k,l),
suggesting that the pathways targeted by these inhibitors are also
involved in the late phase of CHIKV life cycle.

In vivo characterization of the antiviral compounds. We next
aimed at translating these in vitro results in vivo. We therefore
generated C57BL/6clk1� /� mice (see Methods) and investigated
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the requirement for CLK1 in CHIKV in vivo infection32.
Weight-matched 9-day-old C57BL/6clk1� /� mice developed
significantly less paralysis (B50%) than control isogenic mice
(5.8%; P¼ 0.005, log-rank test; Fig. 6a,b), identifying CLK1 as a
valid in vivo target for antiviral drug development. To analyse the
antiviral effect of tivozanib (targeting FLT4) in vivo, 7-day-old
C57BL/6 mice were treated with the drug or vehicle only for 2
days and infected with CHIKV at day 9. Tivozanib administration
was continued for 21 days (Fig. 6c). Tivozanib caused a significant
reduction in mortality of CHIKV-infected mice (Fig. 6d; P¼ 0.02,

log-rank test), protected from the onset of paralysis (Fig. 6e;
P¼ 0.03, log-rank test) and had a positive impact on body weight
gain (Fig. 6f,g; P¼ 0.0133, two-sided t-test). Tivozanib treatment
also significantly reduced CHIKV viral load in different vital
organs (Fig. 6h). Finally, we tested the in vivo efficacy of the
calmodulin inhibitor pimozide and the fatty acid synthesis
inhibitor TOFA, which have both been used previously for
therapeutic purposes in mice33–35. These drugs had a detectable
impact on mouse growth and were therefore not used further in
neonatal mice, but tested in the adult mouse footpad injection
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model36–38. Mice were pretreated for at least 3 days, infected and
assessed 18 h p.i. CHIKV titres in the footpad revealed that both
the drugs significantly reduced replication (Fig. 6i,j), indicating
that fatty acid synthesis and calmodulin also constitute promising
targets for antiviral purposes.

Effect of drug combination in vitro and in vivo. Having iden-
tified and characterized compounds with anti-CHIKV activity both
in vivo and in vitro, we combined drugs to improve antiviral
activity. We focused on pimozide and TOFA, since they both
demonstrated an antiviral effect in the same mouse model of
CHIKV infection. We initially tested the effect of drugs admini-
strated in combination on HEK-293T cells infected with CHIKV
for 1 h. In comparison with monotherapy, TOFA and pimozide
combination resulted in increased inhibition of CHIKV infection
rate (5mM each, interaction effect¼ 0.44; lower¼ 0.36;
upper¼ 0.54; Po0.001, two-factor design method) and CHIKV
release (5mM each, interaction effect¼ 3.44; lower¼ 0.68;
upper¼ 17.41; P¼ 0.133, two-factor design method), with no
deleterious effect on cell viability (Fig. 7a–c). We then evaluated the
anti-CHIKV effect of drug combination in vivo, in adult mice
therapeutically treated with pimozide and TOFA alone or in
combination. Importantly, pimozide and TOFA combination
caused a significant reduction in CHIKV replication (Fig. 7d)
(interaction effect¼ 0.16; lower¼ 0.05; upper¼ 0.47; Po0.001,
two-factor design method) and in CHIKV-induced joint swelling
(Fig. 7e) (interaction effect¼ 0.94; lower¼ 0.79; upper¼ 1.13;
P¼ 0.506, two-factor design method), when therapeutically admi-
nistrated to infected adult mice, suggesting that combining different
drugs identified in the RNAi screen increases their antiviral effect.

Discussion
Despite major outbreaks over the past decade in Africa, the
Indian Ocean and Asia and its recent emergence in the Americas,
still little is known regarding CHIKV cell biology. CHIKV
infection in human is associated with acute and chronic
symptoms, which pathophysiology remains incompletely

understood, and there is no commercially available vaccine or
drugs to tackle this global public health issue. To better
characterize CHIKV interaction with human cells, we performed
a genome-wide RNAi screen and report here on the identification
of 156 cellular factors required for CHIKV life cycle and 46
antiviral factors. Importantly, follow-up studies of those hits led
to the identification of molecular pathways and cellular functions
required for multiple steps of CHIKV life cycle, from viral entry,
replication to viral release. For example, we demonstrated the
critical role of the vacuolar ATPase in viral entry, and lipid
biosynthesis in vRNA replication and release. Therefore, our
study represents a major advance in the field of CHIVK cell
biology, and will pave the way for detailed mechanistic studies for
each of the pro- and anti-CHIKV host factors we have identified,
similarly to other loss-of-function screens published for other
human viruses9–11,13,14,18–23.

We followed an innovative translational approach by directly
exploiting the results of the genome-wide loss-of-function screen
to identify druggable pathways and corresponding antiviral
compounds. Indeed, using a drug repositioning strategy, we
identified a series of chemical inhibitors, directed against five
druggable proviral hits, with in vitro and in vivo antiviral activity,
either alone or in combination. Since some of the drugs are
already Food and Drug Administration approved for other
diseases, this has the potential to considerably shorten the time-
consuming and expensive ‘hit-to-lead’ and ‘lead-optimization’
phases, making our approach of particular interest for antiviral
drug discovery in the field of emerging infectious diseases.
Importantly, most of the identified proviral hits and all druggable
targets we followed up are also critical for the replication of other
very diverse viral species (including IAV, SINV, HIV-1 and HCV;
see Fig. 1c), highlighting the relevance of this strategy for the
identification of broad-spectrum antiviral compounds and the
potential for broadly active, host-directed, antiviral therapies
(for example, pimozide that had an antiviral effect both for
CHIKV and HSV-1 in Fig. 4).

This proof-of-concept study, based on a genome-wide loss-of-
function screen, led to the identification of antiviral targets,

Table 1 | Inhibition of CHIKV replication by small molecule inhibitors.

Target protein or pathway Drug CHIKV IC50 (lM) WST-1 IC50 (lM) Therapeutic index

Fatty acid synthesis TOFA 0.15 4 60* NT
Orlistat 0.82 8.67 10.57

Cerulenin 3 7.57 2.53
vATPase Bafilomycin 0.000334 0.003* NT
CLK1 AnnH18 1.02 9.19 9.04

AnnH14 1.55 10.55 6.79
KH-CB19 3.36 10.93 3.26

KAT5 (15:3)-Anacardic acid 0.58 2.68 4.65
Calmodulin signalling TAE684 0.15 2.07 14.28

Pimozide 0.28 19.18 69.75
Perphenazine 0.63 24.23 38.28

6-Hydroxyflavone 2.6 4 60 NT
Prenylamine 2.39 16.53 6.91

Felodipine 3.24 12.08 3.73
FLT4 Alsterpaullone 0.002 44.38* NT

Pazopanib 0.13 1.32* NT
Axitinib 0.3 0.34* NT

Tivozanib 0.8 8.34* NT
Sorafenib 1.11 18.24 16.42
Linifanib 2.15 4 60 NT

CHIKV, chikungunya virus; CLK1, CDC-like kinase 1; FLT4, fms-related tyrosine kinase 4; IC50, half-maximal inhibitory concentration; KAT5, K (lysine) acetyltransferase 5; NT, non-toxic;
TOFA, 5-tetradecyloxy-2-furoic acid; vATPase, vacuolar-type Hþ ATPase.
*Treatment induced o50% cell death.
List of selected compounds inhibiting CHIKV replication and their respective molecular targets or pathways. CHIKV infection and cell viability (WST-1) was measured in cells pretreated for 1 h with
different dilutions of each drug (see Supplementary Fig. 4 for full data). Therapeutic index was calculated by dividing the WST-1 IC50 by the CHIKV IC50 value.
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pathways and compounds for which antiviral efficacy was proven
in vitro, as well as in vivo, although it did not completely block
viral replication in this setting. Additional studies will be required
for the selection of the best target inhibitors and lead
optimization, before clinical development. Since our approach
led to the selection of a number of independent targets and
pathways, and for each of those to the identification of multiple
antiviral compounds, pre-clinical studies may exploit the
potential synergistic effect of drug combination. With this in
mind, we showed that the combination of two drugs targeting
independent cellular pathways (TOFA and pimozide) have an
increased activity when combined in vitro as well as in vivo, where
it exhibits a therapeutic antiviral effect.

In conclusion, we have demonstrated here the significance of
host genome-wide loss-of-function screens for the rational
identification of antiviral targets and their accelerated in vitro

and in vivo validation for emerging pathogens, for which
therapeutics and vaccines are critically missing1,2.

Methods
Cells and viruses. The HEK-293 cells (CRL-1573, ATCC-LGC) used for the
genome-wide screening, the drug screening and the drugs testing on different viral
species were cultured in DMEM (Life Technologies 31966-047) supplemented
with 4 mM L-glutamine, 100 U ml� 1 penicillin/streptomycin and 10% FCS. The
HEK-293T cells (CRL-3216, ATCC-LGC) used for the CRISPR/Cas9 validation were
cultured in DMEM (Life Technologies 31966-047) supplemented with 4 mM
L-glutamine, 100 U ml� 1 penicillin/streptomycin and 10% FCS. The HEK-293T cells
(CRL-3216, ATCC-LGC) and HeLa cells used for follow-up studies were cultured in
DMEM (high glucose, GlutaMAX, pyruvate) supplemented with 100 U ml� 1

penicillin/streptomycin (Life Technologies 15140-122) and 10% FCS. Human lung
epithelial A549 cells (CCL-185, ATCC-LGC) were cultured in DMEM supplemented
with 4 mM L-glutamine, 1 mM sodium pyruvate, 100 U ml� 1 penicillin/streptomy-
cin and 10% FCS. Vero cells (CCL-81, ATCC-LGC) were cultured in DMEM,
supplemented with 100 U ml� 1 penicillin/streptomycin and 5% FCS for cell
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Figure 4 | Effect of the identified antiviral drugs on different classes of viruses. Dose–response curves (coloured solid lines) performed on HEK-293

cells or A549 cells (in case of IAV infection), pretreated for 2 h with the indicated drugs and then infected with distant classes of viruses. Black solid lines

and coloured dashed lines indicate the corresponding dose–response curves determined for cell viability and CHIKV infection, respectively (Table 1;
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passaging and 2% FCS for viral titration with the TCID50 assay. C6/36 cells (CRL-
1573, ATCC-LGC) were cultured in Leibovitz’s L-15 medium (Life Technologies
11415-049) supplemented with 10% FCS, 0.01 g ml� 1 tryptose phosphate broth and

1�minimum essential media (MEM) non-essential amino acids (Life Technologies
11140-050). All cell lines were maintained at 37 �C in the presence of 5% CO2 with
the exception of C6/36 that were cultured at 28 �C with no CO2.
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(tivozanib, n¼ 12, 6, 9 and 12 for all conditions at increasing concentrations) and KAT5 (anacardic acid, n¼9 for all data sets) administrated to CHIKV-
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capsid (CHIKV-C, see a for an example). Equal amounts of supernatants from the 2 h post treatment conditions were measured for viral infectivity on Vero
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The following viruses were used: CHIKV-GFP39 (a kind gift of S. Higgs, Kansas,
USA), CHIKV C21 and SINV AR339 (both kind gifts of P. Desprès, Paris, France).
Viral production and titration were performed as previously detailed40. Briefly,

viruses were expanded on C6-36 cells and virus stocks were stored at � 80 �C
before titration by plaque assay on Vero cells. CHIKV-GFP was concentrated using
Vivaspin concentrators (molecular weight cut off (MWCO) 100,000 kDa,
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Figure 6 | In vivo validation of selected chemical inhibitors and proviral factors. (a,b) Health status and body weight evolution in 9-day-old C57BL/

6clk1� /� or C57BL/6clk1þ /þ mice infected intradermally with CHIKV C21 (104 PFU) and killed at the appearance of paralysis. (c) Experimental design of

the intradermal infection of the young mouse model used for tivozanib. (d–f) Effect of daily tivozanib (tivo) treatment on C57BL/6 mouse survival, paralysis

and body weight change in response to CHIKV C21 infection. (g) Health status of each mouse with paralysis, estimated by measuring the area under the

body weight curve. (h) CHIKV viral load measured 3 days post infection in the indicated organs obtained from mice treated with tivozanib as in c (n¼ 9 for

all data sets). (i,j) Experimental design of the footpad infection of adult mice model used and viral titres measured in C57BL/6 mice treated with pimozide

(pimo, per os, n¼ 15 for both data sets) or TOFA (i.p., n¼ 11 for both data sets) or the corresponding vehicles before infection with CHIKV C21 (103 PFU).

Data in b,f and g represented as the mean±s.e.m.; in h,i and j as the median±interquartile range; each dot represents one mouse. All data obtained from

at least two independent experiments. Statistics were calculated using Log-rank (Mantel–Cox) test in a,d and e, two-sided t-test for two independent

samples in g and Mann–Whitney test in h,i and j, (*Po0.05; NSPZ0.05). AUC, area under curve; d, days; i.p., intraperitoneal; NS, not significant.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11320 ARTICLE

NATURE COMMUNICATIONS | 7:11320 | DOI: 10.1038/ncomms11320 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


Sartorius). Viral titration of cell supernatants (Fig. 7b) was performed by standard
TCID50 assay on Vero cells using eight serial dilutions (1/10 steps).

A CHIKV replicon vector, expressing Renilla luciferase (Rluc) fused with nsP3
and firefly luciferase (Ffluc) under the subgenomic promoter (see Supplementary
Fig. 3a), was used for experiments in Fig. 3c,f. For immunofluorescence
experiments in Fig. 3d,e and Supplementary Fig. 3b, cells were infected with a
CHIKV replicon vector expressing only Fluc under the subgenomic promoter.
Chikungunya viral replicon particles (VRPs) were produced using the split-helper
system as described previously41. In short, three different vRNAs were produced
in vitro (mMESSAGE mMACHINE SP6 Kit (Ambion)) from separate plasmids:
replicon RNA (including the 50 and 30 CHIKV replication signals but lacking the
structural genes) and two different helper RNAs for the expression of capsid
protein and envelope proteins. Three transcribed RNAs were electroporated into
BHK-21 cells and kept at 32 �C for 72 h before collecting the media to collect VRPs.
Indirect immunofluorescence microscopy was used to titre VRPs.

GFP-expressing recombinant viruses used in Fig. 4 were cowpox virus strain
Brighton Red vBRFseR (CPXV; provided by K. Tischer, Freie Universität Berlin,
Germany), herpes simplex virus 1 strain KOS K26GFP (HSV-1; provided by
P. Desai, John Hopkins University, USA) and Adenovirus serotype 5 expressing GFP
from CMV immediate-early promoter (Ad5). Virus stocks were grown in Vero E6
cells (HSV-1, CPXV) or HEK-293 cells (Ad5) for 5–10 days before being collected,
resuspended in PBS and lysed by three sequential freeze–thaws. After removal of
cellular debris by centrifugation, stocks were frozen at � 80 �C until use. Highly pure
stocks of adenovirus were generated by two sequential CsCl centrifugation steps
followed by dialysis and freezing at � 80 �C until use. Viral titre of the frozen stocks
was determined by both GFP expression at 1 day post infection and plaque
formation at 7 days post infection of Vero E6 or HEK-293 cells. Virus stocks were
498% pure for GFP expression. The IAV/WSN/1933(H1N1) (provided by St. Jude
Children’s Research Hospital, USA) was produced by reverse genetics as described42,
subsequently propagated in the allantoic cavaties of 9- or 10-day-old embryonated
chicken eggs and used for experimentation.

siRNA screening. HEK-293 cells were used for the screening because of their
concomitant permissiveness to CHIKV infection and to high-efficiency siRNA

transfection. Transfections of siRNAs in a 384-well plate format were carried out as
recently described9. Briefly, all siRNAs (Qiagen Hu_Genome 1.0 and Human
Druggable Genome siRNA Set V2.0; Qiagen) were arrayed in 384-well plates.
To each well, 8 ml of serum-free RPMI medium (Invitrogen) containing 3.75%
HiPerFect (Qiagen) was added. After 20-min incubation at room temperature,
30 ml of cell suspension containing 1,250 cells was added to give a final siRNA
concentration of B20 nM. Cells were incubated at 37 �C and 5% CO2 for 72 h
before infection with 3.5� 104 plaque-forming units (PFUs). At 18 h post infection,
cells were fixed and nuclei stained with Hoechst. Infection protocol was set-up to
reach B50% of infected cells at the end of the experiment, thus enabling the
identification of both proviral and antiviral genes.

The numbers of CHIKV-infected and non-infected cells were determined using
an automated microscope (Olympus Soft Imaging Solutions). Images were taken
with 4,6-diamidino-2-phenylindole and GFP filter sets (AHF-Analysetechnik).
ScanR Analysis Software (Olympus Soft Imaging Solutions) was used to
automatically identify and quantify GFP-positive cells (indicating infected cells)
and cell nuclei. The number of automatically counted nuclei was further used to
estimate the cytotoxic effects of specific siRNAs. The siRNA was classified as toxic
if 1,000 or fewer nuclei were determined within one well of a 384-well plate.
All multi-well pipetting steps were performed using a Biomek FXP Laboratory
Automation Workstation (Beckman Coulter). An siRNA library (Qiagen
Hu_Genome 1.0 and Human Druggable Genome siRNA Set V2.0; Qiagen)
containing four siRNAs per gene for the druggable genome43 and two siRNAs per
gene for non-druggable and predicted genes was screened at least three times
independently. The following siRNAs with the indicated target sequence were
included in all screening plates as controls: siE1 50-AACCGAUGAUAAGG
CACGAAA-30 , siPLK1 50-CACCAUAUGAAUUGUACAGAA-30 and AllStars
(Qiagen). For validation experiments, three siRNAs (Silencer Select) per gene were
purchased from Ambion. The same transfection and screening conditions were
used as in the primary screen.

Microarray analysis. To allow exclusion of non-expressed genes from the hit
identification process, microarray analyses of (i) AllStars-transfected and
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Figure 7 | Impact of pimozide and TOFA combination on CHIKV replication in vitro and in vivo. (a–c) Infection rate (n¼ 9 for all data sets at increasing
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design of the footpad CHIKV infection model of adult mice used to measure the therapeutic effect on CHIKV replication of pimozide, TOFA or their

combination (n¼ 13 for all data set, one outlier for pimo is not shown in the graph but was considered for statistics). (e) Footpad swelling measured 4 days
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CHIKV-infected, (ii) AllStars-transfected and non-infected, (iii) non-transfected
and CHIKV-infected, and (iv) non-transfected and non-infected HEK-293 cells
were performed. Transfection was carried out by adding 4� 105 HEK-293 cells
(in complete DMEM medium) to a mixture of serum-free RPMI medium,
HiPerFect (Qiagen) and AllStars siRNAs (final siRNA concentration: 20 nM).
Infection with CHIKV-GFP was performed 72 h post transfection at a multiplicity
of infection (MOI) of 3. Cells were lysed 18 h p.i. using Trizol (Invitrogen),
followed by isolation of RNA, which was subsequently subjected to microarray
analysis. Correlation analysis revealed no significant influence of AllStars trans-
fections (compared with non-transfected cells) on the global expression of cellular
genes (correlation coefficient¼ 0.992). Therefore, only the data set derived from
transfected (CHIKV-infected and non-infected) HEK-293 cells was used for the
removal of non-expressed genes (cutoff criterion: expression intensity4100), as
described in data analysis below. Microarray experiments were performed as
dual-colour hybridizations on Agilent 4� 44 K human whole-genome catalogue
arrays (Agilent-014850). To compensate for dye-specific effects, a dye-reversal
colour swap was applied.

Hit validation by CRISPR/Cas9-mediated gene knockout. Cas9-expressing
HEK-293T and A549 cells were generated by transducing them first with
lentiviruses based on the plasmid lentiCas9-Blast (Addgene number 52962), followed
by selection with blasticidine for 10 days. Cells were then transduced with
lentiviruses derived from the plasmid lentiGuide-Puro44 (Addgene number 52963),
which leads to the expression of specific gRNAs) listed in Supplementary Data 4.
Cas9-positive HEK-293T cells expressing individual gRNAs were generated by
keeping cells under selection medium containing blasticidine (5mg ml� 1) and
puromycin (2mg ml� 1) for an additional 10 days. A549 cells depleted for CLK1 were
generated accordingly, but in this case single-cell clones were generated, which were
kept under selection medium containing blasticidine (10mg ml� 1) and puromycin
(2.5mg ml� 1) for an additional 10 days and subsequently analysed using the
GeneArt Genomic Cleavage Detection Kit (Life Technologies) and the following
oligonucleotides: CLK1_up: 50-TGGAGTAGAGTGGCACGATG-30 ; CLK1_down:
50-GGATGCTTTAAGGCTTCTCTGA-30 (uncropped gel presented in
Supplementary Fig. 6). After the selection process, gRNA-expressing HEK-293T and
A549 cells were infected with CHIKV-GFP for the periods of time and at MOIs as
indicated.

Western blotting and luminescence assay. For experiments in Fig. 3b,c, a
combination of two siRNAs (Ambion) was used to silence FASN (s5030 and s5031),
ACC (s882 and s883) or ACLY (s915 and s916). HeLa cells (at 40% confluency in
24-well plates) were transfected using Lipofectamine RNAiMAX reagent (Life
Technologies), with 5 pmol of each siRNA (10 pmol in total) or 10 pmol of silencer
negative control no. 2 siRNA (AM4613; Ambion). Knockdown effect was analysed
72 h post transfection by western blotting. Proteins were separated by 6% SDS–
polyacrylamide gel electrophoresis, transferred to nitrocellulose membrane (GE
Lifesciences) and detected using primary antibodies against ACC (clone EP687Y,
from Abcam, ab45174, 1:1,000), ACLY (rabbit polyclonal from Abcam, ab137579,
1:1,000), FASN (rabbit polyclonal from Novus, NB400-114, 1:1,000) or b-actin
(clone C4, Santa Cruz Biotechnology, sc-47778, 1:2,000). Appropriate horseradish
peroxidase-conjugated secondary antibodies (LabAs Ltd) were used for visualization.
Enhanced chemiluminescence reagent (GE Healthcare) was used to develop the blots
(uncropped immunoblots presented in Supplementary Fig. 6). To perform the
luciferase activity assay, siRNA-transfected HeLa cells were infected with Rluc- and
Fluc-expressing CHIKV VRPs (MOI¼ 0.01) at 72 h post transfection for 1 h. At 8 h
p.i., cells were lysed using passive lysis buffer (Promega), and the relative activities of
Rluc and Fluc were measured using a dual-luciferase detection kit (Promega). For
experiments in Fig. 3f, specific FASN, ACC or ACLY chemical inhibitors were added
from 1 h p.i. until the end of the experiment. The effects of drugs targeting the fatty
acid biosynthesis pathway in HeLa cells were monitored in real time using the
xCELLigence System (Roche) and corresponding electrode plates (E-plate). The
system measures electrode impedance, which is given as cell index value. For the
assay, HeLa cells were seeded in the wells of a E-plate and 18 h later growth medium
pre-mixed with drugs was added to the wells to monitor the cell index change.

Immunofluorescence. For indirect immunostaining, cells were fixed in 4% paraf-
ormaldehyde (PFA) and permeabilized with 0.1% Triton X-100 (Sigma). Antibodies
were diluted in PBS containing 5% FCS. The following primary antibodies were used:
rabbit anti-ACC (clone EP687Y, from Abcam, ab45174, 1:100), anti-ACLY (rabbit
polyclonal from Abcam, ab137579, 1:100), anti-FASN (rabbit polyclonal from
Novus, NB400-114, 1:100), mouse anti-dsRNA (clone J2, English and Scientific
Consulting Kft, 1:200); incubation with primary antibodies was followed by treat-
ment with secondary antibodies: anti-rabbit antibodies conjugated with Alexa Fluor
488 and anti-mouse antibodies conjugated with Alexa Fluor 568 (Life Technologies).
Cells were observed using a Carl Zeiss LSM710 confocal microscope.

Immunostaining with the mouse anti-human-FLT4 (clone 9D9F9, Biolegend,
356201, 1:100) and rabbit anti-human-phospho-FLT4 (rabbit polyclonal from Cell
applications, CY1115, 1:400; Supplementary Fig. 5b) was performed on 4%
PFA-fixed cells, activated with � 20 �C cold methanol (Sigma) for 20 min, and then
permeabilized and stained in 0.05% saponin (Sigma) and 0.2% bovine serum

albumin (BSA; Sigma) in PBS. Anti-mouse IgG antibodies conjugated with Alexa
Fluor 647 and anti-rabbit antibodies conjugated with Alexa Fluor 488 were used as
secondary antibodies. HeLa cells were transfected for 20 h (using the JetPRIME
transfection reagent, Polyplus) with the pcDNA3.1-VEGFR-3 (overexpressing the
wild-type form of FLT4) or with the pcDNA3.1-VEGFR-3-G857R (overexpressing
a non-phosphorylatable mutant form of FLT4). The two plasmids were kindly
provided by K. Alitalo, Helsinki).

Chemical compound screening. For screening of compounds with CHIKV,
HEK-293 cells were pretreated on 384-well plates with the various substances in
eight different 1:3 dilutions 2 h before infection. Infection was performed using
3.5� 104 PFU CHIKV-GFP per well. At 18 h p.i., cells were fixed with 3.7%
formaldehyde and the percentage of infected to non-infected cells quantified by
staining nuclei with Hoechst, followed by automated microscopy and single object
analysis. On the basis of the results of the eight different dilutions, dose–response
curves were calculated using the R software package drc45 and the half-maximal
inhibitory concentrationvalues of each compound determined. All multi-well
pipetting steps were performed as described above.

To analyse primary infection of herpes simplex type 1 strain KOS (HSV-1),
cowpox strain Brighton Red (CPXV) or adenovirus strain 5 (Ad5), HEK-293 cells
were washed with PBS and incubated at 37 �C for 2 h with small molecules
(73-0.033mM in eight steps, alternatively for Bafilomycin 73-0.033 nM in eight steps)
or an equivalent of DMSO under normal culture conditions. Cells were subsequently
inoculated with GFP-expressing HSV-1, CPXV or Ad5 at MOI 5 (HSV-1) or MOI 2
(CPXV and Ad5) for 24 h before being fixed with 1% formaldehyde in PBS for
15 min. All virus strains expressed GFP, and the presence of GFP was determined by
microscopic analysis performed as described previously9.

The same compound concentrations were used to test the antiviral efficacy
against IAV/WSN/33 (IAV) viruses. Human lung epithelial A549 cells were
pretreated with small molecules for 2 h and then inoculated with WSN at MOI
0.02. After 40 min, infection medium (DMEM supplemented with 0.2% BSA, 4 mM
L-glutamine, antibiotics and TPCK-treated trypsin (1 mg ml� 1), Sigma-Aldrich)
was added, and the cells were incubated under normal culture conditions for 36 h.
Virus load was determined by inoculating MDCK cells (seeded the day before) with
the supernatants, followed by fluorescence microscopic analysis of infection. For
this, MDCK cells were washed and inoculated with undiluted supernatant for 1 h.
Virus was removed and MDCK cells were cultivated for 6 h under normal culture
conditions with infection medium. Cells were stained for viral NP protein and
nuclei, and the infection rate (that is, the rate of NP-positive cells) was determined
as described previously9.

To exclude the possible cytotoxic effects, all compounds were additionally tested
using the ‘Cell Proliferation Reagent WST-1’ (Roche Diagnostics). HEK-293 cells
were treated with the same concentrations of the various substances and 18 h later
WST-1 was added. Readout was conducted using the EnVision Multilabel Reader
(PerkinElmer).

CLK1 inhibitor synthesis. The b-carboline-based CLK1 inhibitors (Supplementary
Methods) were obtained as follows:46,47,48

AnnH18 ((E)-7-methoxy-1-(2-phenylethen-1-yl)-9H-pyrido[3,4-b]indole) was
prepared from harmine and benzaldehyde using the method of Li et al.47;

AnnH14 (9-butyl-6-chloro-7-methoxy-1-methyl-9H-pyrido[3,4-b]indole) was
prepared from 6-chloroharmine as follows: a solution of 53 mg (0.21 mmol) of
6-chloroharmine and 31 mg (0.27 mmol) of potassium tert-butanolate in 5 ml of
anhydrous DMSO was stirred at 80 �C for 30 min, then 0.13 ml (1.1 mmol) of
n-iodobutane was added slowly. After stirring at 80 �C for 2 h, the mixture was
treated with aqueous ammonia (10%) and extracted with ethyl acetate. The organic
layer was dried over sodium sulfate and evaporated. The residue was purified by
flash column chromatography (silica; eluent: hexane/ethyl acetate/ethanol, 2:2:1) to
give 35 mg (54%) of the target compound as a pale yellow solid, mp 133-137 �C.
1H-NMR (DMSO-D6, 400 MHz): d (ppm)¼ 8.34 (s, 1 H, 5-H), 8.19
(d, J¼ 5.2 Hz, 1 H, 3-H), 7.94 (d, J¼ 5.2 Hz, 1 H, 4-H), 7.37 (s, 1 H, 8-H), 4.58
(t, J¼ 7.5 Hz, 2 H, 10-H), 4.02 (s, 3 H, OCH3), 2.95 (s, 3 H, 1-CH3), 1.72-1.68
(m, 2 H, 20-H), 1.37-1.31 (m, 2 H, 30-H), 0.92 (t, J¼ 7.4 Hz, 3 H, 40-H). 13C-NMR
(DMSO-D6, 400 MHz): d (ppm)¼ 150.7 (C-7), 136.7 (C-8a), 136.5 (C-1), 133.5 (C-
3), 130.1 (C-9a), 123.2 (C-4a), 117.9 (C-5), 109.9 (C-4b), 109.6 (C-6), 108.1
(C-4), 89.6 (C-8), 52.1 (OCH3), 35.5 (C-10), 28.0 (C-20), 18.6 (1-CH3), 15.0 (C-30),
9.3 (C-40). HR-MS (EI): m/z¼ 302.1193 (calculated for C17H19N2OCl:302.1186);

AnnH80 (1-bromo-7,8-dichloro-9-(prop-2-yn-1-yl)-9H-pyrido[3,4-b]indole) was
prepared in three steps from 7,8-dichloro-3,4-dihydro-1-oxo-9H-pyrido-
[3,4-b]indole49 (see Supplementary Methods for experimental details and analytical
data). Briefly, dehydrogenation of 7,8-dichloro-3,4-dihydro-1-oxo-9H-pyrido-
[3,4-b]indole (A) was performed with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) in tetrahydrofuran (THF) to give the 1-oxo-b-carboline (B; step 1). Subsequent
bromination with phosphoryl bromide in anisole (step 2) gave the 1-bromo-b-carboline
(C). This compound was converted to the target compound AnnH80 by deprotonation
with sodium hydride, followed by N-alkylation with propargyl bromide (step 3).

In vitro drug testing. The following drugs were used following solubilization in
DMSO: tivozanib (Selleck, 43.96 mM stock), cerulenin (TEBU, 50 mM stock),
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KH-CB19 (R&D Systems, 10 mM stock), bafilomycin (50 mM stock), pimozide
(10 mM stock), W7 (53 mM stock), TOFA (10 mM stock), BMS-303141 (25 mM
stock) and (15:3)-anacardic acid (10 mM stock; all from Sigma). To determine the
step of the viral cycle affected by chemical compounds, HEK-293T cells (seeded the
day before on poly-L-lysine-coated plates) were either treated 2 h before or 2 h after
cell infection with CHIKV C21 (MOI 40) and left until 8 h p.i. Viral infection was
quantified by flow cytometry measurement of the % of capsid-expressing cells.
Equal amounts of supernatants (3 ml) from the 2 h post treatment conditions were
then measured for viral infectivity on Vero cells (final volume: 150 ml). The
percentage of infected cells was measured by flow cytometry at the end of the
experiment. For cell viability analysis, we took advantage of the high-precision
measurement of the acquired volumes made by the MACSQuant VYB cytometers.
Then, knowing the initial volume of cells, the acquired volume and the acquired
number of events, we estimated the total number of cells per well. Cell staining for
these experiments was performed in V-bottom 96-well plates (Nunc).

Quantitative real-time PCR and flow cytometry. For vRNA quantification,
vRNA was extracted from infection supernatants using the QIAamp Viral RNA
Mini Kit (Qiagen), whereas total RNA from cells was extracted using the RNeasy
Mini Kit (Qiagen). One-step quantitative real-time PCR reactions were conducted
on an Applied Biosystems 7500 Fast system or a StepOnePlus Real-Time PCR
System (Applied Biosystems) using the qPCR SyGreen 1-Step Lo-ROX or Hi-ROX
mix (PCRBIOSYSTEMS) and the following primers: E1-C21_F (50-ACGCAGT
TGAGCGAAGCAC-30), E1-C21_R (50-CTGAAGACATTGGCCCCAC-30),
GAPDH_F (50-GGTATCGTGGAAGGAAGGACTCATGAC-30) and GAPDH_R
(50-ATGCCAGTGAGCTTCCGTTCAG-30). vRNA present in infected cells was
normalized on the GAPDH expression using the 2�DDCT method, whereas a
standard curve derived from a viral stock of known titre was used to quantify
vRNA in the supernatants. Cell viability in HeLa cells treated with the indicated
drugs was measured using the CellTiter-Glo kit (Promega) and the Fluoroskan
Ascent FL luminometer (Thermo Scientific).

Experiments in Supplementary Fig. 5d,e were performed using the HiPerFect
transfection kit to transfect siRNA (Silencer Select Negative Control No. 2 siRNA,
catalogue number 4390846, and s33489, s20629 and s31791—target sequences in
Supplementary Data 1—at a final concentration of 5 nM) for 48 h before infection.
Silencing efficiency was determined by quantitative PCR using the TaqMan
RNA-to-Ct 1-Step Kit and the following TaqMan Gene Expression Assays
(Life Technologies): Hs00197310_m1, Hs00367471_m1 and Hs00219525_m1.
RNAs were extracted following the RNeasy Mini Kit (Qiagen) protocol with
DNAse treatment.

Intracellular capsid (C) staining for flow cytometry was performed using a
permeabilization buffer (PBS, 0.05% saponin and 0.2% BSA). We used a mouse
monoclonal antibody (clone H3-18, 1:1,000) generated in-house and directly
coupled with ATTO532 to reveal CHIKV capsid and a rabbit polyclonal serum
recognizing the capsid protein (Ventoso I, Madrid, 1:1,000) to detect SINV. Flow
cytometry acquisition was performed using a MACSQuant VYB system; FlowJo
was used for the analysis. The percentage of infected cells was used as infection
readout. Data were then normalized by setting the DMSO condition as an arbitrary
value of 100.

Simultaneous detection of FLT4 (clone 9D9F9, Biolegend, 356201, 1:50) and
P-FLT4 (rabbit polyclonal from Cell applications, CY1115, 1:400) was performed
on CHIKV-GFP-infected cells (MOI: 10 for 18 h), fixed in 4% PFA, activated with
� 20 �C cold methanol for 20 min and stained in permeabilization buffer. Cells
were acquired using an LSR-fortessa flow cytometer (BD). Anti-mouse IgG
antibodies conjugated with Alexa Fluor 555 and anti-rabbit antibodies conjugated
with Alexa Fluor 647 (both from Life Technologies) were used as secondary
antibodies. We used cells stained with a mouse isotype control antibody (clone
MOPC-21, Biolegend, 400101, 1:50) or with the anti-rabbit IgG secondary antibody
only as labelling controls.

In vivo experiments. All animal experiments were conducted according to project
#2014-0019, which was approved by the Institut Pasteur Animal Ethics Committee
on 17 October 2014. Two different mouse models of CHIKV infection were used
for our studies: (i) the intradermal infection model of neonatal mice, characterized
by CHIKV dissemination through the bloodstream, replication in different organs
(liver, spleen, muscles and joints) and association with paralysis and death32;
(ii) the footpad infection model, characterized by a rapid local replication of
CHIKV at the site of infection and by the induction of inflammation and footpad
swelling36–38. Both male and female mice were used for experiments in Fig. 6.
Experiments in Fig. 7 were conducted on female mice. Clk1 conditional knockout
mice (C57BL/6NTac-Clkotm1a(EUCOMM)Wtsi4/Ics) were purchased
from ICS, France. Clk1 cKO mice were subsequently mated with Flp deleter
(C57BL/6-Glipr2oGtIST12674H5TIGM4/J) and Cre deleter transgenic mice
(B6.C-Tg(CMV-cre)1Cgn/J) to remove the bGeo cassette and the critical exons to
generate clk1 null alleles. Constitutive clk1 knockout mice were further backcrossed
into the C57BL/6J background (N¼ 9, F¼ 4). The wild-type C57BL/6J mice used
for backcrossing were derived from the same unit and exposed to the same diet as
the Clk1 null mice that were used as controls in those experiments. Mice were
intradermally infected with CHIKV C21 (104 PFU), weighed daily and killed at the
appearance of paralysis.

For in vivo drug testing, C57BL/6J mice were purchased from Charles River
Laboratories. Tivozanib-treated mice (0.5 mg kg� 1, per os) were infected as
described above, whereas pimozide (20 mg kg� 1, via os)- and TOFA (25 mg kg� 1,
via intraperitoneal)-treated mice were subcutaneously infected with CHIKV C21 in
the footpad (103 PFU). Mouse health status and body weight were scored daily.

Drugs were handled as follows: for experiments shown in Fig. 6, tivozanib
(Selleck) was first dissolved in DMSO (40 mg ml� 1) and then diluted in 0.5%
methylcellulose to a final concentration of 0.25 mg ml� 1; pimozide (Sigma) was
dissolved (25 mg ml� 1) in N-methyl-2-pyrrolidone (NMP) and then diluted in
PEG300 (5 mg ml� 1); TOFA (Sigma) was dissolved in DMSO to a final
concentration of 5 mg ml� 1. For experiments shown in Fig. 7d,e, TOFA and
pimozide were dissolved in DMSO (independently or in combination) to a final
concentration of 3.64 and 4.55 mg ml� 1, respectively, and dosed at 5.5 ml g� 1.
Littermate controls treated with appropriate vehicles were used for all experiments.
CHIKV titrations from mouse explants were performed using the standard
TCID50 dilution assay on Vero cells. Animal tissues were homogenized in DMEM
(high glucose, GlutaMAX, pyruvate) at the final concentration of 0.1 g ml� 1 using
a Precellys 24 homogenizer (Bertin Technologies). In Fig. 7e, joint swelling was
measured 4 days p.i. using a Schnelltaster caliper.

Data analysis and reproducibility. For identification of primary hits, mainly the
inhibitory effect on CHIKV, replication was taken into consideration. To reduce
possible off-target or other unspecific effects and to maximize the robustness of the
hit selection, two additional parameters were analysed: (i) non-expressed genes
were excluded by determining constitutive or inducible expression via microarray
profiling of non-infected and infected HEK-293 cells (7,561 genes were filtered
out). (ii) Using the microscopic assay applied throughout the primary screen, toxic
siRNAs, which reduced total cell numbers (o1,000 cells per well) on transfection
were excluded. In this way, 3,274 siRNAs (targeting 2,635 different genes) were
excluded from further analysis. The statistical analysis of the revised raw data was
performed using cellHTS2 (ref. 15), an R-implemented software package for the
analysis of cell-based high-throughput RNAi screen data. Raw data were
normalized and centred by Z-score transformation. The medians of the centred
and scaled values of at least three independent replicates were used for RSA
analysis16. Primary hits were selected by using the cutoff criterion log Pr2.

The validation was performed based on the primary hit list, thereby focusing
not only on proviral but also on antiviral factors. Although the validation was
experimentally identical to the primary screening, the hit selection varied slightly:
after filtering out 133 toxic siRNAs, the Z-scores were again determined using the
cellHT2 software package. However, instead of using the RSA analysis, which has
limitations in analysing data sets consisting of siRNAs that should theoretically all
influence CHIKV replication, we computed the cSSMD based on the normalized
per cent inhibition of individual siRNAs, by assessing the collective activity of
multiple siRNAs relative to the control17. For the special case of only two siRNAs
available, we used the simple method of moments estimate:

b̂ ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i di � d
� �2

q ; ð1Þ

where d denotes the collective difference relative to control and di denotes the
corresponding difference for the corresponding siRNA (i¼ 1 and 2).

String analysis shown in Supplementary Fig. 1k was performed using only
experimental data for prediction (confidence scoreZ0.5). Networks containing
fewer than nine genes are not depicted. Molecular functions were arbitrarily
assigned to the networks based on known functions.

The ingenuity analysis on the proviral factors, which is depicted in Fig. 1g, was
performed using the ingenuity knowledge-base reference set (genes only), including
direct and indirect relationships, and endogenous chemicals, and filtered for the
‘experimentally observed’ confidence criterion. Enriched molecular functions were
selected on the basis of their statistical significance (Pr0.01 was used as threshold).
Statistically enriched gene ontology terms associated to less than two genes were
removed. Co-localization analysis shown in Fig. 3e was performed on three-
dimensional cell stacks using the intensity correlation analysis plugin for the WCIF
Image J program. Statistical analyses in Figs 1, 3, 5, 6 and 7, Supplementary Fig. 1
and Supplementary Fig. 5 were performed using GraphPad prism. Networks in
Fig. 1c and Supplementary Fig. 1k were drawn using the Cytoscape software. The
STATA software (StataCorp) was used to calculate the D values for interaction
effect on the geometric means of data shown in Fig. 7 following the two-factor
design method50. No statistical method was used for the sample size determination
and experiments were performed without randomization or blinding strategy.
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