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We develop force field parameters for the divalent cations Mg2+, Ca2+, Sr2+, and Ba2+ for molecu-
lar dynamics simulations with the simple point charge-extended (SPC/E) water model. We follow an
approach introduced recently for the optimization of monovalent ions, based on the simultaneous op-
timization of single-ion and ion-pair properties. We consider the solvation free energy of the divalent
cations as the relevant single-ion property. As a probe for ion-pair properties we compute the activity
derivatives of the salt solutions. The optimization of the ionic force fields is done in two consecutive
steps. First, the cation solvation free energy is determined as a function of the Lennard-Jones (LJ)
parameters. The peak in the ion-water radial distribution function (RDF) is used as a check of the
structural properties of the ions. Second, the activity derivatives of the electrolytes MgY2, CaY2,
BaY2, SrY2 are determined through Kirkwood-Buff solution theory, where Y = Cl−, Br−, I−. The
activity derivatives are determined for the restricted set of LJ parameters which reproduce the exact
solvation free energy of the divalent cations. The optimal ion parameters are those that match the
experimental activity data and therefore simultaneously reproduce single-ion and ion-pair thermody-
namic properties. For Ca2+, Ba2+, and Sr2+ such LJ parameters exist. On the other hand, for Mg2+ the
experimental activity derivatives can only be reproduced if we generalize the combination rule for the
anion-cation LJ interaction and rescale the effective cation-anion LJ radius, which is a modification
that leaves the cation solvation free energy invariant. The divalent cation force fields are transferable
within acceptable accuracy, meaning the same cation force field is valid for all halide ions Cl−, Br−,
I− tested in this study. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772808]

I. INTRODUCTION

Polyvalent ions, especially divalent cations, play an es-
sential role in physiological processes such as protein folding,
modulation of enzyme activity, signal transduction, and many
others.1–3 Due to their strong binding affinity to biomolecules,
divalent cations promote fundamental changes in the func-
tional activity of peptides. Most notably Mg2+ and Ca2+

are known to act very differently in the context of cellular
physiology.4 As a specific example, Ca2+ is an important co-
factor for blood clotting, meaning that blood plasma does
not coagulate in the sole presence of Mg2+.5, 6 To elucidate
the influence of Mg2+ and Ca2+ on the blood clotting activ-
ity, the structural changes of the γ − carboxyglutamic acid
(GLA) domain, which is common to phylloquinone (vita-
min K-dependent) proteins,6 were studied by X-ray diffrac-
tion at various ion concentrations. It has been observed that
in the presence of Mg2+, active centers of the GLA domain,
which are responsible for blood coagulations, retain disor-
dered structure. However, if the molecules are surrounded
by calcium ions, these active centers have a crystalline struc-
ture in which calcium is tightly bound.6 As another example,
X-ray crystallographic studies of the synthetic hexapeptide
cyclo (-L-Pro-Gly-)3 show that in crystals containing Ca2+

ions, the cation is octahedrally surrounded by six carbonyl
oxygens at an average distance of 2.26 Å. In a Mg2+ complex,
the magnesium is octahedrally coordinated by three glycine
carbonyl and three water oxygens at distances of 2.03 and

2.11 Å, respectively.7 Also, Mg2+ and Ca2+ ions possess dif-
ferent abilities to induce adhesion and fusion of lipid vesi-
cles or cells.8, 9 Despite extensive ongoing research, many of
the effects of divalent cations on the physiological activity of
biomolecules are still not fully understood, partly because the
fine differences between Mg2+ and Ca2+ are not accurately
captured by standard simulation force fields.

From a computational perspective, ab initio quantum me-
chanical approaches are unbiased and therefore in principle
ideal for the investigation of processes involving multivalent
ions,10, 11 but on the other hand are limited to relatively small
systems due to the high computational demands. Classical
atomistic simulations are less accurate but relatively inexpen-
sive and thus allow to treat larger spatial and temporal scales.
As a main drawback, classical simulations require accurate
force fields (FF) in order to describe the microscopic interac-
tions in various environments. Polarization effects were ar-
gued to improve the description of ion specificity. Despite
many arguments in favor of polarizable force fields, the ne-
cessity of including polarizability for the accurate prediction
of biomolecular properties, such as ligand-binding affinities,
is debated.12 At the moment, non-polarizable force fields are
still more widely used and quite successful in predicting bind-
ing affinities.13 The idea is that multi-body effects can be in-
cluded effectively via the optimization of Lennard-Jones (LJ)
parameters based on liquid state properties. It turns out that
the effective ion size is crucial for accurately capturing ion
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TABLE I. Comparison of different divalent cation parameters. (1) AMBER FF (taken from the standard Amber data base), (2) CHARMM FF,17 (3) Åqvist
FF,18 (4) Babu and Lim,19 and (5) this work. The sets 1, 2, 4 were optimized using the TIP3P and set 3 using SPC water models. We also list the predicted
solvation free energy and the first maximum of the RDF and compare with experimental numbers. All values were obtained using the SPC/E water model. The
experimental solvation free energies are the sum of the divalent cation and the reference Cl− ion solvation free energies as compiled by Marcus.42

σ iO εiO σ ii εii ��G �
exp

�G R1 Rexp

Ion Set (Å) (kJ/mol) (Å) (kJ/mol) (kJ/mol) (kJ/mol) (Å) (Å)

Mg2+ 1 2.29 1.56 1.41 3.74 −2513 −2532 1.99 2.09
Ca2+ 1 3.11 1.12 3.05 1.92 −1970 −2209 2.70 2.41

Mg2+ 2 2.64 0.20 2.11 0.06 −2540 −2532 1.96 2.09
Ca2+ 2 2.80 0.57 2.43 0.50 −2254 −2209 2.21 2.41

Mg2+ 3 2.40 1.53 1.63 3.60 −2424 −2532 2.07 2.09
Ca2+ 3 2.79 1.11 2.41 1.90 −2168 −2209 2.44 2.41
Sr2+ 3 3.13 0.57 3.10 0.5 −2037 −2080 2.56 2.64
Ba2+ 3 3.49 0.36 3.82 0.2 −1892 −1952 2.77 2.75

Mg2+ 4 2.64 0.41 2.11 0.26 −2450 −2532 2.02 2.09
Ca2+ 4 3.21 0.275 3.25 0.12 −2081 −2209 2.50 2.41
Sr2+ 4 3.34 0.39 3.50 0.23 −1962 −2080 2.64 2.64
Ba2+ 4 3.42 0.87 3.67 1.16 −1810 −1952 2.97 2.75

Mg2+(1) 5 2.40 0.62 1.63 0.59 −2532 −2532 1.96 2.09
Mg2+(2) 5 2.90 0.05 2.63 0.004 −2531 −2532 1.98 2.09
Ca2+ 5 2.79 0.78 2.41 0.94 −2209 −2209 2.38 2.41
Sr2+ 5 3.13 0.40 3.10 0.25 −2080 −2080 2.51 2.64
Ba2+ 5 3.50 0.22 3.82 0.074 −1952 −1952 2.69 2.75

specific effects and must be correctly represented by the 6-
12 LJ potential, which is commonly used for the modeling of
ions, together with combination (or mixing) rules to describe
interactions between different atoms or ions.

The force field parameters reported in literature for di-
valent cations are typically optimized based on single-ion
properties in solution or with respect to experimental data
in the crystalline state. In practice, these force fields often
fail to reproduce electrolyte thermodynamic properties or ion
specific effects at finite concentrations even for simple ionic
solutions.14–16 Therefore recently much attention has been
given on the development of force fields that can reproduce
several thermodynamic properties of ionic solutions simulta-
neously at finite concentrations. A number of non-polarizable
models for divalent cations are available in the literature.17–20

Table I shows the ion parameters of a few widely used force
fields for divalent cations. All these force fields were opti-
mized to reproduce a variety of thermodynamic properties
including solvation free energy, the first peak of the ion-
water radial distribution function, crystal lattice parameters,
etc. However, their development was based mostly on single-
ion properties and thus these force fields are a priori reli-
able only in simulations at low salt concentrations. As an
example, commonly available force fields as implemented
in CHARMM, GROMOS, and AMBER for divalent cations
have failed to describe ion specific effects in ion channels.
Molecular dynamics (MD) studies of binding and permeabil-
ity of monovalent and divalent cations such as Ca2+, Mn2+,
Ba2+ in a gramicidin A channel showed that non-polarizable
force fields can describe the binding configurations of mono-
valent ions within the gramicidin A channel but cannot de-
scribe energetics of binding and blocking of the divalent

cations.21, 22 It is clear from Table I that parameters for one
and the same ion significantly differ in different parameter
sets. This noticeable difference cannot be simply explained
by the fact that these were developed in combination with
different water models, as the influence of the water models
is relatively small.23 It is rather based on different optimiza-
tion strategies and partial arbitrariness which is inherent in the
force field parameterization, specifically when only single-ion
properties are used as probes for the optimization of two force
field parameters.

In this work, our aim is to develop force field parameters
for the divalent cations Mg2+, Ca2+, Ba2+, and Sr2+ in con-
junction with the simple point charge-extended (SPC/E) wa-
ter model, as relevant for classical simulations of biological
macromolecular processes. The optimization is performed in
two steps: First we determine the solvation free energy of di-
valent cations in the entire parameter space of Lennard-Jones
parameters, σ and ε. As a consistency check of the result-
ing force fields we also determine the effective radii of the
ions from the first peak in the ion-water radial distribution
function. Determining the combinations of the ion-water LJ
diameter σ iO and the ion-water LJ strength εiO, which repro-
duce the experimental solvation free energy, defines a curve
in the parameter plane spanned by σ iO and εiO. We then com-
pute the activity derivatives of the electrolytes such as MgY2,
CaY2, BaY2, SrY2, where Y = Cl−, Br−, I− on the line on
which the experimental solvation free energy is reproduced.
While the ion solvation free energy describes the binding of
water to the ion in the solvation shell, the activity derivatives
are a sensitive measure of the ion-ion pairing properties.24, 25

In the end, the optimal ion parameter corresponds to the LJ
pair combination that gives a value of the activity derivative
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which most closely matches the respective experimental val-
ues. We show that for Ca2+, Ba2+, and Sr2+ at least one LJ
pair combination exists that simultaneously matches exper-
imental solvation and activity data. This is not the case for
Mg2+ ions. Here we introduce a scaling factor in the cation-
anion LJ interaction that quantifies deviations from the stan-
dard combination rule for the effective LJ diameter and al-
lows to reproduce the activity coefficient without modifying
the single Mg2+ ion solvation free energy (which was opti-
mized in the first step). By basing our optimization on both
single-ion and ion-pair properties, we substantially improve
the existing optimization schemes.

This paper is organized as following: In Sec. II, we
present the methodology used in this study, in Sec. III we
discuss the results for the calculated salt activity derivatives
and force field parameters generated for divalent cations. In
Sec. IV, we briefly conclude and discuss possible future work.

II. METHODOLOGY

A. Molecular dynamics (MD) simulations

The pair interaction potentials between particles Uij are
modeled through a sum of the Coulomb interaction and a LJ
term:

Uij (rij ) = qiqj

rij

+
[

Aij

r12
ij

− Bij

r6
ij

]
, (1)

where qi, qj are the charges of the atoms i, j and rij is the
distance between these atoms. Via Aij = 4εijσ

12
ij and Bij

= 4εij σ
6
ij , the LJ effective radius and interaction strength σ ij

and εij are defined. We use the Lorentz-Berthelot combination
rules for the Lennard-Jones parameters:

εij = √
εiεj ; σij = σi + σj

2
, (2)

where i, j correspond to the index of the atoms and ions,
but also consider deviations from these standard combination
rules, as will be discussed later on. Note that the NBFIX mod-
ification in the CHARMM MD simulation software26 also al-
lows to consider alternative mixing rules by specifying in-
dividual atom-atom van der Waals interactions. We employ
the SPC/E water model,27 which assigns partial charges of
−0.8476 and 0.4238 to oxygen and hydrogen, respectively.
The geometry is fixed at a bond length of 1.0 Å and a bond
angle of 109.47◦ using the SHAKE algorithm.28

The single-ion solvation properties in water are studied
employing the thermodynamic integration (TI)29 scheme im-
plemented in AMBER 8.0 package.20 For the structural anal-
ysis and the calculation of activity coefficients of electrolyte
aqueous solutions we use the GROMACS 4.5.4 software.30, 31

For the single-ion solvation properties, a single ion is placed
in a cubic box of size L = 25 Å containing 506 SPC/E wa-
ter molecules. A cut-off distance of rc = 9.0 Å is chosen
for the Lennard-Jones interactions and long range corrections
for energy and pressure due to dispersion interactions is used
in all simulations. Periodic boundary conditions are applied
in all three directions, and a particle-mesh Ewald summation
(PME) with a grid spacing of 1 Å in conjunction with tinfoil

boundary conditions is used to handle long-ranged electro-
static forces.32 The free energy of solvation is computed from
molecular dynamics simulations performed with a time step
of 1 fs. The simulations are carried out in the NPT ensem-
ble using the Berendsen weak coupling method to keep the
temperature at 300 K and the reference pressure at 1 bar.33

The radial distribution functions of the salt solutions are
obtained using GROMACS, from atomistic simulations per-
formed also in the NPT ensemble, at a pressure of 1 bar and
temperature T = 300 K. The initial configurations of the elec-
trolyte solutions are generated from a cubic box (L = 40 Å)
of 2180 equilibrated SPC/E water molecules by randomly re-
placing water by ions until the required concentration is at-
tained. After the replacements, there are 19 cations and 38
anions in the box, corresponding to a molality (mol/kg) of
about 0.5 m. A few simulations are performed for larger sys-
tems to check for finite-size effects. Here we take a larger box
with a size of L = 60 Å containing 6966 water molecules, 65
Mg2+, and 130 Cl− ions. The particle mesh Ewald sum tech-
nique is used to evaluate electrostatic interactions using cubic
interpolations and a grid spacing of 1.2 Å for the reciprocal
space sum, coupled with tinfoil boundary conditions. Simula-
tions are performed with a 2 fs time step. For gathering better
statistics the trajectory of particles is written after every 0.2 ps
and total simulation time is 150 ns. All parameters used in the
MD simulations have been previously checked to lead to con-
sistent results for the systems under study.24, 34

B. Free energy calculation and correction terms

The solvation free energies of the divalent cations are cal-
culated using thermodynamic integration (TI),29 and the iden-
tity:

�Gsim =
∫ 1

0

〈
∂Hλ(λLJ )

∂λLJ

〉
dλLJ +

∫ 1

0

〈
∂Hλ(λC)

∂λC

〉
dλC,

(3)
where Hλ is the Hamiltonian of the system, λLJ and λC are the
LJ and charge transition coordinates which are 0 in the initial
state and 1 in the final state. To compute the solvation free
energy of the divalent cations we use the simulation data of
monovalent cations obtained in our previous work.35 The sol-
vation path is split in three separate processes: first, a neutral
van der Waals particle is created, then assigned a charge of 1
in a second step (simulation data from35), and this monova-
lent cation charge is increased to q = 2 in the last step. Along
the transition path, the λ-dependent Hamiltonian is defined as

Hλ(λLJ , λC) = H {qion = λCq, σion = [1− (1−λLJ )k]σ,

εion = [1 − (1 − λLJ )k]ε}. (4)

We set the exponent k in this equation equal to k = 6
to avoid divergences in ∂Hλ(λLJ)/∂λLJ. Integrations are per-
formed through a 12-point Gaussian quadrature with λ

∈ {0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738,
0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078}. For
every value of λ we perform a 250 ps simulation of which the
first 50 ps are discarded for equilibration.

The raw ionic solvation free energy computed in the sim-
ulations is sensitive to the simulation scheme (system shape,
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periodic or finite system) and treatment of the electrostatic
forces (Ewald sum, cut-off based, etc). Therefore for compar-
ison with experimental data, several corrections have to be
applied to the raw simulation data. The correction term ac-
counting for finite size effects36 related to the system size and
the ion size for an ion with charge of ze, where e is the unit
charge and z its valency, reads

�Gf s = z2NAe2

4πε2
0

[
−ξew

2εr

+
(

1+ 1

εr

)(
2πR2

1

3L3
− 4π2R5

1

45L6

)]
,

(5)

where NA is Avogadro’s number, R1 is the effective radius of
the ion, estimated as the first peak in the ion-oxygen radial
distribution function, and εr = 71 is the relative dielectric
constant of the SPC/E water.37 The Wigner potential is ξew

= −2.837279/L, where L is the simulation box size in
nm.38, 39

Experimental values of the solvation free energies are
usually given with respect to a hypothetical transfer of ions
from the ideal gas phase of p0 = 1 atm pressure to the ideal
solution under pressure of p1 = 24.6 atm, corresponding to
the density of 1 mol/l. Thus, it is also necessary to include a
correction term related to the compression of the gas:

�Gpress = NAkBT ln (p1/p0) = 7.9 kJ/mol, (6)

where kBT is the thermal energy.
In the experiments, the ions have to pass the air-water

interface in order to enter into the aqueous phase. Whenever
single-ion solvation free energies are reported, the effect re-
lated to the electrostatic potential jump at the air-water inter-
face must be included. Consequently, the experimental values
of solvation free energy for single ions depend sensitively on
the rather ill-characterized surface potential properties. In this
paper we eliminate this problem by fitting only neutral ion-
pair properties. Nevertheless, in order to present physically
meaningful single-ion solvation free energies, we choose the
surface potential as φsurf = −0.527 V.40 The corresponding
free energy correction term is

�Gsurf = NAz × eφsurf = −z × 50.8 kJ/mol. (7)

Hence, the total single-ion solvation free energy is given by

�Gsolv = �Gsim + �Gf s + �Gsurf + �Gpress . (8)

C. Parameter space sampling and fitting

We sample the LJ parameters σ ij and εij on a 7 × 9 grid.
For divalent cations the range σ ij = 2.2 − 4.25 Å and εij

= 0.02 − 1.28 kJ/mol is studied. For an efficient optimization
of σ ij and εij, the surfaces of the solvation free energy and the
effective ion radius are fitted by polynomial expressions as

�Gsolv =
3∑

i=0

3∑
j=0

gijσ
iεj/2, (9)

R1 =
3∑

i=0

3∑
j=0

ρijσ
iεj/2. (10)

The coefficients gij and ρ ij are determined through the
minimization of the root-mean-square (rms) error, yielding

TABLE II. Ion-water and ion-ion interaction parameters used in the MD
simulations for the anions.

Ion σ iO (Å) εiO (kJ/mol) σ ii (Å) εii (kJ/mol) Ref.

Cl− 3.78 0.52 4.40 0.41 43
Br− 3.90 0.52 4.63 0.41 43
I− 4.25 0.32 5.33 0.16 35

rms errors of the fitting surfaces for �Gsolv and R1 (the effec-
tive radius of ions) of ±1.5 kJ/mol and 0.009 Å, respectively.

D. Fitting to ion-pair data

Extracting single-ion solvation free energies from ex-
perimental data usually relies on the solvation free energy
of the proton �Gsolv(H+). However, the proton solvation
free energy is perturbed by the surface potential of water,
which is not exactly known and prone to errors. A popu-
lar estimate for �Gsolv(H+) is that of Tissandier et al.41

(−1104.5 kJ/mol). This value is 50 kJ/mol lower than the
other commonly used value of Marcus42 (−1056 kJ/mol).
Experimental solvation free energy data are more robust for
neutral ion-pairs, for which the water surface potential drops
out. In order to optimize ion-pair properties, the definition
of the LJ parameters for a reference ion is required. We
choose the chloride ion with the commonly used Smith-Dang
parameters43 given in Table II. Taking Smith-Dang parame-
ters for Cl− σ iO = 3.78 Å and εiO = 0.52 kJ/mol and us-
ing the data from Ref. 35, the solvation free energy value
of �Gsolv =−306 kJ/mol is obtained, which is close to the
absolute solvation free energy of Cl− based on Tissandier’s
estimate for the absolute proton solvation energy, given by
�Gsolv =−304.2 kJ/mol.41 For the divalent cations in this
study, the solvation free energies to be optimized are always
the sum of the cationic and the chloride free energy, respec-
tively,

��G = �Gsolv + z × �Gsolv(Cl−), (11)

where z = 2 is the valency of the cation.

E. Kirkwood-Buff theory

The Kirkwood-Buff (KB) solution theory describes the
relationship between pair correlation functions and thermody-
namic system properties and is a powerful tool for the study
of complex fluids as well as salt solutions. We will use KB
theory to obtain the activity derivatives of the salt solutions,
as was done before in similar studies.44 The KB theory con-
nects integrals over pair distribution functions, the so-called
KB integrals, to thermodynamic quantities such as isothermal
compressibilities, partial molar volumes, and in particular so-
lution activity derivatives.

The KB integrals are defined as15

Gij = 4π

∫ ∞

0
(gij − 1)r2dr, (12)

where gij is the radial distribution function between species
i and j. Using these KB integrals, we can compute the
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derivative of the activity coefficients, acc, of electrolyte
solutions

acc = 1 +
(

∂lnyc

∂lnρc

)
|p,T

= 1

1 + ρc(Gcc − Gcw)
, (13)

where the molar activity coefficient yc is defined via
ac = ρcyc, while ρc is the cosolvent number density and ac

is the activity.
The following integrals are defined:44

Gcc =
(n+

n

)2
G++ +

(n−
n

)2
G−− +

(n+n−
n2

)
(G+− +G−+),

(14)

Gcw = Gwc =
(n+

n

)
G+w +

(n−
n

)
G−w, (15)

where n = n+ + n− is the total number density of ions in the
solution, while n+, n− are the number densities of cations and
anions in the solution.

For monovalent ions these equations take the form,25

G(1)
cc = 1

4
[G++ + G−− + 2G+−] (16)

and

G(1)
cw = G(1)

wc = 1

2
(G+w + G−w) (17)

as given in Refs. 24 and 44. (Note, that the factor 1
2 in the

second equation is missing in Ref. 24 due to a typing error.)
For divalent salt the number densities can be written as

n+ = 1

3
n; n− = 2

3
n

and the expressions for the divalent ions are now revised to

G(2)
cc = 1

9
[G++ + 4(G−− + G+−)], (18)

G(2)
cw = G(2)

wc = 1

3
G+w + 2

3
G−w. (19)

Additional details on the KB theory can be found
elsewhere.15, 44, 45

F. Finite size corrections

The structural properties of salt solutions are described
through the radial distribution functions (RDFs) gij, which
describe how the atomic density varies as a function of the
distance r from a particular atom. The RDFs are directly
obtained from the MD simulations trajectories. In order to
achieve accurate results, finite size effects need to be ac-
counted for. Of particular importance is the condition that the
RDFs should reach unity at large distances.46 Here we intro-
duce a correcting factor, so that the RDF used in the calcu-
lations of the Kirkwood-Buff integrals (KBIs) is written as
gij (r ′ρ) = f (ρ)gsim

ij (r) with a prefactor f(ρ) of the order of
unity adjusted such as to ensure correct asymptotic behavior
at large distances.

We have explicitly checked box size and relax-
ation effects on the activity coefficient derivative values
obtained through Kirkwood-Buff theory. We have ana-
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FIG. 1. (a) Activity derivative of a 0.5 m MgCl2 solution as a function of
simulation time for different simulation box sizes L = 40 Å and L = 60 Å,
containing 6426 and 21 043 atoms, respectively. The mean activity derivative
is acc(L = 40 Å) = 0.985 ± 0.03 and acc(L = 60 Å) = 0.978 ± 0.03, respec-
tively. (b) The autocorrelation function of the activity derivative is shown to
decay over about 10 ps for both box sizes. (c) The autocorrelation function in
a logarithmic plot, straight lines represent exponential fit functions.

lyzed the MD results for, acc, of MgCl2 at electrolyte
density of 0.5 m in two boxes with different sizes
L = 40 and 60 Å and have compared its variation with time
and its autocorrelation function. Figure 1(a) shows acc for
MgCl2 as a function of time for the two different system sizes.
The acc values were averaged in time frames of 10 ns. Despite
the large fluctuations, the mean value of the activity deriva-
tives are similar for both boxes within the error of the cal-
culation. The average activity derivative for MgCl2, obtained
from a simulation of total duration 150 ns, is acc(L = 40 Å)
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= 0.985 ± 0.03 and acc(L = 60 Å) = 0.978 ± 0.03 for the two
different boxes. The autocorrelation functions of the activity
derivatives are shown in Figs. 1(b) and 1(c) for both simula-
tion boxes. In general, the autocorrelation function describes
the dynamics of an observable and is defined as

C(t) = 1

T

∫ T

0
dt ′

〈acc(t ′)acc(t ′ + t)〉
〈acc(0)acc(0)〉 ,

where T is the time over which the averaging is performed.
The mean-relaxation time is obtained by fitting exponentials
in separate time ranges, as shown in Fig. 1(c). By doing so
we obtain three distinct relaxation times, given by τ 1 ≈ 3 ns,
τ 2 ≈ 15 ns, and τ 3 ≈ 50 ns. The occurrence of three relaxation
times is presumably related to distinct water-water, water-ion
and ion-ion relaxation phenomena. The main point is that the
dominant relaxation times are smaller than the total simula-
tion time.

III. RESULTS AND DISCUSSION

A. Solvation free energy and radial
distribution function

The simulation results for the solvation free energy of di-
valent cations and the corresponding correction terms, as well
as the polynomial fit parameters for the solvation free energy
and the first peak in the ion-water radial distribution function
are given in Tables 1 and 2 in the supplementary material.55

The solvation of divalent cations is a very favorable process
and the corresponding free energies range from −2240 kJ/mol
for σ iO = 2.2 Å and εiO = 0.02 kJ/mol to −859 kJ/mol for σ iO

= 4.256 Å and εiO = 1.277 kJ/mol. Uncertainty in the sol-
vation free energy and radius is estimated by statistical error
propagation. Figure 2 shows the simulation results for �Gsolv
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1.277

iO kJ mol

(b)

FIG. 2. Single-ion solvation free energy �Gsolv as a function of the
Lennard-Jones parameters, σ iO and εiO. The symbols show the points ob-
tained using thermodynamic integration; the lines represent cuts of the fitted
free energy surface according to Eq. (9)
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FIG. 3. Position of the first maximum in the divalent cation-water RDF (R1)
as a variation of the Lennard-Jones parameters of σ iO and εiO. The symbols
show the MD results; the lines represent the cuts of the fitted surface accord-
ing to Eq. (10).

as a function of σ iO and εiO for all grid points. The lines rep-
resent cuts of the free energy surface obtained using the poly-
nomial function Eq. (9). With increasing σ iO and εiO the sol-
vation process becomes less favorable and the solvation free
energy increases, as seen in Fig. 2.

The ion-water radial distribution function is calculated
for every combination of σ iO and εiO from 4 ns simulations.
The first maximum in the ion-water RDF, denoted as R1, is
a measure of the solvation radius. The simulation results for
R1 as a function of σ iO and εiO are shown in Fig. 3, which
again monotonically increase with the LJ parameters σ iO and
εiO similarly to the free energy of solvation. The symbols cor-
respond to the simulation data, while the lines denote cuts of
the fitted R1 surface at constant σ iO and εiO, obtained through
Eq. (10).

We show the calculated ��G and R1 isolines based on
experimental data for Mg2+, Ca2+, Sr2+, Ba2+ in Fig. 4. In
this figure other commonly used force fields found in the lit-
erature are plotted for comparison. Set (1) represents the AM-
BER force field from the standard database. The CHARMM
force field (2) for Mg2+ is optimized to reproduce the sol-
vation free energy based on Tissandier’s compilation and in-
deed lies perfectly on the solid line defining the experimen-
tal solvation free energy. The Åqvist force field (3) perfectly
matches the experimental values of the first peak in the ion
water radial distribution function, but underestimates solva-
tion free energies. Babu and Lim19 developed a divalent cation
force field (4) based on relative solvation free energies and
first shell coordination numbers of ions. From Fig. 4 it is
evident that some of these force fields found in the litera-
ture can reproduce the experimental values for ��G, others
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FIG. 4. LJ parameter plane for all divalent cations: Mg2+, Ca2+, Sr2+, Ba2+. Solid lines correspond to the combination of σ iO and εiO that reproduce the sum
of the experimental solvation free energies of the divalent ions and the reference chloride ion ��G. The dotted lines show the combinations that reproduce the
experimental effective radius R1. The open circles show the LJ parameters presented in Table I. Labels 1, 2, 3, 4, and 5 correspond to the AMBER FF,20 the
Roux and Beglov17 or the CHARMM FF, the Åqvist FF,18 the Babu and Lim FF,19 and this work, respectively.

accurately describe R1, while others fail to reproduce any of
these two.

Figure 5 compares the effective radius R1, calculated on
the experimental iso-free-energetic solution line, as a function
of σ iO with the experimental radius R1, denoted by horizontal
lines, for the four cations. It is obvious that the experimental
values are not exactly reproduced for any parameter combina-
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FIG. 5. Position of the first maximum in the cation-water radial distribution
function giO (symbols) as a function of σ iO on the experimental solvation
free energy isoline, compared with the experimental values (black horizon-
tal lines). The filled symbols denote the optimized LJ force field parameters.
Note that in the case of Mg2+ we have two optimal force fields. The concen-
tration is 0.5 m.

tion. This is in line with the result shown in Fig. 4, revealing
that the isolines for ��G and R1 do not cross. As a conse-
quence, the σ iO, εiO combinations that reproduce the free en-
ergies of solvation cannot simultaneously capture the cation-
water effective radii. This discrepancy is a generic property of
the Lennard-Jones 6–12 potential and not caused by any ad-
ditional restriction or assumption made by us. Although this
discrepancy is somewhat surprising, we point out that there is
no a priori reason why it should be possible to simultaneously
match the effective ion radius and the solvation free energies
with a Lennard-Jones 6–12 potential. As we strive to optimize
ionic force fields based on solvation and ion-pairing proper-
ties in the present study, this short-coming of the Lennard-
Jones 6–12 potential is not of main concern, we simply note
in passing that it is conceivable that other potential forms per-
form better in this respect. However, as will be shown below,
we will for the problematic case of Mg2+, where the activity
derivative does not reach the experimental value, use the ef-
fective radius R1 as a guideline to choose force fields to be
used for further combination rule optimization.

B. Activity coefficients

The realistic balance between ion-ion and ion-water in-
teractions is expressed by the experimental excess coordina-
tion numbers of ions in water Gcc and Gcw defined in Eqs. (14)
and (15), which are related to the activity derivatives of
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FIG. 6. The final LJ parameters for divalent cations: Mg2+, Ca2+, Sr2+,
Ba2+. Solid lines correspond to the combinations of σ iO and εiO that repro-
duce the sum of the experimental solvation free energies of the divalent ions
and the reference chloride ion ��G. The symbols represent our optimized
force field parameters, set (5) in Table I.

electrolytes.24, 25, 47 Here, Gcc measures the integrated excess
of ions around other ions and Gcw measures the integrated ex-
cess of water around ions. In the following, we choose com-
binations of LJ parameters that lie on the experimental free
energy of solvation lines in Figs. 4 and 6 for all four diva-
lent cations considered. For these LJ parameter combinations
and for different divalent salt solutions we determine the KB
integrals and compute the activity derivatives.

Using the Smith-Dang LJ parameter for the chloride
ion,43 we first show the activity derivatives of MgCl2, CaCl2,
SrCl2, and BaCl2 as a function of the LJ radius σ iO in Fig. 7.
The simulation data follow more or less an inverse parabolic
shape for all four cations. The experimental data for the activ-
ities as a function of salt molality are obtained from Ref. 49
and the corresponding activity derivatives are extracted using
Eq. (13) and shown as horizontal colored lines. The activity
derivative for CaCl2 with σ iO = 2.8 Å agrees with the experi-
mental value within the numerical error and is smaller than the
experimental value both for smaller and larger LJ radii. The
activity derivative for BaCl2 matches the experimental data
for σ iO = 3.49 Å, while for SrCl2 we get good agreement for
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FIG. 7. Activity derivatives for MgCl2, CaCl2, SrCl2, and BaCl2 as a func-
tion of the ion-water LJ diameter σ iO of the divalent cations. The simulations
are performed in the cubic box with L = 40 Å at 0.5 m electrolyte concen-
tration. The symbols correspond to the simulated values, while the horizontal
lines denote the respective experimental results at the same concentration.
The filled symbols denote the optimized parameters.

σ iO = 3.13 Å. The optimal force field parameters are denoted
by filled symbols in Figs. 6 and 7.

The behavior of MgCl2 is distinctly different and de-
serves separate discussion. The simulated values of the activ-
ity derivative for MgCl2 lie between acc = 0.96–1.02 and do
not reach the experimental value acc = 1.09 but rather show
a broad plateau with a slight decrease at intermediate radii.
For Mg2+ ions therefore the standard combination rule shown
in Eq. (2) is not able to describe both solvation and activity
properties simultaneously, which further below will be recti-
fied by introducing a scaling factor for the anion-cation LJ
radius. Because of the ambiguity of the simulated acc data
as a function of the radius σ iO, we choose two different LJ
parameters for Mg2+ for this further optimization. First, we
select a combination of σ iO and εiO that reproduces the ex-
perimental solvation free energy exactly and R1 with mini-
mal error, as shown in Fig. 5. Our first parameter choice is
σ iO = 2.9 Å and εiO = 0.051 kJ/mol. Our second choice
is εiO = 0.62 kJ/mol and σ iO = 2.4 Å, which is similar to
the σ iO value of the Åqvist force field and seems to correlate
better with the radii obtained for the other, larger cations, as
can be seen in Fig. 6.

Before we describe the optimization of the combination
rules, we briefly have a look at the Kirkwood-Buff factors in
order to understand the quite characteristic behavior of the ac-
tivity derivatives displayed in Fig. 7. Figure 8 shows running
integrals of the KB integrals for CaCl2 at 0.5 m at different
values of σ iO on the solvation free energy isoline. The running
integrals saturate at distances beyond 10 Å, the oscillations
in the KB integrals involving water attest to the pronounced
structuring of the solvation shells. The saturated values of the
KB integral values for G++, G+−, and G−− first decrease with
increasing LJ radius until 2.6 Å and then increase at larger
σ iO’s. This reflects the non-monotonic inverse-parabolic be-
havior of the activity coefficient derivative as a function of the
LJ radius, which is the generic behavior for all cations shown
in Fig. 7. If we look at the cation-anion and cation-oxygen
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FIG. 8. Kirkwood-Buff running integrals as a function of the integration dis-
tance r for a 0.5 m CaCl2 solution at different values of the LJ radius of
σ iO on the experimental solvation free energy line. G+−, G++, G−−, Gw+,
and Gw− represent Kirkwood-Buff integrals of cation-anion, cation-cation,
anion-anion, water-cation, and water-anion pairs, respectively. Cation-anion
Kirkwood-Buff integrals first decrease with increasing σ iO, then increase
with increasing of the LJ radius. Water-ion KB integrals are monotonically
decreasing with increasing of σ iO.
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distribution functions g(r) for a 0.5 m CaCl2 solution (blue lines), compared
with the LJ potential, ULJ (red lines), and the sum of the LJ and Coulomb
potentials, ULJ + UCoul (black lines), for various σ iO and εiO parameters.

RDF’s in Fig. 9, we see that at small radius σ iO = 2.2 Å,
Figs. 9(a) and 9(f), the Ca2+ ion is separated from the Cl−

ions by a strongly bound hydration shell.48 Nevertheless, the
solvent-separated Ca2+-Cl− ion pair is energetically stabi-
lized by the strong and favorable LJ interaction, which is
shown in the same graph by red lines, while the black lines
show the sum of the Coulomb and LJ interaction potentials
(note that small LJ radius is equivalent to large LJ interac-
tion strength on the experimental solvent-free energy line, see
Fig. 4). For intermediate values of the LJ radius σ iO = 2.6 Å
and 2.8 Å, Figs. 9(b) and 9(c), and 9(g) and 9(h), the solvent-
separated ion pair is energetically less favored because of the
smaller LJ interaction strength, and the corresponding peak
slightly diminishes. This leads to the increase of the activ-
ity derivative for intermediate radii. At large radii σ iO = 3.1
and 3.2 Å, Figs. 9(d) and 9(e), and 9(k) and 9(l), the small
LJ interaction strength permits to form a direct Ca2+-Cl−

ion pair, giving rise to a strong peak in the RDF, a corre-
spondingly large cation-anion KB integral G+− as seen in
Fig. 8(a) and therefore a decreasing activity derivative, as
seen in Fig. 7. This at first sight counter-intuitive shift from
solvent-separated ion pairing for small σ iO to direct ion pair-
ing for large σ iO is at the core of the inverse parabolic behav-
ior of acc seen in Fig. 7.

C. Modified mixing rules and transferability

It is clear from the data shown in Fig. 7 that LJ parame-
ter combinations that reproduce the Mg2+ solvation free en-
ergy fail to reproduce the experimental activity coefficient
derivatives of MgCl2 solutions. To overcome this problem
we follow a recently proposed scheme, which modifies the
Lorentz-Berthelot combination rule for the cation-anion ef-
fective radius and was used to reproduce the experimental ac-
tivity derivatives of monovalent salt solutions involving the
problematic halide ions F− and I−.24 In that work, a freely ad-
justable scaling factor λσ was introduced in the cation-anion
effective radius

σ+− = λσ (σ+ + σ−)/2 (20)

and varied such as to reproduce the experimental activity
derivative. The LJ parameters we use for the divalent cations
lie on the free energy solvation curves in Fig. 6 and are de-
noted by filled symbols in Fig. 7. These cationic force fields
carry the label “5” in Table I. We extend our analysis also to
bromide and iodide salts and thereby test the transferability
of our force fields for divalent cations. The LJ pair param-
eters for the monovalent anions of Cl, Br, and I are listed in
Table II and are taken from Refs. 35 and 43. We repeat that we
keep the ion-water LJ parameters fixed during this last step of
optimization, which is based on a combination of single-ion
solvation free energy and ion-pair activity derivative match-
ing, as explained earlier, and only modify the cation-anion
effective LJ radius. The cation-cation, anion-anion, and water-
ion mixing rules are not modified. This reflects the expec-
tation that the effective water-ion radii are not expected to
change due to the presence of other ions and stands in con-
trast to other studies.25, 44

The cation-anion scaling prefactor λσ is varied in dis-
crete steps of λσ = 0.8, 1.0, 1.2, 1.5, 1.6, 1.7, 2.0. In
Fig. 10 we summarize the results for the activity derivatives
acc as a function of the scaling prefactor λσ at 0.5 m con-
centration separately for all four divalent cations and for the
three halide ions considered. The experimental values for acc

are denoted by horizontal lines.49 The symbols show the sim-
ulated activity derivatives and solid lines denote cubic spline
fits. Note that for Mg2+ in Fig. 10(a) we display results for
two different force fields. A satisfactory match between sim-
ulated and experimental activity derivatives for MgCl2 (black)
and MgBr2 (red) is obtained around λσ = 1.6 for both force
fields. For MgI2 (green), both force fields slightly differ, and a
good match between simulation and experimental data is ob-
tained for force field (1) for λσ = 1.5 and for force field (2)
for λσ = 1.7. All fitting results for the scaling prefactor are
summarized in Table III.

As already seen in Fig. 7 where we showed the activity
derivative for the unmodified mixing rule, the situation for
Ca2+ is more favorable. For CaCl2 (black) and CaBr2 (red)
the activity derivatives match the experimental data without
the need for modifying the mixing rule, as seen in Fig. 10(b).
For these salts the unmodified factor λσ = 1.0 is just doing
fine. For CaI2 a slightly decreased scaling prefactor of λ = 0.8
similar to our previous study for monovalent cations24 gives
perfect agreement with experiments, but we note that the error

TABLE III. Optimal scaling prefactors λσ for the cation-anion LJ effective
radius, obtained from the interpolated intersection between the experimen-
tal activity derivative and the fitted simulation curves in Fig. 10. The last
column lists the suggested transferable scaling prefactor λ̄σ which approxi-
mately holds for all anions.

λσ

Ion Cl− Br− I− λ̄σ

Mg2+(1) 1.6 1.6 1.5 1.6
Mg2+(2) 1.6 1.6 1.7 1.6
Ca2+ 1.0 1.0 0.8 1.0
Sr2+ 1.0 1.0 0.9 1.0
Ba2+ 1.0 1.0 0.95 1.0
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FIG. 10. The activity derivative as a function of the scaling prefactor λσ at concentration 0.5 m for (a) Mg2+, (b) Ca2+, (c) Sr2+, and (d) Ba2+ salt solutions,
respectively. For magnesium we show results for two different LJ parameter combinations of σ iO = 2.4 Å, εiO = 0.62 kJ/mol (filled symbols, Mg2+(1)) and
σ iO = 2.9 Å, εiO = 0.05 kJ/mol (open symbols, Mg2+(2)). The symbols show simulation results, curves are spline fitting functions. The horizontal lines denote
the corresponding experimental activity derivative values.

one makes when choosing λσ = 1.0 is minimal. Apparently,
iodide in conjunction with a cation is less repulsive than when
interacting with water, which is reflected by a smaller cation-
anion effective radius and therefore λσ smaller than unity.

For the remaining salts SrY2 and BaY2 shown in
Figs. 10(c) and 10(d) the situation is straightforward. Here
the unmodified combination rule with λσ = 1.0 reproduces
the experimental activity derivatives quite well. Only for the
iodide salts is the simulated value of acc slightly higher than
the experimental value and the optimal scaling prefactor is
less than unity. In fact, for SrI2 in Fig. 10(c) we predict
an optimal value of λσ = 0.9 by interpolation, for BaI2 in
Fig. 10(d) we predict an optimal value of λσ = 0.95.

Altogether, the data in Fig. 10 demonstrate that the scal-
ing prefactor λσ of the cation-anion effective radius is a very
efficient means to increase the salt activity derivative. Apart
from a quasi-plateau of acc in the range λσ = 1.0–1.5 observed
for all salt solutions, the activity derivative steadily increases
with growing λσ . The quasi-plateau can again be traced back
to a shift from direct ion-pairing to solvent-separated ion pair-
ing, similar to what was seen in Fig. 9. This is visualized in
Fig. 11 where we show cation-anion RDF’s for CaCl2 for sev-
eral values of λσ . Only for λσ = 0.8 (black line) is the direct
ion pair prominent, for all higher values of λσ the solvent-
separated ion pair is statistically more significant. We see that
the optimal force fields for divalent cations are close to the

transition between direct and solvent-separated ion pairing,
which explains why robust optimization strategies are needed
in order to bring out the subtle differences between the vari-
ous cations considered in this study.

Table III lists the final scaling factors obtained through
the comparison of the simulation data to the experimental ac-
tivity derivatives in Fig. 10 for all ion combinations used in
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FIG. 11. Radial cation-anion distribution function g+− for a 0.5 m CaCl2 so-
lution for different values of the scaling prefactor λσ . With increasing λσ the
direct ion pair peak of the RDF decreases and the whole distribution shifts to
larger cation-anion distances, which explains the increase of acc as λσ grows.
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this study. For Sr2+ and Ba2+ the unmodified mixing rules
work fine and a scaling factor of λσ 
1 describes cation-anion
quite well. For Ca2+ deviations are seen for CaI2, while for
Mg2+ the scaling factors are significantly larger than unity
for both LJ parameters we considered. The two Mg2+ force
fields are of equal quality, as far as we can judge based on
the data we have. Force field (1) with a smaller radius of σ iO

= 2.4 Å seems more consistent with the radii of the other di-
valent cation force fields in Fig. 6, but we note that this is a
purely cosmetic argument.

When comparing scaling prefactors for one cation and
different anions, one sees approximate transferability emerg-
ing, i.e., the difference of λσ between the various anions are
much smaller than the difference between Ca2+ and Mg2+.
To reflect this, we define a mean scaling factor λ̄σ for each
cation that can be uniformly used for all anions and which rep-
resents the approximate transferability of the divalent cation
force field.

IV. CONCLUSIONS

In the present study divalent cation force field parame-
ters are developed in conjunction with the SPC/E water model
through molecular dynamics simulations. The parameters are
derived on the basis of experimental solvation free energies
and activity derivatives of salt solutions. Absolute solvation
free energies of single ions are ambiguous because they are
strongly affected by the air-water interface potential. There-
fore we use the solvation free energies of neutral ion-pairs. As
an additional check on the quality of the derived force fields
we also determine the effective radii of ions from the first peak
of the radial ion-oxygen water distribution function. Activ-
ity derivatives are obtained through Kirkwood-Buff solution
theory. For some of the cations studied, namely Ca2+, Sr2+

and Ba2+, the simultaneous optimization of solvation free en-
ergies and activity derivatives is possible with the standard
combination rules (with small deviations for the iodide salts).
For Mg2+, on the other hand, this double optimization is not
possible. This reflects the known problem of resolving the
experimentally known differences between Ca2+ and Mg2+

ions in classical MD simulations, which is a pressing issue as
these ions are physiologically very important. As a solution
to this issue, we modify the combination rule for the effective
cation-anion radius, following previous work on monovalent
cations.24 It turns out that the effective radius of the Mg2+

ion with respect to the anion has to be increased by a factor
of λσ = 1.6, which shows that the correction is not minor.
When extending the analysis to the activity derivatives for the
salt solutions MgY2, CaY2, SrY2, BaY2, with Y = Cl, Br, I,
we find approximate transferability to hold, i.e., the scaling
factor λσ is approximately constant for the different anions
considered.

We note that the ordering of the experimental activity
coefficients49, 50 according to Mg+2 > Ca+2 > Sr+2 > Ba+2

implies that the smaller Mg+2 ion binds less strongly to the
halide ions than the larger cations. Such an ordering of the
activity coefficients is well-known from other ions as well
and expressed in terms of the so-called Hofmeister series,51

TABLE IV. Comparison of experimental and simulated diffusion coeffi-
cients for different salt solutions involving divalent cations at a concentration
of 0.5 m. The force fields parameters are the optimized ones according to
Tables I and III. Labels (1) and (2) for Mg+2 imply the first and second model
for Mg+2 according to Table I. See Fig. 1 in the supplementary material55

for the center-of-mass mean square displacement leading to the diffusion
coefficients.

Ion D(sim) × 10−5 cm2/s D(exp) × 10−5 cm2/s (Ref. 54)

Mg2+ (1) 1.13 ± 0.01 1.0635
Mg2+ (2) 1.10 ± 0.01 1.0635
Ca2+ 1.08 ± 0.01 1.14
Sr2+ 0.92 ± 0.01 1.20
Ba2+ 0.80 ± 0.01 1.16

but we note that the Hofmeister series for one set of ions
is frequently inverted depending on the counter ion or the
specific situation considered.52 As a matter of fact, the ex-
perimental ordering of the activity coefficients of the diva-
lent cations, and consequently also the ordering of our force-
fields which are constructed to reproduce the experimental
results, seem to contradict the Lewis-acid concept for divalent
cations: According to this concept Mg+2 is a stronger Lewis
acid than Ca+2 and should therefore, due to its small size,
binds stronger to a negative charge.53 The contradiction is
only an apparent one and resolved by the observation that ion-
pairs involving divalent cations are predominantly solvent-
separated, meaning that Mg+2 bind more strongly its water
hydration water shell and therefore binds less strongly to the
halide anions, which is reflected by the large anion-cation ra-
dius factor λσ of Mg+2.

Another notorious issue related to transferability is
whether the force fields we have developed based on static
ion-pair properties are also able to describe dynamic quan-
tities. As a representative dynamic quantity we calculate the
diffusion coefficient of different salt solutions and compare
with the respective experimental data,54 the results are shown
in Table IV for a concentration of 0.5 m (more details on
the center-of-mass mean square displacement can be found
in Fig. 1 in the supplementary material).55 The agreement
between simulations and experiments for MgCl2 and CaCl2
is acceptable, but for SrCl2 and BaCl2 a sizable discrepancy
is found. In fact, the experimental trend, showing that larger
cations have a larger diffusion coefficient, is missed in the
simulations. This shows that the optimization procedure we
have used, based on static properties, does not simultaneously
reproduce kinetic properties of salt solutions involving diva-
lent cations. More work along these lines seems required.

As a final remark, the LJ parameters for the divalent
cations proposed here were optimized at 0.5 m and there-
fore are expected to be accurate in the dilute and interme-
diate concentration regime. For higher concentrations, aggre-
gation and clustering effects can in principle occur. As an-
other comment, the transferability of the proposed cationic
force fields has been checked for Cl−, Br−, and I−, but re-
mains to be scrutinized for other, biologically relevant anionic
groups.
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