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Detecting nonlocality of noisy multipartite states with the Clauser-Horne-Shimony-Holt inequality

Rafael Chaves,1 Antonio Acı́n,2,3 Leandro Aolita,4 and Daniel Cavalcanti2
1Institute for Physics, University of Freiburg, Rheinstrasse 10, D-79104 Freiburg, Germany
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The Clauser-Horne-Shimony-Holt inequality was originally proposed as a Bell inequality to detect nonlocality
in bipartite systems. However, it can also be used to certify the nonlocality of multipartite quantum states. We
apply this to study the nonlocality of multipartite Greenberger-Horne-Zeilinger (GHZ), W, and graph states under
local decoherence processes. We derive lower bounds on the critical local-noise strength tolerated by the states
before becoming local. In addition, for the whole noisy dynamics, we derive lower bounds on the corresponding
nonlocal content for the three classes of states. All the bounds presented can be calculated efficiently and, in some
cases, provide significantly tighter estimates than with any other known method. For example, they reveal that
N -qubit GHZ states undergoing local dephasing are, for all N , nonlocal throughout all the dephasing dynamics.
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I. INTRODUCTION

Nonlocality refers to correlations between the measure-
ment results of distant systems that cannot be explained by
local hidden-variable (LHV) models [1,2]. The correlations
consistent with a LHV model necessarily satisfy a set of
linear constraints known as Bell inequalities [2], which can
be experimentally tested. Thus, the violation of any Bell
inequality reveals the presence of nonlocality. In addition,
apart from a fundamental issue, the detection of nonlocal
correlations is also of practical relevance. First, the violation
of a Bell inequality is a device-independent entanglement
witness, i.e., it allows one to certify entanglement in situations
where the sources and measurements implemented are totally
unknown [2,3]. Second, the efficacy at solving information-
theoretic tasks such as communication complexity prob-
lems [4], device-independent quantum key distribution [5–7],
and randomness extraction [8,9] or amplification [10–12]
relies on the presence of nonlocality. Experimentally friendly
ways to extract nonlocal correlations from quantum states
appears thus highly desirable.

The simplest way to do this, in the case of two parts with
two dichotomic measurements each, is through the CHSH
inequality [13],

CHSH ≡ 〈a0b0〉 + 〈a0b1〉 + 〈a1b0〉 − 〈a1b1〉 � 2, (1)

where ax = ±1 and by = ±1 are the outcomes of measure-
ment settings labeled by x = {0,1} and y = {0,1} for Alice and
Bob, respectively, and 〈axby〉 = p(a = b|xy) − p(a �= b|xy)
stands for the statistical average of axby . In quantum me-
chanics these averages can be expressed by 〈axby〉 ≡ Tr[Âx ⊗
B̂yρ], where Âx and B̂y are Hermitian observables with
eigenvalues ±1 and ρ a quantum state. The CHSH inequality
(and its symmetries) is the only relevant Bell inequality in the
bipartite scenario with two dichotomic measurements [14], i.e.,
it can tightly capture all nonlocal correlations. Furthermore, for
two-qubit quantum states, CHSH violation can be immediately
checked via the necessary and sufficient condition found
in [15].

In the multipartite scenario, however, the situation changes
drastically. For instance, already for the modest case of three
parts applying two dichotomic measurements each, there are
46 inequivalent classes of nontrivial and tight Bell inequal-
ities [16]. In general, the efficiency in the characterization
of nonlocality as the number of parts, measurements or
outcomes increases becomes a major issue. In fact, deciding
the compatibility of a given probability distribution with LHV
models is known to be an NP-complete problem [17,18].

In this paper, we study the nonlocality of genuinely
multipartite N -qubit Greenberger-Horne-Zeilinger (GHZ), W,
and graph states under local decoherence processes described
by Pauli channels. We derive lower bounds on the critical
local-noise strength tolerated by the states before becoming
local, in a similar spirit as in [19]. In addition, for each noise
strength, we derive lower bounds on the nonlocal content [20]
of the correlations on the three classes of states. The bounds
we derive are based on the CHSH violation of two out of the
N qubits conditioned on a measurement outcome of all other
N − 2 qubits [21], and can therefore be calculated efficiently.
As a matter of fact, we show that in some cases, such as with
GHZ states under transversal local dephasing (bit-flip noise),
the bounds obtained are even N independent. Furthermore,
we show that the estimates given by these bounds are (in
some cases exponentially) tighter than those given by any
other known method.

In Sec. II we introduced the different classes of states, the
noise models, and figures of merit for nonlocality to be used
in this paper. In Sec. III we describe the general method that
is applied in Sec. IV to derive, respectively, lower bounds on
the critical noise strength and the nonlocal content. In Sec. V
we present a summary of the results while some technical
results about graph states Bell inequalities are relegated to the
Appendix.

II. STATES, NOISE MODELS, AND FIGURES OF MERIT

In this section, we introduce basic notation, define the states
studied, the noise channels considered and the figures of merit
we use to assess the nonlocality of noisy states.
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A. States under scrutiny

We consider three paradigmatic families of genuinely
multipartite N -qubit quantum states:

(1) GHZ states [22],

|GHZN 〉 .= 1√
2

(|0〉⊗N + |1〉⊗N ); (2)

(2) W states [23],

|WN 〉 .= 1√
N

(|0 . . . 01〉 + |0 . . . 10〉 + · · · + |10 . . . 0〉); (3)

(3) Graph states [24,25]. A graph state |G0〉 is associated
with an N -vertex mathematical graph G, whose geometry is
determined by a set E of edges {i,j} indicating which vertices
i and j are connected, for 1 � i,j � N . More precisely,

|G0〉 .= CZE |+〉⊗N, (4)

being |+〉 .= (|0〉 + |1〉)/√2 and CZE
.= ∏

{i,j}∈E CZi,j , where

CZi,j
.= e(Zi−1i )⊗(Zj −1j )/4 ⊗ 1i,j is the maximally entangling

controlled-Z gate nontrivially acting on qubits i and j , with Zi

and Zj the third Pauli operators on qubits i and j , respectively,
and 1i , 1j , and 1i,j the identity operators on qubits i, j , and all
but i and j , respectively, for any 1 � i,j � N .

B. Decoherence models

As noise models we consider local Pauli channels of the
form

�(ρ0)
.=

3∑
i=0

piσiρ0σi. (5)

Here, ρ0 is any initial state and � is a single-qubit Pauli
channel. σ0

.= 1, and σ1
.= X, σ2

.= Y , and σ3
.= Z refer to the

usual Pauli operators. The coefficients pi satisfy the relation-
ship p0 = (1 − p/2), p1 = α1p/2, p2 = α2p/2, p3 = α3p/2,
with α1 + α2 + α3 =1 so that the total noise strength 0 �
p � 1 is distributed along the three Bloch-sphere directions
according to α1, α2, and α3. For example, the case α1 = α2 = 0
describes dephasing along the direction z of the Bloch sphere
(also known as phase-flip channel). Analogously, α2 = α3 = 0
describes dephasing along the transversal direction x (bit-flip
channel). We consider joint evolutions given by independent
and identical channels on all qubits:

ρp = �⊗N (ρ0). (6)

C. Figures of merit

To assess the nonlocal correlations in quantum states, we
focus mainly in two quantities. The first one is the critical noise
strength pc beyond which no nonlocality can be extracted [19].
We refer to pc as the noise threshold and in the following we
compute a lower bound to it.

The second one is the amount of nonlocality for each noise
strength p, which we quantify through the EPR2 decomposi-
tion [20]. Any joint-probability distribution P , characterizing
the correlations of some Bell experiment, can be decomposed
into a convex mixture of a local part PL and a general nonlocal
(no-signaling) part PNL as P = (1 − pNL)PL + pNLPNL, with
0 � pNL � 1. The minimal nonlocal weight over all such

decompositions,

p̃NL
.= min

PL,PNL

pNL, (7)

defines the nonlocal content of P , which provides a natural
quantifier of the nonlocality in P . In turn, we define the
nonlocal content of a quantum state as the maximum nonlocal
content of correlations over all possible Bell experiments with
the state.

It turns out that the violation of any Bell inequality yields
a nontrivial lower bound to p̃NL [26]. For any (linear) Bell
inequality I � IL, with IL the local bound, it is

p̃NL � I(P ) − IL

INL − IL
, (8)

where INL is the maximum Bell value I over all arbitrary
nonsignaling correlations.

III. THE METHOD

We will consider a scenario where N parties share a
multipartite state and perform local measurements on it. Two
of the parties apply two dichotomic measurements, labeled
again by x = {0,1} and y = {0,1}, with possible outcomes
ax = ±1 and by = ±1, respectively. The other N − 2 parties
apply only one dichotomic measurement each. We will denote
the outcomes of these N − 2 measurements by an N − 2
component vector c = (±1, . . . ,±1). The Bell inequality that
we will consider is given by (see Appendix B of Ref. [27])

CHSHc ≡ 〈a0b0〉c + 〈a0b1〉c + 〈a1b0〉c−〈a1b1〉c−2p(c) � 0,

(9)

where 〈axby〉c = [p(a = b|x,y,c) − p(a �= b|x,y,c)]p(c).
Notice that this inequality is simply the CHSH inequality
calculated with the conditional probability distribution for
the two parties given that the other N − 2 parties get the
particular outcome c.

Proof of the validity of Bell inequality (9). We need to
show that all the local deterministic probability distributions,
i.e., those assigning definite outcomes for each measurement,
satisfy it. For the local deterministic distributions for which
p(c) = 1, inequality (9) becomes the standard CHSH inequal-
ity (1), while for the local deterministic strategies such that
p(c) = 0 it simply reads 0 � 0. �

Thus, in order to detect nonlocality in a given N -partite state
ρ through the inequality (9) we need to find appropriate local
measurements on N − 2 parts that project the remaining two
parts into a bipartite state violating the CHSH inequality [21].
At this point it is worth emphasizing that the conditioning (or
postselection) used in the present Bell test does not open any
loophole. The reason is that it is done only on the outcomes
of the N − 2 parts which are spacelike separated from the two
parties involved in the CHSH test. In this way, it could simply
be seen as a heralded preparation of a nonlocal state by N − 2
parties. Moreover, this method has already proven very useful
in other contexts. For instance, it has been applied to prove
that every multipartite pure entangled state is nonlocal [21],
and to demonstrate superactivation of nonlocality in quantum
networks [27–29].
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Here, given projective measurements on the first N − 2
qubits, we will test the nonlocality of the resulting two-qubit
state through the necessary and sufficient condition for the
CHSH violation discovered in Ref. [15]: The maximum CHSH
value achievable by an arbitrary two-qubit state ρ is

CHSH = 2MCHSH(ρ) = 2
√

t2
11 + t2

22, (10)

being t2
11 and t2

22 the two largest eigenvalues of T †T , with
Ti,j = tr[(σi ⊗ σj)ρ], where σi ⊗ σj refers to the product of
the ith and j th Pauli operators on the two remaining qubits,
for 1 � i,j � 3. So, ρ violates the CHSH inequality if, and
only if, MCHSH(ρ) > 1.

As long as the probability p(c) is greater than zero, its
exact value does not affect the critical noise thresholds. Note,
however, that using inequality (9) the lower bound for the
nonlocal content will unavoidably depend on p(c), namely,

p̃NL � [CHSH(ρ) − 2]p(c)

2
. (11)

For the states we consider in this paper, p(c) will typically
decay exponentially with the number of qubits N , also
leading to an exponentially decaying lower bound. In order
to circumvent that and still get non trivial lower bounds for the
nonlocal content we proceed as follows.

For all the states we consider (with the exception of the W
state considered in Sec. IV B) all possible 2N−2 measurement
outcomes lead to only two possible projected two-qubit states
that, furthermore, are equivalent up to local unitaries. Let
us call these projections events 1 and 2, the two respective
projected states by ρ1 and ρ2, and p(1) and p(2) = 1 − p(1)
the probabilities of events 1 and 2.

We can then define Bell inequalities, similar to (9), to events
1 and 2 as

CHSH1 ≡ 〈a0b0〉1 + 〈a0b1〉1+〈a1b0〉1−〈a1b1〉1 − 2p(1) � 0,

(12)

and

CHSH2 ≡ 〈a0b0〉2+〈a0b1〉2 − 〈a1b0〉2 + 〈a1b1〉2−2p(2) � 0,

(13)

with 〈axby〉i = [p(a = b|x,y,i) − p(a �= b|x,y,i)]pi . Finally
we use these inequalities to define the following one:

CHSH1 + CHSH2 � 0. (14)

For most of the states we will consider here, we can find
measurements A0,A1,B0,B1 that will lead to p(1) = p(2)
and CHSH1 = CHSH2. This, in turn, will imply that the
lower bound for the nonlocal content will be independent
of the projection probabilities and simply given by p̃NL �
MCHSH(ρ) − 1.

Finally notice that different Bell inequalities, conditioned
on outputs of N − 2 parties, could be similarly used. However,
in the case that the two parties testing the Bell inequality
have two binary inputs it is sufficient to consider the CHSH
inequality.

IV. NONLOCALITY THRESHOLD AND NONLOCAL
CONTENT OF NOISY STATES

In this section we show how the multipartite CHSH method
can be used to calculate the critical noise strength tolerated by
the noisy state before becoming local. We also compute, for the
entire noisy dynamics, lower bounds for the nonlocal content
of the states. These lower bounds can be significantly better
than the ones obtained via known multipartite inequalities.

A. Noisy GHZ state

We begin considering GHZ states. In particular, for parallel
dephasing, we show that GHZ states of any number of qubits
are nonlocal throughout all the noisy dynamics, a result that
cannot be achieved by any other known multipartite inequality
consisting exclusively of full correlators.

1. Parallel dephasing

We consider first the detection of nonlocality for the GHZ
state (2) undergoing independent dephasing along the Z

direction. The resulting noisy GHZ state ρz
N can be expressed

as [30,31]

ρz
N = (1 − p)N |GHZN 〉〈GHZN | + (1 − (1 − p)N )�̃z

N , (15)

with ρ̃z
N = (|0〉〈0|⊗N + |1〉〈1|⊗N )/2.

We compare the multipartite CHSH method with the
Werner-Wolf-Weinfurter-Zukowski-Brukner (WWWZB) in-
equalities [32–34]. These encompass all the 22N

tight, linear,
full-correlator Bell inequalities in the N -partite scenario where
each party makes two dichotomic measurements. In particular,
of special relevance here is the Mermin-Klyshko (MK)
inequality [35–37], which is a particular case of the WWWZB
family. The MK inequality is the two-setting correlator Bell
inequality with the largest violation in quantum theory [32],
with an exponential maximal violation 2(N−1)/2 (the local
bound of the MK inequality is given by 1), achieved with
the GHZ state for X and Y measurements.

The maximal MK violation for ρz
N can be straightforwardly

calculated [38] for the case of N odd, to which we restrict for
simplicity of notation. It is given by 2(N−1)/2(1 − p)N and is
also attained with X and Y measurements. This yields in turn
the noise threshold pz

c = 1 − 1/
√

2(N−1)/N , which is tighter
than that given by any other known multipartite inequality
consisting exclusively of full correlators.

We next show that the CHSH method renders pz
c = 1 for

all N . Consider local X measurements on the first N − 2
qubits of (15) (Numerical optimization up to N = 5 shows
that these measurements are optimal, that is, they maximize
the CHSH violation of the remaining two-qubit state. See [39]
for further details). We consider explicitly the situation where
all N − 2 parties obtain the eigenvalue 1, corresponding to the
eigenstate |+〉. However, for any other outcome the treatment
would be equivalent, except for a local-unitary relabeling of
the projected states. This local-unitary equivalence will be
explicitly used later on in order to derive lower bounds to the
nonlocal content. The projected two-qubit state conditioned
on the N − 2 measurement outcomes obtained is

ρz
2 = (1 − p)N |GHZ2〉〈GHZ2| + (1 − (1 − p)N )ρ̃z

2. (16)
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Computing (10) for this state gives Mz
CHSH =√

1 + (1 − p)2N , which is greater than one for all p < 1.
Thus, GHZ states of arbitrary N subject to independent
parallel dephasing are nonlocal for any amount of dephasing
p < 1. We stress that such a high noise threshold cannot be
detected by any other known multipartite inequality consisting
exclusively of full correlators.

Interestingly, for N = 3 this result can be made even
stronger, since the CHSH method is able to detect the
nonlocality in a region where any full-correlator inequality
would fail. For the state (15) and N odd it is not difficult to
see that only the components of the projective measurement
lying in the equatorial plane give a non-null contribution for
full correlators. For example, for N = 3 and the observable
O = (X+Z)√

2
⊗ X ⊗ X we have that tr(Oρz

N) = tr((X ⊗ X ⊗ X)

((1/
√

2)ρz
N + (1 − 1/

√
2)1)), and so in this sense it is suffi-

cient to only consider equatorial measurements. On the other
hand, it follows from Ref. [40] that for p � 1/2 any equatorial
measurements on the noisy GHZ state (15) will produce
local full correlators [41]. This implies that, no full-correlator
inequality (for any number of measurements) is able to detect
the nonlocality of state (15) for N = 3 in the region p � 1/2.
Notwithstanding, the nonlocality in this region is successfully
detected by the CHSH method.

2. Transversal dephasing

We now analyze the case of the GHZ state (2) under
dephasing along the transversal X direction. The noisy state is
now given by

ρx
N =

∑
ki = 0,1

i = 1, . . . ,N

(
1 − p

2

)N−k
p

2

k

�
(∣∣GHZk

N

〉〈
GHZk

N

∣∣), (17)

with k = (k1,k2 . . . kN ), ki = 0 or 1, k = ∑
i=1,...,Nki , and

where �(|GHZk
N 〉〈GHZk

N |) stands for the sum of all the (Nk ) dif-

ferent permutations of |GHZk
N 〉 .= X

k1
1 ⊗ · · · ⊗ X

kN

N |GHZN 〉
with X0

i = 1. The noisy state (17) does not have a simple form
as (15), and the optimal measurements for the MK inequality
depend now on both N and p. Analytical expressions for
the MK violation and the corresponding noise threshold as
functions of N and p are not available. However, using
the multipartite CHSH method, a straightforward analysis is
possible.

Applying the projector (|+〉〈+|)⊗N−2, with support on
all but qubits i and j , to (17) results in the two-qubit
state ρx

2 = ((1 − p

2 )2 + (p

2 )2)|GHZ2〉〈GHZ2| + 2(1 − p

2 )
(p

2 )(Xi ⊗ 1j )|GHZ2〉〈GHZ2|(Xi ⊗ 1j ). For this state, one

finds Mx
CHSH =

√
1 + (1 − p)4. The noise threshold obtained

is again px
c = 1, independently of N , which reflects the

entanglement robustness of GHZ states under transversal
local dephasing [42,43].

3. General Pauli channels

An analytical expression for the GHZ state under the gen-
eral Pauli channel (5) can be obtained. Even though the evolved
state is GHZ diagonal, analytical expressions for the MK viola-
tion are again not available. However, the CHSH method offers

again a readily calculable bound. One obtains then MCHSH =√
(p0 + p1 − p2 − p3)2n + (p0 − p1 − p2 + p3)4. As a par-

ticular interesting case, we analyze approximate transver-
sal local dephasing defined by α1 = 1 − ε, α2 = ε/2, and
α3 = ε/2. The parameter ε thus measures the deviation
of perfect transversal dephasing. In this case, MCHSH =√

(1 − pε)2N + (1 − p(1 − ε/2))4, which, for small values
of p, can be approximated as MCHSH ≈

√
1 + (1 − p)2Nε ,

yielding an exponential decay with N , as with parallel
dephasing, but with the decay rate reduced by a factor ε, in
a similar fashion to what happens with the entanglement in
these noisy states [42,43].

4. Nonlocal content of noisy GHZ states

To obtain a good lower bound for the local content we use
the inequality (14). For GHZ states (15) under parallel local
dephasing, ρ1 and ρ2 are given by

ρ1,2 = (1 − p)N |GHZ±
2 〉〈GHZ±

2 | + (1 − (1 − p)N )ρ̃z
2, (18)

with |GHZ±
2 〉= (1

√
2)|00〉±|11〉. In this case p1 = p2 = 1/2.

Choosing A0 = Z, A1 = X, B0 = cos (θ )Z + sin (θ )X, and
B1 = cos (θ )Z − sin (θ )X we find the left-hand side of (12)
and (13) to be equal to cos (θ ) + sin (θ )(1 − p)N . It is a simple
calculation to show that choosing θ = s−1(

√
1 + (1 − p)2N )

the latter value equals Mz
CHSH.

So for the GHZ state under parallel dephasing the CHSH
method leads to the following lower bound on the nonlocal
content,

p̃NL �
√

1 + (1 − p)2N − 1. (19)

In Fig. 1, this bound is compared with the lower bound obtained
in Ref. [38] through the MK inequality and with a numerical
estimate, for N = 3. To obtain the numerical estimate we first
note that, for N = 3 and two dichotomic measurements per
party, all the facets of the local polytope are known, the so-
called Sliwa inequalities [16]. We have optimized the violation
of Sliwa inequalities over all possible projective measurements
and using (8) obtained the optimal lower bound on p̃NL. As

CHSH method
MK inequality
Numerical valueno dnuob re

woL

FIG. 1. (Color online) Lower bounds on the local content of the
GHZ state under parallel dephasing, for N = 3. (Red) The bound
obtained from the MK inequality [38]; (blue) the new bound (19) from
the CHSH method; and (black dashed) the value obtained through a
numerical optimization described in the main text. For p > 0.18, the
nonlocal content is better described by the bound from the CHSH
method.
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MK inequality N=3
MK inequality N=7
MK inequality N=9
CHSH method (Size independent)no dnuob re

woL

FIG. 2. (Color online) Lower bounds on the local content of the
GHZ state under transversal dephasing. (Blue) Lower bound from
the MK inequality of N = 3; (red) idem for N = 7; (purple) idem
for N = 9; (black dashed) lower bound (20) from the CHSH method.
The bounds from the MK inequality were obtained through numerical
optimization over all possible projective measurements. The CHSH
bound is analytical and independent of N .

can be seen in Fig. 1, for most of the dynamics, bound (19) is
tighter than the bound given by the MK inequality.

A similar calculation shows that for GHZ states (17) under
transversal local dephasing, the CHSH method gives

p̃NL �
√

1 + (1 − p)4 − 1. (20)

An analytical expression for the optimal MK violation is
not available, as mentioned before. We numerically optimize
the MK violation and so derive a numerical lower bound
in the nonlocal content, plotted in Fig. 2 together with
bound (20). The numerical MK bound is tighter, but the
required optimization soon becomes unfeasible as N grows.
Bound (20), in contrast, is analytical and does not depend
on N .

B. Noisy W states

Let us now consider the nonlocality of the noisy W
state (21). We will consider dephasing along the z direction in
each of its qubits, which produces the state [44],

ρWN
= 1

N
(1 − p′)�(|00 . . . 01〉〈00 . . . 01|) + p′|W 〉〈W |,

(21)

with p′ = (1 − p)2 and �(.) stands for all the permutations.
The measurement outcome corresponding to the projector
|0〉〈0|⊗N−2 (that occurs with probability p = 2/N), produces
a two-qubit entangled state of the form ρ2

W for which the
CHSH violation is MCHSH =

√
1 + (1 − p)4. So we recover

the result in Ref. [19] that the dephased W state is nonlocal
through all the noisy dynamics, that is, pc = 1.

Once again we can use the multipartite CHSH method
to provide a lower bound to the nonlocal content of this
state. However, in this case the project states associated with
other measurement outcomes other than |0〉〈0|⊗N−2 are not
local unitarily equivalent to ρ2

W . Actually they turn out to be
separable and given by |0〉〈0|⊗N−2. Because of that, we must
use expression (11) to calculate the lower bound to the local

content, which renders

p̃NL � (2
√

1 + (1 − p)4 − 2)/N. (22)

This bound provides a better estimate for the nonlocal content
of (21) when compared to the one that can be obtained from
the Bell inequality used in Ref. [19]. There the inequality used
has a nonsignaling bound that increases exponentially with the
number N of qubits, while the violation given by the W state is
approximately independent of N . This makes the lower bound
decay exponentially while our bound only decays linearly
with N .

C. Noisy graph states

As the last application of the multipartite CHSH method,
we study the nonlocality properties of graph states (4) subject
to Pauli channels. In Ref. [45], multipartite Bell inequalities
specially tailored to detect the nonlocality of graph states have
been introduced. For some of these states, these inequalities
are violated exponentially in N . Moreover, the violation, for
any graph state under any Pauli channel, can be analytically
expressed in a compact closed form (see Appendix).

For instance, for graph states under parallel local dephasing,
their violation always decreases exponentially fast in N , which
implies that the associated lower bound on the local content
also decreases exponentially with N . Nevertheless, it is known
that the entanglement in graph states is robust against local
noise [46,47]. With the CHSH method, one easily shows
that such entanglement robustness is also reflected in the
nonlocality robustness.

As an illustration consider a star graph consisting of
N − 1 disconnected qubits connected to one central qubit.
One simply projects all but the central qubit and one of
the mutually disconnected qubits in the computational basis.
Because the projection commutes with the dephasing channel,
the two possible final states ρ1 and ρ2 (with p1 = p2 = 1/2)
are also a two-qubit graph state under parallel local de-
phasing (up to local unitaries). The left-hand side of (12)
and (13) are equal to MCHSH = (1 − p)

√
2. This implies

pc = 1 − √
1/2 and the robust (size-independent) bound

Graph inequality N=3
Graph inequality N=100
CHSH method (Size independent)no dnuob re

woL

FIG. 3. (Color online) Lower bounds on the nonlocal content for
star graph state of N qubits and |I | = N − 1 (see Appendix for
details) and under parallel local dephasing. (Red and blue) The
bounds obtained from the inequalities of Ref. [45], for N = 3 and
N = 100, respectively; (black dashed) the new bound given by the
CHSH method. The CHSH bound is size independent and offers an
exponentially tighter estimate as N increases.
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p̃NL � max [0,(1 − p)
√

2 − 1]. For large N and p < pc, this
bound is exponentially tighter than that obtained from the Bell
inequalities of [45], as shown in Fig. 3.

V. SUMMARY

In this work we have used the CHSH inequality in the
multipartite scenario, and showed its usefulness to detect the
nonlocality of noisy multipartite states. The method consists
of locally projecting the multipartite state into a nonlocal
two-qubit state that violates the CHSH inequality. We have
shown examples of states for which the nonlocality cannot be
detected by the WWWZB inequalities consisting only of full
correlators (actually, any full-correlator inequality if N = 3),
but can be detected by the present method. The multipartite
CHSH method works well also in situations where it is difficult
to analytically find optimal Bell inequality violations, as for
GHZ states undergoing transversal dephasing. Furthermore,
the method can be easily applied to obtain tight lower bounds
to the nonlocal content of correlations.

We believe these findings should contribute to the detection
of nonlocality for noisy multipartite states. In particular, the
present method seems to be the simplest one to experimentally
detect nonlocality in multipartite states.
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APPENDIX: GRAPH-STATE BELL INEQUALITIES
UNDER PAULI CHANNELS

Given a vertex i of a graph state |G0〉 of N qubits and a
subset of its neighbors I ⊆ N (i), such that none of the vertices
in I are connected by an edge, the Bell operator B(i,I ) =
Ki

∏
jεI (1 + Kj ) (Ki = Xi

∏
j∈Ni

Zj are the generators of the
graph, that is, Ki |G0〉 = |G0〉) defines a Bell inequality given
by [45]

|〈B〉| = |〈B(i,I )〉| � L(|I | + 1), (A1)

with a classical bound given by L(m) = 2(m−1)/2 for m odd,
and L(m) = 2m/2 for m even. The inequality is maximally
violated by the graph |G0〉 with 〈B(i,I )〉 = 2|I |.

Under the action of a Pauli map, the graph state will turn
into a graph diagonal mixed state ρG = ∑

pμ|Gμ〉〈Gμ|, with
|Gμ〉 = Zμ1 ⊗ Zμ2 · · · ⊗ ZμN |G0〉, where μ = (μ1, . . . ,μN )
is a multi-index, μj can assume values 0 or 1, and the weights
pμ depend on the exact form of the Pauli map. The expectation
value of the Bell operator B(i,I ) on this state is given by

〈B〉ρG
=

〈∑
pμKi

∏
j∈I

(1 + Kj )|Gμ〉〈Gμ|
〉

=
∑

pμ(−1)μi

∏
j∈I

(1 + (−1)μj ), (A2)

where we have used that Ki |Gμ〉 = (−1)μi |Gμ〉. From (A2)
it follows that the only terms in the convex sum ρG =∑

pμ|Gμ〉〈Gμ| contributing to the expectation of the Bell
operator are μ0 = (0,0, . . . ,0) and μ1 = (1,0, . . . ,0), that is,
〈B〉ρG

= (pμ0 − pμ1 )2|I |.
As a matter of fact, consider any graph state undergoing

local dephasing. From (A2) we see that 〈B〉ρG
= (1 − p)

(1 − p/2)N−12|I |, which shows an exponential decay in the
violation with N , that is also reflected in a exponential
decay of the associated lower bound for the nonlocal content
(see Fig. 3).
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