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4 DISCUSSION OF RESULTS 
 

An approximation to the real situation is achieved by the construction of a model of the outer 

layers of the earth. By reducing the complexity of the model I can solve the mathematical 

equation describing the flexural behavior. The disadvantage of a model is, that I cannot take 

every parameter into account, even if its influence on the result is relevant. Hence, it is 

essential to discuss the accuracy of the result.  Consequently, I examine the errors of 

computation resulting from different assumptions and inaccuracy of the input parameters. 

 
4.1 THICK PLATE THEORY 
 

All calculations are based on the thin elastic plate theory. This theory assumes that the plate 

thickness is small compared to its length, perfectly elastic, and the component of stress in the 

vertical direction is small compared to other stress components and may be set to zero 

(WATTS 2001). 

 

COMER (1983) derived analytical expressions for the deflections and stresses due to loading of 

an elastic plate of arbitrary thickness, which he compared with those for thin plate solutions. 

His thick plate solution is exact for small strains and linear boundary conditions, but in the 

absence of gravitational forces. He showed that for narrow loads there is a close agreement 

with the results of thin and thick plate theory. The main disagreements were confined to the 

region immediately beneath the loads, where the thin plate theory may underestimate the 

deflection by %105 − . 

 
WOLF (1985) agreed with the results of COMER that for most of the geological situations, the 

deflection based on the thin plate theory is usually a good approximation. He pointed out 

some inconsistencies in COMERS thick plate computation, considering the effect of 

gravitation. This showed that the differences between the thick and thin plate computation 

are even smaller than those COMER proposed. The closest correspondence is found for long 

wavelength loads. However, the thin plate theory is a good approximation to model the 

deflection of loads (COMER 1986, WOLF 1986 & ZHOU 1991, WATTS 2001). 

 

Also FE-modeling shows the solution for the thick and the thin plate theory is in a good 

agreement. KWON & BANG (2001) derived a mixed plate bending formulation. They proposed 

that the major discrepancy between the thick and the thin plate theory is the relation between 

the rotations and transverse deflection. The consequence is a deviation of about %5 . This is 

because the shear deformation is negligible if the plate thickness is very small compared to its 

length.  

 

Conclusively, the thin plate theory is a good approximation to the behavior of the lithosphere 

and I can assume an error of %105 − .  
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4.2 INFLUENCE OF TEMPERATURE 
 

4.2.1 Introduction 
 

From both laboratory and theoretical studies it is known that the rheology of solids is 

primarily a function of temperature. Therefore, to understand the mechanical behavior of the 

earth, its thermal structure is considered. In the chapters before I studied the elastic 

behavior. However, the influence of temperature was not taken into account. In the original 

differential equation according to Kirchhoff, describing the flexure of an elastic plate, a 

temperature moment was considered (Chapter 2.1). Unfortunately no comment was found in 

the literature, whether it is allowed or not to disregard the temperature moment. Therefore in 

this chapter the influence and significance of the temperature moment will be investigated. 

Furthermore an application is shown for a typical crustal geotherm in the continental crust 

given by TURCOTTE & SCHUBERT (2002). 

 

In the following the temperature moment will be considered. For a thickness eT  of a plate it 

can be calculated by: 

                                                             ∫
−

Θ ⋅⋅Θ⋅⋅=
2

2

e

e

T

T

dzzEm α                                                     (see 2.1.3) 

 

For Θ  as the temperature difference related to a situation of no tension due to the heat and 

[ ]1−Kα  as the coefficient of thermal expansion.  For application to the earth’s situation I can 

use a coefficient-value [ ]156 10...10 −−−= Kα (PERS. COMM. HUENGES). 

 

4.2.2 Synthetic example 
 

In the following I investigate the temperature moment according to a synthetic plate given by 

GÖLDNER (1978). The point of origin of the Cartesian coordinate system zyx ,,  is placed in 

the central point of the plate whereby z is directed downwards (Fig. 4.2.1). Given is the 

Young's modulus [ ]NmE , the elastic thickness [ ]mTe  and the distance [ ]mba,  relative to the 

middle point of the plate. The plate (not fixed) is under tension due to a temperature field 

with )(zΘ=Θ , i.e. the field is constant in the yx,  plane. A temperature distribution 

)
5,0

(0
eT

z
⋅

Θ=Θ  is assumed. Of course this temperature distribution is not valid for the 

Earth’s situation. However, this synthetic example is considered in order to calculate the 

deflection for a given temperature field. 
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Figure 4.2.1) The synthetic example of a plate has a constant elastic thickness. 

 

With this synthetic temperature distribution I can write (see Eq. 2.1.3): 
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Solving the integral I obtain: 
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therefore is: 

                                                                        
6

2

0
TeEm Θ⋅⋅=Θ α                                                (4.2.3) 

 

In view of the fact that the temperature distribution is only a function of the depth, it follows 

that 0),( =∆Θ yx  and therefore is 0=∆ Θm . For this reason it is sufficient to solve the 

differential equation 0=∆∆w  (see Chapter 2).  According to GÖLDNER (1978) follows for 

the deflection w : 
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With use of  4.2.3 I obtain: 
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For the deflection of the corners follows:  
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Along with increasing of the dimension of the plate, increase the deflection of the corner 

points. The deflection of the central point is zero. For K500 =Θ  and 161012 −−⋅= Kα (values 

e.g. GÖLDNER 1978), for the dimension mba 300000==  and mTe 30000=  I can calculate the 

deflection with:  

                         [ ] [ ] ( ) [ ] ( ) [ ]
[ ] m
m

mmKKw 900
1034

)103103(50102,1 4

225225
15 =

⋅⋅
⋅+⋅

⋅⋅−= −−               (4.2.7) 

                                                                    

With this given synthetic temperature distribution I would obtain a deflection of mw 900= . 

Now I want to investigate the deflection for a given temperature field in the upper layers of 

the crustal lithosphere. 
 

4.2.3 Application in geological sciences 
 

Considering the thermal structure of the Earth, three mechanisms exist for the transfer of the 

heat: conduction, convection and radiation.  
 

1. Conductive heat transfer occurs through a medium via the net effect of molecular 

collision. The molecules transmit their kinetic energy to other molecules by collision. 

Heat is conducted through a medium in which there is a spatial variation of 

temperature. 

2. Convective heat transport is associated with the motion of a medium. 

3. Electromagnetic radiation can also transport heat (e.g. radiant energy of the sun). In 

the Earth, radiative heat transport is only important on a short time scale and its 

influence can be absorbed into a definition of the thermal conductivity. 
 

The temperature distribution in the continental crust and lithosphere is governed mainly by 

conductive heat loss to the surface of heat that is generated internally by the decay of 

radioactive isotopes in the rocks and heat that flows upward from the subcontinental mantle. 

The basic relation for conductive heat transport is Fourier’s law, which states that the heat 

flux q (flow of heat per unit area and per unit time), at a point in a medium is directly 

proportional to the temperature gradient at the point. In one dimension it takes the form: 
 

                                                                         
dz
dkq Θ

−=                                                        (4.2.8) 

 

whereby k  is the coefficient of thermal conductivity and z  is the coordinate in the direction 

of the temperature variation or depth, respectively. The heat production due to the 

radioactive elements decreases exponentially with depth (TURCOTTE & SCHUBERT 2002): 

                                                                          rh
z

eHH
−

⋅= 0                                                   (4.2.9) 

 

0H  is the surface heat production rate at 0=z  per unit mass and rh  is the length scale for 

the decrease in H  with the depth z .  
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At the depth rhz =  becomes H an amount 
e
1

 of its surface value.  In all cases the length 

scale rh  is near kmhr 10≅ . TURCOTTE & SCHUBERT (2002, page 143) describe a two-layer 

model for the continental crust. They obtain a typical geotherm in the continental crust 

expressed by: 
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for the mantle heat flux mq  and the surface heat flow 0q . Whereby Θ  is the temperature and 

0Θ the surface temperature at 0=z .  

I use this given temperature distribution and solve the integral for the temperature moment. 

In view of the fact that the temperature distribution is only a function of the z  direction and 

constant in the yx,  plane I found the same relationship as for the synthetic example. With 

use of Eq. 4.2.1 and 4.2.11 I obtain:  
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according to the principal of integral analysis it is allowed to calculate the integral of a sum 

separately, therefore I can write: 
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with 41 II K as notation for the integral term leads to: 

 

                                                           ( )4321 IIIIEm +++⋅⋅=Θ α                                    (4.2.14) 

 

The first integral term 1I  includes a constant term therefore the integral becomes zero:  

 

                                                 0
22222

2
0

2
02

2

20
1 =⎟

⎠

⎞
⎜
⎝

⎛
−

Θ
−⎟

⎠

⎞
⎜
⎝

⎛
⋅

Θ
=⎥

⎦

⎤
⎢
⎣

⎡Θ
=

−

ee

T

T

TT
zI

e

e

                     (4.2.15) 



CHAPTER 4   DISCUSSION OF RESULTS  

 103

 

for the second integral term 2I is obtained: 
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The third integral term 3I  is constant and therefore the integral value becomes zero like for 

the first integral term 1I . The fourth integral term 4I  is more complex.  BRONSTEIN & 

SEMENDJAJEW (1966) give a solution for a  as a real variable for the following integral:  
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therefore the second term is solved for the 
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Thus gives:  
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I set 
r

e

h
T
2

≡µ and obtain after multiplication: 
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According to BRONSTEIN & SEMENDJAJEW (1966) is:  
 

                                                  
2

cosh
µµ

µ
−+

=
ee

  and     
2

sinh
µµ

µ
−−

=
ee

                      (4.2.21) 

Therefore Eq. 4.2.20 leads to: 
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Now 
r

e

h
T
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≡µ  is replaced and from Eq. 4.2.14 follows for the temperature moment: 



4.2 INFLUENCE OF TEMPERATURE  

 104

                        
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅

−
−⋅⋅=

r

e

r

e

r

ermem
t h

T
h

T
h
T

k
hqq

k
Tq

Em
2

sinh2
2

cosh
)(

12

3
0

3

α      (4.2.23) 

 

according to Eq. 4.2.4. I obtain: 
 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−⋅

+
−=

r

e

r

e

r

erm
e

m

e h
T

h
T

h
T

k
hqq

T
k

q
T

yxw
2

sinh2
2

cosh
)(

12
)(6 3

03
3

22α
        (4.2.24) 

                                                                                                                

The deflection is calculated with Eq. 4.2.24 for kmTe 30;10;1=  and the dimension of plate 

kmyx 301K==  with 2
0 /5.56 mmWq = , 2

0 /30 mmWq = , kmhr 10=  , mKWk /35.3=  

(e.g. given by TURCOTTE & SCHUBERT 2002) and 161012 −−⋅= Kα  (PERS. COMM. HUENGES). 

Fig. 4.2.2 displays the obtained results. A deflection value of kmw 1≈  is obtained at the 

profile for kmy 0= . Along with the increasing of the elastic thickness increase the amount of 

the deflection. In the central point located in the origin of the coordinate system the 

deflection is zero. Along with increasing of the dimension of the plate, increase the deflection. 

 
Figure 4.2.2) At a profile with kmy 0=  the deflection due to a temperature distribution is 

calculated for a typical crustal geotherm with kmTe 30;10;1= .  

 

The resulting values of the deflection are significant; therefore it is necessary to consider the 

temperature moment in the future. The deflection due to the temperature field should be 

superposed to the deflection due to a load. Therefore heat flux measurements for the special 

study areas can be used. But the calculation of the temperature moment needs a further 

investigation and a calibration of the formula. According to these preliminary investigations I 

can summarize an error in the calculation of the deflection kmw 1±=∆  due to the neglect of 

temperature (a greater error will occur for an anomalous heat flux).  
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4.3 SIGNIFICANCE OF INPUT PARAMETERS 
 

In order to discuss the error made in the calculation of the deflection w , I will study the 

significance of the input parameters. For this purpose it is sufficient to calculate the 

maximum deflection 0w with the analytical solution. I want to quantify the dependence of the 

solution from the input parameters, for this reason I vary the input parameters and 

investigate the amount of change of the maximum deflection using Eq. 2.3.3 and 2.3.7 (see 

Chapter 2.3) : 
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it follows: 
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Conclusively, I investigate the influence of the accuracy of the solution with following input 

parameters: density of crust cρ  and mantle mρ , the height h , the gravity g , the Poisson's 

ratio ν , the Young's modulus E  and the elastic thickness eT .  

 

Deviation 

[ ]%  

El.Thickness 

[ ]mTe  
Poiss.Ratio 

ν  

Gravity 

[ ]2/ smg
Young's M.s

[ ]PaE  

Density Mantle 

[ ]3/ mkgmρ  

Density Crust 

[ ]3/ mkgcρ  

Height 

 [ ]mh  

0 15000 0.25 9.81 1E+12 3300 2750 1000 
0.1 15015 0.25025 9.81981 1.001E+12 3303.3 2752.75 1001 
0.2 15030 0.2505 9.82962 1.002E+12 3306.6 2755.5 1002 
0.5 15075 0.25125 9.85905 1.005E+12 3316.5 2763.75 1005 
0.8 15120 0.252 9.88848 1.008E+12 3326.4 2772 1008 
1 15150 0.2525 9.9081 1.01E+12 3333 2777.5 1010 
2 15300 0.255 10.0062 1.02E+12 3366 2805 1020 
5 15750 0.2625 10.3005 1.05E+12 3465 2887.5 1050 
8 16200 0.27 10.5948 1.08E+12 3564 2970 1080 
10 16500 0.275 10.791 1.1E+12 3630 3025 1100 
20 18000 0.3 11.772 1.2E+12 3960 3300 1200 
50 22500 0.375 14.715 1.5E+12 4950 4125 1500 
80 27000 0.45 17.658 1.8E+12 5940 4950 1800 
100 30000 0.5 19.62 2E+12 6600 5500 2000 

 

Table 4.3.1) The maximum deflection is calculated for different values of the input 

parameters. The deviation from the standard values ranges from %100%1.0 K . The 

standard values are marked in gray. 
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Hence, a deviation of %100%1.0 K in the standard values (gray marked in Table 4.3.1) 

results in diverse values, I use for calculation of Eq. 4.3.2 in order to obtain the deviation of 

the maximum deflection. Only the investigated input parameter is varied and the other input 

parameters remain constant by using the standard values.  
 

4.3.1 Deviation of height 
 

The resulting maximum deflection for the diverse values for the topographic height is shown 

in Fig. 4.3.1, the other input parameters remain constant. Logically, the input parameter h  is 

directly related to the resulting deflection of the plate, i.e. a variation of the height h by %10  

results in %10  deviation in the deflection 0w .  

 
Figure 4.3.1) The deviation of the deflection 0w was calculated for a variation of h . 

 

For this reason it is important to consider the accuracy of the height. Generally the input 

height is given by topography in a DEM grid format (e.g. GEBCO). The inaccuracy of the 

GEBCO data was investigated by MÜLLER-WRANA. The error of the height was in some cases 

maximal mh 500±=∆  (PERS. COMM. MÜLLER-WRANA). In this case I obtain a maximum 

deflection of mw 7
0 1025.1 −⋅=  instead of mw 8

0 105.8 −⋅= .  Because of a standard value 

kmh 1= , I obtain %50 deviation in the maximum deflection. Consequently the inaccuracy of 

the height leads to errors in the calculation of the deflection. Therefore it is essential to know 

the error of the topography/bathymetry grid, because this directly provides the error in 

deflection.  On the other hand the DTe / values are obtained by comparing the flexure CMI 

(due to a topographic/internal load) with the gravity CMI (derived by Bouguer gravity 

inversion). The main problem is whether or not it is valid to use the Bouguer gravity to 

estimate the CMI if the present day topography may not be the product of surface or internal 

loads only. Other factors, such as erosion modify the continental topography, especially at 

short wavelengths. MCKENZIE & FAIRHEAD (1997) regarded the influence of erosion as 

significant that they have questioned the validity of DTe /  estimates based on the Bouguer 

coherence. Consequently, the estimation by comparison of the gravity CMI and the flexure 

CMI is questionable as well. However SIMONS ET AL. (2000) explicated, that “erosion 
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predominantly occurs after the true value of DTe /  due to loading has left its signature in the 

gravity and topography field.”  This is supported by the fact that the isostatic adjustment to 

surface and internal loading occurs over a time-scale that is short compared to the long time 

for erosion (WATTS 2001). 
 

4.3.2 Deviation of gravity 
 

The calculation of the maximum deflection for the diverse values of gravity (see Table 4.3.1) 

is illustrated in Fig. 4.3.2, thereby the other input parameters remained constant.  For an 

input gravity of 2/0062.10 smg =  I achieve a deflection of mw 8
0 1046516.8 −⋅= .  

Accordingly a variation of %2  causes a deviation of the maximum deflection of %1 . Hence, 

the function does not sensitively react to the input parameter of gravity.   

 
Figure 4.3.2) The deviation of the deflection 0w  was estimated for a variation of g . 

 

But in the analytical calculation of deflection and therefore in the further estimation of the 

DTe /  variation, I operate with a constant gravity value of 2/81.9 smg = . However, the gravity 

is not constant. This leads to the question of the amount of error in deflection made due to 

this assumption. A gravity value of 2/78.9 smg ≈  is obtained at the equator for a radius of 

Earth kmRearth 4.6377= . On the other hand a gravity value of 2/83.9 smg ≈  is estimated at 

the North Pole with a radius of Earth kmRearth 8.6356= . Hence I obtain a difference in the 

gravity value of 2/03.0 smg ≈∆ . An assumed gravity variation of %2 causes a deviation of 

%1  in maximum deflection.  In view of an inaccuracy of less than %1  it is sufficient to 

operate with a constant gravity value in the analytical computation of deflection or estimation 

of DTe / , respectively.  

 

4.3.3 Deviation of Young's modulus 
 

The resulting maximum deflection for the diverse values for the Young's modulus (see Table 

4.3.1) is represented in Fig. 4.3.3, the other input parameters remained constant.  For an 
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input Young's modulus PaE 1210=  I achieve mw 8
0 106 −⋅≈  for deflection.  Thus represents 

a deviation of about %100 of E . The deflection changes from mw 8
0 105.8 −⋅≈  to 

mw 8
0 106 −⋅≈ . Accordingly I obtain a difference of mw 8

0 102 −⋅≈∆ , this corresponds to a 

deviation of %30 . Conclusively, the function is not sensitive to a change of Young's modulus, 

because %100  deviation of E  cause %30  deviation of 0w . However, the real problem is, 

that the parameter of Young's modulus is not exactly estimated. In general a standard value 

of PaE 1110= is used for calculation. However from the other disciplines in geological 

science is known that the variation of the Young's module is in a range of PaE 129 1010 K= . 

Therefore an inaccuracy of the Young's modulus %100≥ is probable, this yields to a high 

error in the calculation of the deflection. Hence, this fact is investigated in Chapter 4.4 more 

intensively. 

 
Figure 4.3.3) The deviation of the maximum deflection was calculated for different 

Young's Modulus. 
 

4.3.4 Deviation of Poisson's ratio 
 

 
Figure 4.3.4) The deviation of the maximum deflection 0w  was estimated for a 

variation of the Poisson's ratio. 
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The graph in Figure 4.3.4 represents the maximum deflection calculated for the diverse 

values for the Poisson's ratio (see Table 4.3.1). The standard values found in literature for the 

Poisson's ratio vary between 3.025.0 K=ν . This represents a deviation of the input 

parameter of %20 . This yield to a deflection mw 8
0 1026.8 −⋅≈ , therefore a difference 

mw 7
0 104 −⋅≈∆ , accordingly %5.1≤  deviation in deflection w . In view of this fact it is 

sufficient to operate in the calculation of the deflection with a constant standard value with 

25.0=ν . 
 

4.3.5 Deviation of density of crust 
 

The results of estimation of maximum deflection is presented in Fig. 4.3.5; calculated for the 

diverse values for the density of the crust (see Table 4.3.1), the other input parameters 

remain constant.   

 
Figure 4.3.5) The deviation of the maximum deflection 0w  was calculated for different 

density values of the crust. 
 

For a density value of 3/2800 mkg  instead of 3/2750 mkg , this corresponds to %2  deviation; 

I obtain a change in deflection of %5.7 . For a density value of 3/3030 mkg the change of 

deflection becomes large, this is due to the fact, that the solution is dependent from the 

crust/mantle density contrast. However, in view of the fact that the density value for the crust 

is estimated with an accuracy of about %2 , an error of %8  has to be taken into account for 

the deflection w . 
 

4.3.6 Deviation of density of mantle 
 

The resulting maximum deflection is presented in Fig. 4.3.6 for the diverse values for the 

density of the mantle (see Table 4.3.1). A density value of 3366kg/m³ yields to a deflection of 

w0≈7.92E-08m. Conclusively, for a deviation of %2  of density value of mantle, I estimate a 

deviation in the deflection of %5.5 . However, the fact that the density value for the mantle is 

known with an accuracy of about %2 , I have to count with an error of %5.5  for the 

calculation of the CMI deflection w. 
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Figure 4.3.6) The deviation of the maximum deflection 0w  was computed for different 

density values of the mantle. 
 

4.3.7 Deviation of elastic thickness 
 

The elastic thickness value is indirectly estimated by comparison of the flexure CMI with the 

gravity CMI (see Chapter 2.6). Therefore it is essential to estimate the error made due to the 

inaccuracy in calculation of the deflection (therefore see Fig. 4.3.7). An input elastic thickness 

value of kmTe 75.17=  instead of kmTe 00.17=  leads to a deflection of mw 8
0 1079.7 −⋅≈ . 

Conclusively a deviation of %5  from the elastic thickness leads to %7  error in the deflection. 

And vice versa an error in deflection of %7  leads to an inaccuracy of %5 in estimation of the 

elastic thickness. 
 

 
Figure 4.3.7) The deviation of the maximum deflection 0w was computed for different 

elastic thickness values. 
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4.3.8 Conclusion 
 

Summarizing the results of this chapter I obtain an error in the input parameter, which can 

be also related to an error in deflection. From the Fig. 4.3.8 I derive the influence of the 

accuracy of the input parameter to the error in deflection. For example, to guarantee %3  

accuracy in computation of deflection, the accuracy in height of %3 , in gravity and in the 

Young's modulus of %5 , in the density of the crust of %8.0  and in the density of the mantle 

of %1  is required. However, %2 accuracy of the input parameters for the densities is more 

realistic. In view of this fact one has to count with an error of about %7  in computation of 

deflection. I conclude for the indirect estimation of elastic thickness that an error of %7  in 

deflection leads to an error of %5  in elastic thickness. This means, for example, an elastic 

thickness value kmTe 15=  has an accuracy of kmTe )8.00.15( ±= . 

 
Figure 4.3.8) The resulting error of the maximum deflection 0w  is calculated for the 

deviation of all input parameters.  
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4.4 YOUNG'S MODULUS 
 

The FE models  (Chapter 2.7) shows that one of the key parameter controlling deformation is 

the Young's modulus. Due to the variation in a high order of the Young's modulus the 

deflection w  is significantly influenced (Chapter 4.3). 

 

A specific value of flexural rigidity D  can be the product of various eT  values in dependence 

on the Young's modulus E . In Figure 4.4.1 displays three curves, which I calculated for a 

Young's modulus PaE 11109 10;10;10=  and different elastic thickness values eT .  

 

 
Figure 4.4.1) The rigidity is a function of Young's modulus.  

 
The area of the Central Andes is chosen as an example for the following investigation of the 

significance of the Young's modulus (Chapter 3.2). The importance of Young's modulus is 

illustrated in Fig. 4.4.2 for calculation of deflection w . On the one hand, the deflection of the 

CMI surface in area of Central Andes is calculated for an elastic thickness kmTe 30=  and a 

Young's modulus PaE 1010= . On the other hand, the input parameters are an elastic 

thickness of kmTe 64=  and a Young's modulus of PaE 1110= . In view of the similar CMI 

depth variation for different Young's modulus results the following idea: 
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Figure 4.4.2) The deflection w of the CMI dependents on the Young's modulus (as example the 

area of Central Andes is chosen). 

 
In application of the analytical solution the deflection of the CMI is estimated. The spatial 

variation of the elastic thickness results indirectly.   

The fact, that these results were calculated for a constant value of Young's modulus 

PaE 1110=  leads to the discussion if the variation of the elastic thickness is obtained or 

maybe the variation of the Young's modulus (PERS. COMM. KUKOWSKI).  
 

In all methods for estimation of the elastic thickness variation (e.g. admittance, coherence) is 

always a constant Young's modulus assumed (standard value: PaE 1110= ). However, this is 

not sufficient, as for example sediments are described by a Young's modulus of PaE 910=  

(KUKOWSKI PERS. COMM.). In view of this consideration I transformed the variation of elastic 

thickness values into a variation of Young's modules. This has been done for the area of 

Central Andes (Chapter 3.2). Due to the fact, that the product between the cube of elastic 

thickness and the Young's modulus is constant:  
                                          

                                                                  ( ) jie cET ,
3 =⋅                                                 (4.4.1) 
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I can recalculate the variation of eT  values, estimated in the Central Andes for a load model 

for a constant Young's modulus PaE 1110= . Therefore the product can be calculate d with:  

 

                                                              ( ) [ ] [ ] jijie cPakmT ,
1133

, 10 =⋅                                          (4.4.2) 

 

If I assume a constant elastic thickness value kmTe 40=  I obtain:  

 

                                                                   ( ) [ ] [ ] jiji cPaEkm ,,
3340 =⋅                                           (4.4.3) 

 

Since the results of the Eq. 4.4.2 and Eq. 4.4.3 have to be equal, the variation of elastic 

thickness jieT ,  in the area of Central Andes can be transformed into a spatial variation of 

Young's Modulus jiE ,  (Fig. 4.4.3). 

 

Therefore it could be formulated, that not a variation of the elastic thickness is observed, but 

a variation of Young's modules, thereby the elastic thickness would correspond to the normal 

crustal thickness.  

 

However, to prove this hypothesis it is necessary to compare the estimated Young's modulus 

with other results, for example from seismic observation, since Young's modulus is related to 

a p-wave velocity and a density by:   

 

                                                                  
( )( )

( )ν
ννρ

−
+−

⋅⋅=
1

1212
PvE                                            (4.4.4) 

 

with the Poissons ratio ν . Accordingly the estimated p-wave velocities could be used to 

compare the results for the variation of the Young's modulus (PERS. COMM. KUKOWSKI & 

KELLNER). This would go beyond the framework of this study and is a task for investigations 

in future.  

 

This consideration should illustrate the importance of the Young's modulus. In future 

examination it is necessary to estimate the Young's modulus in a specific area (e.g. from 

seismic results). This value could be used as input parameter for estimation of elastic 

thickness variation for this specific area. Consequently, it is not sufficient to operate with a 

standard value.   
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Figure 4.4.3) The variation of Young's modulus is calculated for a constant elastic thickness 

kmTe 40=  in the area of Central Andes.   
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4.5 VISCO – ELASTIC BEHAVIOR 
 

This study demonstrates, that it is possible to explain the observations of flexure in terms of a 

thin elastic plate model. However, it contains following doubts: 
 

1. The model is very simplistic and provides only a basis for further investigations. 

2. The model is time-invariant. It does not take into account the possibility that flexure 

may change as a consequence of loading. 

3. The model predicts exaggerated bending stresses compared with the stress induced by 

glacial loading and the stress drops observed in earthquakes. 

The earth has a variable rheology on different timescales (e.g. RANALLI 1995).  It behaves 

elastically on a very short timescale of seconds to hours, but deforms by viscous flow over 

long timescales (e.g. yr610≥ ). However, lithospheric rheology at timescales between these 

extremes is not well understood. Many recent studies of lithospheric rheology and its 

dependence on time and spatial scales have been encouraged by geodetic measurements that 

disagree from geological observations (e.g. WERNICKE ET AL. 2000). The discrepancies 

between geodetic strain and seismic data at convergent plate boundaries may also be 

explained by different timescales (e.g. WANG 2000). Conclusively, the response of the 

lithosphere to surface loads does not only depend on size, but also on time scale of loading 

(see Fig. 4.5.1). For example at the time-scale of seismic surface waves, a few seconds to few 

hundred seconds, the sub crustal mantle behaves elastically down to very great depths 

(WATTS 2001).  

 
Figure 4.5.1) The schematic diagram illustrates the Earth’s response to loads of 

different duration (modified after to WATTS 2001). 
 

Elastic and viscous materials deform in different ways. In the elastic case the applied stress is 

related to the deformation by Hook’s law (see Concepts). In a viscous case the applied stress 

is related to the rate of change of the deformation with time: 
 

                                                                       εησ &⋅=                                                          (4.5.1) 

 
wherebyσ is the applied stress, η is the viscosity, ε is the strain and the dot as subscript 

indicates a rate, that means the change of strain with time. In opposition to the elastic case, 

in a viscous case the deformation/deflection will change with time. Maxwell’s visco-elastic 

theory proposes the combination of both, elastic and viscous properties. In view of the 
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assumption of linearity of the strain the total strain is expressed as the sum of the viscous 

strain vε and the elastic strain eε  with: 

 

                                                                    ev εεε +=                                                         (4.5.2) 

 

If it is assumed that the system initially is unstrained, meaning at the time 0=t  is 0=ε , 

then it results: 

                                                                         
η
σσε t

E
⋅

+=                                                        (4.5.3) 

 

The time, when the elastic strain that has accumulated is equal to the viscous strain, is 

described as Maxwell relaxation time and denoted with τ . It follows: 
 

                                                                                  
E
ητ =                                                               (4.5.4) 

  

WALCOTT (1970) suggested that the flexural rigidity of the Earth’s lithosphere is dependent on 

the load duration. The decrease in rigidity along with increasing duration of loading could 

generally be described with a relaxation time Myr1.0=τ .  In other modeling results (e.g. LIU 

ET AL. 2002) for the Andes a relaxation time Myr05.0=τ has been used.  

 

Using Eq. 4.5.4 the variation of Young's modulus can be transformed into a variation of 

viscosities (for example in the Central Andes). The results are presented in Fig. 4.5.2 for a 

Maxwell relaxation time Myr1.0=τ  and Myr05.0=τ . The viscosity values for 

Myr1.0=τ predominantly range in between of PasPas 2523 1010 ≤≤η .  

 

Previous investigations of the effective viscosity obtained values in the range in between of 

PasPas 2322 1010 ≤≤η  (WALCOTT 1970, LOWRY & SMITH 1995, FLESCH ET AL. 2000). Other 

modeling results (LIU ET AL. 2002) have shown that the apparently discordant observations 

of crustal shortening and extension in the central Andes from the GPS, seismological, and 

geological data can be recompiled by considering the timescale-dependent mechanical 

behavior of the Andean crust. LIU ET AL. (2002) simulated the nearly elastic behavior of the 

Andean crust during a short time scale yr210≤  with an extremely high viscosity 

PasPas 2725 1010 ≤≤η  of the various crustal layers. To simulate the long-term crustal 

shortening in the Andes, they have taken the viscosity of various crustal layers in the range of 

PasPas 2322 1010 ≤≤η ; values assumed appropriate for long-term continental deformation 

(e.g. LAMB 2000). However, the distribution of viscosities in the Central Andes is only an idea 

to illustrate that a spatial variation of the Young's modulus leads to a variation of viscosity. 

But the predicted values for the viscosities are comparable with the results mentioned above. 
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Figure 4.5.2) Viscosity distribution η  for a Maxwell relaxation time of Myr1.0=τ and 

Myr05.0=τ in the Central Andes derived from Young's modulus variation. 

On the other hand the flexure is considered for a specific flexural rigidity value/elastic 

thickness value. Since deformation of an inelastic medium (plastic, viscous-elastic) can be 

described as deformation of an elastic medium with time-space variable elastic properties, a 

deflection of an inelastic plate can be modeled as deflection of an equivalent elastic plate with 

space-variable eT  or D , respectively. This approach, known as the method of elastic 

solutions, is commonly used in applied mechanics (e.g. GÖLDNER 1978, SCHANZ 1994, 

ALEXANDROV & POTAPOV 1990).  

In view of the fact that the deflection w  increases with time, a lower rigidity value will be 

obtained, because the time is not considered.  Vice versa, for a certain viscosity value a higher 

rigidity value causes a flexure corresponding in the elastic case to a lower rigidity value (Fig. 

4.5.3) . The visco elastic plate equation can be used for investigation of the amount of 

increasing in deflection with time (and the decreasing of rigidity).  

Viscosity [Pas] 
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Figure 4.5.3) The deflection of a visco-elastic plate was calculated by a narrow two 

dimensional load.  In comparison the flexure curves are calculated for the elastic case 

for an initial elastic thickness kmTe 90=  and the Airy compensation. The densities 

3/2800 mkgc =ρ , 3/1030 mkgw =ρ  and 3/3330 mkgm =ρ  were used for all calculations 

(modified after WATTS 2001). 

The general equation for the flexure of a visco-elastic plate overlaying an inviscid substratum 

was derived by NADAI (1963): 
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whereby 0D  is the flexural rigidity of the visco-elastic plate at 0=t , w  is the deflection and 

w&  is the derivative of the deflection w  with respect to time. It is useful to consider the 

response function (WALCOTT 1970): 
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The flexure for a general case of an arbitrarily shaped load for a visco-elastic plate was 

computed using Eq. 4.5.6. by WATTS (2001). 
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The flexure was obtained by firstly taking the Fourier transform of the load, multiplying it by 

the response function and density term, and then take the inverse Fourier transform of the 

result. This procedure was described in Chapter 2.4. for the elastic case. The graph of flexure 

is shown in Figure 4.5.3 for the case of a narrow load on the sea floor and different time 

values of  50;10;1/ =τt . The flexure curves are compared with the Airy compensation and the 

initial elastic case for an elastic thickness kmTe 90= .  

Obviously for an increasing of τ/t  the maximal deflection 0w increases. The solution for 

deflection converges to the Airy response. The visco-elastic model depends on the load: It is 

different for a narrow and a wide load. In the following the visco-elastic behavior is 

considered for a narrow load (e.g. load of short wave length of km100=λ ). The visco elastic 

plate equation (see Eq. 4.5.5) is highly nonlinear and therefore an exact determination is very 

difficult. However, it is useful to consider the response function for the elastic and visco-

elastic plate. The response function for an elastic plate is given by (Chapter 1.2): 
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where eD  is the flexural rigidity of an elastic plate. Eq. 4.5.6 and Eq. 4.5.7 leads to:  
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eD  is now the equivalent flexural rigidity of an elastic plate that describes the flexure of a 

visco-elastic plate. 0D  is the flexural rigidity of a visco-elastic plate at the time 0=t . The 

result of this equation is plotted in Fig. 4.5.4. The deflection w  increases with time because 

the obtained rigidity values decrease with time. For certain values of viscosity and time the 

corresponding higher value of rigidity can be estimated, which causes the same deflection like 

a rigidity value which corresponds to the elastic case. 
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Figure 4.5.4) The log-linear plot of the equivalent flexural rigidity of elastic plate eD  

normalized to the flexural rigidity for a visco-elastic plate 0D  was computed for a 

narrow load at 0=t  (modified according to WATTS 2001). 

The ratio is 10/ =τt  for an assumed time of load with Myrt 1=  (see Fig. 4.5.4). This leads to 

the ratio 1.0/ 0 =DDe  (it follows: eDD ⋅= 100 ). This means that the rigidity would increase 

to a ten times larger values. The ratio 5.0/ 0 =DDe  is obtained for a time with Myrt 1.0=  

which was suggested by WALCOTT (1970). It follows that: eDD ⋅= 20 , which means that the 

rigidity would become two times larger. 

For a short duration of load with Myrt 0001.0= , i.e.  001.0/ =τt  is the relation 1/ 0 =DDe .  

Consequently, the estimated values for rigidity/elastic thickness are valid for a short time of 

loading with Myrt 0001.0= and a relaxation time Myr1.0=τ .  
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4.6 FINAL COMMENTS AND FUTURE DIRECTIONS 
 
Vening-Meinesz introduced the concept that the flexural strength of the lithosphere had to be 

taken into account for isostatic consideration.  Many methods have been developed for the 

estimation of the flexural strength of the lithosphere.  I introduced the differential equation 

describing the flexure of a thin plate (see Chapter 2.1), which was so far not analytically 

solved for any irregular shaped topography. For a homogeneous isotropic elastic plate the 

problem had been treated in the frequency space.  The disadvantage of the spectral methods 

motivated the search for an analytical solution of the differential equation.   

The newly derived analytical solution was compared with the solutions achieved by the Fast 

Fourier transformation techniques. Furthermore, if introducing a new solution, it has to fit 

well into accepted theories, wherefore boundary cases were considered. For a small 

DTe / value, the analytical solution converges to the solution according to Airy. For a high 

DTe / value, the undulation becomes smaller and the CMI surface converges to a plane of 

constant depth. These results give further evidence of the correctness of the analytical 

solution. 

It became possible with the analytical solution to compute the CMI undulation or the 

lithosphere/asthenosphere boundary for any irregular shape of topography. Additionally, it 

gives us some insight into the "black box " of the calculation process. 

The question whether the deflection of the crust/mantel boundary or the deflection of the 

lithosphere/asthenosphere boundary is considered depends on the depth at which the 

Young's modulus changes (see chapter 2.7). I can interpret the general concept of calculation 

of a flexure, that the calculated flexure-surface is shifted with the reference depth at the depth 

where the change of Young's modulus is assumed. Therefore, the calculated flexure is valid 

for both the crust/mantle interface and the lithosphere/asthenosphere boundary. 

Furthermore, we conclude that the change of the Young's modulus controls the type of 

deformation. Except for uncertainties due to operating with a constant E value, the elastic 

thickness/rigidity is estimated with an accuracy of %5 (see chapter 4.3). 
 

In the following the results of this work are summarized and compared with the developed 

ideas and concepts of the members of the SFB 267 (HTTP://WWW.FU-BERLIN.DE/SFB267).  

The rigidity/elastic thickness distribution was estimated for different areas of the Pacific 

Ocean, in particular for the Nazca and a part of the Antarctic oceanic lithospheric plate, and 

for the continental lithospheric plate in the northern area of the Central Andes and the 

Patagonian Andes in the South. The results of the spatial DTe /  variation are presented as an 

overlay over the topography in Figure 4.6.1.  

 

The northern and southern parts of the Andes are extremely variable concerning width, 

altitude, climatic and mechanical properties. The topographically low Patagonian Andes are 

contrasted with the broad and high Central Andes. During the Cenozoic the world second- 

largest plateau, the Altiplano/Puna, developed in the Central Andean Cordillera. The 

formation of this plateau was investigated by the members of the SFB focusing on the 
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influence of crustal shortening, magmatic addition, mantle delamination and hydration. Both 

areas are characterized by very different tectonic styles in the backarc. As consequence of 

large amounts of shortening the fold and thrust belt in the Central Andes is widespread and 

thin- to thick-skinned.  In the area of the Patagonian Andes, a narrow thrust belt with minor 

shortening can be found. In the northern area, the SFB community found out that a crustal 

shortening of km250≈  had taken place since Miocene time. They also discovered that the 

volcanic front of the Coastal Cordillera had migrated to its present position in the Western 

Cordillera since the Jurassic. While the volcanic front in the Central Andes migrates 

km200≈  eastward, its position remained almost stable in the southern Andes. In the 

Patagonian Andes, no plateau developed despite of similar boundary conditions regarding 

the plate tectonic situation. The crustal thickness of the southern part of the Andean orogen  

decreases from km70≈  to km40≈ . Also, the depth of seismicity in the Wadati-Benioff zone 

decreases from km660≈  in the north to km100≈  in the south. Furthermore, the climatic 

conditions are different in the Central and Patagonian Andes.  

 

 
 

Figure 4.6.1) All results of rigidity/elastic thickness in the Pacific Ocean with a 

reference depth of km28 , the Central Andes in the northern part ( km30 ) and the 

Patagonian Andes in the southern part ( km30 ) are summarized. The top view shows the 

rigidity distribution for the same reference depth of km30 . 
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As a result of many discussions, the members of SFB 267 community have identified a 

number of phenomena expected to be important key parameters for controlling subduction 

related orogeny and plateau development: 

1.  The role of stress coupling and force transmission across convergent plate boundaries, 

as well as the controversial nature of the strength of plate boundaries 

2.  The properties of subducting oceanic slabs with the related impact on the thermal 

structure of the deep parts of the system 

3. The role of the mantle lithosphere and its degree of stability during orogeny 

4.  The influence of melts in weakening crustal materials 

5.  The influence of inherited structures in the upper plate on deformation partitioning 

 

In the following, these results are compared with the results of this proposed study.  

 

(1) By comparing the results of the oceanic plate rigidity distribution for a reference 

depth of 30km, a northern rigid part is obtained in contrast to a southern weak part, 

described by lower rigidity values. In view of the observed difference in the strength of 

the subducted oceanic plate, this key parameter is confirmed.  
 

(2) I concluded the importance of the temperature distribution from the deflection of the 

lithospheric plate due to a temperature moment (see chapter 4.2). In view of the fact 

that an orogen converges to a state of equilibrium the consideration of the 

temperature distribution is essential. Therefore, the influence of the colder oceanic 

slab on the thermal structure of the mantle should be significant to cause a difference 

in the mechanical behavior of the lithosphere. 
 

(3) The obtained lower rigidity values in the area of the Altiplano/Puna plateau correlate 

with the idea of delamination of the mantle lithosphere. Furthermore, a delamination 

of the upper mantle can be described by a change in the Young's modulus. Regarding 

the FE models (Chapter 2.7) it was concluded that for an equal E  the deformation 

and flexure of two layers can be considered as one single plate. Therefore, the crust 

and upper mantle are coupled and behave mechanically like one lithospheric plate. 

With a decrease of the Young's modulus in the mantle (e.g. due to increasing 

temperature) the mechanical behavior completely changes.  
 

(4) The influence of melts is significant for the rigidity of the lithosphere. Additionally, 

fluids and melts lead to a decrease in the Young's modulus, which was proposed to be 

the crucial factor for lithospheric deformation.  
 

(5) The inherited structures can be described physically by a change in Young's modulus 

or rigidity, respectively. A very good correlation of the rigidity distribution with the 

tectonic structures and fault systems could be obtained (see chapter 3 and 4.4). This 

fact supports their influence on the mechanical deformation. 

 

Usually, low rigidity values are obtained in the inner mountainous basins compared to higher 

values in the back-arc region. This coincides well with the results of the distribution of 
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electrical resistivity (PROJECT G4, BRASSE & HAAK 2002) from magneto-telluric investigations 

and the analysis of surface waves (PROJECT F3, SHAPIRO ET AL. 2002). 
 

In the area of the Central Andes the most geophysical features are probably caused by fluid- 

and melt associated petrologic processes driven by active subduction (SFB 267).  The 

observation indicates a presence of partial melt or metamorphic fluids at a mid-crustal level 

beneath the Altiplano-Puna plateau (e.g. PROJECT G3, KIND ET AL. 2002). This observation is 

in agreement with the analysis of the rigidity distribution, which indicates a mechanically 

very weak plateau.  

The obtained high rigidity values eastwards of the orogen indicate a mechanically strong 

body correlating with the location of the Brazilian Shield, which is known as a cold and rigid 

craton. This rigid body is assumed to play an important role in the plateau formation.  This 

correlates well with the results of the numerical models (PROJECT F2, KLOTZ 2002), which 

suggest that the crustal thickening in the area of Central Andes is caused by underthrusting 

of the Brazilian shield. In the applied viscous flow model the viscosity was constraint between 

Pas1824 1010 K=η , which is comparable with the results in Chapter 4.5 for the viscosity 

variation.  

 

This work aims to explain the meaning of the elastic thickness as well as the flexural rigidity.  

The parameter that characterizes the apparent flexural strength of the lithosphere is the 

flexural rigidity D , which was commonly expressed through the elastic thickness eT  of the 

lithosphere. In the past, standard values were used for the Poisson's ratio and the Young's 

modules; this is sufficient for the Poisson's ratio but not for the Young's modulus (see chapter 

4.3 and 4.4). As a conclusion the variation of the Young's modulus can be in order of 

PaE 129 1010 K= . Therefore, the physical meaning and significance of the elastic thickness 

are still enigmatic.  

In the example of Central Andes the DTe /  distribution was transformed into a Young's 

modulus variation. By assuming a constant eT  value, which corresponds to an average crustal 

thickness, kmTc 40=  a meaningful variation of E  was obtained. Therefore, a new definition 

for the elastic thickness can be formulated.  

A new interpretation of the elastic thickness could be that a pseudo-variation is observed 

because of using a constant standard value for the Young's modulus. The elastic thickness 

could correspond to the crustal thickness. This is supported by the mathematical fact and 

physical background that the initial differential equation has described the flexure of a thin 

plate, with “ eT ” corresponding to the normal thickness of the plate. The elastic thickness was 

introduced by applying the concept of flexural rigidity to the geological science. (In the other 

disciplines e.g. physics, architecture … this parameter corresponds to a thickness of a plate.) 

However, to proof this assumption, the knowledge of the Young's modulus distribution and 

consideration of the temperature is essential. 
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Therefore, the elastic thickness can be defined as equivalent plate thickness, which 

corresponds to a plate with a constant Young's modulus. The variation of eT  can be explained 

by temperature distribution and a change of the Young's modulus.  

 

The DTe /  distribution correlates very well with geological features (see chapter 3).  This can 

be explained through the change in rigidity but also the change in Young's modulus by which 

geological features are characterized.  
 

The future directions are to estimate the rigidity distribution in smaller areas, where it is 

sufficient to operate with a constant value for the Young's modulus and a known crustal 

depth cT  instead of eT  as input parameter.  

Furthermore, in the original differential equation a temperature moment is considered.  The 

solution for the temperature moment needs further investigations and calibrations. In future, 

the results from heat flow measurement should be considered within the area of 

investigation. The advantage of the analytical solution and the convolution methods is the 

DTe /  estimation for a small area. Only the topography is required to be known over a larger 

area (this is driven by the flexure parameter ß) 

 

This method provides many possibilities for application, because of its simplicity. Due to the 

fact that only the long wavelength part of the gravity field is required for the analytical 

solution, satellite observations can be used. An area in which this method can be applied is in 

the field of remote sensing.  

 

A further future direction is the application of the investigation results of the Curvature 

method (PERS. COMM. KOLLERSBERGER). From the investigation of the rigidity distribution 

using Curvature methods a correlation with the fault structures and tectonic features can be 

obtained.  


