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ZUSAMMENFASSUNG 

Im Jahre 1939 wurde von VENING-MEINESZ eine neue Theorie entwickelt, welche die Rigidität 

der Lithosphärenplatte innerhalb isostatischer Betrachtungen mit berücksichtigte. Dazu wurde 

eine Differentialgleichung 4. Ordnung verwendet, welche das Deformationsverhalten einer 

dünnen elastischen Platte beschreibt. In der Vergangenheit wurde das Problem in den 

Frequenz-Bereich verlagert, und die Gleichung wurde mittels der Spektralmethoden lösbar 

gemacht. Aber bezüglich der Anwendung der Kohärenz- und Admittanzmethode auf die 

Kontinente wurde ihre Nützlichkeit aufgrund der Nachteile, welche durch den Spektralansatz 

entstehen, in Frage gestellt. 

Dieser Ansatz bedingt eine Durchschnittsbildung, welche im Falle einer sich räumlich 

variierenden Biegesteifigkeit/Rigidität dazu führen kann, dass jene Variation nur bis zu einem 

begrenzten Maβe aufgelöst werden kann. Darüber hinaus ist für das Untersuchungsgebiet eine 

Seitenlänge von mindestens  erforderlich. Ein weiteres Problem tritt im Falle niedriger 

Topographie auf, da kleinere Spektralwerte der Topographie zu Instabilitaeten innerhalb der 

Anwendung führen können. Durch die Verwendung der Konvolutionsmethode (BRAITENBERG 

ET AL. 2002) und darüber hinaus mit dem Nutzen der neu entwickelten analytischen Lösung 

der obig eingeführten Differentialgleichung können diese Nachteile aber  überwunden werden. 

Diese analytische Lösung wurde aus drei verschiedenen Lösungen nach HERTZ 1884 entwickelt 

und für die geologischen Wissenschaften anwendbar gemacht.  
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Die analytische Lösung wurde auf die ozeanische Lithosphäre im Bereich des Pazifik (Nazca-

Platte) und auf die kontinentale Lithosphäre im Bereich der Zentral Anden und der 

Patagonischen Anden angewendet. Die Ergebnisse der Rigiditätsverteilung wurden mit den 

von den Mitgliedern der SFB267 Gemeinschaft entwickelten Ideen und Konzepten verglichen. 

Die Rigiditätsverteilung ist durch eine gute Korrelation mit den tektonischen Einheiten und 

Störungssystemen charakterisiert.  

Bisher wurde die elastische Dicke und die flexurelle Rigidität synonym verwendet. Aber die 

analytische Lösung führte zu einem neuen Verständnis und einer neuen Interpretation der 

elastischen Dicke. In Anbetracht der Untersuchungen zur Signifikanz der Inputparameter ist es 

zulässig mit einem konstanten Wert für die Schwere und dem Poisson- Verhältnis zu arbeiten, 

denn dies wird nicht zu signifikanten Unterschieden im Ergebnis führen. Dies ist nicht für das 

Elastizitätsmodul gültig, denn dieser Parameter ist der entscheidende Faktor für das 

Deformationsverhalten. Daher kann die elastische Dicke auch als äquivalente Plattendicke für 

eine Platte konstanten Elastizitätsmoduls definiert werden. Zudem wurde herausgefunden, daß 

das Temperaturmoment in den Untersuchungen des Deformationsverhaltens mit 

berücksichtigt werden muss. Damit kann die beobachtete Variation der elastischen Dicke 

durch die Temperaturverteilung und die Veränderung des Elastizitätsmoduls erklärt werden.  

Zusätzlich wurde gezeigt, daß die Berechnungen mittels der Differentialgleichung und der 

analytischen Lösung sowohl für die Krusten/Mantel Grenze als auch die 

Lithosphären/Asthenosphären Grenze gültig sind. Dabei ist entscheidend, an welcher 

Grenzfläche die Änderung des Elastizitätsmoduls stattfindet.   



 

ABSTRACT 

In 1939 a new concept was introduced by VENING-MEINESZ proposing that the flexural strength 

of the lithosphere must be considered for isostatic models. A 4th order differential equation 

describing the flexure of a thin plate was developed.  In the past the equation has been solved in 

frequency space using spectral methods (coherence and admittance).  However, the admittance 

and coherence techniques have been questioned when applied to continental lithosphere.  Both 

methods require an averaging process; therefore the variation in rigidity may be retrieved only 

to a limited extent. A large spatial window with a side length of at least 375 km is required over 

the study area.  And, in where the input topography is characterized by low topographic 

variation, the method becomes unstable. 

 

These problems can be overcome by calculating the flexural rigidity with the convolution 

approach (BRAITENBERG ET AL. 2002) and furthermore with the use of a newly derived 

analytical solution of the differential equation mentioned above. This solution was developed 

out of three solutions from HERTZ 1884 and has been made applicable to geological science. 

The analytical solution has been applied to both oceanic lithosphere (Nazca plate) and 

continental lithosphere (Central and Patagonian Andes). The resulting flexural rigidity values 

and their variations have been compared with the ideas and concepts developed by the 

members of the SFB267 community, and correlate well with tectonic units and fault systems.  

 

In the past the elastic thickness has been used synonymously for the flexural rigidity. However, 

the analytical solution leads to a new interpretation and meaning of the elastic thickness. It is 

shown that it is sufficient to operate with a constant value for both gravity and Poisson's ratio, 

as the variation of either parameter does not lead to a significant change in the distribution of 

flexural rigidity. Young's modulus is shown to be the driving factor for the flexural deformation. 

A temperature moment must also be taken into account in flexural investigations. Thus, the 

variation of the elastic thickness can be explained by temperature distribution and a change of 

the Young's modulus.  A new definition of elastic thickness can be obtained: the value of the 

calculated elastic thickness is equivalent to the value of thickness of a corresponding plate 

described by a constant Young's modulus.    

Computations using the differential equation are valid for the crust/mantle interface (Moho) as 

well as the lithosphere/ asthenosphere boundary. The calculated boundary surface can be 

shifted at the position of the boundary at which a significant change of Young's modulus takes 

place.  
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MOTIVATION 

Since early 1993, members of the collaborative research program SFB 267 “Deformation 

processes in the Andes” have been working on establishing a broad scientific basis of the Andes 

and its surroundings.  

The research focus is on two main study areas.  In the  northern study area between 10° and 

30°S, the so-called Central Andes, the formation of a non-collisional plateau has played the 

dominant role. This area is characterized by an erosive forearc, a significant topographic relief, 

and crustal thickening. In the southern study area, between the 37° and 42°S, the so-called 

Southern Andes, a 'standard type' of continental subduction orogen without plateau formation 

has developed in spite of similar plate-kinematical boundary conditions. This contrasting study 

area is characterized by an accretive margin, a thinned crust, a mostly extensional tectonic 

history,  and a relatively subdued topography. 

The different projects within the research program SFB 267 aim to evaluate the parameters, 

which are identified as the main factors controlling forearc and orogen evolution. 
 

The present thesis is integrated in the SFB- subproject F1 (KUKOWSKI ET AL. 2002) and F4  

(GÖTZE ET AL. 2002). The subproject F1 investigates the transmission of forces as well as related 

deformation at convergent margins and plans a quantitative investigation of the 3D stress 

patterns, strike-slip fault evolution and mass transfer modes with several simulation methods. 

These include e.g. sandbox analogue experiments and Finite Element modeling. The subproject 

F4 models regional potential field data and provides new insights into the large-scale 

distribution of controlling parameters. They aim to examine the rigidity and viscosity variations 

of the Andean lithosphere through the modeling of the isostatic gravity field and the geoid.  
Dealing with rigidity calculations led to the idea of developing an analytical solution. Many 

numerical solutions exist in the term of Finite Element modeling, but the substantial 

characteristics cannot always be considered since the solutions are often approximated by the 

method of the weighted residuals. The motivation was to find a new analytical solution, which 

solves the differential equation describing the flexure of a thin elastic plate. A simple analytical 

solution exists only for the deflection of a thin plate due to line loads. However, the 

development of a new analytical solution would made possible to calculate analytically the 

deflection of a thin plate  for any irregular shape of the topography.  

A further motivation for conducting this thesis is to develop a software program, which 

effectively calculates the elastic parameters of the crust and lithosphere in order to interpret 

their mechanical behavior in a consistent way. Another motivation is to find general statements 

on the quantitative value of the results of rigidity distribution. Therefore, it is important to 

investigate the significance of the input parameters necessary for the rigidity calculation.  

My personal motivation is to clarify the physical meaning of the elastic thickness. Additionally, 

I want to conduct methodical investigations to resolve the term of elastic deformation of the 

lithosphere and to find a mathematical description. My goal is to explain the scientific facts in a 

simple and comprehensive way.   
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CONCEPTS 
 

This chapter presents a general explanation and simplification of the methods concerning the 

calculation of elastic thickness/flexural rigidity. The reader, familiar with the idea and concept 

of the elastic theory may skip this chapter. 
 

This thesis considers the mechanics of the Earth's crust and the lithosphere. It is a part of 

classical mechanics. We aim to examine the characteristics of physical bodies as well as to find 

a mathematical description. Classical mechanics contain universal statements, which apply to 

all physical bodies as well as individual statements, which describe the characteristics of  

individual physical bodies. This description expresses the experience that outwardly identical 

bodies show a completely different behavior under the same conditions.  

Only from the combination of these statements can mathematical models result, whose 

characteristics are comparable with the experimentally observable behavior of physical bodies 

(HAUPT 1977). In geophysics the individual characteristics of the Earth's crust and the upper 

mantle are investigated. These physical bodies are characterized by different material 

properties. Some physical bodies are easy to deform. Other physical bodies are more resistant 

to deformation. This individual characteristic can be described by the flexural rigidity. In 

addition the material parameters Young's modulus and Poisson's ratio are necessary for the 

description of the individual characteristics.  

 

 

 

 

 

 

 

 
Figure 1.0.1) Different deformation of a physical body. The Young's modulus results from 

the ratio of length variation to acting stress . The ratio of length variation to change of 

width is called Poisson's ratio. 

 
If stress affects a body, a deformation takes place (see Fig. 1.0.1). From the relationship of 

length variation 
l
l∆

 to stress σ  we achieve the Young's modulus E , if the material deforms 

elastically: 

                                                                       σ⋅=
∆

El
l 1

                                                            (1.0.1)  

 

Regarding the relationship of length variation 
l
l∆

 to change of width 
b
b∆

 we obtain the 

Poisson's ratio ν . 
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l
l

b
b ∆

⋅−=
∆ ν                                                        (1.0.2) 

 

Although physics of solids gives an answer to many questions, one could not find a continuous 

relation between the atomic and macroscopic behavior of a material. Therefore,  a macroscopic 

description is generally used for mathematical expressions. Only average values of strain and 

stress are taken into account. The material is regarded as continuum and not as accumulation 

of discrete particles.  Deformations are assumed to be small compared to the dimensions of the 

investigated body. We hypothesize a static equilibrium condition for the deformed body.  The 

relation between deformation and internal forces caused by the load are described by material 

laws. The simplest of these is Hook's law. This law explains a linear relationship between stress 

and strain and provides the basis of elastic theory.  

The realization of a mathematical description for the flexure of a plate due to a load is one goal 

of this work. In order to be able to provide a mathematical expression, one needs many 

idealizations of the observations. According to scientific research principle an idealization is 

permitted if it still considers the substantial features but leads to important simplification in 

application. 
 

In the following a very simple example is given, in order to understand the way of computation 

of flexural rigidity. We imagine an elephant in the ring of a circus located on muddy ground. 

The elephant could be standing on a tarpaulin (example 1) or on a wooden floor (example 2). If 

we draw the analogue to geophysics, then the mud corresponds to the mantle of the Earth, the 

tarpaulin or wooden floor is the crust of the Earth and the elephant represents the topographic 

load. The tarpaulin floor represents a “soft crust”, whereas the wooden floor a rigid one.  In the 

first example, the elephant would leave deep tracks in the mud, or -in other words- a local 

compensation would take place (see Fig. 1.0.2).  

 
Figure 1.0.2) Simple analogue for describing flexural rigidity. An elephant is standing on a 

weak plane, e.g. a tarpaulin floor (see left side). He leaves deep tracks, because of the low 

rigidity of the plane. The load of the elephant easily deforms the tent plane. This leads to a 

local compensation.  A situation of a more rigid plane is shown on the right side, e.g. 

wooden floor. Because of the higher rigidity,  a global compensation takes place. For this 

reason, we can distinguish the rigidity of the planes if we compare the flexure of the planes 

with the tracks the elephant would leave. 

 
In the second example, because the load of the elephant distributes over the surface, a global 

compensation would take place.  The difference, between these two situations, is the mode of 

compensation due to the difference in the flexural behavior. We can therefore distinguish the 

rigidity of the crust if we look at the mode of isostatic compensation. 

vi 



 

The tracks due the load of the elephant are demonstrated in the sketch 1.0.3. The geophysical 

analogues are the isolines of Moho undulation. For a soft plane (e.g. tarpaulin) we would be 

able to distinguish the 4 legs of the elephant. A corresponding example in the field of 

geophysics are the seamounts in Pacific Ocean, because of the lower rigidity we can see single 

“seamount traces” in the Moho surface.  

 
Figure 1.0.3) The sketch shows the tracks the elephant left in the ground (isolines for the 

depth). In the figure above the 4 legs of the elephant can been distinguish. The analogue is 

a seamount; because of lower rigidity around the seamount it is local compensated.  The 

isolines in the lower figure are showing the global compensation.  In case of a rigid plate no 

“tracks” would be left, and we wouldn’t be able to distinguish the 4 legs of the elephant. 

 

This means, if we obtain the pattern of the tracks or in the geophysics the Moho undulation, we 

can estimate the elastic properties of the plate for a known load. We can calculate the load from 

the topography. The two materials the elephant stood on have a different flexural rigidity, 

whereas the load is the same. (The flexural rigidity of the wooden floor is much higher). With 

this simple example it’s easy understandable, how we can determine the flexural rigidity of the 

lithosphere, with information about the topographic load and the Moho undulation.  
 

Since the long wavelength part of the gravity anomaly reflects in most cases the density 

contrast between crust and mantle, the long wavelength of the gravity anomaly corresponds to 

the “gravity Moho” undulation. In the following the Moho is called Crust-Mantel-Interface 

(short: CMI).  

Therefore all methods of estimation of flexural rigidity/elastic thickness (see Chapter 1.2) can 

be described with this simple example. Either the relation between the topography and the CMI 

is investigated or the relation between the topography and measured gravity anomaly. 
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INTRODUCTION 
 

State of the Art 

 

The knowledge of the isostatic behavior of the lithosphere is important to provide statements 

concerning the conditions and processes of the mountain building. The spatial distribution of 

the flexural rigidity ( D ) and of the elastic thickness ( ), as well as the rheology of the 

investigation area give information on the regional isostatic compensation. Furthergoing, the 

combination and correlation with results from the neighboring disciplines of geophysics, result 

in a differentiation of the lithosphere into significant structural units.  

eT

A differential equation of the 4th order describing the flexure of a thin elastic plate was 

developed, which recently had not been analytically solved for an irregularly shaped 

topography. A simple analytical solution only exists for the deflection by line loads of thin 

elastic beams that overlie a viscous substratum. A simple analytical solution (WATTS 2001) only 

exist for the deflection by line loads of thin elastic beams overlying a substratum. The deflection 

for more complex rectangularly and triangularly shaped loads could be evaluated only by 

integration.  In the past a two-dimensional solution has been developed by WEDDELING (1996), 

which is based on the idea of TIMOSHENKO & WOINOWSKI-KRIEGER (1959); the equation was 

solved with fast Fourier transformation techniques (coherence and admittance).  Only one 

value of  could be calculated for an area, which was required to have a side length of at 

least 340km (MCKENZIE & FAIRHEAD, 1997). 

DTe /

For the calculation process an input parameter is needed called “reference depth”, of 

questionable size and meaning. Some disadvantages of the spectral methods were overcome by 

the convolution approach developed by BRAITENBERG ET AL. (2001). This approach additionally 

requires a radius of convolution to be determined, in order to calculate the distribution of the 

. DTe /

 

The utility of the elastic thickness of the lithosphere are based on the concept that the 

gravitational equilibrium of the lithosphere can be maintained over geological time and space 

scales and that the resulting static deformation is explicable as a flexure of a thin elastic plate 

overlying a fluid (BUROV & DIAMENT, 1995). By that, the lithosphere/asthenosphere boundary 

is calculated, which contradicts the fact, that by the differential equation describing the flexure 

of the thin plate, a density contrast is considered. Since the density contrast describes the 

restoring force of the underlying mantle. Therefore it is questionable which boundary is 

considered by the calculating methods, as a definition is needed if the crust-mantle interface or 

the lithosphere/asthenosphere boundary is modeled.  

 

The physical meaning and significance of  are still a matter of debate (BUROV & DIAMENT, 

1995). The estimated  values for the oceanic lithosphere follow approximately the depth of 

the isotherm of , which mark the base of the mechanical lithosphere. However, for the 

continental lithosphere the results of  bear little relation to specific geological and physical 

boundaries: Although high values for cratons with 

eT

eT

C°600

eT

kmTe 9070K=  can be partly explained by 
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the present day temperature gradients, the low values for volcanic arcs and mountain belts with 

can not be described by this relation (BUROV & DIAMENT 1995). It is evident that 

there is dependence between  and the composition of the plate, the geometry of the plate, 

external forces and the thermal structure (e.g. GOETZE & EVANS 1979, LYON-CAEN & MOLNAR 

1983, BUROV & DIAMENT 1995, TASSARA 2005). 

kmTe 2010K=

eT

 

This leads to following open question, which are intended to answer in the present study. 

 

1. Is it possible to find a formula in order to calculate the radius of convolution? 

2. What is the physical meaning of the input parameter of the reference depth? 

3. Is the calculation of flexure valid for the crust-mantle interface or the 

lithosphere/asthenosphere boundary?  

4. Is it acceptable and sufficient to calculate  for an area of a side length lower than 

340km? 

DTe /

5. How important is the influence of the Young's modulus on the results of  

modeling? 

DTe /

6. Can the influence of the temperature be mathematically included in the  

modeling? 

DTe /

7. To what extend a calculation of viscosities is permitted, if the dimension of time is not 

included in the modeling? 

8. What is the physical meaning of the elastic thickness? 

 

The fundamentals and the state of the art are explained in Chapter 1. In this study a new 

analytical solution for the computation of  has been developed. Consequently, in Chapter 

2 the background of the analytical solution is explained.  With the new analytical solution, it 

became possible to solve the differential equation of the 4

DTe /

th order for any irregular shape of the 

topography.  Therefore a solution from HERTZ (1884) was modified in order to apply it on the 

lithosphere. Additionally two self-designed computer programs are described. As examples for 

the application of the software three areas  (Central Andes, Southern Andes and Pacific Ocean) 

are presented in Chapter 3. The possible error resulting from the initial assumptions are 

estimated and analyzed in Chapter 4. Therein the results are discussed in order to answer the 

open questions mentioned above.  The significance of the input parameters for the calculation 

is considered,  as well the importance of the Young's modulus is investigated. The present study 

culminates in a synthesis and closes with final comments and future directions.  
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