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Experimental evidence for Majorana bound states largely relies on measurements of the tunnel-
ing conductance. While the conductance into a Majorana state is in principle quantized to 2e2/h,
observation of this quantization has been elusive, presumably due to temperature broadening in the
normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly
suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Ma-
jorana state is then signaled by symmetric conductance peaks at eV = ±∆ of a universal height
G = (4 − π)2e2/h. For a superconducting scanning tunneling microscope tip, Majorana states
appear as spatial conductance plateaus while the conductance varies with the local wavefunction
for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and
quasiparticle poisoning.

Introduction.—Motivated by possible applications in
quantum information processing [1, 2], topological super-
conductors hosting Majorana bound states are currently
under intense investigation [3–5]. Based on the super-
conducting proximity effect, various realistic platforms
have been proposed to support Majorana states includ-
ing topological insulators [6, 7], semiconductor nanowires
[8, 9], and atomic chains [10–16]. Although these systems
are available in the laboratory, the experimental observa-
tion of unique Majorana signatures remains challenging.

A widely employed diagnostic tool is the tunneling con-
ductance of normal metal–superconductor junctions, in
which Majoranas manifest themselves as characteristic
zero-bias peaks [17, 18]. Experimental signatures con-
sistent with theoretical predictions have been observed
in quantum wires [20–22] and atomic chains [23, 24].
However, it is a major challenge in these experiments
to uniquely distinguish Majoranas from conventional
fermionic subgap states. Spin-polarized subgap states
such as Shiba states bound to magnetic impurities [25–28]
or Andreev bound states in a magnetic field can exhibit
a zero-energy crossing as a function of exchange inter-
action or Zeeman energy [29–31]. Thus, such fermionic
states may accidentally occur at zero energy and give
rise to similar conductance features. As magnetic im-
purities or external magnetic fields are also required for
the most relevant realizations of topological superconduc-
tors, such trivial conductance peaks can generally not be
disregarded.

In contrast to fermionic subgap states, Majoranas ex-
hibit a celebrated quantized zero-bias conductance of
2e2/h [17–19]. Unfortunately, this has so far proved dif-
ficult to observe in experiment. The Fermi distribution
in the metal lead is smooth on the scale of the temper-
ature T , which strongly limits the experimental energy
resolution. When temperature is larger than the tunnel
coupling, the Majorana peak is broadened and the zero-
bias conductance is reduced. Even at low temperatures
(e.g., T = 60 mK in Ref. [20]), it may be difficult to ob-
serve the quantized peak height as multichannel effects

limit the relevant tunneling strength [32]. Quasiparticle
poisoning may also lead to deviations from quantization.
A fermion-parity breaking rate exceeding the tunnel cou-
pling broadens the peak and reduces its height. This
requires one to work at temperatures below the lowest
fermionic excitations in the topological superconductor.

In this paper, we show how a robust conductance sig-
nature of Majorana bound states can be obtained by em-
ploying superconducting leads. In striking contrast to
normal-state contacts, effects of thermal broadening are
strongly suppressed for a superconducting lead because
quasiparticle excitations are exponentially suppressed ∼
exp(−∆/T ) by its superconducting gap ∆. Majorana
bound states no longer appear as zero-bias anomalies but
rather as two symmetric peaks in the differential conduc-
tance G = dI/dV which occur when the BCS singularity
of the superconducting gap lines up with the Majorana
bound state, i.e., at the thresholds eV = ±∆. These
peaks have a universal height

GM = (4− π)
2e2

h
, (1)

which persists over a wide range of tunnel couplings.
This yields particularly striking evidence when employ-

ing a scanning tunneling microscope (STM) with a super-
conducting tip which allows for spatially resolved mea-
surements. This has previously been used to map out
bound state wavefunctions in conventional and unconven-
tional superconductors [23, 24, 33–36]. Here we propose
that such maps can clearly distinguish between Majo-
ranas and trivial zero-energy bound states. Indeed, the
peak conductance is uniform in the vicinity of Majorana
states and a conductance map exhibits a characteristic
mesa or plateau structure. In contrast, the conductance
of trivial subgap states exhibits a spatial pattern which
is governed by the bound-state wavefunction.

In addition, STM measurements allow for systematic
studies as a function of tunneling strength by varying
the tip height. It was recently demonstrated [37] that
this can be exploited to probe quasiparticle relaxation
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processes. In the present context, varying the tunnel-
ing strength may help to identify Majorana signatures
despite competing effects such as nonresonant Andreev
reflections or quasiparticle poisoning.

Subgap conductance for Majorana bound state.—At
subgap voltages eV < ∆ + ∆s and zero temperature, the
tunneling current between superconducting tip or lead
and substrate (with gap ∆s) flows by multiple Andreev
reflections. Near the threshold e|V | = ∆, the differential
conductance dI/dV is dominated by single Andreev re-
flections from the sample. For tip locations far from the
zero-energy bound state in the sample, this yields the
familiar peak in dI/dV due to the singular densities of
states of incoming electrons and outgoing holes. In the
vicinity of the bound state, tunneling is further enhanced
by the zero-energy resonance [37–39].

Formally, the subgap current due to single Andreev
reflections from the sample can be expressed as [40–42]

I(V ) = 4eπ2t4
∫

dω

2π~
Tr[Geh(r, ω)G†eh(r, ω)]

× ρ(ω−)ρ(ω+)[nF (ω−)− nF (ω+)], (2)

where t is the amplitude for tip-substrate tunneling,
ω± = ω ± eV , nF (ω) denotes the Fermi function, and
the superconducting tip enters through its BCS density
of states ρ(ω) = ν0θ(|ω| − ∆)|ω|/

√
ω2 −∆2 with ν0 the

normal density of states at the Fermi energy. Spin or
subband degrees of freedom are accounted for by a pos-
sible matrix structure of the anomalous retarded Green
function Geh(r, ω) of the substrate at the tip position r.
In terms of its Lehmann representation, Geh(r, ω) has
contributions from both the bound state and the above-
gap continuum. In the following, we first consider the
resonantly enhanced Andreev current from a Majorana
bound state and subsequently discuss the contribution of
the quasiparticle continuum.

For e|V | ' ∆, we can approximate nF (ω−)−nF (ω+) '
sgnV in Eq. (2), up to corrections of order exp(−∆/T ).
This insensitivity to temperature is a key advantage of
superconducting leads. The bound-state contribution to
the substrate Green function is

G(r, ω) =
〈r|ψ〉〈ψ|r〉
ω + iΓ/2

. (3)

Here, 〈r|ψ〉 = [ζ(r),±Θζ(r)]T denotes the local
Bogoliubov–de Gennes wavefunction of the Majorana
bound state with Θ the time-reversal operator. The
broadening Γ = 2i 〈ψ|Σ|ψ〉 of the bound state is induced
by the tunnel coupling to the lead. The corresponding
self energy Σ = −iπt2diag[ρ(ω−), ρ(ω+)] is diagonal as
Andreev reflections in the lead can be neglected near
e|V | = ∆.

Inserting Eq. (3) into (2) yields (for V > 0) [37, 43]

I =
e

h

∫
dω

Γe(ω)Γh(ω)

ω2 + [Γe(ω) + Γh(ω)]2/4
(4)

in terms of the electron and hole tunneling rates
Γe/h(ω) = 2πt2|ζ|2ρ(ω∓). While the integrand in Eq. (4)
has a resonance denominator, its behavior is peculiar due
to the strong energy dependence of the tunneling rates.
Specifically, the square-root singularity of the BCS den-
sity of states implies that the integrand involves a charac-
teristic energy scale ωt = (πt2ν0|ζ(r)|2

√
∆/2)2/3 which

depends on a fractional power of the tunneling rate from
a normal tip γn = 2πt2ν0|ζ(r)|2. In the weak-tunneling
regime ωt � ∆, we can write

I =
4e

h

∫ η

−η

dω√
η2 − ω2

ω3
t

ω2 + ω3
t

(
1√
η−ω + 1√

η+ω

)2 , (5)

for 0 < η � ∆, where η = eV −∆ measures the voltage
from the threshold ∆. In the vicinity of the threshold,
η � ωt, the resonance denominator is dominated by the
second term and we obtain I(V ) = (4 − π)(2e/h)(eV −
∆)θ(eV −∆) and thus Eq. (1). The entire peak lineshape

dI

dV
= (4− π)

2e

h
Λ

(
eV −∆

ωt

)
, (6)

involves the function Λ(x) which vanishes for x < 0,
jumps to Λ(0+) = 1, and falls off with a small negative
differential conductance tail at large x, cp. Fig. 1.

Thus, the differential conductance between a conven-
tional superconductor and a Majorana state exhibits a
peak which is independent of tunneling strength and Ma-
jorana wavefunction. While the peak height is close to
the quantized Majorana peak height 2e2/h for a normal-
metal lead, there are several differences: (a) There are
two symmetric, finite-bias Majorana peaks at eV = ±∆
rather than a single zero-bias peak, (b) the conductance
peak is strongly asymmetric with a discontinuous step at
the threshold, and (c) the width of the peak is set by ωt
with its sublinear dependence on junction transparency.

The threshold discontinuity in the conductance per-
sists even when including the contributions of the quasi-
particle continuum in the substrate Green function. To
see this, we model the substrate superconductor by a
2 × 2 Nambu Green function g(ω, r). For a topolog-
ical substrate, this is appropriate for perfect spin po-
larization (spinless p-wave superconductor). Including
the tunnel coupling to the tip through the self energy
Σ as given above, the substrate Green function becomes
G = g[1 − Σg]−1. We first focus on the vicinity of the
bound state where the conductance is dominated by An-
dreev reflections from the bound state. By straightfor-
ward calculation and expansion of g in ω [40], we find

G(r, ω) =
〈r|ψ〉〈ψ|r〉

ω − λ(ω) + iΓ/2
. (7)

This differs from the pure bound-state contribution by
the additional term λ(ω) = π2t4ω det g(ω, r)ρ(ω−)ρ(ω+)
in the denominator which involves the determinant (in
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FIG. 1. (color online) (a) Differential conductance vs bias
voltage near the threshold eV = ∆ for Majorana (solid line)
and Andreev state with |u| = |v| (dashed line). For a Majo-
rana, the conductance exhibits a step of height (4− π)2e2/h
at the threshold. For an Andreev state, the conductance has
a smooth onset, cf. Eq. (10). Both peaks have a negative-
differential conductance dip at high voltages. Inset: Graph
of f(x) as defined in the main text. (b) Spatial conduc-
tance maps for Majorana (left) and Andreev state (right) for
ωt(0)/δ∆ = 5. The Majorana gives rise to a conductance
plateau whereas the Andreev state exhibits a pattern reflect-
ing the spatial dependence of the ratio (u/v)2. The Majorana
conductance drops far from the bound state when the broad-
ening exceeds ωt.

particle-hole space) of the bare substrate Green func-
tion. While the determinant of the bound-state contri-
bution to the Green function vanishes, this is no longer
the case when including the quasiparticle continuum. At
subgap energies away from bound states, the Green func-
tion g(ω, r) is a hermitian 2×2 matrix, so that det g(ω, r)
and hence λ(ω) are real. Thus, we find

IM (V ) =
4e

h

∫ η

−η

dω√
η2 − ω2

ω3
t

(ω − λ)2 +
( ω

3/2
t√
η−ω +

ω
3/2
t√
η+ω

)2 .
(8)

For a Majorana state, the real part of the resonance
denominator must vanish exactly at ω = 0. Indeed,
particle-hole symmetry further constrains det g(ω, r) to
be an even function of ω which can be approximated
as a constant at small ω (see [40], where this conclu-
sion is confirmed by model calculations). Then, we find

λ(ω) ∝ t4ω/
√
η2 − ω2 near the threshold. Even with this

term, the denominator in Eq. (8) remains dominated by

the divergent tunnel broadenings ∼ ω3/2
t /
√
η ± ω and the

discontinuous conductance step as well as the universal
value of the threshold conductance in Eq. (1) persist.

In experiment, the square-root singularity of the BCS
density of states of the tip may be broadened intrinsi-
cally due to higher-order processes or effectively due to
experimental resolution. The universal threshold con-
ductance persists as long as ωt exceeds this broadening.
This condition also determines the spatial extent of the
conductance plateau, r . 4ξ ln[ωt(0)/δ∆]/3, where ξ is
the Majorana localization length, ωt(0) denotes the value
of ωt at the center of the Majorana bound state, and δ∆
is the broadening of the tip density of state, cf. Fig. 1(b).
Of course, a well-resolved Majorana peak also requires
ωt � ∆s, i.e., the tunnel broadening needs to be small
compared to the induced gap. If the peak is not fully
resolved, it is suppressed below the universal value and
its height may vary as a function of space.

For tip locations far from the bound state, the tunnel-
ing conductance is dominated by conventional (“‘nonres-
onant”) Andreev reflections. These still yield a threshold
peak due to the singular tip density of states in Γe and
Γh, but are not enhanced by a bound-state resonance.
For a one-dimensional p-wave superconductor, this con-
ductance peak has height ' 1.3GM and width ∼ ∆T 2

quadratic in the junction transparency T ∝ t2 [40]. Ob-
serving the conventional Andreev peak thus requires that
the broadening of the tip density of states is small com-
pared to ∼ ∆T 2. This is a much more stringent condition
than for the resonant Andreev peak as the width of the
bound-state peak ωt ∝ t4/3 involves a lower power of t.
We note that in a typical STM experiment [37], conven-
tional Andreev peaks can be resolved only for small tip-
sample distances, while bound-state signatures persist to
much weaker tunnel couplings.

Subgap conductance for Andreev bound state.—These
results should be contrasted with those for trivial zero-
energy Andreev bound states. For concreteness, con-
sider an s-wave superconductor with conserved spin [44],
whose Bogoliubov–de Gennes description decomposes
into two independent spin sectors that interchange un-
der particle-hole transformations. A zero-energy An-
dreev state corresponds to two Bogoliubov–de Gennes
wavefunctions, 〈r|ψ+〉 = [u(r), v(r)]T and 〈r|ψ−〉 =
[Θv(r),−Θu(r)]T, one in each sector. An analogous cal-
culation [40] yields the threshold current

IA(V ) = 2IM (V )f(|u(r)|2/|v(r)|2). (9)

Reflecting the two zero-energy wavefunctions, the max-
imal threshold conductance is twice that in the Majo-
rana case, GA = 2GM , and realized for the particle-
hole symmetric case |u| = |v|. In general, the peak
conductance depends on the ratio of electron and hole
wavefunction at the tip position. This dependence
is captured by the dimensionless function f(x) =
2x

4−π
∫ 1

−1
dz
√

1− z2/(x
√

1− z +
√

1 + z)2 which takes on
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values between 0 and 1 and is plotted in Fig. 1(a). The
function satisfies f(x) = f(1/x) as the two spin sectors
contribute equally. In the limit of large particle-hole
asymmetry, GA ∼ GMmin(|u/v|2, |v/u|2) � GM . The
lineshape of the conductance peak is similar to the Ma-
jorana peak, with a width of order ωt upon replacing ζ(r)
by max{u(r), v(r)}.

Our results imply that the height of the conductance
peak allows for a clear distinction between a conventional
Andreev bound state and a Majorana state. Even when
f(u2/v2) ∼ 1/2 for one location of the STM tip, mov-
ing the tip to another location modifies the conductance
peak height for a conventional bound state, tracking the
ratio of electron and hole wavefunctions. In contrast, the
conductance map exhibits a characteristic mesa struc-
ture for a Majorana state, see Fig. 1(b). In non-STM
tunneling experiments, changes of parameters (e.g., gate
voltages) which affect the Majorana wavefunction should
leave the peak height unchanged for a Majorana but not
for a conventional Andreev bound state.

As there is no locking of the bound state to zero en-
ergy, also the continuum contribution is distinctly differ-
ent for conventional Andreev states. The two spin sectors
are described by separate 2 × 2 Nambu Green functions
which map into one another under particle-hole transfor-
mations. This is quite unlike the Majorana Green func-
tion which maps onto itself. For each sector, det g(ω, r) is
therefore no longer an even function of ω and will gener-
ally have a singular contribution ∝ 1/ω at the threshold

so that λ(ω) ∼ T 2∆s∆/
√
η2 − ω2. These general ar-

guments can be confirmed explicitly for Shiba states in
s-wave superconductors [40]. Near the threshold, the res-
onance denominator in the expression for the current is
now dominated by λ(ω). As illustrated in Fig. 1 by a
numerical evaluation of the current, this suppresses the
conductance step. Analytically, we find that just above
the threshold, the conductance increases linearly,

GA(V ) ∼ 2e2

h

1

T 2

eV −∆

∆
θ(eV −∆), (10)

and matches with the conductance obtained from Eq. (9)
for eV − ∆ � T 2∆. We note that this suppression of
the conductance step depends on T and can thus be
probed by varying the tip-sample distance in an STM
experiment. This may serve as an additional signature
to distinguish between Majorana and conventional An-
dreev bound states.

Effects of quasiparticle poisoning.—So far, we only in-
cluded bound-state broadening by the tunneling contact.
At finite temperatures, the bound-state occupation also
changes by inelastic transitions to other subgap states or
the quasiparticle continuum in the sample [45]. We ac-
count for these processes by an additional contribution
iΓqp/2 to the self energy of the bound-state Green func-
tion Eq. (7). This does not affect the Andreev current
at the threshold, where the denominator is dominated

tot
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FIG. 2. Total threshold conductance for a Majorana state
(tot) along with the single-particle contribution (sp) as a func-
tion of ωt. The single-particle contribution affects the con-
ductance only a in a window of transmission values, where
ωt ∼ Γqp. While the maximum is of order 0.2GM , the po-
sition of the maximum in tunneling strength depends sensi-
tively on temperature (through Γqp). Inset: Line shape of
the total conductance as a function of voltage away from the
threshold, for different ratios of ωt/Γqp.

by the diverging tunnel coupling. However, the over-
all weight of the peak is reduced by a narrowing of the
linewidth by a factor (ωt/Γqp)2 once Γqp > ωt, see Fig.
2 (inset).

In addition, quasiparticle poisoning generates a single-
electron current Is which involves tunneling of single
particles followed by inelastic transitions from the zero-
energy bound state to other bound states or the quasipar-
ticle continuum [37]. For a Majorana state, we find near
the threshold eV = ∆ (with analogous results applying
for Andreev bound states) [40]

IsM =
e

4h

∫
dω

Γqp[Γe(ω) + Γh(ω)]

ω2 + [Γqp + Γe(ω) + Γh(ω)]2/4
. (11)

For weak and strong tunneling, this yields [40]

GsM ∼
2e2

h

{
(ωt/Γqp)

3/2
ωt � Γqp,

Γqp/ωt ωt � Γqp.
(12)

Figure 2 shows that this single-particle contribution as-
sumes a maximum of ∼ 0.2GM when ωt ∼ Γqp. However,
it can be easily made negligible by tuning the system
away from this maximum through varying temperature
or tunneling strength.

Conclusions.—We show that conductance measure-
ments with superconducting leads constitute a promising
technique to identify Majorana states. The presence of
Majoranas is signaled by conductance peaks of universal
height which are largely unaffected by thermal broaden-
ing, a key obstacle in previous experiments with normal-
metal contacts. We discuss strategies to systematically
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rule out parasitic effects such as quasiparticle poisoning
or trivial subgap states. The proposed setup is read-
ily available in the laboratory and, in fact, has already
been realized in previous experiments [23, 24, 46, 47].
(Notice, however, that temperature was comparable to
the induced gap in the STM experiments performed to
date, precluding observation of the universal conduc-
tance, and that the nanowire experiments focused on
zero-bias peaks.) Our results also imply that quasipar-
ticle poisoning rates can be extracted from systematic
measurements as a function of tip height and tempera-
ture.

Acknowledgments.—We thank P. Brouwer, K. Franke,
B. Heinrich, J. Meyer, Y. Oreg, and M.-T. Rieder for
stimulating discussions. We acknowledge financial sup-
port by the Helmholtz Virtual Institute “New states of
matter and their excitations,” SFB 658, SPP1285 and
SPP1666 of the Deutsche Forschungsgemeinschaft, the
Humboldt Foundation, the Minerva Stiftung, as well as
DOE contract DE-FG02-08ER46482 at Yale University.
We are grateful to the Aspen Center for Physics, sup-
ported by NSF Grant No. PHYS-106629, for hospitality
while this line of work was initiated.

[1] A. Kitaev, Ann. Phys. 303, 2 (2003).
[2] C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S.

Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[3] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[4] C.W.J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113

(2013).
[5] S.R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137

(2015).
[6] L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407

(2008).
[7] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R)

(2009).
[8] R.M. Lutchyn, J.D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
[9] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).
[10] S. Nadj-Perge, I.K. Drozdov, B.A. Bernevig, and A. Yaz-

dani, Phys. Rev. B 88, 020407(R) (2013).
[11] B. Braunecker and P. Simon, Phys. Rev. Lett. 111,

147202 (2013).
[12] M.M. Vazifeh and M. Franz, Phys. Rev. Lett. 111,

206802 (2013).
[13] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys.

Rev. Lett. 111, 186805 (2013).
[14] F. Pientka, L.I. Glazman, and F. von Oppen, Phys. Rev.

B 88, 155420 (2013).
[15] Y. Kim, M. Cheng, B. Bauer, R.M. Lutchyn, and S. Das

Sarma, Phys. Rev. B 90, 060401(R) (2014).
[16] Y. Peng, F. Pientka, L.I. Glazman, and F. von Oppen,

Phys. Rev. Lett. 114, 106801 (2015).
[17] K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103,

237001 (2009).
[18] K. Flensberg, Phys. Rev. B 82, 180516 (2010).

[19] M. Wimmer, A.R. Akhmerov, J.P. Dahlhaus, C.W.J.
Beenakker, New J. Phys. 13, 053016 (2011).

[20] V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M.
Bakkers, and L.P. Kouwenhoven, Science 336, 1003
(2012).

[21] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Nature Phys. 8, 887 (2012).

[22] H.O.H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.T.
Deng, P. Caroff, H.Q. Xu, and C.M. Marcus, Phys. Rev.
B 87, 241401(R) (2013).

[23] S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J.
Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Sci-
ence 346, 602 (2014).

[24] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B.W. Hein-
rich, K.J. Franke, Phys. Rev. Lett. 115, 197204 (2015).

[25] L. Yu, Acta Phys. Sin. 21, 75 (1965).
[26] H. Shiba, Prog. Theor. Phys. 40, 435 (1968).
[27] A.I. Rusinov, Zh. Eksp. Teor. Fiz. Pisma Red. 9, 146

(1968) [JETP Lett. 9, 85 (1969)].
[28] A.V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod.

Phys. 78, 373 (2006).
[29] K.J. Franke, G. Schulze, and J.I. Pascual, Science 332,

940 (2011).
[30] R.S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K.

Yoshida, K. Shibata, K. Hirakawa, and S. Tarucha, Phys.
Rev. Lett. 104, 076805 (2010).

[31] E.J.H. Lee, X. Jiang, M. Houzet, R. Aguado, C.M. Lieber
and S. De Franceschi, Nat. Nano. 9, 79 (2014).

[32] F. Pientka, G. Kells, A. Romito, P.W. Brouwer, F. von
Oppen, Phys. Rev. Lett. 109, 227006 (2012).

[33] A. Yazdani, B.A. Jones, C.P. Lutz, M.F. Crommie, and
D.M. Eigler, Science 275, 1767 (1997).

[34] A. Yazdani, C.M. Howald, C.P. Lutz, A. Kapitulnik, and
D.M. Eigler, Phys. Rev. Lett. 83, 176 (1999).

[35] E.W. Hudson, K.M. Lang, V. Madhavan, S.H. Pan, H.
Eisaki, S. Uchida, and J.C. Davis, Nature (London) 411,
920 (2001).

[36] S.-H. Ji, T. Zhang, Y.-S. Fu, X. Chen, X.-C. Ma, J. Li,
W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett.
100, 226801 (2008).

[37] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B.W. Hein-
rich, K.J. Franke, Phys. Rev. Lett. 115, 087001 (2015)

[38] D. Badiane, M. Houzet, J.S. Meyer, Phys. Rev. Lett. 107
177002 (2011)

[39] P. San-Jose, J. Cayao, E. Prada, R. Aguado, New. J.
Phys. 15, 075019 (2013)

[40] Supplementary Material
[41] J.C. Cuevas, A. Mart́ın Rodero, and A. Levy Yeyati,

Phys. Rev. B, 54, 7366 (1996).
[42] I. Martin and D. Mozyrsky, Phys. Rev. B 90, 100508

(2014).
[43] A. Levy Yeyati, J.C. Cuevas, A. López-Dávalos, and A.
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SUPPLEMENTARY MATERIAL

I. GENERAL FORMULA FOR ANDREEV CURRENT INTO SUBGAP STATES

In this section, we outline the derivation of the tunneling current in Eq. (2) of the main text. This standard
calculation is included to make the presentation self contained and closely follows the derivation for 2 × 2 Green
functions presented in Ref. [37]. We describe the tunneling contact by the Hamiltonian Ĥ = ĤL + ĤR + ĤT , where
the three terms refer to the lead (tip), the sample, and the tunnel coupling. The superconducting tip with chemical
potential µ and gap ∆ is described by the BCS Hamiltonian

ĤL =

∫
dk

(2π)3

[∑
σ

ξk ĉ
†
L,kσ ĉL,kσ + (∆ĉ†L,k↑ĉ

†
L,−k↓ + h.c.)

]
, (13)

where ξk = k2/2m − µ and cL,kσ (c†L,kσ) annihilates (creates) an electron in the tip with momentum k and spin σ.
The sample Hamiltonian generally takes the form

ĤR =

∫
dx
∑
σ,σ′

ĉ†R,σ(x)HR,σσ′(x)ĉR,σ′(x), (14)

where HR,σσ′(x) is the Hamiltonian in first quantization and ĉR,σ(x) annihilates an electron with spin σ at position
x in the sample. We choose the superconducting order parameters in tip and sample to be real such that the
superconducting phase difference φ(τ) enters the tunneling Hamiltonian

ĤT (τ) =
∑
σ

[
teiφ(τ)/2ĉ†L,σ(0, τ)ĉR,σ(x, τ) + te−iφ(τ)/2ĉ†R,σ(x, τ)ĉL,σ(0, τ)

]
, (15)

where τ the time argument, t is the hopping strength, and ĉL,σ(0, τ) =
∫
dkĉL,kσ(τ)/(2π)3 annihilates an electron in

the tip at the tunneling contact, which is located at the origin. The sample is contacted at position x and we suppress
the position arguments in the following for simplicity. The time-dependent phase difference between the tip and the
sample, φ(τ) = φ0 + 2eV τ , depends on the voltage V applied to the junction.

We evaluate the current from the Heisenberg equation of motion Î = −e ˙̂
NL = ie[N̂L, ĤT ], where N̂L is the

electron-number operator of the tip. Taking the expectation value, we obtain

I(τ) =
e

2
Tr
{
τz
[
t̂(τ)G<RL(τ, τ)−G<LR(τ, τ)t̂∗(τ)

]}
, (16)

where τz is a Pauli matrix acting in Nambu space, t̂(τ) = teiτzφ(τ)/2τz, and we have introduced the lesser Green

function in Nambu and spin space with matrix elements given by (G<αβ)ij = i〈Ψ†βjΨαi〉. Here the Ψαj are components

of the Nambu spinor Ψα =
(
cα,↑, cα,↓, c

†
α,↓,−c

†
α,↑

)T
with α, β = L,R.

We are interested in tunneling processes to lowest order in the tunneling amplitude and therefore neglect Andreev
reflections in the tip, which give rise to multiple Andreev reflections. As these processes involve several single-particle
tunneling events they enter only at higher orders in the tunneling amplitude. This approximation is exact when the
sample is spin polarized (e.g., a proximity-coupled semiconductor nanowire in a strong magnetic field) and one of
the two spin components is fully normal reflected. In this case, spin-flipping Andreev reflections in the tip do not
contribute to transport.

We follow the nonequilibrium Green function approach described in Ref. [37, 41] setting the offdiagonal elements
of the tip Green function in Nambu space to zero and denoting the diagonal elements by gL(ω). We obtain the dc
current

I =
et2

2h

∫
dω Tr

{
G>,eeR (ω)g<L (ω − eV )−G<,eeR (ω)g>L (ω − eV )− g>L (ω + eV )G<,hhR (ω) + g<L (ω + eV )G>,hhR (ω)

}
,

(17)
where GR(ω) =

∫
dτ1dτ2 exp[iω(τ1 − τ2)]GR(τ1, τ2) is the sample Green function in presence of the tip, (e, h) are

indices in Nambu space denoting particle and hole components, and the trace is taken in spin space. This expression
has been derived in Ref. [37] for the case when tip and sample are both spin-conserving s-wave superconductors.
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According to the Langreth rule, the lesser Green function of the sample can be written as

G<R = g<R + grRΣrRG
<
R + grRΣ<RG

a
R + g<RΣaRG

a
R

= (1− grRΣrR)
−1
g<R(1 + ΣaRG

a
R) +GrRΣ<RG

a
R. (18)

Similar expressions also exist for the greater Green function. The first term involving g<R gives rise to a single-particle
current which at subgap energies requires inelastic processes in the sample. The second term leads to the current
carried by Andreev reflections. The sample self energy due to the presence of the tip can be written as

Σ(ω) = t2 diag(gL(ω−), gL(ω−), gL(ω+), gL(ω+)), ω± = ω ± eV. (19)

We now focus on the Andreev current and defer the discussion of the single-particle current to Sec. V. Thus
neglecting the first term in Eq. (18) we find Eq. (2) of the main text,

I(V ) =
et4

2h

∫
dω Tr

{
Gr,ehR (ω)g>L (ω + eV )Ga,heR (ω)g<L (ω − eV )−Gr,ehR (ω)g<L (ω + eV )Ga,heR (ω)g>L (ω − eV )

}
+
et4

2h

∫
dω Tr

{
g>L (ω + eV )Gr,heR (ω)g<L (ω − eV )Ga,ehR (ω)− g<L (ω + eV )Gr,heR (ω)g>L (ω − eV )Ga,ehR (ω)

}
=

4π2et4

h

∫
dω ‖GehR (ω)‖2ρ(ω + eV )ρ(ω − eV ) [nF (ω − eV )− nF (ω + eV )] (20)

where Gr,ehR is the electron-hole block of the (retarded) Green function of the sample and ‖G‖ =
√

Tr (GG†) denotes
the Frobenius norm of matrix G. Here we have used the relations g<L (ω) = 2πinF (ω)ρ(ω) and g>L (ω) = −2πi(1 −
nF (ω))ρ(ω), where nF (ω) is the Fermi distribution function, ρ(ω) = ν0 |ω| θ(ω2−∆2)/

√
ω2 −∆2 and ν0 is the normal

density of state at the Fermi energy in the tip. Due to the step functions in ρ(ω ± eV ) the integration interval is
restricted to ω ∈ (−(eV −∆), eV −∆). Note that in this interval the self energy is purely imaginary.

II. CONDUCTANCE FOR ZERO-ENERGY BOUND STATES

In this section, we calculate the conductance for isolated Majorana or Andreev states at zero energy, cf. Eqs. (6)
and (9) of the main text, neglecting the contributions of all other states in the sample. While the main text focuses
on Andreev states in s-wave superconductors, we also consider more general spin structures here.

A. Topological superconductor with Majorana bound states

We first consider a topological superconductor substrate with a single zero-energy Majorana state to the tip. The
Majorana wavefunction has the form Φ0(x) = (u↑(x), u↓(x)∗, u↓(x),−u↑(x)∗)

T
which maps onto itself under a particle-

hole transformation. Neglecting contributions from other states, we can approximate the sample Green function by
gM (ω, x, x) = Φ0(x)Φ†0(x)/ω. Note that we suppress position arguments throughout this section. Including the
coupling to the tip the full Green function can be written as

G =
1

ω − Σ̃M
Φ0Φ†0, (21)

where Σ̃M = Φ†0ΣΦ0 is the self energy projected onto the Majorana bound state. We obtain

Greh(ω) =
1

ω + iπt2 |ζ|2 [ρ(ω+) + ρ(ω−)]

(
u↑u

∗
↓ −u2

↑
u∗2↓ −u∗↓u↑.

)
(22)

where we introduced |ζ|2 = |u↑|2 + |u↓|2. Thus we find

‖Geh(ω)‖2 =
|ζ|4

ω2 + π2t4 |ζ|4 [ρ(ω+) + ρ(ω−)]
2 (23)
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and using Eq. (20) we obtain the current

IM (V ) =
e

h

∫
dω

ΓMe (ω)ΓMh (ω)

ω2 +
(
ΓMe (ω) + ΓMh (ω)

)2
/4

[nF (ω − eV )− nF (ω + eV )] , (24)

with ΓMe/h(ω) = 2πt2 |ζ|2 ρ(ω∓).
We now evaluate the current near the threshold eV = ∆ + η, η � ∆. The current at the opposite threshold

eV = −∆ follows from I(−V ) = −I(V ). At low temperatures, T � ∆, we can set nF (ω− eV )−nF (ω+ eV ) ∼ 1 and
the Majorana current reads

IM (V ) ' 2e

h

∫ η

0

dω
ΓMe (ω)ΓMh (ω)

ω2 + (ΓMe (ω) + ΓMh (ω))2/4
. (25)

To lowest order in η, one can approximate

ρ(ω ± eV ) ' ν0

√
∆

2

θ(η ± ω)√
η ± ω

. (26)

This yields

IM (V ) ' 2e

h
η(4− π)Λ(η/ωt) (27)

as given in Eq. (6) of the main text, where we have defined

Λ(x) =
4

4− π

∫ 1

0

dz
1√

1− z2

1

z2x3 +
(

1√
1+z

+ 1√
1−z

)2 . (28)

At the threshold we find

Λ(0) =
1

4− π

∫ 1

0

dz
2
√

1− z2

1 +
√

1− z2
= 1 (29)

which yields Eq. (1) of the main text. At large voltages, η � ωt, we instead find a negative differential conductance
dI/dV ∝ −1/η3 in agreement with the lineshape shown in Fig. (1) of the main text.

B. Non-topological Andreev states at zero-energy

A non-topological zero-energy Andreev bound state is characterized by two Nambu spinors

Φ+ =

(
u
v

)
, Φ− =

(
Θv
−Θu

)
(30)

where u = (u↑, u↓)
T, v = (v↓, v↑)

T are functions of space and Θ = −iσyK is the time-reversal operator with K the
complex conjugation. The Lehmann representation of the real space Green function is thus a 4× 4 Matrix in Nambu
and spin space

g(ω) =
Φ+Φ†+ + Φ−Φ†−

ω
=

1

ω
( Φ+,Φ− )

(
Φ†+
Φ†−

)
. (31)

When spin is a good quantum number the Green function may be reduced to a 2 × 2 Matrix in particle-hole space
only. In the case of pure s-wave pairing, where Cooper pairs are formed from electrons with opposite spin, we can
set u↓ = v↑ = 0. The spinors Φ+ and Φ− then belong to the orthogonal subspaces spanned by (c↑, 0, c

†
↓, 0) and

(0, c↓, 0,−c†↑). The Green function decomposes into two 2×2 blocks, which are related by particle-hole symmetry and
have equal contributions to the current. In the opposite case of a spin polarized p-wave superconductor we can set
u↓(x) = v↓(x) = 0. Now Φ+ and Φ− belong to the same subspace spanned by (c↑, 0, 0,−c†↑) and the Green function
is a single 2× 2 matrix.
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It is therefore useful to first discuss a general 2× 2 Nambu Green function

g =

(
gee geh
ghe ghh

)
. (32)

We will return to the 4×4 case in Sec. II B 3 when discussing superconductors with spin-orbit coupling. The coupling
to the tip can be included through the self-energy Σr(ω) = −iπt2 diag(ρ(ω−), ρ(ω+)). The Green function of the
coupled system is obtained from the Dyson equation G = g(1− Σg)−1. We find

Greh(ω) =
geh(ω)ω

ω − λ(ω) + iπωt2(gee(ω)ρ(ω−) + ghh(ω)ρ(ω+))
(33)

where λ(ω) = ωπ2t4ρ(ω+)ρ(ω−) det g(ω). Using Eq. (20), we obtain the current

I(V ) =
4π2et4

h

∫ eV−∆

∆−eV
dω

ω2 |geh(ω)|2 ρ(ω−)ρ(ω+)

[ω − λ(ω)]2 + π2ω2t4 [(gee(ω)ρ(ω−) + ghh(ω)ρ(ω+)]
2 . (34)

We now calculate the conductance for a zero-energy Andreev state in the limiting cases of pure s-wave and spinless
p-wave pairing and for a general spin-structure of the order parameter in the presence of spin-orbit coupling. The
result for the three cases are compared in Fig. 3.

1. s-wave pairing

When u↓ = v↑ = 0 the Green function in Eq. (31) is block diagonal. The 2× 2 block in the basis (c↑, c
†
↓) reads

g =
1

ω

(
|u↑|2 u↑v

∗
↓

u∗↓v↑ |v↓|
2

)
. (35)

We find det g(ω) = 0 and thus λ(ω) vanishes. Using Eq. (34), we arrive at the current as given in Eq. (9) of the main
text,

IA(V ) =
2e

h

∫ eV−∆

∆−eV
dω

ΓAe (ω)ΓAh (ω)

ω2 +
(
ΓAe (ω) + ΓAh (ω)

)2
/4

(36)

where ΓAe (ω) = 2πt2 |u↑|2 ρ(ω−), ΓAh (ω) = 2πt2 |v↓|2 ρ(ω+). We have included an extra factor of two to account for
the second 2 × 2 block of the Green function which yields an equal contribution as a consequence of particle-hole
symmetry. Near the threshold when eV = ∆ + η, η � ∆ we find

IA(V ) = 2IM (V )f(|u(r)|2/|v(r)|2), (37)

which can be obtained by a similar analysis as for the Majorana bound state in the previous section. The dimensionless
function

f(x) =
2x

4− π

∫ 1

−1

dz
√

1− z2/(x
√

1− z +
√

1 + z)2 (38)

takes on values between 0 and 1. Thus, the threshold differential conductance is

dIA
dV

∣∣∣∣
eV=∆

=
4e2

h
f(|u(r)|2/|v(r)|2)(4− π). (39)

2. p-wave pairing

In a spin-polarized p-wave superconductor Cooper pairs we can set u↓ = v↓ = 0. The Green function of an Andreev
state reduces to a single 2× 2 matrix

g =
1

ω

(
|u↑|2 + |v↑|2 2u↑v

∗
↑

2u∗↑v↑ |u↑|2 + |v↑|2

)
. (40)
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We have introduced λ(ω) = π2t4ρ(ω+)ρ(ω−)(|u↑|2 − |v↑|2)2/ω and using Eq. (34) we obtain

IA(V ) =
16π2et4

h

∫ η

−η
dω

|u↑v↑|2 ρ(ω−)ρ(ω+)[
ω − ρ(ω−)ρ(ω+)π2|t4|

ω

(
|u↑|2 − |v↑|2

)2
]2

+ π2t4(|u↑|2 + |v↑|2)2[ρ(ω+) + ρ(ω−)]2

(41)

with eV = ∆ +η. Close to the threshold η → 0 the denominator is dominated by λ(ω) ∝ 1/η2 and we generically find
I ∝ η4θ(η). Hence the conductance G ∝ η3θ(η) is continuous in contrast to the case of s-wave pairing. At certain
points in space it may be possible that |u↑| = |v↑| in which case the conductance still jumps at the threshold. Slightly
moving away from such points should restore the smooth onset of the conductance at the threshold. The conductance
exhibits a peak at the characteristic scale η ∼ ωt with ωt = (max{|u↑|2, |v↑|2}ν0t

2
√

∆)2/3 as shown in Fig. 3.

3. Generic case with spin-orbit coupling

Realistic proposals of topological superconductors typically involve a mixture of s-wave and p-wave pairing. In
particular, such pairing arises in any superconductor with spin-orbit coupling. In this case all components of u and
v are generically nonzero. The full sample Green function including the coupling to the tip due to the self-energy in
Eq. (19) can be written in terms of Dyson series

G =
1

ω

(
Φ+ Φ−

) [
1 +

1

ω

(
Φ†+
Φ†−

)
Σ
(

Φ+ Φ−
)

+ . . .

](
Φ†+
Φ†−

)
. (42)

A straightforward calculation reveals

Greh =

[
(ω − Σ̃r−−)u + Σ̃r−+(Cv)

]
v† −

[
(ω − Σ̃r++)Cv + Σ̃r+−u

]
(Cu)†

ω2 − ω(Σ̃r++ + Σ̃r−−) + Σ̃r++Σ̃r−− − Σ̃r+−Σ̃r−+

(43)

where the projected self-energies are

Σ̃r++(ω) = −iπt2
[
‖u‖2ρ(ω−) + ‖v‖2ρ(ω+)

]
(44a)

Σ̃r−−(ω) = −iπt2
[
‖v‖2ρ(ω−) + ‖u‖2ρ(ω+)

]
(44b)

Σ̃r+−(ω) = −iπt2〈u,Θv〉 [ρ(ω−) + ρ(ω+)] (44c)

Σ̃r−+(ω) = −iπt2〈Θv,u〉 [ρ(ω−) + ρ(ω+)] = −Σ̃r+−(ω)∗, (44d)

and 〈·, ·〉 is the inner product. In the above derivations, we have used the anti-unitarity of the time-reversal operator
and that Θ2 = −1, namely 〈u,Θv〉 = 〈v,Θ†u〉 = −〈v,Θu〉. Then the norm can be written as

‖Geh‖2 = W
2ω2 +Wπ2t4Y

{
[ρ(ω+)2 + ρ(ω−)2]Z + 4ρ(ω+)ρ(ω−)Y

}
{ω2 −Wπ2t4 [(ρ(ω+)2 + ρ(ω−)2)Y + Zρ(ω+)ρ(ω−)]}2 +Wω2π2t4(Z + 2)[ρ(ω−) + ρ(ω+)]2

(45)

where

W = ‖u‖2‖v‖2 + |〈u,Θv〉|2 (46a)

Y =
(
‖u‖2‖v‖2 − |〈u,Θv〉|2

)
/W (46b)

Z =
(
‖u‖4 + ‖v‖4 − 2 |〈u,Θv〉|2

)
/W. (46c)

The differential conductance is then a function of Y , Z and η/ω̃t, where ω̃3
t = ∆ν2

0π
2t4W . The parameter Y

interpolates between s-wave pairing (Y = 1, Sec. II B 1), where the threshold conductance is maximal, p-wave pairing
(Y = 0, Sec. II B 2), where the threshold conductance is zero. In Fig. 3 we show the conductance for different values
of this parameter.
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FIG. 3. Conductance near the threshold. The parameters for the s-wave pairing case are Y = 1, Z = 4.25. For the p-wave
pairing case, Y = 0, Z = 1.13. And in the case with spin-orbit coupling, Y = 0.05, Z = 0.74.

III. CONTINUUM CONTRIBUTION TO THE CONDUCTANCE

In this section, we provide details on evaluating the contribution of the quasiparticle continuum to the conductance
near the threshold. We identify two different effects of the continuum states, namely, (a) a possible smoothening of
the step in the bound-state conductance [see Fig. 1(a) and Eq. (10) of the main text] due to interference between
resonant and nonresonant Andreev reflections and (b) additonal contributions to the conductance from nonresonant
Andreev reflections. The latter effect becomes important when probing the conductance away from the bound state,
where resonant and nonresonant Andreev reflections compete as discussed in the main text.

A. Continuum effect on resonant Andreev reflections

1. General considerations

As follows from Sec. II, the lineshape of a zero-energy Andreev state in an s-wave superconductor closely resembles
that of a Majorana state. In particular, the conductance exhibits a step at the threshold eV = ∆ in both cases. We
now revisit these two cases and discuss whether this step is robust when the quasiparticle continuum is taken into
account. As discussed in the main text, we find a suppression of the conductance for the Andreev state close to the
threshold, while the step remains robust for the Majorana. This behavior is reminiscent of tunneling from a normal
metal tip, where Majorana states appear as a robust zero-bias conductance peaks while zero-energy Andreev states
generically exhibit zero conductivity.

For simplicity, we focus our analysis on samples in which spin is a good quantum number and that can be described
in 2 × 2 Nambu space. An example of a more general model is discussed in Sec. IV. In particular, we consider an
s-wave superconductor with a zero-energy Andreev state and a spinless p-wave superconductor with a Majorana state.
In these cases the Lehmann representation of the Green function reads

g(ω) =
Φ0(x)Φ†0(x)

ω
+
∑
n

∫
|E|≥∆s

dE
ΦE,n(x)Φ†E,n(x)

ω − E
, (47)

where the spinor Φ0 describes a single zero-energy bound state and ΦE,n are continuum states above the gap ∆s with
energy E and index n labeling the degeneracy. Using this expression in the Green function in the presence of a tunnel
coupling in Eq. (33) and expanding to lowest order in energy, we obtain

Greh(ω) =
Φ0(r)Φ†0(r)

ω − λ(ω) + i(Γe + Γh)/2
. (48)
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To determine the effect of the extra term λ(ω) ∝ det g(ω) we analyze the energy dependence of det g(ω) in more
detail. The function g(ω) has a simple pole at ω = 0 and branch cuts on the real axis for |ω| > ∆s but is analytic

elsewhere. The residue of g(ω) at ω = 0 is Φ0(x)Φ†0(x) which has zero determinant and we can thus write

lim
ω→0

ω2 det g(ω) = 0 (49)

and expand det g(ω) as a Laurent series around ω = 0

det g(ω) =

∞∑
n=−1

cnω
n. (50)

Furthermore g(ω) is hermitian at nonzero subgap energies and thus its determinant is real. We now determine the
lowest-order cotribution to det g for Majorana and Andreev states.

2. Majorana states

The Green function of a topological superconductor satisfies particle-hole symmetry UCg(ω)U†C = −g∗(−ω) with a
unitary operator UC . This yields det g(ω) = − det g∗(−ω) and reality further requires det g(ω) to be an even function
of ω. Hence, we obtain c−1 = 0 and λ(ω) ∼ ωt4ρ(ω+)ρ(ω−), which approaches a constant in the limit η = eV −∆→ 0+

with |ω| < η. The Majorana contribution to the current reads

IM (V ) ' 2e

h

∫ η

0

dω
ΓMe (ω)ΓMh (ω)

(ω − λ)2 + (ΓMe (ω) + ΓMh (ω))2/4
. (51)

The rates ΓMe/h diverge at the threshold and the continuum term λ(ω) becomes negligible. The threshold conductance
of Majorana states thus remains unaffected by the continuum states.

3. Zero-energy Shiba state

In contrast to Majoranas, the 2 × 2 Green function describing zero-energy Andreev states generically does not
satisfy particle-hole symmetry and thus c−1 6= 0. As an example of a system with trivial zero-energy Andreev state,
we consider a magnetic impurity in an s-wave superconductor, which induces a bound state localized at the impurity,
known as a Shiba state. The Hamiltonian describing a Shiba state localized at the origin due to a magnetic impurity
can be written in first quantization as

HS(x) = HBCS(x) + (V τz − JSσz)δ(x), (52)

where τi and σi are Pauli matrices in Nambu and spin space, where V and JS are the potential scattering and
exchange coupling strength. Since HS is block diagonal in spin space, we only need to deal with one of the blocks, say
σz = 1. The other block related to the first by particle-hole symmetry contributes a second (equivalent) zero-energy
state as mentioned above. The sample Green function gS at the impurity position has the form [37]

gS(ω) =
πνs

2ωα− (1− α2 + β2)
√

∆2
s − ω2

(
ω + (α+ β)

√
∆2
s − ω2 ∆s

∆s ω + (α− β)
√

∆2
s − ω2

)
, (53)

where νs and ∆s are the normal density of states and gap of the sample and we introduced the dimensionless
parameters α = πν0JS and β = πν0V . The Shiba bound state energy is given by

ε0 = ∆s
1− α2 + β2√

(1− α2 + β2)2 + 4α2
. (54)

Thus, since we focus on zero-energy bound states we set α2 = 1 + β2. After a straightforward calculation, we obtain

ω det g(ω) ' π2ν2
s∆s

2α
(55)
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for small ω. From the Green function we also obtain (for V > 0)

|u|2 = πνs∆s(α+
√
α2 − 1), (56)

|v|2 = πνs∆s(α−
√
α2 − 1). (57)

Near the threshold, for small η = eV −∆, the term ∝ λ(ω) in the denominator of Eq. (34) dominates and we find

IA(V ) =
2e

h

16η2α2

ν2
0ν

2
sπ

3t4∆
. (58)

Thus the conductance dIA/dη is zero at eV = ∆ and then rises linearly as described by Eq. (10) of the main text.
This originates from the interference between resonant and nonresonant Andreev reflection, which suppresses the
differential conductance at eV = ∆. In order to estimate the width of this suppression we determine the value of η
when the term λ in the denominator of Eq. (34) becomes of the same order of magnitude as the tunneling broadening
∼ ωt2[geeρ(ω−) + ghhρ(ω+)], i.e.,

ν2
0∆t4ω det g(ω)

η
∼ ν0|t|2

(
|u|2 + |v|2

)√∆

η
, (59)

which yields

η ∼ ν2
0ν

2
s t

4∆

α4
∼ T

2∆

α4
. (60)

B. Nonresonant Andreev reflection

We now determine the conductance due to nonresonant Andreev reflections from the quasiparticle continuum in
the substrate. To evaluate the conductance contributions from the continuum, we focus on a specific model of a Dirac
Hamiltonian with a domain wall, where the mass changes sign. We first calculate the real space Green function and
then evaluate the conductance as a function of separation from the impurity.

1. Topological superconductor Green function

As an example of a topological superconductor hosting a Majorana state we calculate the Green function of a Dirac
Hamiltonian with a domain wall

HDirac = −ivF∂xτx −m[θ(x)− θ(−x)]τz (61)

in the spinless Nambu basis (ψ,ψ†). Here vF is the velocity of the Dirac fermion and m is the effective mass. The
system satisfies particle-hole symmetry {C, HDirac} = 0 with the charge conjugation operator C = τxK, where K is
the complex conjugation. This is a generic model for the low-energy behavior of a topological superconductor close to
the phase transition. Specifically, a spinless p-wave superconductor with a chemical potential close to the bottom of
the band can be approximated by Eq. (61). To compute the eigenstates of this Hamiltonian it is convenient to solve
for the rotated Hamiltonian eiπτy/4HDirace

−iπτy/4. Notice that the charge conjugation operator is now given by τzK.
One readily shows that the domain wall supports a single Majorana state at zero energy with the wavefunction

ψ0(x) =

√
m

2vF
e−m|x|/vF

(
i
1

)
. (62)

All other states in the system are extended with energies above the gap m. The wavefunctions of the continuum
states can be determined using the ansatz

ψ±ε(x) =

(
msgn{x}
−(vF p∓ ε)

)
eipx [Aθ(−x) +Bθ(x)] +

(
msgn{x}
(vF p± ε)

)
e−ipx [Cθ(−x) +Dθ(x)] , (63)
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where vF p =
√
ε2 −m2 and ε is the positive eigenvalue. The matching condition at x = 0 leads to

A+B + C +D = 0, vF p(A−B − C +D)∓ ε(A−B + C −D) = 0. (64)

For positive-energy solutions, we get

A+D

A+ C
=

ε

vF p
=

√
1 +

(
m

vF p

)2

. (65)

For incoming waves from x = −∞ we require D = 0 and obtain

Cin =
vF p− ε

ε
Ain, Bin = −vF p

ε
Ain. (66)

Similarly, for outgoing waves to x = −∞ we have A = 0 and thus

Cout =
vF p

ε
Dout, Bout = −ε+ vF p

ε
Dout. (67)

This yields the scattering states

ψinε (x) = A

{(
−mθ(−x)−m vF p

ε θ(x)
(ε− vF p)θ(−x)− vF p

ε (ε− vF p)θ(x)

)
eipx +

vF p− ε
ε

(
−m

vF p+ ε

)
θ(−x)e−ipx

}
,

ψoutε (x) = D

{
ε+ vF p

ε

(
−m

vF p− ε

)
θ(x)eipx +

(
mθ(x)−mvF p

ε θ(−x)
(vF p+ ε)θ(x) + vF p

vF p+ε
ε θ(−x)

)
e−ipx

}
. (68)

One can easily check that incoming and outgoing states are orthogonal 〈ψoutε |ψinε 〉 = 0. From the normalization
conditions ‖ψinε ‖ = ‖ψoutε ‖ = 1 we obtain the coefficients A = [2Lε(ε − vF p)]−1/2 and D = [2Lε(ε + vF p)]

−1/2 for a
system of size L. The Green function can now be obtained from its spectral decomposition

g̃(x, x′;ω) =
ψ0(x)ψ0(x′)†

ω
+

∑
ε>0,

α=in,out

[
ψαε (x)ψαε (x′)†

ω − ε
+

(Cψαε (x)) (Cψαε (x′))
†

ω + ε

]
(69)

where we have used the charge conjugation operator C to relate the negative solution to the positive ones. Focusing
on x = x′ = 0 for simplicity we find the wavefunctions of the continuum states

ψinε (0) = − 1√
2Lε(ε− vF p)

vF p

ε

(
m

ε− vF p

)
, ψoutε (0) =

1√
2Lε(ε+ vF p)

vF p

ε

(
−m

ε+ vF p

)
. (70)

Using Eq. (69), we obtain the Green function

g̃(0, 0;ω) =
m

2vFω

(
1 i
−i 1

)
+

1

L

∑
ε>0

ε2 −m2

ε2
2ω

ω2 − ε2

(
1 0
0 1

)
=

1

2vF

m

ω

( √
1− (ω/m)2 i

−i
√

1− (ω/m)2

)
. (71)

Here we have used

1

L

∑
ε>0

=

∫
dp

2π
=

1

2πvF

∫ ∞
m

dε
ε√

ε2 −m2
. (72)

Notice that the matrix commutes with τy, and thus commutes with the rotation operation introduced at the beginning.
We find the Green function for the original Hamiltonian HDirac

g(0, 0;ω) = πνs
m

ω

( √
1− (ω/m)2 i

−i
√

1− (ω/m)2

)
, (73)

where νs = (2πvF )−1 is the normal density of states.
Away from the mass domain wall, the sample Green function at x ≥ 0 can be computed similarly from Eq. (68)

and (69), which yields

gee(x) = ghh(x) =
πνs√

1− (ω/m)2

(m
ω
e−2x/ξ − ω

m

)
geh(x) = ghe(x)∗ = πνs

(
i
m

ω
e−2x/ξ − 1− e−2x/ξ√

1− (ω/m)2

)
. (74)

where ξ = [2πνsm
√

1− (ω/m)2]−1 = vF /m
√

1− (ω/m)2 is the coherence length that characterizes the exponential
decay of the Majorana wavefunction.
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FIG. 4. Differential conductance of the topological superconductor with a mass domain wall. The three curves correspond
different tip locations measured from the domain wall. For all curves we have set ∆T 2/m = 0.016.

2. Differential conductance away from the Majorana state

The Green function has a pole at zero energy whose amplitude decays exponentially away from the domain wall
reflecting the probability density of the Majorana bound state. This singular part fully determines the threshold
conductance and yields the quantized value GM . Notice that limω→0 ω det g = 0 guarantees the robustness of this
quantization consistent with the general argument based on particle-hole symmetry given in Sec. III A 2. The con-
ductance at voltages above the threshold depends on the competition between the singular part and a nonsingular
contribution which originates from the quasiparticle continuum. The continuum contribution can be readily evaluated
for x→∞, where the Green function describes a homogeneous p-wave superconductor,

g(ω) = − πνs√
m2 − ω2

(
ω m
m ω

)
. (75)

Using this expression in the current formula in Eq. (34) we find

I =
4π2e |t|4

h

∫ η

η

dω
ρ+ρ−π

2ν2
sm

2

(m2 − ω2) (1 + π4ν2
s t

4ρ+ρ−)2 + π4ν2
s t

4ω2(ρ+ + ρ−)2

' 8e

h
∆T 2

∫ 1

−1

dz

√
1− z2(

2
√

1− z2 + ∆T 2/η
)2 , (76)

where we introduced the transmission probability of the junction T = π2νsν0t
2 and assumed ∆T 2 � m. This yields

the conductance

G(V ) =
8GM
4− π

∫ 1

0

dz
(2η/∆T 2)

√
1− z2

(1 + (2η/∆T 2)
√

1− z2)3
. (77)

The conductance has a maximum at η ∼ ∆T 2 with a magnitude ∼ 1.3GM and a peak width ∼ ∆T 2. In Fig. 4
we show the differential conductance vs voltage for different separations between tip and domain wall. As the tip
is moved away from the domain wall, nonresonant Andreev reflections become more important and the conductance
peak becomes narrower and slightly higher.

IV. DOMAIN WALL AT THE QSHI EDGE

While the quantized conductance step for the Majorana state derived in the main text is model independent, its
robustness to continuum effects was only shown for spinless models described by a 2× 2 Hamiltonian. As an example



16

of a more realistic model, we consider the edge of a quantum spin Hall insulator (QSHI). We calculate the threshold
conductance including the continuum contribution for the case when the sample is contacted at the domain wall. We
find the universal step at the threshold to be robust in line with the results for the spinless case. This suggests that
the conductance step at the threshold may be robust even for more general models of topological superconductors.

The edge of a QSHI, with a domain wall at the origin, can be described by the first quantized Hamiltonian

H(x) = −ivF∂xσzτz + ∆(x)τx +B(x)σx,

∆(x) = M − m(x)

2
,

B(x) = M +
m(x)

2
,

where

m(x) = m [θ(x)− θ(−x)] . (78)

Applying the unitary transformation U = e
iπ
4 σyei

π
4 τy , we have

H → H̃ = UHU† =


M 0 0 −ivF∂x
0 −m(x) −ivF∂x 0
0 −ivF∂x m(x) 0

−ivF∂x 0 0 −M

 .

Let M � m, and focus on the inner block, which decribes a Dirac field with a domain wall created by a mass jump,
as discussed in Sec. III B 1. According to Eq. (73), the Green function at the domain wall is

g̃(0, ω) = πνs
m

ω


0 0 0 0

0
√

1− ω2

m2 i 0

0 −i
√

1− ω2

m2 0

0 0 0 0

 . (79)

We rotate it back to the original basis g(0, ω) = Ug̃(0, ω)U† and obtain the full Green function

G(0, ω) = g(0, ω)(1− Σ(ω)g(0, ω))−1, (80)

where the self energy is given by

Σ(ω) = t2 diag(g(ω−), g(ω−), g(ω+), g(ω+)). (81)

Calculation reveals

Gr,eh(0, ω) =
πνsm

ω [1 + t4π4ν2
s (ρ(ω−) + ρ(ω+))2] + 2iπ2νsmt2

√
1− ω2

m2 [ρ(ω−) + ρ(ω+)]

×

 i
√

1− ω2

m2 − iπ
(
πνsω
m

)
t2(ρ(ω−) + ρ(ω+))√

1− ω2

m2 − iπ
(
πνsω
m

)
t2(ρ(ω−) + ρ(ω+)) −i

 .

Denoting Γe/h = 4π2νsmt
2ρ(ω∓) we find

‖Geh(0, ω)‖2 =
2(πνs)

2
[
2m2 − ω2(1− (Γe + Γh)2/16m2)

]
ω2 [1− (Γe + Γh)2/16m2]

2
+ (Γe + Γh)2/4

. (82)

We readily verify that the denominator is dominated by the second term at the threshold. In particular, we see
the continuum contribution in the denominator appears proportional to ω2 as for the spinless case. Hence, the
conductance quantization at eV = ∆ is unaffected by the continuum contribution in this model.
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V. SINGLE-PARTICLE CURRENT CONTRIBUTION TO THE CONDUCTANCE

In this section we analyze the single-particle tunneling current that can flow in addition to the Andreev current
discussed above. A single-particle current is possible if the quasiparticle occupying the bound state can relax to
the quasiparticle continuum. Such relaxation can occur, e.g., due to inelastic transitions assisted by phonons or
photons. We concentrate on the Majorana state, although a similar analysis is possible for a trivial Andreev state.
We neglect the quasiparticle continuum and include relaxation as a phenomenological parameter, without specifying
its microscopic origin. We first derive the single-particle current [given in Eq. (11) of the main text], from which we
then calculate the threshold conductance from single-particle tunneling [Eq. (12)].

A. Self energy due to relaxation processes

Let us assume that the local environment of the Majorana state introduces relaxation processes, induced by phonons
or photons, via the self-energy Σph. The substrate Green function can be determined from the Dyson series

gR = g + gΣphg + gΣphgΣphg + . . . , (83)

where g is the Green function without relaxation processes. We approximate the bare substrate Green function g by
the Majorana contribution,

g(ω) = |ψM 〉
1

ω
〈ψM |, (84)

and project the self-energy onto the Majorana subspace introducing

Γqp = 2Im〈ψM |Σph(0)|ψM 〉, (85)

where we approximate the self-energy by its value at zero energy. The invariance of the Majorana state under particle-
hole transformation guarantees that the expectation value 〈ψM |Σph(0)|ψM 〉 is purely imaginary. Thus, the retarded
and advanced Green functions of the Majorana state read

gr,aR (ω) =
|ψM 〉〈ψM |
ω ± iΓqp/2

. (86)

In quasi-equilibrium, we can express the greater and lesser Green function in terms of the retarded and advanced
Green functions,

g<R(ω) = f(ω)(gaR(ω)− grR(ω)) =
Σ<ph(0)

ω2 + Γ2
qp/4

|ψM 〉〈ψM |, (87)

g>R(ω) = −(1− f(ω))(gaR(ω)− grR(ω)) =
Σ>ph(0)

ω2 + Γ2
qp/4

|ψM 〉〈ψM |, (88)

where f(ω) is the quasi-equilibrium distribution function and we used the relations

− iΣ<ph(0) = Γqpf , iΣ>ph(0) = Γqp(1− f). (89)

These terms are the rates for emptying and filling of the delocalized fermion formed by the Majorana at the contact
and a second one far away. Note that local transitions can change the occupation of this state. Since this fermion has
zero energy the two rates are equal iΣ>ph(0) = −iΣ<ph(0) = Γqp/2 according to detailed balance.

B. Expressions for the single-particle current

We can now evaluate the current in Eq. (17). Besides the Andreev current in Eq. (20), we find the single-particle
current from the first term in Eq. (18)

IsM (V ) =
e

4h

∫
dω

Γqp[Γe(ω)nF (ω−)− Γh(ω)nF (ω+)]− Γqp[Γe(ω)(1− nF (ω−))− Γh(ω)(1− nF (ω+))]

ω2 + (Γe(ω) + Γh(ω) + Γqp)
2
/4

, (90)

which gives Eq. (11) in the main text if we take nF (ω−) ' 1 and nF (ω+) ' 0 assuming T � ∆.
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C. Analysis of current

We compute the single-particle current near the threshold at eV = ∆ + η with η � ∆

IsM (V ) ' e

2h

∫ ∆+η

−∆−η
dω

ω
3/2
t Γqp

(
θ(η−ω)√
η−ω + θ(η+ω)√

η+ω

)
ω2 +

(
ω

3/2
t θ(η+ω)√

η+ω
+

ω
3/2
t θ(η−ω)√

η−ω +
Γqp

2

)2

=
eω

3/2
t Γqp

h

∫ ∆

0

dω√
ω

1

(ω − η)2 +

(
ω

3/2
t√
ω

+ Γ
2

)2 , (91)

to lowest order in η. We thus obtain the differential conductance

GsM (x) ' 2e2Γqp

hωt

∫ ∞
0

dω√
ω

ω − x[
(ω − x)2 +

(
ω−1/2 + Γqp/(2ωt)

)2]2 , x =
eV −∆

ωt
. (92)

Now we focus on the conductance at the threshold, namely x = 0. For weak tip-substrate tunneling, ωt � Γqp, we
find

GsM '
2e2Γqp

hωt

∫ ∞
0

dω

√
ω[

ω2 + (Γqp/(2ωt))
2
]2

=
2πe2

h

ω
3/2
t

Γ
3/2
qp

, (93)

where the x-integration is elementary. In the opposite limit of strong tip-substrate tunneling, ωt � Γqp, we can
neglect the contribution of Γqp in the denominator. In this limit, we find the peak conductance

GsM (∆) ' 2e2Γqp

hωt

∫ ∞
0

dω

√
ω

[ω2 + 1/ω]
2

=
2πe2

9h

Γqp

ωt
. (94)

The parametric dependence of GsM is summarized in Eq. (12) of the main text.
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