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Abstract

In one-dimension and for discrete uncorrelated random potentials, such as tight binding models, all
states are localized for any disorder strength. This is in contrast to continuous random potentials,
where we show here that regardless of the strength of the random potential, we have delocalization in
the limit where the roughness length goes to zero. This result was obtained by deriving an expression
for the localization length valid for all disorder strengths. We solved a nonlinear wave equation, whose
average over disorder yields the localization properties of the desired linear wave equation. Our results,
not only explain the origin of the difficulty to observe localization in certain physical systems, but also
show that maximum localization occurs when the roughness length is comparable to the wavelength,
which is relevant to many experiments in a random medium.

For more than halfa century, thanks to the pioneering work by Anderson [1], we have taken for granted that
strong disorder will lead to localization of all states, particularly in low dimensions and for uncorrelated
disorder. Spatial localization occurs if an electron, an atom or even a photon, cannot propagate in a medium
when disorder is large. Localization can also occur in time due to fluctuations [2] and was found to be relevant to
the expansion of our Universe [3]. Formally, the propagation of probability decays exponentially with the
medium’s length, which is known as Anderson localization (AL). Even in the presence of interactions between
particles, strong localization is expected to occur, which is now popularized with the term many-body
localization [4]. Most of the theoretical work, has focused on discrete random equations, such as tight binding
models, where the theoretical results for AL are confirmed by numerous numerical studies and the main
message can be summarized as ‘all states are localized for uncorrelated disorder in one-and two-dimensions; in
higher dimensions this is true for sufficiently strong disorder’ [5].

Experimentally, localization has been observed in many different systems, including electrons [6], photons
[7]and atoms [8, 9]. Moreover, applications are becoming increasingly important, particularly in random lasing
[10, 11]and optics [12]. These different systems all share a similar underlying wave equation. Here, instead of
looking at discrete equations, we look directly at the continuous wave equation and show that for arbitrarily
strong disorder, we have no localization when the roughness length vanishes, even in one-dimension. While at
intermediate roughness, localization is maximized. This is in stark contrast to discrete models, where no
equivalent delocalization occurs. To obtain this result, we used a new approach based on solving an equivalent
nonlinear disordered wave equation. Our result explains why it is sometimes difficult to observe localization in
certain physical systems when the roughness length is not of the same order as the wavelength.

AL has become an important phenomenon well beyond its original work on tight binding models with
random potentials and couplings, which describe quantum particles or spins [1]. AL is important in photonic
systems [12—15], random lasers [10, 11], quantum information noise and entanglement [16], atomic systems
[8, 9], mechanical systems [7, 17], biological systems [ 18], cavity QED [19], as well as cosmology, where inflation
is dependent on fluctuations [3]. All these systems share a common underlying wave equation, which can be
written as

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Top graph: a typical Gaussian disorder potential, v (x, y) with correlation length / connected by leads (in yellow). For a quasi
1D system in the lowest transverse mode the transverse potential can be integrated out to yield an effective 1D potential, v(x) shown in
the middle graph. The bottom graph shows the numerically calculated average transmission for such a random potential as a function
of energy and correlation length 1.

[0+ P20 Jvw) =0, 1)

where v is the amplitude, p(x) = /¢ — v(x), the classical momentum, v(x) the random medium and e the
energy. We will restrict our attention here to the quasi-one-dimensional situation (Q1D), where the effect of
disorder is the strongest. However, many of these results can be extended to higher dimensions and will be
discussed elsewhere. Solutions to equation (1) can be obtained for a random potential v(x) that is not continuous.
For instance, if v(x) is written as a sum of delta functions or square wells, equation (1) becomes equivalent to a
tight binding equation studied by Anderson and others [1, 20-22]. The main result is the localization of all states
if the potentials are uncorrelated, regardless of the strength of disorder. In the presence of correlations in the
disorder, some states can be delocalized too [23-27]. It is important to note here, that the minimum correlation
length in tight binding models is limited to the smallest distance between impurities or orbitals. However, when
several next nearest neighbors coupling elements are non-zero or when there is mixing between different energy
bands, this induces effective correlations between neighboring onsite potentials. Hence, in this case too, a
continuous potential model is more adapted.

When the potential v is continuous, the situation changes. For instance, we can consider a typical Q1D
random potential of width L,. Q1D means that at low energies, we can restrict ourselves to the one-dimensional
wave equation (1), where only the lowest transverse mode is relevant and the Q1D solution is simply
sin(my /L, )% (x), where 1) is the solution for potential v (x) = f sin(my /L,)v (x, y)dy illustrated in figure 1. We
can consider the transport problem and evaluate numerically the transmission 7, through such a potential
assuming that we have perfect leads or wave guides at each end and represented in yellow in the figure. The
numerical result is obtained by discretizing equation (1) and then computing the disorder averaged transmission
for a given system length. Care is taken in choosing a discretization parameter much smaller than both the
disorder correlation length, /, and the wavelength. This leads to the non-monotonic behavior of the transmission
as a function of energy and correlation length I shown in figure 1. At high enough energies and /, the transmission
is maximum (1 in this model), while it is close to zero for a certain range of energies and I. This is the strong
localization regime (AL), which is usually discussed in 1D random systems. In the opposite limit of vanishing
correlation length [, the transmission is again maximum, which becomes a fully delocalized stateat I — 0. We
show below, that this regime is robust with increasing disorder as represented in figure 2.

For low disorder, we can understand the result in figure 1 using the perturbative approach to disordered
potentials [27]. In this case it was found that when € >> v, the inverse localization length, or Lyapounov
exponent A, is given by A, ~ %ﬁk“), where ¢, (x) = (v(0)v(x))is the binary correlator of Fourier transform
¢, (k), with kg = /€ the wavenumber, and ( - ) the disorder average. This resultleads to a delocalization—
localization—delocalization dependence as a function of the disorder correlation length / shown in more detail in
figure 3. To compute \, we considered a Gaussian correlated potential, i.e., (v (0)v (x)) = o2 e /2 with
amplitude o,. Such a Gaussian binary correlator is obtained, for instance, when the potential, ¥(x) is a sum of
Gaussian impurities located at random sites. Representative potentials with different correlation lengths / are
shown in figure 3(a). The small disorder (0, < ¢) result for the Lyapounov exponent is given by

2
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Figure 2. The Lyapounov exponent A as a function of correlation length I for different values of the disorder strength (here o, varies
from 0.3to 1.6 and € = 1.9, hence the potential sometimes exceeds the energy). The binary correlator is taken to be Gaussian. The
dots are the results obtained numerically for the decay of the transmission, with errors smaller than the size of the dots, while the lines
are 2\, from expression (2) with no fitting parameters. The factor 2 comes from the difference in defining A from the transmission
versus the wavefunction amplitude.
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Figure 3. (a) Examples of Gaussian disorder potentials with different correlation lengths (/= 0.01,/=0.3,and [ = 1) but with the same
standard deviation (o, > 1.6). (b) Correlation length (/) dependence of the Lyapounov exponent () for different values of the
disorder strength (0, from 0.07 to 1.1) and € = 1.9. The dots represent A obtained numerically from the transmission, while the red
curves (2)\,,) are from the perturbative expression given in equation (2).
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which implies that for both ] — 0and/ — o0, A,, — 0, while maximum localization occurs for | = 1/2k,.In
addition, we also have \,, — 0 for € — o0. This result differs substantially from the localization behavior of the
1D disordered Anderson tight binding model (AM), where localization occurs for all energies [20]. Moreover, in
the AM, localization () does not vanish at the smallest correlation length. However, long range correlations in
the AM model can also lead to delocalization [28, 29], similarly to the continuous case shown here. In general,
there is a decrease of the Lyapounov exponent with energy as seen by the € ~! prefactor in equation (2), which is
also true in higher dimensions [30]. However, correlations such as the roughness of the potential can override
this behavior due to the exponential dependence on [, which in some cases can even lead to delocalization at
small energies as illustrated in figure 1.
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Atlarge disorder and when the correlation length is large, expression (2) breaks down as seen in figures 2 and
3.To understand the localization behavior in this regime, which is relevant to many experiments, we need to go
beyond the perturbative result, which brings us to our new approach to localization physics. The main idea is to
solve an analogue to equation (1) but with an additional nonlinear term:

[0+ P20 ] = ~[p@ (<o - p@) @ [ . 3)

Interestingly, there exists an exact solution to equation (3), which can be expressed in terms of the integral

solution ¥ (x) = w(O)eifo f o [31], where

fG) = px) — e 2 fo ) () 2P0 4

f,x)

X
Here P;(x) = f p(x")dx’ is the integrated classical momentum. If the right side term in equation (3) vanishes,
0

we recover our original equation (1). Since this term is the difference between the classical and quantum
momentum, we expect this term to be small and to vanish with disorder averaging (see appendix A). Hence the
localization behavior of the nonlinear equation (3) will describe the localization behavior of the linear
equation (1). The last term f, in equation (4) describes the memory effect of the wave propagation, expressed as
an integral. For clarity, we have expressed the disorder dependence of p(x) in terms of k, (x) = p(x) — ko with
average 0 and variance o7 = (k2). k. (x) is the spatial derivative of k,(x), which we assume to be finite and which
scalesas 1,/1. We only consider the case where k, (x) remains finite, hence no discontinuous potentials. From
here on, all the results will be expressed in terms of k,(x) rather than v(x). The reason is that at high disorder this
is the relevant quantity, while at low disorder they are proportional, since v (x) ~ —2k, (x)/€.The term f,(x)
contains the physics relevant to the localization behavior. Its average over all disorder configurations can be
expressed in terms of a new correlation function ¢,(x):

e0) = | © dale ko) <k; (x')e‘ﬁf:"“(’“")d"”> : ®)

¢p(x,x")y=cp(x—x")

The real part of the integral f f (x")dx’, which appears in the wavefunction solution, determines the

wavenumber, while the imaginary part corresponds to the exponential dependence of the wavefunction. Hence
we expect the disorder average of the imaginary part to be related to localization. Indeed, figure 4 shows the

linear increase with x of f J(f, (x')) dx” with proportionality coefficient \. More precisely, we have
0

e e o~ [ 4 ok,
A*jgj; dx (f, (%)) |x—0 —JJ; dye= 2%, (v), 6)

assuming kg real. This follows from the exponential dependence of the wavefunction, which determines A and
canbe expressed as \ = % In (|4 (X)/%(0)])x— - Equation (6) is the main analytical result of this paper and is
valid for all disorder strengths and correlations. It’s validity is illustrated in figure 4. For c,(x) symmetric we have
A = TJ¢,(2ko)/2.

For arbitrary potentials, the correlator c,(x) can be quite difficult to evaluate. However, it is possible to
describe the localization behavior in different important limits. The limit, where /is large and where the
perturbative expression breaks down at large disorder, is important to understand for many experimental
systems, like in semiconductors in the presence of long range strong Coulomb potentials [32] or for scattering in
photonic crystals [33]. In this limit, where we consider a disorder potential characterized by a large but finite
correlation length /and assuming that |x| < | we can write (see appendix B)

¢ (x) ~ <efzixk.,(0)k; 0) efixzk;(0)> ~ lp(zx)ﬁ; (xz). )

We used that k (0) is not correlated to any function of k, (0), since (k. (0)k(0)) = 0 for any positive integer 1,
when assuming random Gaussian impurities. The term

}5; (%) 2 ([(ky (x) — Kk, (0))/x]e x®@=kOD) = %7 = " —i( —ix)" ' ([k, (x) — k,(0)]" * !)isrelated to
the moment generating two point correlator and the Fourier transform of the distribution function of k. which
sharpens for larger / as shown in figure 4(c). It can be written as ﬁ; (x?) ~ 2[cr (x) — & (0) + hm(x)], where hm

(x) are higher moments. In terms of notation, P’ (k) = 8 P(k). P(2x) = (e 2*%©) is the Fourier transform of
the distribution of k,, which is largely independent of / as seen in figure 4(c). The binary correlator,

¢ (x) = (k,(0)k, (x)) and consequently ¢, (x) = 2i[ck(x) — ¢ (0)]in the lowest order of the disorder strength.
This result can also be obtained directly from the Taylor expansion of the exponential term in c,(x) and keeping
only the first non-zero term.
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Figure 4. Graph (a) represents the Lyapounov exponent normalized by the disorder strength as a function of . The colored lines are
the numerical results, while the black line is 2\, = &, (2kg)/4¢ from the perturbative expression (at the resonances A,, = 0).In (b)
the dots are from expression (6) evaluated numerically, while the blue lines are the numerical transmission results and the red lines are

2\, from the perturbative expression. (c) The distributions of the potential k,(x) (left) and k/ (x) for I ranging form 0.05 to 2. (d) Plot
of the increase of (f,) with x (equation (4)) shown in red, and the blue lines correspond to minus the logarithm of the transmission

—(In T (x)) evaluated numerically. A more detailed disorder strength dependence around the resonance is discussed in appendix C.
In all figures, we used € = 40.

Assuming that kol > 1, we can evaluate the Fourier transform of c,(x) at 2k,, which gives rise to the
following convolution:

&2k ) = 2i f dkP (k)[E,j‘ (2ko — 2K) + hm*(2ky — zk)]. ®)
The first term is the distribution function of the disorder potential of width o, = /(k?2) centred at zero and

nicely illustrates what happens with increasing disorder. For small enough disorder, P(k) is simply a delta
function centred at k = 0, hence using equation (6) and dropping the higher moments, we have

Cp (2ko) ~ 2i6(2ko) and X = T, (2ko)/2 = & (2ko) =~ ¢,(2ko)/4€ = 2\, which s twice the value of the
perturbative result obtained in [27]. This factor of 2 is due to the different averaging method. Indeed, in one-
dimensional disordered systems, we have for X — oo, A = In{|[¢(X)[|)/X = 2{n|vX)])/X = 2A,,
because |9 (X) | follows a log-normal distribution [34]. Hence our result is equivalent to averaging the
wavefunction directly. For larger disorder the Lyapounov exponent becomes the convolution of the low disorder
value at 2k, averaged around 2k, £ 20.

This is best illustrated in the context of a disorder potential, where the Fourier transform of the binary
correlator, has resonances. Such a potential can be obtained, for example, by starting with an uncorrelated
potential and then making it smooth over a length scale I (see details in appendix C and [35]). This leads to strong
minima or resonances in the Fourier transform amplitude as reflected in figure 4. Precisely at the resonance
(I=10.85 in figure 4), the perturbative approach gives A,, = 0. With increasing disorder, the resonances, where \
is minimum, first broaden (described by a convolution) then reach a high disorder regime. At high disorder the
full correlation function &, (2k, ) needs to be evaluated, which involves all moments. The second moment (or
binary correlator) & (2ky) ~ |k, (2ko)|? is simple to compute, since it is proportional to the squared absolute
value of the Fourier transform of the disorder potential.

In the other limit, where the correlation length /is small, we can see in figures 3 and 4, that the behavior is
largely independent on the disorder strength (except for the multiplicative factor). We can understand this result
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by firstlooking at the behavior of ¢,(x) in the limit |x| >> I, where
¢p () = (ke iR (e=2ik)lxl/t o iB) (1) P(2 171, ©)

For I — 0 the exponential decay of ¢,(x) vanishes and ¢, (x) ~ iﬁ; (1> — 0). For most disorder distributions we
can write 15; (> — 0) ~ —o} (for a Gaussian distribution the proportionality coefficient is one and

P 1)*I/t — 1for I — 0). Hence, to determine the Fourier transform of c,(x) when I — 0, we can consider
cp(x) ~ —iofor|x| > land cp(x) ~ —iogx?/I? for |x| < lusingequation (8). Thisleads to Cp(2ko) =~ ilo}
for ] — 0 (A ~ lo})and the result is valid for any disorder strength and only the proportionality coefficient will
depend on the disorder distribution. Therefore, for arbitrary disorder strength, A will vanish linearly with
vanishing /. This delocalization can be understood, as the zero average of the disorder potential within a
wavelength. On the other hand, localization is the strongest when the wavelength is comparable to /and then A
decays again atlarge I. For very high disorder (o > ¢), we find numerically that A ~ o2 [still applies for
vanishing I but then remains constant for larger I >> k, .

To conclude, the (de)localization behavior has important implications to our understanding of low
dimensional systems. Often it is assumed that in one-dimension, all randomness will localize, but as we have
shown here this is only the case for koI = 1. For instance, in widely studied systems, such as GaAs bases
heterostructures, the disorder correlation length can be of the order of I >~ 100 nm, while the Fermi wave length
is onlyabout k, ' =~ 10 nm [36]. Hence we expect localization effects to be strongly suppressed when dominated
bylong range disorder. Depending on the disorder correlation, this suppression can be exponential (for a
Gaussian binary correlator) or quadratic for an exponential correlator. In atomic systems this effect is important
too, since usually / > 100 nm and the atomic de Broglie wavelength can be very small [8]. In the other extreme,
of very short range disorder, like alloy scattering, the disorder correlation length is of the order of I ~ 0.1 nm
(the atomic distance). For a typical Fermi wavelength of 10 nm, this leads to an increase of the localization length
by two orders of magnitude. A similar situation arises in photonic systems, where the wavelength is of the order
of 500 nm, but if the disorder correlation length is much smaller, then no localization can be observed. We
believe that the suppression of localization A ~ lo? at small /is not necessarily unique to the continuous
potentials we considered here, but is likely to occur in other systems too. For instance, the equivalent tight
binding model, with discretization a, would renormalize the disorder potential by a?v for unit bandwith, which
suggests delocalization for small a. More generally, any potential with fixed o, but vanishing integral over the
wavelength is likely to lead to delocalization.

Summarizing, we have shown that the localization behavior of the standard disordered wave equation can be
computed for all disorder strengths and correlation lengths using the disorder average of an approximate
nonlinear wave equation. This has important implications on our understanding of disordered systems and its
applications [37] as well as cosmological fluctuations [3, 38].
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Appendix A. Derivation of equation (4)

Equation (3) reads
[+ p@]e@ = 6@ 0 - p)vo [v o), (A1)
taking ¢ = ef e leads to
10.f (x) + 2p(x)* — 2p(x)f (x) = 0. (A.2)
Assuming f (x) = p(x) + 7 (x) we have the following first order differential equation for 7,
k() + p(0)] + 2in(x)p(x) = 0, (A3)
with solution for 77(0) = 0and P; (x) = fx pxNdx/,
0
n(x) = e [T AP (9 p (e )d, (A4)
0

Defining p(x) = k,(x) + ko we obtain equation (4). It is important to note that no approximations have been
made beyond considering equation (3) instead of equation (1).
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Figure C1. Left: the blue line shows the spatial dependence of k,(x) for a particular disorder realization. The green line is the difference
between the quantum and the classical momentum (¢! (x)[—i0; — plt (x)), while the red line is the disorder averaged difference
(1000 realizations) (1p~! (x)[—i0; — pl¥ (x)). Here we used ko = 6.3,/=1.15and o} = 0.9. Right: the Lyapounov exponent as a
function of the disorder strength o} around a resonance (I = 0.85). The blue lines are the numerical A from the transmission, the blue
symbols are from our approach (equation (6)), while the red lines are from the perturbative approach (2\,,). For = 0.85 the
perturbative approach gives \,, = 0 regardless of disorder.

The right-hand side term in equation (A.1) is shown in figure C1 to be small and to vanish after disorder
averaging.

Appendix B. Derivation of equation (7)

We have from equation (5)

6 () = (ke 2, 1)), (B.1)
Expanding k, (x) ~ k, (0) + xk,(0) for |x| < I, yields
cp(x) <e—2ixkv O ; 0) e—ixzkv’(o)>
~ (e 20k O (k] (0)e ko)) (B.2)

since k, (0) is not correlated to any function of k, (0) because (k. (0)k,*(0)) = 0 for any positive integer 1, when
assuming random Gaussian impurities. The last term can now be expressed in terms of the distribution function
of the disorder potential k,, i.e., P(2x) = f dk, P (k,)e 2 = (e=2k) Similarly we have

iﬁ;(xz) = f dk; b, (kDk! e~ %, where P, is the distribution function of the disorder potential k.. Hence we
obtain equation (7).

Appendix C. Disorder strength dependence around the resonance

We used two different techniques to obtain a random potential characterized by a correlation length L. In

figures 1-3 we used the sum of Gaussian impurities with random amplitudes and located at random sites. The
number of impurities scales as 1 /I in order for the standard deviation of the potential to be independent of I. The
advantage of this potential is that computing the binary correlator is very simple as seen in equation (2). In
figures 4 and C1 we used a random potential obtained by smoothing an uncorrelated potential over I neighbors
using the local regression smoothing process with tri-cube weight functions [35]. This produces a smooth
potential with a characteristic correlation length . Here we have no simple expression for the binary correlator
or its Fourier transform, which has to be computed numerically. However, the Fourier transform of this
correlator has resonances where the Fourier transform vanishes, which corresponds to the resonances seen in
figure 4. A typical realization is shown in figure C1 as well as the dependence of A on disorder strength.
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