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Abstract

The first comprehensive molecular phylogenetic reconstruction of the Cichorieae subtribe Lactucinae is provided.
Sequences for two datasets, one of the nuclear rDNA ITS region, the other of five concatenated non-coding chloroplast DNA
markers including the petD region and the psbA-trnH, 59trnL(UAA)-trnF, rpl32-trnL(UAG) and trnQ(UUG)-59rps16 spacers, were,
with few exceptions, newly generated for 130 samples of 78 species. The sampling spans the entire subtribe Lactucinae
while focusing on its Chinese centre of diversity; more than 3/4 of the Chinese Lactucinae species are represented. The
nuclear and plastid phylogenies inferred from the two independent datasets show various hard topological incongruences.
They concern the internal topology of major lineages, in one case the placement of taxa in major lineages, the relationships
between major lineages and even the circumscription of the subtribe, indicating potential events of ancient as well as of
more recent reticulation and chloroplast capture in the evolution of the subtribe. The core of the subtribe is clearly
monophyletic, consisting of the six lineages, Cicerbita, Cicerbita II, Lactuca, Melanoseris, Notoseris and Paraprenanthes. The
Faberia lineage and the monospecific Prenanthes purpurea lineage are part of a monophyletic subtribe Lactucinae only in
the nuclear or plastid phylogeny, respectively. Morphological and karyological support for their placement is considered. In
the light of the molecular phylogenetic reconstruction and of additional morphological data, the conflicting taxonomies of
the Chinese Lactuca alliance are discussed and it is concluded that the major lineages revealed are best treated at generic
rank. An improved species level taxonomy of the Chinese Lactucinae is outlined; new synonymies and some new
combinations are provided.
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Introduction

The Lactuca Alliance
Lettuce (Lactuca sativa L.) is the economically most important

crop of the tribe Cichorieae, and Lactuca is one of its widest known

genera. With almost all members of that tribe, Lactuca shares the

combined presence of latex and homogamous capitula with

usually ligulate 5-toothed flowers. Lactuca is also the namegiving

member of one of the larger groups of the tribe, which is treated

today as the subtribe Lactucinae [1]. In its revised circumscription

the Lactucinae comprise about 230 species, distributed in Europe,

Africa, Asia and North America [1], with a preference of montane

habitats. Many of them are mesic tall forbs, many others are

perennial herbs of other kinds, among them the only scandent

herbs present in the Cichorieae, or rosette herbs and acaulescent

herbs, and more rarely they are xeric subshrubs and annual herbs.

This subtribe constitutes the youngest branch in the larger of the

two core groups of the Cichorieae, its divergence is estimated to

have taken place c. 15–4 Ma ago during the Middle Miocene to

Early Pliocene [2–3].

The taxonomy of no other alliance of the tribe has faced so

many controversies over the last 200 years than that of Lactuca and

its presumed allies. This pertains to the circumscription and

systematic position of the Lactuca alliance within the tribe as well

as, and even much more so, to the generic classification of its

members. In the 19th century, the Lactuca alliance, although

sometimes recognised as a separate subtribe [4], was mostly

included in the subtribe Crepidinae, as was done also by

Hoffmann [5], whose treatment became influential and the basis

for most of the 20th century flora treatments. Also in the first two

important 20th century classifications of the Cichorieae, by

Stebbins [6] and Jeffrey [7], the Lactuca alliance was treated as

a subgroup of the Crepidinae or of a corresponding entity: the first

author treated it as the Prenanthes-Lactuca line of subtribe

Crepidinae, the second as the Prenanthes series of the Crepis group.
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Only towards the end of the 20th century, the Lactuca alliance

was recognised as a separate subtribe Lactucinae by Bremer [8],

after his morphological phylogenetic analysis of the tribe had

revealed the Crepidinae to be polyphyletic. Bremer therefore

divided the Crepidinae into the three subtribes Lactucinae,

Crepidinae s.str. and Sonchinae, which were largely maintained

by Lack [9]. Based on a nrITS phylogeny of the Cichorieae, which

remarkably well agrees with the results inferred from chloroplast

DNA restriction site variation [10], Kilian & al. [1] maintained

these three subtribes of Bremer among the 11 subtribes they

recognised in the tribe, but narrowed down the circumscription of

subtribe Lactucinae compared to Bremer [8] and Lack [9]. Kilian

& al. [1] excluded from subtribe Lactucinae the genera Prenanthes

s.l., which was characterised as a dust-bin of various unrelated

elements by Kilian & Gemeinholzer [11], and Faberia, as well as

Nabalus and Syncalathium, the last two having been recognised as

members of subtribe Crepidinae s.str. The exclusion from subtribe

Lactucinae of all elements of the polyphyletic genus Nabalus, which

is represented in China, depending on the species concept, by four

species (under Prenanthes) [12] or only one (plus one additionally

included species) [13] and of all but one species of Syncalathium has

been corroborated recently by Zhang & al. [2,14].

Subtribe Lactucinae in its Chinese Centre of Diversity
The subtribe has two centres of current diversity, one in the

Mediterranean-SW Asian region, the other in China and the

adjacent Himalayan region. The diversity of the subtribe in its

Mediterranean-SW Asian centre came into the focus of systematic

research around the middle of the 19th century and led to the

description of many new species and two new genera, Cephalor-

rhynchus Boiss. in 1844 and Steptorhamphus Bunge in 1852. A first

comprehensive treatment of the members of the Lactucinae in this

centre was provided by Boissier [15] (p. 795ff, as parts of subtribe

‘‘Crepideae’’). Noteworthy among the more recent publications is

in particular the taxonomic revision of the Lactuca alliance in the

Iranian Highlands and neighbouring regions by Tuisl [16].

In contrast, the actual extent of the subtribe’s diversity in its

Sino-Himalayan centre remained unveiled much longer, apart

from the Himalayan portion, which was covered rather early by

Clarke [17] and Hooker [18], with the most recent updates by

Mamgain & Rao [19] and Grierson & Long [20]. Although many

species of the subtribe in the large territory of China were

discovered and described already in the late 19th and early 20th

century, and some of them were included in the revision of Cicerbita

sensu lato by Beauverd [21], the subtribe in China became subject

of comprehensive studies only towards the end of the 20th century.

Pioneer works were done almost exclusively by Shih [12,22–25],

who described the new genera Chaetoseris C. Shih, Faberiopsis C.

Shih & Y. L. Chen, Notoseris C. Shih, Paraprenanthes C. C. Chang ex

C. Shih, Pterocypsela C. Shih, Stenoseris C. Shih to accommodate the

diversity of the subtribe encountered. Shih subsequently also

provided the first comprehensive floristic treatment of the entire

tribe Cichorieae in China [12]. The subtribal classification applied

by Shih largely conforms to that of Stebbins [6], but with corrected

subtribal nomenclature. Shih’s [12] Lactucinae (corresponding to

the Crepidinae s.l. of Stebbins 1953) span the four subtribes

Crepidinae s.str., Hieraciinae, Lactucinae s.str. and Hyoseridinae

as recognised in the current classification by Kilian & al. [1].

Recently, a reappraisal of the systematics of the Lactuca alliance

in China, supported by our then still initial nrITS phylogeny of the

subtribe including representatives of most Chinese groups, was

provided in the frame of the English ‘‘Flora of China’’ [13]. The

most striking difference to the treatment by Shih [12] concerns the

generic classification: whereas the species of the Lactucinae sensu

Kilian & al. [1] were classified by Shih [12] in altogether 12 genera

(Cephalorrhynchus, Chaetoseris, Cicerbita, Lactuca, Lagedium, Mulgedium,

Notoseris, Paraprenanthes, Prenanthes, Pterocypsela, Scariola, Stenoseris),

they were placed in only five genera (Cicerbita, Lactuca, Melanoseris,

Notoseris and Paraprenanthes) by Shih & Kilian [13]. Such different

generic classification of the Lactuca alliance is symptomatic for the

entire history of the systematics of this alliance. No stability in

generic classification has been reached over more than 200 years,

because morphological features fail to provide unanimous support

for any classification proposed.

Hitherto many Chinese Lactucinae species were only known

from herbarium material but never studied in the wild. The first

author of the present paper, in contrast, has succeeded to study,

collect and sample most Chinese species of the subtribe in the wild,

in addition to herbarium studies. Consequently, our initial, sparse

molecular sampling of Chinese taxa for nrITS available during the

preparation of the ‘‘Flora of China’’ account, now has grown to

include the vast majority of the species of the Lactuca alliance in

China and the nuclear dataset has been complemented by a

chloroplast dataset.

The aims of the present paper are (1) to provide the first

molecular phylogeny of the Lactucinae which, although focusing

on the Chinese centre of diversity, spans the entire subtribe; (2) to

detect potential events of reticulation in the evolution of the

subtribe by comparing corresponding nuclear and plastid datasets;

(3) to test the robustness of the different taxonomies of the Chinese

Lactuca alliance in the light of evolution as inferred from the

nuclear and plastid trees; (4) to improve the taxonomy of the

Chinese Lactucinae based on the molecular phylogenetic recon-

struction and morphological studies of living plants and herbarium

material including types.

Materials and Methods

Plant Material
The authors have studied herbarium material from the herbaria

A, B, CAS, CDBI, E, G, GH, K, KUN, MO, NY, PE and SZ

(herbarium codes following Thiers [26]) as well as from the

personal herbaria of Ralf Hand (Berlin, Germany), Georg &

Sabine Miehe (Marburg, Germany) and Michael Ristow (Pots-

dam, Germany), of almost all species of the subtribe known from

China and adjacent areas, including the types, and the first author

extensively studied and collected most Chinese species also in the

wild (collection deposited at KUN with some duplicates at B).

Besides the permissions for the nature reserves in the Chinese

provinces of Chongqing, Sichuan, Xizang and Yunnan by the

corresponding Provincial Forestry Departments, no specific

permissions were required for material collection; the locations

are not privately-owned and none of the species collected in the

field are endangered or protected.

Sampling Strategy
Our sampling for the molecular analyses aimed at a dense

representation of the subtribe Lactucinae in China. This has been

achieved largely so, with the only exception of a few species in

North China with Central Asian relation, of which no material

could be gathered for this study but which will be included in our

global phylogeny of the subtribe (unpublished data). Sequences of

one nuclear and five plastid markers were obtained for a total of

130 samples of 78 species. Except for 9, all of the 767 individual

marker sequences involved were newly generated for this study.

Among the 126 ingroup samples, there are 119 samples of

Lactucinae species of China, representing 66 species and 76.7% of

the total 86 species recognised by Shih [12], or 55 species and
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77.5% of the total species recognised by Shih & Kilian [13],

respectively. The corresponding information on the material,

including the vouchers preserved, is listed in Appendix S1. Our

taxon sampling includes the species providing the types of all

generic names established in the subtribe that are relevant to the

Lactucinae in China as based on our global phylogeny of the

subtribe (unpublished data); these are the types of Cephalorrhynchus

Boiss. (C. glandulosus Boiss. ; C. hispidus (DC.) Boiss.), Chaetoseris C.

Shih (C. lyriformis C. Shih), Cicerbita Wallr. (C. alpina (L.) Wallr.),

Faberia Hemsl. (F. sinensis Hemsl.), Lactucella Nazarova (L. undulata

(Ledeb.) Nazarova), Lagedium Soják (L. sibiricum (L.) Soják),

Melanoseris Decne. (M. lessertiana (DC.) Decne.), Mulgedium Cass.

(M. runcinatum Cass. = M. tataricum (L.) DC.), Notoseris C. Shih (N.

psilolepis C. Shih), Paraprenanthes C. C. Chang ex C. Shih (P. sororia

(Miq.) C. Shih), Prenanthes L. (P. purpurea L.), Parasyncalathium J. W.

Zhang & al. (P. souliei (Franch.) J. W. Zhang & al.), Pterocypsela C.

Shih (P. indica (L.) C. Shih), Stenoseris C. Shih (S. graciliflora (Wall. ex

DC.) C. Shih), Scariola F. W. Schmidt (S. viminea (L.) F. W.

Schmidt) and Steptorhamphus Bunge (S. tuberosus (Jacq.) Grossh.)

[27]. For many species several individuals were sampled to cover

the morphological variation observed, and, wherever possible,

samples were gathered from, or as close as possible to, the type

locality.

As outgroup, we selected four taxa of the subtribes Crepidinae

(Crepis and Soroseris), Hyoseridinae (Launaea) and Hypochaeridinae

(Leontodon), which represent the decreasingly related other subtribes

of the same core group of the Cichorieae according to the

molecular analyses by Kilian & al. [1] and Tremetsberger & al.

[3]. Launaea sarmentosa (subtribe Hyoseridinae) was used to root the

trees.

DNA Isolation, Amplification and Sequencing
Genomic DNA was extracted from c. 20 mg of silica-dried leaf

tissue or recently collected specimens, either using a modified

CTAB methods [28], or the DNeasy kit (Qiagen GmbH,

Germany) or Plant Kit Rev. 03 (Macherey-Nagel GmbH & Co.

KG, Germany), following the manufacturer’s protocols. The DNA

amplifications were performed using T1 or T3 Thermocyclers

(Biometra, Göttingen, Germany). The amplification reactions with

a total volume of 25 ml were of one of the following two

compositions: (A) 2 ml DNA template with a concentration of

c.15 ng, 1 ml of each primer (5 pm/ml), 1.5 ml Mg2+ (13.9 pm/ml),

2.5 ml dNTP mix (2 pm/ml), 2.5 ml610 Taq reaction Buffer

(Chenlü, Kunming, China), 1 ml BSA (bovine serum albumin,

10 ng/ml), 0.3 ml Taq DNA polymerase (2.5 U/ml) (Chenlü,

Kunming, China), H2O; (B) 1 ml DNA template of 20 ng/ml,

1 ml of each primer (10 pm/ml), 1.5 ml MgCl2 (1.25 mM), 2.5 ml

dNTP mix (1.25 pm/ml), 2.5 ml 10x peqLab Taq. Buffer S, 2.5 ml

Betain (1.25 mM) [or: 1.5 ml BSA (1.25 mM)], 0.15 ml peqLab

HOT Taq. Polymerase (5 units/ml), H2O.

One nuclear and five non-coding chloroplast regions were used

as markers. The nuclear ribosomal Internal Transcribed Spacer

(nrITS) region (ITS1, 5.8S rDNA, ITS2) was amplified using

either the primer combinations ITS4/ITS5 [29] or ITSA/ITSB

[30]. Amplification conditions were as follows: an initial denatur-

ation step at 95uC for 3 min, followed by 29 cycles of denaturation

at 95uC for 30 s, annealing at 53uC for 30 s, and extension at

72uC for 45 s, then a final extension step at 72uC for 8 min.

The chloroplast markers were amplified using the following

primers: (1) the petD intron and petB-petD spacer were co-amplified

with the universal primers PIpetB1411F/PIpetD738R [31]; (2) the

psbA-trnH spacer with the universal primers psbAF/trnHR [32]; (3)

the 59trnL(UAA)-trnF spacer with the universal primers trnC/trnF

[33]; (4) the rpl32-trnL(UAG) spacer with the primers rpl32-F/

trnL(UAG) [34] and (5) the trnQ(UUG)-59rps16 spacer with the

primers trnQ(UUG)/rps16x1 [34]. The PCR amplification

conditions were identical for all five chloroplast markers: an initial

denaturation step at 80uC for 5 min, followed by 29 cycles

consisting of denaturation at 94uC for 45 s, annealing at 52uC for

45 s, extension at 65uC for 50 s, and a final extension step at 65uC
for 7 min.

Amplification products and negative controls were visualised in

a 1 or 1.2% NEEO agarose electrophorese gel and purified for

sequencing using the QIAquick PCR purification Kit (BioTeke

Corporation, Beijing, China or Qiagen GmbH, Germany)

following the manufacturer’s instructions. The concentrations of

the purified PCR products were measured with a NanoDrop

spectrophotometer (ND-1000, PeqLab, Erlangen, Germany). The

purified products were directly sequenced on an ABI 3730XL

automated DNA sequencer (Applied Biosystems, Foster City,

California, USA) or sequenced via StarSeq (Mainz, Germany)

with the same primers as used for amplification.

Sequence Alignment and Coding of Length Mutational
Events

The boundaries of the nrITS region (ITS1, 5.8S rDNA, ITS2)

and the petD marker (petD intron and petB-petD spacer) were

defined according to Goertzen & al. [35] and Borsch & al. [36],

respectively. The boundaries of the other markers were taken as

indicated in the complete chloroplast genome sequence of Lactuca

sativa (EMBL/Genbank/DDBJ DQ383816) by Timme & al. [37].

The ITS sequences were aligned manually in PhyDE version

0.9971 [38], according to the Cichorieae part of the Asteraceae

alignment by Goertzen & al. [35], which was based on their

secondary structure analyses. The plastid sequences were first

automatically aligned using Muscle [39], then adjusted manually

to a motif-based alignment in PhyDE [38] following the criteria

outlined by Kelchner [40], Borsch & al. [41] and Löhne & Borsch

[31]. Regions of uncertain homology were excluded from the

analysis and inversions were re-inverted (as documented in

Appendix S2) prior to the phylogenetic reconstruction.

Indels (as documented in Appendix S3) were coded as

informative characters according to the Simple Indel Coding

(SIC) method [42] as implemented in the program SeqState

version 1.40 [43]. SIC performs about as good as the Modified

Complex Indel Coding (MCIC) [44] but has the advantage that

the SIC matrix can also be easily analysed with Bayesian

Inference.

Additive polymorphic sites (APS) in the nrITS sequences,

indicating potential introgressive hybridisation, were detected

following the criteria outlined by Fuertes Aguilar & Nieto Feliner

& al. [45].

Phylogenetic Reconstruction
Incongruence Length Difference (ILD) test [46] implemented in

PAUP* version 4.0b10 [47] as the Partition Homogeneity Test,

was performed to assess the congruence between the nuclear and

plastid data sets. For this test, which calculates the ILD first for the

original partitions and then for a series of randomized partitions of

the same size, the following parameters were used: heuristic search

of 10 000 replicates, each with 100 random addition searches,

maxtrees set to 1 and one tree held each step. As significance

threshold for congruence or homogeneity of the partitions a P

value of .0.01 is considered as appropriate [48].

Phylogenetic relationships were reconstructed using Maximum

Parsimony (MP) and Bayesian Inference (BI). Maximum Parsi-

mony analyses were performed using the Parsimony Ratchet [49]

with PRAP [50] in combination with PAUP* version 4.0b10 [47].

Molecular Phylogeny of the Lactuca Alliance
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Standard ratchet settings were used: 200 ratchet iterations with

25% of the positions randomly upweighted (weight = 2) during

each replicate and 10 random addition cycles. The generated

command files also including the nexus data matrix were run in

PAUP* version 4.0b10 [47] using heuristic search with the

following parameters: all characters have equal weight, gaps are

treated as ‘missing’, simple addition of sequences, TBR branching

swapping, maxtrees setting to 100 and auto-increased by 100, one

non-binary starting tree arbitrarily dichotomized before branch

swapping, only one tree saved. A majority rule consensus tree was

calculated from the most parsimonious trees received. Jackknife

(JK) support values for the nodes found by the MP analysis were

calculated in PAUP*version4.0b10 applying the optimal jackknife

parameters according to Farris & al. [51] and Müller [52]: 10 000

jackknife replicates were performed using the TBR branch

swapping algorithm with 36.788% of characters deleted and one

tree held during each replicate.

Bayesian Inference analyses were performed using MrBayes 3.2

[53]. Optimal nucleotide substitutions models were searched

separately for each of the three partitions of the nrITS dataset (i.e.

ITS1, 5.8S, ITS2) and each of the five plastid markers with

MrModeltest 2.3 [54], following the Akaike Information Criterion

(AIC). The optimal model chosen for ITS1 and ITS 2 was

GTR+I+G, for 5.8S SYM+I, for the petD region GTR+I, and for

the other four plastid markers GTR+G. A binary (restriction site)

model was implemented for the coded indels. The datasets were

partitioned in MrBayes 3.2 into three (nuclear) or five (plastid)

DNA markers, respectively, and one partition for the coded indels.

All analyses in MrBayes 3.2 were performed with four simulta-

neous runs of Metropolis-coupled Markov Chains Monte Carlo

(MCMCMC), each with four parallel Markov chains. Each chain

was performed for 2 million generations and, starting with a

random tree, one tree was saved every 100th generation. For other

parameters the default settings of the program were left

unchanged. A conservative burn-in of 0.2 (i.e. discarding the first

20% of the trees) was applied after graphically checking chain

convergence using the program AWTY [55]. The remaining trees

were used to generate a majority rule consensus tree.

TreeGraph 2 [56] was used to assess the tree topologies and to

visualise the trees with node supports.

Results

Molecular Datasets and Phylogenetic Analyses
Nuclear ribosomal ITS region. The ITS region varied

from 592 to 644 nt in our 130 (126 ingroup +4 outgroup) samples.

Of a total of 667 characters in the aligned data set, 261 were

parsimony informative. Simple Indel Coding increased the total

number of characters to 734 and the number of parsimony

informative characters to 301. With 39.1% (41.0% including

coded indels) parsimony informative sites it has the highest

phylogenetic performance of all markers used, but has the lowest

consistency index and retention index of all individual marker

trees (Table 1).

The Maximum Parsimony (MP) search resulted in 70 most

parsimonious trees (L = 1204, CI = 0.485, RI = 0.840, RC = 0.408,

see Table 1). The 50% majority rule MP consensus tree was

essentially congruent in topology with the Bayesian Inference (BI)

50% majority rule consensus tree, apart from an incongruence in

one subclade of the Lactuca lineage, where in the BI tree the L.

sativa-L. serriola clade is sister to the Scariola and Lagedium-Mulgedium

clades, while in the MP tree the Lagedium-Mulgedium clade is sister

to the other two. We give here only the BI phylogram (Fig. 1), with

the MP Jackknife support (JK) values above and the BI posterior

probability (PP) values below the branches.

Non-coding chloroplast regions. The plastid matrix was of

the same sample size and composition as the ITS region matrix.

The length of the individual plastid markers ranged from 171 (with

a unique large deletion in Chaetoseris macrantha) to 421 nt in psbA-

trnH, to 929–998 nt in trnQ(UUG)-59rps16. The length of the five

combined plastid markers ranged from 3784–4028 nt. The full

data are provided in Table 1.

Areas with uncertain homology classified as ‘‘hotspots’’ of

sequence mutation according to Borsch & al. [41], mostly length-

variable poly A/T-stretches, were excluded from the analyses.

One exon (petD) and one hotspot were excluded from the petD

region, five hotspots from psbA-trnH, one exon (trnL) and one

hotspot from 59trnL(UAA)-trnF, eight hotspots from rpl32-trnL(UAG)

and three hotspots from trnQ(UUG)-59rps16 (see Appendix S2). The

length of the five combined plastid markers after exclusion of the

hotspots ranged from 3619 to 3884 nt (see Table 1).

The final matrix of the rpl32-trnL(UAG) region comprised 154

parsimony informative characters without and 191 parsimony

informative characters including the coded indels, having the

highest phylogenetic performance among the five cp markers used

(Table 1). It is followed by the trnQ(UUG)-59rps16 region, with 111

and including coded indels 129 parsimony informative characters.

The smaller psbA-trnH region has a percentage of informative sites

comparable to the rpl32-trnL(UAG) region, but excessive variation

(even within species) rendered the alignment and homology

confirmation partly difficult. 59trnL(UAA)-trnF had the lowest

phylogenetic performance with 56 and including coded indels 66

parsimony informative characters. The final concatenated plastid

matrix comprised 450 and including coded indels 545 parsimony

informative characters.

MP analyses were performed for both the individual cp markers

and the concatenated plastid data set. The tree statistics are given

in Table 1. MP analysis of the concatenated matrix resulted in 48

most parsimonious trees with L = 1342, CI = 0.847, RI = 0.950,

RC = 0.805 (see Table 1). The resulting 50% MP consensus tree is

congruent with the corresponding BI tree, apart from (a) two cases

where smaller crown clades recognised in the MP tree collapsed in

the BI tree, and (b) an incongruence in the relationship within the

outgroup, where Faberia clustered in the BI tree with the two

members of subtribe Crepidinae (i.e. Crepis and Soroseris), following

Leontodon (Hypochaeridinae) as the nearest sister to the subtribe

Lactucinae (incl. P. purpurea), while in the MP tree Faberia clustered

only with Soroseris, in the closest position to Lactucinae, followed by

Leontodon and Crepis as the successive sisters. We give here the BI

phylogram (Fig. 2), with the MP Jackknife support (JK) values

above and the BI posterior probability (PP) values below the

branches.

Phylogenetic Relationships
ITS phylogeny. Maximum Parsimony (MP) and Bayesian

Inference (BI) analyses based on the ITS matrix both depict seven

major lineages within a well supported (JK = 97.5, PP = 0.99)

subtribe Lactucinae, which all have high statistical support,

whereas deeper node have low or lack statistical support. Clade
1 (JK = 99.9, PP = 1) comprises the genus Faberia in the

circumscription of Shih & Kilian [13], thus including Faberiopsis

and Prenanthes faberi; this Faberia clade is sister (JK = 56, PP = 1) to

the remainder of the subtribe. Clade 2 (JK = 84, PP = 1) is

restricted to and unites the non-Chinese species providing the

types of Cephalorrhynchus and Cicerbita; it is sister to a large clade A

(JK,50, PP = 0.95) including clades 3–7 of the subtribe. The large

clade A in turn comprises the clades 3 and B. Clade 3 (JK = 94.6,
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PP = 1) included three species placed by Shih & Kilian [13] in

Cicerbita. Clade B forms with low support (JK,50, PP = 0.62) the

polytomous backbone of the Lactucinae, including clades 4–7.

Clade 4 (JK = 94.2, PP = 1) represents Lactuca, the type genus of

the subtribe, among which the former Lactuca segregates

Pterocypsela, Steptorhamphus, Mulgedium and Lactucella are nested.

Clade 5 (JK = 89.1, PP = 1) includes the types and most other

species of the genera Chaetoseris and Stenoseris, among which the

species providing the type of the old generic name Melanoseris is

nested, and also the recently erected genus Parasyncalathium. Clade
6 (JK = 98.9, PP = 1) comprises the Chinese near-endemic genus

Notoseris, but excluding two of its members in the sense of Shih [12]

or Shih & Kilian [13], which cluster in clade 7 with Paraprenanthes.

Clade 7 (JK = 91.2, PP = 1), finally, includes the Chinese endemic

genus Paraprenanthes plus a few more species not considered by Shih

[12] and Shih & Kilian [13] as members of that genus.

Plastid phylogeny. MP and BI analyses of the combined

plastid data set fully agree with respect to the phylogenetic

relationships between and in the circumscription of the major

lineages. They yielded six major lineages with mostly high

statistical support, which are not all identical with those in the

ITS phylogeny. Their relationships to each other also received

high statistical support. The Faberia clade (JK = 100, PP = 1) is

identical in circumscription to the corresponding clade in the ITS

phylogeny, but here placed among the outgroup taxa clustered

with Soroseris (JK = 99.9, PP = 1) and then Crepis (JK,50,

PP = 0.81), which are members of the subtribe Crepidinae. The

Lactucinae ingroup has high support (JK = 98.9, PP = 1), com-

prising clades 1–6. Clade 1, only comprising Prenanthes purpurea, is

sister (JK = 100, PP = 1) to the remainder of the ingroup. Clade 2
(JK = 99.9, PP = 1) is congruent to clade 2 of the ITS tree and is

sister to a large clade A (JK = 99.8, PP = 1), which includes the

remaining major lineages 3–6. Clades 3–5 are parts of a clade B
(JK = 99.9, PP = 1), to which clade 6 is sister. Clade 3 (JK = 100,

PP = 1) is congruent to clade 3 of the ITS tree and sister to clade
C (JK = 99.9, PP = 1), which comprises clades 4 and 5. Clade 4
(JK = 68.8, PP = 0.98), comprising Lactuca, is congruent in

circumscription but less so in internal topology with clade 4 of

the ITS tree. Clade 5 (JK = 81.7, PP = 1) is congruent in

circumscription to clade 5, including Melanoseris, Chaetoseris,

Parasyncalathium and Stenoseris, of the ITS tree, but has a somewhat

different internal topology. Clade 6 (JK = 100, PP = 1) finally, is

congruent in circumscription to clades 6 Notoseris plus 7

Paraprenanthes, of the ITS tree, merging the taxa of these two

clades in a different internal topology.

Incongruences between Nuclear and Plastid Phylogenies
The ILD test detected incongruence with high significance

(P = 0.001) between the entire nuclear and plastid data sets as well

as, in the calculation for the single clades, for the Notoseris,

Paraprenanthes and Melanoseris clades. Therefore no analyses of a

combined data set have been performed. While the ILD test is

known to be overly sensitive in indicating conflicts between

datasets [47], and alone therefore no sufficient proof for

incongruence, its result in our case is fully corroborated by the

high statistical branch support for the incongruent tree topologies

(see MP Jackknife support values above and the BI posterior

probability values below the branches in Fig. 1 and 2).

Incongruences between the two phylogenies with good to high

branch support concern (1) the circumscription of the Lactucinae,

(2) the relationships between major lineages, (3) assignment of taxa

to major lineages, and (4) the internal topology of major lineages.

(1) The circumscription of the subtribe Lactucinae is incongruent

between the ITS and plastid trees: (a) the Faberia clade is sister

to the remainder of the subtribe in the ITS tree (JK = 56,

PP = 1, and JK = 97.5, PP = 0.99 for the Lactucinae including

Faberia) but nested within the outgroup in the plastid tree

(JK = 99.1, PP = 1 for the sister group relationship with

Soroseris); (b) Prenanthes purpurea is nested in the outgroup in the

ITS tree (JK = 97.5, PP = 0.99 for the ingroup without P.

purpurea) but forms the first diverging branch of the Lactucinae

in the plastid tree (JK = 98.9, PP = 1 for the sister group

relationship with the core Lactucinae). Disregarding these two

lineages, the Lactucinae are monophyletic in both phyloge-

nies.

(2) The most obvious incongruence in the relationships between

the major lineages is that the Notoseris lineage (clade 6) and the

Paraprenanthes lineage (clade 7) of the ITS phylogeny

(JK = 98.9, PP = 1 for clade 6 and JK = 91.2, PP = 1 for clade

7) are represented in the plastid phylogeny by a single clade 6

(JK = 100, PP = 1) of different internal topology. In contrast,

the topological incongruences in the relationships of these

lineages to the other major lineages as well as in the

relationships among these other major lineages are without

statistical support, because the most major lineages are found

Table 1. Sequence and tree statistics of the six individual markers and the concatenated plastid matrix.

Data matrix
Length range total/
HS1 excluded (nt)

No. total char.2/
No. total char.3 (nt)

No. inform. sites4/
No. inform. sites3 (nt)

No.
MPTS3 TL3 CI3 RI3 RC3

ITS region 592–644 667/734 261(39.1%)/301(41.0%) 70 1204 0.485 0.840 0.408

petD region 887–922/876–906 928/948 67(7.2%)/80(8.4%) 22 171 0.877 0.972 0.853

psbA-trnH 171–421/131–382 464/497 62(13.4%)/79(15.9%) 1474 182 0.824 0.926 0.763

trnL-F 786–841/737–792 825/857 56(6.8%)/66(7.7%) 28 178 0.899 0.958 0.861

trnQ-rps16 929–998/928–997 1174/1221 111(9.5%)/129(10.6%) 131 339 0.861 0.951 0.819

rpl32-trnL 830–939/807–894 1139/1223 154(13.5%)/191(15.6%) 19 456 0.844 0.953 0.804

combined cpDNA 3784–4028/3619–3884 4530/4746 450(9.9%)/545(11.5%) 48 1342 0.847 0.950 0.805

1hotspots (and exons), see Table S1;
2number of total character;
3with indel coding;
4number of informative sites.
doi:10.1371/journal.pone.0082692.t001
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along the polytomous backbone in the core of the subtribe in

the ITS phylogeny.

(3) In the single case of Mulgedium bracteatum (; Melanoseris

bracteata), the assignment of a species to the major lineages is

incongruent between the ITS and the plastid phylogeny. In

our ITS tree focusing on Chinese Lactucinae this species is

included in the Melanoseris clade with good statistical support

(JK = 89.1, PP = 1) but in a fairly isolated position as the first

diverging branch of that clade. In our plastid tree, in contrast,

this species is nested in the Lactuca clade with moderate

support (JK = 68.8, PP = 0.98), clustering therein with SW to

E Asian members of Lactuca in a polytomous clade.

(4) Incongruences in the internal topology occur (a) in the

Notoseris and Paraprenanthes clades (clades 6 and 7 in the ITS

phylogeny, parts of the single clade 6 in the plastid

phylogeny), (b) in the Lactuca clade (clade 4 in both the ITS

and plastid phylogeny), and (c) in the Melanoseris clade (clade 5

in both the ITS and plastid phylogeny). These are addressed

in more detail in the Discussion.

Discussion

Our phylogenetic reconstruction of the Lactucinae by molecular

techniques is based on the most extensive sampling published for

the subtribe to date. Our sampling, although focusing on the

Chinese centre of diversity, spans the entire subtribe, including not

only all genera present in China but also non-Chinese species

providing the types of relevant generic names in the subtribe. We

provide the first comprehensive phylogeny of this taxonomically

difficult and controversial group and use this together with

morphological data as basis for a revised generic classification of its

members in the Chinese centre of diversity.

Possible Causes of Incongruence between the Nuclear
and Plastid Phylogenies

Technical causes, such as insufficient taxon sampling, long-

branch attraction, sequencing errors, for the statistically well

supported and thus ‘‘hard’’ topological incongruences [57]

between our nuclear and plastid phylogenies, appear excludable

in the light of our dense sampling, frequently with more than one

sample per species, and the similar topologies obtained from both

MP and BI analyses. Causes for these incongruences are judged

with confidence therefore as essentially biological.

The nrITS sequences of our dataset appeared reliable (no

pseudogenes) but we cannot exclude the possibility of divergent

alleles among the multiple ITS copies within a nucleus [58]. In a

few cases, additive polymorphism [45] seems in fact present

among sequences of closely related taxa (see Table 2) and supports

the hypothesis that nuclear introgression has taken place.

The sequences of the exclusively maternally inherited and thus

non-recombining chloroplast genome come along with another

drawback. This is the relatively high potential for interspecific

cytoplasmic (chloroplast) gene flow, or chloroplast capture, also in

absence of any nuclear gene flow, due to introgressive hybridisa-

tion [59–62] or even due to horizontal gene flow between sexually

incompatible species [63]. Chloroplast capture is known from the

Cichorieae even at intergeneric level [64] and is with or without

incomplete lineage sorting [65–66] an important cause for

incongruence between nuclear and plastid phylogenies in general.

Putative cases of ancient reticulation and chloroplast

capture. The Notoseris and Paraprenanthes lineages, which form the

well supported clades 6 and 7 along the polytomous backbone of

the larger part of the subtribe in our nuclear phylogeny (Fig. 1), in

contrast form the single joined clade 6 in the plastid phylogeny

(Fig. 2). Notably, the first basally diverging branches of both

lineages in the nuclear tree (N-1+ N-2 and P-1) appear as

subclades N-1/2 and P-1 in the basal polytomy of the common

clade in the plastid tree, while the core clades of both lineages in

the nuclear tree appear as subclades of a second, later diverging

polytomy in the plastid tree (compare Fig. 1 and 2). Only a few

chromosome counts are known from species of the core clades of

the two lineages, all indicating them to be diploids with 2n = 18

[67]. The only plausible explanation for this incongruence appears

to us the assumption of an event of intergeneric reticulation with

chloroplast capture already between ancestors of the current

lineages. Early divergence of the basally branching subclades,

along with geographical isolation and ecological separation

through flowering time, may have led them accumulate sufficient

chloroplast gene variation to be well distinguished from the

remainder. The inner polytomous topology of both core clades of

Paraprenanthes and Notoseris sensu Shih [12], in combination with

their morphological homogeneity in each clade, may probably be

ascribed to recent rapid radiation in a similar distributional area

and ecological niche. The Paraprenanthes umbrosa subclade (P-2,

represented in the trees by Lactuca parishii and Mulgedium umbrosum),

is sister to the core Paraprenanthes clade P-3 in the ITS tree, but

sister to the polytomous mixed Paraprenanthes-Notoseris core clade

(including N-3 and P-3a+P-3b with different internal topology) in

the plastid tree. This topology makes it likely that between the

ancestors of the two core clades N-3 and P-3 further events of

reticulation and cytoplasmic introgression may have taken place.

With respect to the generic classification, we consider the nuclear

phylogeny, which places Notoseris and Paraprenanthes in separate

lineages, a better estimate of the taxon phylogeny because it is

more in line with morphology.

A second putative case of ancient reticulation and chloroplast

capture is exemplified by the entire genus Faberia, which appears in

different subtribal placements in both trees (see under Faberia

lineage., below). Faberia is alloploid with 2n = 34 [68–69],

cytoplasmic gene flow was thus evidently accompanied by nuclear

gene flow.

A third putative case of ancient reticulation constitutes the

diploid Prenanthes purpurea. From morphological and cytological

evidence it appears in this case very unlikely that the ITS tree

represents the actual species phylogeny, whereas much more so

that the plastid tree does (see under Prenanthes purpurea lineage,

below).

Putative cases of introgressive hybridisation between

extant species. A rather clear example for incongruence

indicating reticulation and cytoplasmic gene flow among extant

species concerns the scandent species Notoseris scandens and N.

yakoensis (see Fig. 3B–C; as Prenanthes scandens and P. yakoensis in the

trees) in the Notoseris clade of the ITS tree and the joint Notoseris-

Figure 1. Bayesian phylogram (majority rule tree) of subtribe Lactucinae based on nrITS dataset including coded indels. Posterior
probabilities (PP) are given below the branches, the jackknife support values (JK) of the corresponding Maximum Parsimony majority rule consensus
tree above the branches. Reference point for the names of Chinese taxa is in general the morphology-based taxonomy of Shih (1997), whereas the
clade names at the vertical bars on the right show our revised generic classification outlined in more detail and with the relevant synonymies in the
Taxonomic conclusions.
doi:10.1371/journal.pone.0082692.g001
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Paraprenanthes clade in the plastid tree. The two species form a

clade of their own in the ITS tree and consecutive sister clades in

the plastid tree, but the morphologically intermediate accession

designated as Prenanthes scandens 6 yakoensis clusters with P. scandens

in the ITS tree (JK = 99.9, PP = 1), whereas with P. yakoensis in the

plastid tree (JK = 63.6, PP = 0.95). Additive polymorphism [45] is

present in the ITS sequence of the accession P. scandens 6 yakoensis

(Table 2) and the putative hybrid population is morphologically

clearly intermediate in the number and length of the inner

phyllaries, the flower number per capitulum and the anthertube

length. Since divergent ITS paralogues merged in a genome after

a hybridisation event become homogenised by concerted evolu-

tion, the occurrence of a number of additive polymorphic sites

(APS) supports a rather recent (as opposed to an ancient)

introgression event. Based on these evidences, we hypothesise

the formation of a natural hybrid population between P. yakoensis

and P. scandens, with the former as its male parent and the latter as

female parent, involving both plastid and nuclear introgression.

The two scandent species typically grow at edges of montane

forests to tall forb communities, e.g. along rivers, but found new

habitats along roads through montane forests, which eventually

helped formerly isolated populations of the two species to meet.

A second case is Paraprenanthes melanantha (Fig. 3E; as Notoseris

melanantha in the trees). This species clusters with the morpholog-

ically closely allied P. wilsonii (Fig. 3D; ; N. wilsonii) with strong

support (JK = 98.1, PP = 1) in the ITS tree, but with the widely

distributed P. sororia (represented in the tree by its glandular hairy

form that was treated as P. pilipes by Shih [12]), with lesser support

Table 2. Additive Polymorphic Sites (APS*) in the nrITS region sequences in four exemplar cases of putative introgressive
reticulation.

Sample name in the tree Positions of Additive Polymorphic Sites (APS) in the nrITS region sequence

1. Prenanthes scandens 6 yakoensis 40 41 50 53 57 73 82 127 129 155 199 202 210 456 525 603 621

Prenanthes scandens_LAC-052 T A C T A C T A G T C T T C T T T

Prenanthes scandens 6 yakoensis_LAC-053 Y W Y Y R Y Y R R Y M Y K Y Y Y Y

Prenanthes yakoensis_LAC-054 C T T C G T C A A C A C G T C T C

Prenanthes yakoensis_LAC-055 C T T C G T C R A C A C G T C C C

2. Stenoseris tenuis hybrid 26 53 64 86 125 199 202 231 236 443 446 450 528 534 576 579 628

Stenoseris tenuis_LAC-104 C T G C T T T T T C T A T C C C T

Stenoseris tenuis_LAC-105 C T G C T T T T T C T A T C C C T

Stenoseris tenuis hybrid_LAC-108 Y Y R Y Y Y Y Y Y M Y R Y Y Y Y Y

Stenoseris tenuis hybrid_LAC-109 Y Y R Y Y Y Y Y Y M Y R Y Y Y Y Y

Chaetoseris cyanea_LAC-083 T C A T C C C C C A C G C T T T C

Chaetoseris lyriformis_LAC-088 T C A T C C C C C A C G C T T T C

3. Chaetoseris cyanea hybrid 14 26 64 86 123 443 446 450 554 565 579

Chaetoseris taliensis_LAC-100 G C G C A C T A C A C

Chaetoseris taliensis_LAC-101 G C G C A C T A C A C

Chaetoseris cyanea hybrid_LAC-094 K Y R Y M M Y R Y M Y

Chaetoseris cyanea hybrid_LAC-095 K Y R Y M M Y R Y M Y

Chaetoseris cyanea hybrid_LAC-096 K Y R Y M M Y R Y M Y

Chaetoseris cyanea hybrid_LAC-097 K Y R Y M M Y R Y M Y

Chaetoseris cyanea_LAC-083 T T A T C A C G T C T

Chaetoseris lyriformis_LAC-088 T T A T C A C G T C T

4. Notoseris melanantha 26 53 55 82 120 164 195 200 462 596

Paraprenanthes pilipes_LAC-037 C C T C G G G G T G

Paraprenanthes pilipes_LAC-038 C C T C G G G G T G

Notoseris melanantha_LAC-046 Y Y W Y R R R R K R

Notoseris melanantha_LAC-047 Y Y W Y R R R R K R

Notoseris wilsonii_LAC-049 T C A C G G G G T G

Notoseris wilsonii_LAC-051 T C A C G G G G T G

*An APS is recorded when at least one of the bases involved in a polymorphic site occurs separately at the same position in samples of putative parents.
doi:10.1371/journal.pone.0082692.t002

Figure 2. Bayesian phylogram (majority rule tree) of subtribe Lactucinae based on plastid dataset with coded indels. Posterior
probabilities (PP) are given below the branches, the jackknife support values (JK) of the corresponding Maximum Parsimony majority rule consensus
tree above the branches. Reference point for the names of Chinese taxa is in general the morphology-based taxonomy of Shih (1997), whereas the
clade names at the vertical bars on the right show our revised generic classification outlined in more detail and with the relevant synonymies in the
Taxonomic conclusions.
doi:10.1371/journal.pone.0082692.g002
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(JK = 63.8, PP = 0.97) in our plastid tree. Additive polymorphism

[45] in the ITS sequence of P. melanantha compared to P. wilsonii

and P. sororia (Table 2) supports that cytoplasmic gene flow was

accompanied in this case also by nuclear introgression. This could

indicate that P. melanantha is hybridogenous with P. wilsonii as

paternal and P. sororia as maternal parent. However, besides

clearly additive polymorphic sites, we notice also polymorphic sites

in P. melanantha that are not additive with respect to P. sororia and P.

wilsonii. Moreover, and in contrast to the preceding case,

morphologically, P. melanantha is not intermediate between the

putative parental species but close to the paternal one, as both

share an involucre with only 5 inner phyllaries (8 in P. sororia) and

anther tubes without appendages .3 mm (not exceeding 1.6 mm

in P. sororia). Presumably, in this case a more complex pattern of

reticulation might have taken place and further studies are

necessary to shed some light on it.

Other cases are addressed under the Lactuca (Pterocypsela sonchus

and P. elata) and Melanoseris (M. bracteata, M. graciliflora and M. tenuis,

M. cyanea group) lineages below.

Monophyly and Circumscription of Subtribe Lactucinae
Considering the joint evidence produced by the nuclear and the

plastid phylogeny, subtribe Lactucinae is monophyletic only if the

Faberia and Prenanthes purpurea lineages are disregarded. Otherwise

its circumscription as a monophyletic entity depends on whether

the nuclear or chloroplast phylogeny is followed.

Figure 3. Selected species of Notoseris (A–C) and Paraprenanthes (D–F) in situ. A, Notoseris henryi (Sichuan, 9 Sep. 2013, photo by H. J. Dong;
voucher: H. J. Dong & al. 870 (KUN)), B. N. scandens (Yunnan, 11 Nov. 2011, photo by Y. Tang; voucher: Z. H. Wang, L. Chen & Y. Tang 457 (KUN)), C. N.
yakoensis (Yunnan, 11 Nov. 2011, photo by Y. Tang; voucher: Z. H. Wang, L. Chen & Y. Tang 458 (KUN)), D. Paraprenanthes wilsonii (Sichuan, 25 Jun.
2011, photo by Z. H. Wang; voucher: Z. H. Wang & L. Chen 344 (B, KUN)), E, P. melanantha (Sichuan, 2 Aug. 2011, photo by Z. H. Wang; voucher: Z. H.
Wang & L. Chen 489 (B, KUN)), F, P. oligolepis (Yunnan, 22 Sep. 2011, photo by G. X. Hu; voucher: H. J. Dong & al. 416 (KUN)).
doi:10.1371/journal.pone.0082692.g003
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Faberia lineage. The genus Faberia, endemic to SW China,

was included in Prenanthes and treated as a member of subtribe

Lactucinae by Bremer [8] and Lack [9], but excluded by Kilian &

al. [1] from the Lactucinae, in absence of DNA sequence data for

morphological grounds only. Later Shih & Kilian [13] included

Faberia (merged again with its former segregate Faberiopsis) in

subtribe Lactucinae, based on our initial phylogenetic analysis of

nrITS sequences. The position of Faberia in the nuclear tree, where

it is placed with moderate statistical support (JK = 56, PP = 1) as

sister to all other members of subtribe Lactucinae, and were the

Lactucinae including Faberia received high support (JK = 97.5,

PP = 0.99), is incongruent with its position in our plastid tree,

where it is nested in the outgroup, with relative low support

(JK,50, PP = 0.81) among the Crepidinae and within them as

sister to the single Soroseris sample included (JK = 100, PP = 1). Liu

& al. [68] have shown that Faberia has the chromosome number of

2n = 34, which is unusual in the Cichorieae and indicates an

alloploid origin of the genus from parents with x = 8 and x = 9. Its

incongruent positions in the nuclear and plastid trees make a

reticulation with a maternal ancestor of the genus from the

Crepidinae and a paternal ancestor from the Lactucinae the most

likely scenario, but a plastid phylogeny with a much more

extensive sampling would be necessary to asses its potential

maternal ancestor. Whether the nuclear or chloroplast phylogeny

provide the better phylogenetic estimate for the genus is difficult to

assess, because morphology is little decisive in this case. The

assumed sudden and rapid diversification of tribe Cichorieae in its

evolutionary history [1,3], might be an explanation that clear

synapomorphies are frequently missing for the major lineages

recognised as subtribes [8]. This applies especially to subtribes

Lactucinae and Crepidinae, and certainly is the major reason for

their late recognition as separate lineages. Bremer [8] identified for

the Crepidinae an involucre distinctly differentiated between inner

and outer phyllary series (typically so in e.g. Youngia and Ixeris) as a

possible synapomorphy. In fact, in the Lactucinae often the outer

phyllary series grade into the inner ones (e.g. often so in Lactuca

and Melanoseris), but Notoseris and Paraprenanthes, e.g., have distinctly

separated inner and outer phyllary series, as present also in Faberia.

Morphological reasons for both placements of Faberia can be found

according to our current knowledge. For classification purposes,

we follow, for the time being, the nuclear DNA phylogeny and

hence treat Faberia as a member of subtribe Lactucinae.

The revised circumscription of Faberia as a genus of seven

species endemic to China given by Shih & Kilian [13], with re-

inclusion of the former segregate Faberiopsis and inclusion of

Prenanthes faberi, is fully corroborated by both our nuclear and

plastid phylogenies.

Prenanthes purpurea lineage. Prenanthes purpurea L., a

chiefly European species, provides the type of the generic name

Prenanthes. Kilian & Gemeinholzer [11] and Kilian & al. [1] stated

that this genus should probably be considered as monospecific,

because the many other species formerly included seem unrelated

to P. purpurea. This hold true also for the seven Chinese species

maintained as members of Prenanthes by Shih [12,22]: four of them

(P. angustiloba, P. leptantha, P. macrophylla and P. tatarinowii) were

found to belong actually to subtribe Crepidinae [2,13–14]; among

the three remaining species, one, P. faberi, is nested in our analyses

in Faberia, and two, P. scandens and P. yakoensis, in the Notoseris clade

of the ITS tree or the Notoseris-Paraprenanthes clade of the plastid

tree, respectively (Fig. 1–2).

In the nrITS trees published, Prenanthes purpurea is placed far

distant from the Lactucinae [70] and clusters instead with the

subtribe Hypochaeridinae [1,71] as in our ITS tree. This

placement is meanwhile supported by ITS sequences of four

different accessions but is surprising because P. purpurea and the

Hypochaeridinae are morphologically entirely unrelated: P.

purpurea has cyanic flowers (instead of always yellow or, rarely,

white flowers in the Hypochaeridinae), pendent (instead of usually

erect) flowering capitula, a pappus of scabrid (instead of almost

always stiffly fimbriately plumose) bristles. They also do not agree

cytologically. P. purpurea is diploid with x = 9 [72], while the basic

chromosome numbers in the Hypochaeridinae range from x = 3 to

x = 7 with a single exception of x = 11 [71].

In contrast to the ITS phylogeny, Prenanthes purpurea has a basally

branching position in our plastid phylogeny, being sister with full

support (JK = 100, PP = 1) to all other genera of the Lactucinae

except Faberia. The same has been indicated, but without statistical

support, in a previous matK tree [1]. Both from morphology and

cytology, P. purpurea would in fact best fit into subtribe Lactucinae.

Pending further studies to elucidate the causes for the incongruent

molecular results, it would be appropriate either to include it, with

reservations, in the Lactucinae, or else to leave Prenanthes

unassigned to a subtribe, instead of placing it into the

Hypochaeridinae.

Core lactucinae. Our analyses, which include (a) all major

lineages of the subtribe Lactucinae, (b) all species groups present in

China, and (c) also the species providing the types of the relevant

generic names established in the subtribe, revealed congruently in

the nuclear and plastid phylogenies a core of the subtribe

comprising six (five in the plastid phylogeny) major lineages, of

which five (four) are present in its Chinese centre of diversity

(Fig. 1–2): (1) the Cicerbita lineage, (2) the Cicerbita II lineage, (3) the

Lactuca lineage, (4) the Melanoseris lineage, (5) the Notoseris lineage,

and (6) the Paraprenanthes lineage, the last two revealed as a single

clade in the plastid phylogeny.

Relationships of the major lineages within the core Lactucinae

can be inferred from our analyses with some caution only, because

of the lacking resolution for the deeper nodes in the ITS tree.

Good support, however, is received for the sister group

relationship of the Cicerbita lineage to the remainder of the core

Lactucinae in both phylogenies (JK,50, PP = 0.95 in the ITS tree;

JK = 99.8, PP = 1 in the plastid tree, see Fig. 1–2). The relationship

of the Cicerbita II lineage is incongruent in both datasets: in the ITS

phylogeny it is sister with low support in the BI tree (JK ,50,

PP = 0.62, relationship unresolved in the MP tree) to the

unresolved remainder of the core Lactucinae, whereas in the

plastid phylogeny it is sister to a clade comprising the Lactuca and

Melanoseris lineages with almost full support (JK = 99.9, PP = 1).

Considering the weak support through the ITS dataset, this

incongruence should be regarded as soft and rather the sister

group relationship of the Cicerbita II lineage to the Lactuca +
Melanoseris lineages favoured as hypothesis. Inferred from the

plastid tree, the Notoseris and Paraprenanthes lineages may be

regarded as sisters, which are in turn sister to the Cicerbita II +
Lactuca + Melanoseris lineages.

Hence, the following hypothesis on the evolution of the subtribe

Lactucinae may be proposed: the ancestors of the mesic

European-SW Asian Cicerbita lineage have, on the one hand,

migrated towards eastern Asia giving rise to the mesic Notoseris and

Paraprenanthes lineages and, on the other hand, migrated north- and

northeastwards across Eurasia to North America as well as south-

and southeastwards into Africa and S Asia, giving rise to the mesic

to xeric Cicerbita II, Lactuca and Melanoseris lineages.

Molecular clock calculations estimate the age of the most recent

common ancestor of subtribe Lactucinae, as the youngest branch

of the core group of tribe Cichorieae (clades 4 and 5 according to

Kilian & al. [1] and [3]), to be c. 15–4 Ma [2–3,14], thus spanning

the Middle Miocene to Early Pliocene. This period is characterised
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by significant tectonic events, such as the uplift of the Qinghai-

Xizang Plateau in Asia, the southern part of which reached its

present elevation by c. 15 Ma [73] with larger impact on climate

and vegetation.

Phylogeny of the Major Lineages of the Core Lactucinae
Cicerbita lineage. The Cicerbita lineage, in our study

represented by the type species of the generic names Cicerbita

and Cephalorrhynchus (both species with a chromosome number of

2n = 18 [72]), constitutes the oldest diverging branch of the core

Lactucinae. Since Cephalorrhynchus is part of this lineage, it can be

treated as congeneric with Cicerbita. None of the Chinese members

of the subtribe included in our study is part of this clade.

Altogether twelve species have been classified in the two genera by

Shih [12] or in Cicerbita by Shih & Kilian [13], respectively. Four of

them, from N China, are not included in the present study

(compare Shih & Kilian pp214–215 [13]), but the eight species

included are all nested either in the Cicerbita II (CII) clade, the

Melanoseris (M) clade or the Paraprenanthes clade (P); these are:

Cephalorrhynchus albiflorus, C. macrorhizus and C. saxatilis (M), Cicerbita

azurea (CII), C. sikkimensis (M) and C. oligolepis (P) of Shih [12], and

Cicerbita auriculiformis, C. azurea and C. roborowskii (CII) of Shih &

Kilian [13].

Cicerbita, established as early as 1822 by Wallroth, appeared

vaguely defined right from the beginning, including eight, partly

very different species, and soon came in competition with

Mulgedium, established for a similar heterogenous assemblage of

species by Cassini in 1824, which then displaced the name Cicerbita

during the 19th century. Through the revision by Beauverd [21],

where the name Cicerbita was taken up again, it received its widest

circumscription in the history of Lactucinae systematics, diagnosed

solely by a pappus composed of an outer row of minute hairs and

an inner row of bristles. Later, this feature was characterised by

Stebbins [74] as similar useless for generic delimitation as the

presence or absence of an achene beak, because it separates species

that are closely allied beyond any doubt. It was, however, still

employed, e.g. by Tuisl [16] to delimit the genera Cephalorrhynchus,

Cicerbita and Steptorhamphus with an outer row of minute hairs from

Lactuca, Mulgedium and Scariola without such an outer row (see

below). Stebbins [74], in an initial attempt to redefine Cicerbita, in

contrast established the narrowest circumscription of the genus,

containing only three species, C. alpina, C. pancicii (Vis.) Beauverd

and C. abietina (Boiss.) Stebbins, that all have columnar achenes

with 5 equal main ribs, coarse pappus hairs and a C. alpina habit. A

revised concept of the genus will be provided by Kilian & al.

(unpublished data).

Cicerbita II lineage. Based on our initial ITS phylogeny

with largely unresolved relationships of the major lineages, Shih &

Kilian [13] assigned an assemblage of seven, mainly N Chinese

species, comprising one species with certain affinity and three very

little known species with assumed affinity to Chaetoseris roborowskii

(; Cicerbita roborowskii), plus Cicerbita azurea and C. tianschanica,

tentatively to Cicerbita. It is clear from our analyses, which

represents three species of this assemblage (the species pair Cicerbita

auriculiformis and C. roborowskii, plus C. azurea), that they constitute a

separate lineage clearly distant from Cicerbita. Whether the

remaining species of that assemblage share this positions, has still

to be seen. Study of the type material of Chaetoseris rhombiformis,

treated as a member of Melanoseris by Shih & Kilian [13], revealed

that it is actually conspecific with C. roborowskii. The phylogeny of

this predominantly Central Asian lineage, as well as its circum-

scription, nomenclature and classification will be treated in a

consecutive paper on the global phylogeny and systematics of

subtribe Lactucinae (unpublished data).

Lactuca lineage. Lactuca is not only the name-giving genus of

the Lactucinae, its circumscription and delimitation is also crucial

for the generic classification of the subtribe. Its circumscription

varied extraordinarily in the history of the systematics of the

Lactuca alliance. An extremely broad concept of Lactuca was

introduced by Bentham [75] and maintained by Hoffmann [5],

not only spanning most of the known diversity of the entire

present-day subtribe but even including genera and species today

placed into subtribes Crepidinae and Hyoseridinae. Very narrow

concepts, in contrast, were advocated, in particular, by Tuisl [16]

and Shih [23–24], who generically separated a number of

elements from the core of Lactuca. Moderately wide concepts were

established by Stebbins [74,76–77] and Ferákova [78].

The genus has never been revised in its entirety, and all four last

mentioned authors only dealt with regional subsets of the genus.

Because of its economic importance, many studies and also the

first molecular studies [70,79–80] focused on the lettuce ‘‘gene

pool’’ [81], which constitutes the core of Lactuca. Koopman & al.

[70] provides the only molecular phylogeny of the genus available

to date and is based on nrITS1. The results of their analysis are

corroborated by our phylogeny based on the entire nrITS region

and a small but representative sampling of Lactuca. Three well

supported major clades are revealed: (1) One (JK = 99.9, PP = 1)

comprises the lettuce, Lactuca sativa, which provides the type of the

generic name, as well as its primary, secondary and tertiary gene

pool [70]. Their distribution is centred in Europe, the Mediter-

ranean and SW Asia and all are diploids with 2n = 18. This clade

includes the type species of the segregates Scariola (S. viminea ;
Lactuca viminea), Mulgedium (M. runcinatum = Lactuca tatarica) and

Lagedium (L. sibiricum ; Lactuca sibirica). (2) The second (JK = 100,

PP = 1) clade comprises the E Asian Lactuca indica and its relatives,

which were generically separated from Lactuca by Shih [23] as

Pterocypsela. This clade is the dominant representative of the genus

in E Asia and replaces the first clade there. Its entire species are

likewise diploid with 2n = 18. Both clades together form a clade

with less statistical support (JK = 54.4 PP = 98) than the individual

clades have themselves. (3) The third clade (JK = 94.7, PP = 1) in

turn is sister to the former two clades and has the highest number

of species, of which only few are represented in our study. In

contrast to the first two clades, it comprises subclades with

chromosome numbers of 2n = 18, 2n = 16 and 2n = 34, the last

one apparently by alloploidisation. Its members have a pappus

with an outer ring of minute hairs or not, while all members of the

first two clades uniformly lack such an outer ring. It includes the

type species of the segregates Steptorhamphus (S. tuberosus ; Lactuca

tuberosa) and Lactucella (L. undulata ; Lactuca undulata), the Asian L.

dissecta and L. dolichophylla, both also present in China, the

widespread African L. inermis Forssk. ( = L. capensis), L. perennis L.

and, not shown here, other European, Mediterranean and SW

Asian species as well as the group of native North American

species with a chromosome number of 2n = 34 ([72]; unpublished

data).

Our plastid tree, which is the first one with a selection of Lactuca

species published, reveals a polytomy of six clades. Differences to

the topology of the ITS tree are: (a) the L. sibirica-L. tatarica

subclade clusters with the L. perennis clade, although with weak

support (JK = 65.1, PP = 0.84), but not with the L. sativa clade.

This is less consistent with the hybridisation experiments reviewed

by Koopman & al. [70], which place L. tatarica into the secondary

lettuce gene pool because it produces fertile hybrids when

somatically hybridised with L. sativa, but place L. perennis outside

the lettuce gene pool because it is not crossable with L. sativa

primary gene pool species. (b) L. inermis is not nested in the

Steptorhamphus tuberosus-L. dissecta clade but constitutes a branch of
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its own. (c) As noted already above, Mulgedium bracteatum of the

Melanoseris lineage in the ITS tree is nested here in the Lactuca

lineage as a further separate branch.

While the ITS tree is inconclusive with respect to the

relationship of the Lactuca lineage with other major lineages in

the core Lactucinae, the plastid tree indicates a highly supported

sister group relationship (JK = 99.9, PP = 1) between the Lactuca

and the Melanoseris lineages. The two lineages themselves only

receive moderate support, Lactuca (JK = 68.8, PP = 0.98) still less

than Melanoseris (JK = 81.7, PP = 1). Exclusion of M. bracteatum

from the analysis does not affect the statistical support of either

lineage and since M. bracteatum is a diploid species (2n = 16 [72]),

the reason for its incongruent position may perhaps be chloroplast

capture through introgressive hybridisation. A sister group

relationship with Melanoseris is also supported by morphology,

where differences between the two lineages are particularly

difficult to define.

Lactuca is a suitable example to elucidate the shortcomings of the

previous classification attempts in the Lactuca alliance with the

molecular phylogenetic results. Although it is evident that the

achene as dispersal unit faces a particularly strong exposure to

selection pressure and corresponding morphological changes

affecting their functionality [82], a very static, sometimes even

typological, understanding of achene features has often enough

pervaded the taxonomy of the Lactuca alliance. Absence of a true

achene beak and a weakly compressed achene body were the main

features for the separation of Mulgedium (L. tatarica and L. sibirica

[16], somewhat altered concept by Shih [23]) or Lagedium

(including L. tatarica and L. sibirica [83] or L. sibirica only [23]);

the combination of a compressed achene body, winged lateral ribs

and a beak justified the separation of the E Asian Lactuca lineage as

Pterocypsela [23], and the apomorphy of two rod-like, pendent basal

appendages at the long-beaked achene apex justified separation of

L. undulata as monotypic genus Lactucella [84]. A relict of 19th

classification, where schematically pappus features were in use for

classification at generic and higher ranks, is the use in the Lactuca

alliance of the absence of an outer row of minute hairs in the

pappus to delimit Lactuca from Steptorhamphus as well as from, in

particular, Cephalorrhynchus and Cicerbita [5,16,21,23,25,78]. The

Steptorhamphus tuberosus-L. dissecta clade is an example, where even a

single, well supported clade, revealed both in the nuclear and

plastid phylogenies, unites members having a pappus with (S.

tuberosus) and without (L. dissecta, L. dolichophylla) an outer ring of

minute hairs. The segregation of the L. viminea-L. orientalis species

group as Scariola for the low number of 4 or 5 flowers per

capitulum along with white stems and adnately decurrent leaves,

in contrast, appears morphologically much more plausible, yet is

equally unsubstantiated in the light of the molecular phylogenetic

results. All these former segregates are deeply nested in Lactuca

according to both the nuclear and plastid phylogenies.

Among the E Asian Lactuca indica species group, different species

concepts, which depend on the evaluation of conspicuous leaf

shape differences found, have been applied recently and conse-

quently different numbers of species recognised. Whereas Shih

[12,23] recognised seven species (under Pterocypsela), Shih & Kilian

[13] reduced them to only four, considering the otherwise similar

plants with entire-leafy and pinnately lobed leaves only as

extremes of infraspecific ranges of variation. The latter authors

therefore sunk L. elata (with entire leaves) into L. raddeana (with

lyrately or pinnately lobed leaves), L. laciniata (with strongly

pinnately lobed leaves) into L. indica (with mostly entire leaves) and

L. sonchus (with entire leaves) into L. formosana (with strongly

pinnately lobed leaves). Using the narrower species concepts in our

analyses, which includes all species of the group but L. triangularis,

both phylogenies link with high support L. laciniata and L. indica

(JK = 99.8, PP = 1 in ITS tree; JK = 99.5, PP = 1 in plastid tree).

The ITS phylogeny also links with high support L. elata and L.

raddeana (JK = 96.6, PP = 1), only L. sonchus and L. formosana are

linked with weak support (JK ,50, PP = 0.52). The plastid

phylogeny in contrast links L. elata with L. sonchus and L. formosana

with weak support (JK = 63.5, PP = 1). These results in combina-

tion with the low amount of sequence variation involved among

the six Pterocypsela samples (12 variable sites, 11 informative in the

nuclear data set; 10 and 6 informative in the plastid data set) can

be seen as an additional support for the hypothesis of wide ranges

of infraspecific leaf shape variation and consequently wider species

concepts at least in the first case, while the other cases deserve

further studies because of and also with respect to the ambiguous

position of L. elata.

Melanoseris lineage. The genus Melanoseris (for exemplar

species see Fig. 4) was established by Decaisne in 1843 to include

two species from the Himalayas, which are now treated as a single

species, M. lessertiana. It was considered to differ from Cicerbita (then

under the name Mulgedium) because of its beaked achenes and from

Lactuca, because of its pappus with an outer series of minute hairs.

Edgeworth [85] added a few more Himalayan species, which we

confirm to belong to this lineage, but afterwards the use of the

name Melanoseris was abandoned. The name was only recently

revived by Shih & Kilian [13] for this lineage, based on our initial

ITS phylogeny, through which it became evident that the types of

the newly established genera Chaetoseris and Stenoseris by Shih [25]

are part of one lineage with M. lessertiana, which provides the type

of the name Melanoseris and was treated by Shih [12] under

Mulgedium. Shih’s genera Chaetoseris and Stenoseris are, moreover,

shown in our analyses to be actually bi- and triphyletic,

respectively (Fig. 1–2). Apart from the bulk of the Chaetoseris

species nested in the Melanoseris lineage, one species, C. roborowskii

(including also C. rhombiformis), is nested in the Cicerbita II lineage.

Chaetoseris was circumscribed and delimited from Lactuca and

Cicerbita by the combination of beaked achenes, an achene corpus

with broad, thickened lateral ribs and a pappus with an outer

series of minute hairs [25]. Shih’s six Stenoseris species are

distributed among the Melanoseris lineage (S. graciliflora, S. taliensis,

S. tenuis), the Paraprenanthes lineage (S. leptantha, S. triflora) and the

Cicerbita II lineage (S. auriculiformis). Stenoseris was circumscribed by

the combination of narrowly cylindrical, 3-flowered capitula, an

achene corpus with broad, thickened lateral ribs and a pappus

with an outer series of minute hairs [25]. All features used to

circumscribe the two genera are clearly shown to be homoplastic.

It is therefore not surprising that, compared to Shih [12,25], the

Melanoseris lineage, moreover, includes all species of Cephalorrhynchus

(distinguished by Shih through the achene corpus lacking thick,

broadened lateral ribs), one of Cicerbita (C. sikkimensis) and three

species of Mulgedium (distinguished by Shih through the pappus

lacking an outer row of minute hairs, M. bracteatum, M. lessertianum

and M. monocephalum).

Melanoseris constitutes a large, well supported lineage (JK = 89.1,

PP = 1 in the ITS phylogeny, JK = 81.7, PP = 1 in the plastid

phylogeny). Most species, in particular all its Sino-Himalayan

members, are diploid with 2n = 16 ([72]; under Chaetoseris and

Stenoseris [86]), otherwise a number of species also has 2n = 18

(unpublished data). Besides the Sino-Himalayan species, Melano-

seris also includes S, SW and Middle Asian as well as African

species (unpublished data), but our present sampling is restricted

chiefly to the species occurring in China. Mulgedium bracteatum,

which appears in the ITS tree of the global sampling (unpublished

data, there also with a second sample) within a further basally

branching clade of SW and Middle Asian species, therefore takes
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an isolated, basally branching position in the present ITS tree. The

strikingly incongruent position in the plastid phylogeny as a

member of the Lactuca lineage deserves further investigation. From

the morphological evidence we consider the nuclear phylogeny as

the better estimate for the species phylogeny.

The next following branch, congruently revealed by the nuclear

and plastid phylogeny, is sister with robust support (JK = 99.8,

PP = 1 in the ITS phylogeny; JK = 93.8, PP = 0.82 in the plastid

phylogeny) to all other Sino-Himalayan species of the lineage and

consists of Parasyncalathium souliei only. Originally described as

Lactuca souliei in 1895, the attractive bright blue-flowered

acaulescent alpine species was placed together with habitually

and ecologically strikingly similar species in Lactuca sect. Aggregatae,

which later became the separate genus Syncalathium. Stebbins

(pp47–50 [87]) inferred from achene morphology, Zhang & al.

[88] from karyology, and Kilian & al. (pp348–350 [1]) and Zhang

& al. [2,14] from molecular phylogeny, all provided evidence that

L. souliei is entirely unrelated to the other species of Syncalathium

and that their overall similarity is hence a result of convergent

evolution, presumably in response to the environmental changes

following the uplift of the Qinghai-Xizang Plateau. Kilian & al. [1]

recognised the species as a member of subtribe Lactucinae rather

than of Crepidinae, to which Syncalathium belongs to, and Shih &

Kilian [13] later placed it into Melanoseris, while Zhang & al. [14],

arguing with its peculiar morphology, accommodated it in their

newly established genus Parasyncalathium. Our analyses presented

here do not provide unambiguous support for either classification.

Figure 4. Selected species of Melanoseris in situ. A and C, Melanoseris atropurpurea (Yunnan, 9 Sep. 2009, photo by Z. J. Yin; voucher: Z. J. Yin &
al. 1970 (KUN)), B. M. likiangensis (Sichuan, 23 Aug. 2012, photo by N. Kilian; voucher: N. Kilian & al. 10808 (B, KUN), D. M. cyanea (Yunnan, 22 Sep. 2011,
photo by G. X. Hu; voucher: H. J. Dong & al. 446 (KUN), E, M. tenuis (Yunnan, 10 Sep. 2009, photo by Z. J. Yin; voucher: Z. J. Yin & al. 1969 (KUN)), F, M.
graciliflora (Sichuan, 19 Aug. 2012, photo by N. Kilian; voucher: N. Kilian & al. 10509 (B, KUN).
doi:10.1371/journal.pone.0082692.g004
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For the time being, we prefer to maintain its inclusion in

Melanoseris.

The bulk of the Sino-Himalayan species all appear in a large

polytomy in the ITS phylogeny, with only two subclades that

comprise samples of more than one species (Fig. 1: M-A and M-B).

The plastid phylogeny provides higher resolution for the lineage

and shows four major subclades with well support (Fig. 2: M-1 to

M-4). None of the subclades that comprise samples of more than

one species, however, is fully congruent with either subclade

revealed in the ITS tree.

(1) Melanoseris cyanea group: The larger of the two subclades of the

ITS tree (clade M-A) includes all but four samples (as

Chaetoseris cyanea hybrid_LAC094-097 in the tree) that belong

to the M. cyanea group of clade M-4 in the plastid phylogeny.

The core of the group congruently revealed in both

phylogenies contains a number of taxa, morphologically

clearly allied to M. cyanea (Fig. 4D). Morphological variation

within this group of robust tall forbs in particular regards

indumentum, leaf shape, size of capitula and number of

flowers per capitulum, flower colour, and length of the anther

tube. Delimitation of taxa is very problematic due to a lack of

clear morphological discontinuities. These may, however, be

the results of previous areal changes with subsequent events of

hybridisation and introgression, processes that are apparently

still ongoing. Notably, the aforementioned four sympatric

samples (as Chaetoseris cyanea hybrid_LAC094–097 in the tree)

of the M. cyanea group, which fall into the large polytomy of

the Sino-Himalayan species in the ITS phylogeny, have a

number of additive polymorphic sites in their ITS sequences

(Table 2), indicating the occurrence of still divergent, non-

homogenised ITS paralogues likely as a result of nuclear gene

flow, and this finding corresponds to the presence of

intermediate morphological characters states, because of

which these samples do not match either of the species

distinguished and were therefore designated as putative

hybrids. Even the already widened species concepts by Shih

& Kilian [13], compared to Shih [12], do not work when

confronted with the variation actually encountered in the field

across the distribution area of the M. cyanea group in China.

The lacking molecular resolution within this group thus

corresponds well to the lack of morphological discontinuities

and makes further taxonomic adjustments necessary (see

Taxonomic conclusion).

(2) Melanoseris macrorhiza group: In the ITS phylogeny M.

macrorhiza (; Cephalorrhynchus macrorhizus in Shih 1997) clusters

together with M. violifolia ( = Cicerbita sikkimensis in Shih 1997)

and M. lessertiana (providing the type of Melanoseris) in a well

supported (JK = 93.1, PP = 1) clade (Fig. 1: clade M-B). In the

plastid phylogeny, in contrast, this clade does not exist at all

but the three species occur in three different clades (Fig. 2: M-

1, M-3, M-4). M. lessertiana instead forms a clade with full

support (JK = 100, PP = 1) together with M. qinghaica (;
Mulgedium qinghaicum [89]). M. qinghaica actually represents

Mulgedium lessertianum in the sense of Shih [12] and the Chinese

populations of Melanoseris lessertiana in the sense of Shih &

Kilian [13], and replaces entirely the latter species in China.

In the ITS tree M. qinghaica forms a separate branch within

the large polytomy of the Sino-Himalayan species. Morpho-

logically M. lessertiana and M. qinghaica have apparent close

affinities to each other and are mainly distinguished by the

distinctly longer achene beak and very short anthertube of M.

qinghaica. It thus appears that the plastid phylogeny in this

respect is more in line with morphology. Inferred from

morphology, however, all four aforementioned species are

considered to be more closely related to each other, as is

revealed in the ITS tree for three of them. They are all rather

low growing herbs usually without a dominant main stem.

(3) Melanoseris graciliflora group: The morphologically closely

allied, few-flowered species pair M. graciliflora (Fig. 4F; Stenoseris

graciliflora [12]) and M. tenuis (Fig. 4E; Stenoseris tenuis [12]) is

nested in the plastid phylogeny (Fig. 2: clade M-2) in a clade

together with several species having capitula with many to

numerous (M. atropurpurea, Fig. 4A+C) flowers and usually

clasping stem leaves. All are robust tall forbs with cyanic

flowers. In the ITS tree the members of this clade all form

separate branches in the large polytomy except for the

multiple samples of M. graciliflora and M. tenuis. Morphology

makes this clade in the plastid tree neither obvious nor

unlikely, at least if we accept also more drastic changes in the

flower number per capitula as a common trend in character

evolution, what we certainly have to do. We may hence accept

the inferred relationship as a hypothesis for further studies,

but also taking into consideration that relationships in Sino-

Himalayan Melanoseris may be blurred by events of hybrid-

isation and introgression. A number of well detected additive

polymorphic sites in the ITS sequences of Stenoseris tenuis

hybrid_LAC-108 and 109 (Table 2), plus the intermediate

morphological characters (especiall the number of inner

phyllaries), in combination with the first author’s observation

in the field that some typical plants of M. cyanea, M. tenuis and

M. atropurpurea co-occurred in the same habitat, all indicates

introgressive hybridisation between populations of these taxa,

which accounts for the incongruent positions of these two

hybrid individuals in the ITS and plastid phylogenies.

Melanoseris is not only the largest lineage of Lactucinae in China,

but we have experienced it also taxonomically as particularly

difficult. It comprises, on the one hand, elements that are

morphologically so diverse that their affinities let alone relation-

ships are far from obvious, on the other hand elements that

constitute rather uniform groups in which the differences are

predominantly gradual rather than clear-cut or of qualitative

nature, and delimitations thus are often difficult to establish. Our

molecular phylogenetic analyses provide the first indications that

hybridisation and reticulate evolution could be one cause of this

situation.

Notoseris lineage. The genus Notoseris (for exemplar species

see Fig. 3A–C) was established by Shih [22] to accommodate a

number of tall forb species endemic to SW China, which share a

combination of morphological features that set them apart from

both the genera Prenanthes and Nabalus. These features were:

nodding 3–5-flowered capitula; slender cylindrical involucres with

purplish red phyllaries; purplish red flowers; purplish red, fusiform,

unbeaked, somewhat compressed achenes (with 5 main ribs and 2

secondary ribs in between); pappus without an outer row of minute

hairs. In his revised treatment, Shih [12] accepted 11 (plus two

doubtful) species of Notoseris. Shih & Kilian [13] reduced this

number to seven by changing several species concepts and

transferring one species to Paraprenanthes. As a conclusion from

our then initial ITS phylogeny, Shih & Kilian [13] added the two

scandent species (Fig. 3B–C), formerly treated as Prenanthes scandens

and P. yakoensis to Notoseris, which extended the original circum-

scription of the genus to capitula with up to 12 flowers and also

non-purplish red but pale brown achenes. Their inclusion is

corroborated by the present extended analysis. The scandent

Notoseris species are not related to the scandent species of the

subtribe in Africa and Indonesia, evolution of the scandent habit in
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subtribe Lactucinae thus has apparently occurred independently

three times from montane tall forb ancestors (unpublished data).

Our phylogenetic analysis revealed that Notoseris in the revised

sense of Shih & Kilian [13] is still not monophyletic. Two species,

N. melanantha and N. wilsonii, are nested instead in the Paraprenanthes

clade of the ITS phylogeny, or in the Paraprenanthes subclades of the

joined Notoseris-Paraprenanthes clade of the plastid tree, and have

thus to be excluded from Notoseris and transferred to the genus

Paraprenanthes as P. melanantha and P. wilsonii (Fig. 3D–E; see

Taxonomic conclusions). Possible causes of the topological

incongruences were discussed above.

Additional evidences gathered in the present study from the

taxonomic revision of all types and extensive studies of the species

in the field, which support the molecular results, urge us to a

further revision of the species concepts compared to both Shih

[12] and Shih & Kilian [13]. It became obvious that discontinu-

ities, of leaf features especially, inferred from the herbarium

material of these tall forbs by Shih [12,22] and used for the

delimitation of species, frequently break down when variation is

studied in the field. As herbarium specimen preservation of tall

forbs (often exceeding 2 m in height) was in the past usually done

highly selectively, even intraindividual variation of leaf shapes

from the base to the top of the main axis was rarely documented to

a sufficient extent, while leaf shape played an important role in the

taxonomic treatments by Shih [12,22]. Consequently, four other

species compared to the last treatment by Shih & Kilian [13] are

sunken in the synonymy here, leaving Notoseris with a total of six

species only. So far known, all species are diploids with 2n = 18

[67]. The genus has its centre of diversity in SW China, where all

six species occur. Four of them are endemic to China, the other

two species also touch neighbouring countries.

Paraprenanthes lineage. The genus Paraprenanthes (for

exemplar species see Fig. 3D–F) was formally established by Shih

[24], based on an earlier proposal by C. C. Chang, segregating

species from Lactuca that are morphologically allied to L. sororia,

which he designated as the type of the name Paraprenanthes. These

species are usually tall forbs, they have usually nodding capitula

with 3 (in the revised circumscription established here, 4 according

to Shih [12])–15 cyanic flowers, slender cylindrical involucres,

fusiform, somewhat compressed unbeaked dark brown to blackish

achenes with 5 main ribs and 2 rather similar secondary ribs in

between, and a pappus without an outer row of minute hairs.

Formerly 11 species were distinguished by Shih [24], most of

which newly described, the number increased to 15 finally [12].

Shih’s circumscription of the genus was maintained by Shih &

Kilian [13], apart from the transfer of one species from Notoseris

and the addition of a second one, following Sennikov [90], from

Mulgedium, but somewhat wider species concepts were established,

reducing the species number to 12.

Inferred from our analysis, the recent additions to the genus by

Sennikov [90] and Shih & Kilian [13] are corroborated, but as

hitherto circumscribed, Paraprenanthes is clearly paraphyletic. One

group of species previously placed in Notoseris (N. melanantha/wilsonii

group) and a second group of two species (Cicerbita oligolepis/

Stenoseris triflora group) formerly placed in Stenoseris and Cicerbita

[12,25] or Melanoseris [13], respectively, must also be transferred to

Paraprenanthes according to the evidence from both the nuclear and

the chloroplast phylogeny. Although Notoseris and Paraprenanthes

form a joined clade in the latter (see discussion, above), both

groups clearly cluster with the respective Paraprenanthes subclades.

The consequences for the morphological circumscription of the

genus are, however, less significant, owing to the anyway shallow

morphological divisions between the major lineages of the

subtribe, and mainly concern the achenes, which can also be

shortly beaked and pale brown. The case of putative introgressive

hybridisation involving Paraprenanthes melanantha (as Notoseris

melanantha in the trees), P. wilsonii (as N. wilsonii in the trees) and

P. sororia, is discussed above.

Similar to the situation in Notoseris, the core of Paraprenanthes

forms a polytomy in the ITS tree with the terminal taxa in most

cases found individually on short or very short branches, reflecting

the few character state differences in this marker sequence,

whereas somewhat more resolution is provided by the plastid tree.

The molecular evidence is in good accordance with the phenetic

evidence, in so far as (a) speciation among the core of Paraprenanthes

has not yet, in most cases, led to more conspicuous discontinuities,

and (b) that even the wider species concepts applied by Shih &

Kilian [13] compared to Shih [12] are still too narrow for quite

similar reasons as stated for Notoseris. Supported by the taxonomic

revision of all types, extensive studies of the species in the field, our

revised taxonomy of Paraprenanthes halves the number of its species

recognised by Shih & Kilian [13] to six. Adding the species newly

to be transferred to this genus, we now recognise 10 species in

Paraprenanthes, eight of which are endemic to China while two, P.

sororia and P. umbrosa, extend to Vietnam and Japan, and

Myanmar(?) and Thailand, respectively. So far known, all species

are diploids with 2n = 18 [67]. The single exception of a

chromosome count of 2n = 16 by Deng & al. [86] for Stenoseris

leptantha, which is a synonym of Paraprenanthes triflora, vouchered by

the specimen Nie 1159 (KUN!), actually represents Melanoseris

tenuis.

Taxonomic Conclusions
Concluding from our molecular and morphological analyses,

the latter also including the study of the type material of the names

involved, we outline here a new classification of the genera

Notoseris, Paraprenanthes and Melanoseris in their Chinese centre of

diversity. It revises the recent classification of these genera by Shih

& Kilian [13]. Full synonymies and further data are available

through the Cichorieae Portal [27]. Monographic treatments of

these genera are in preparation and will be the subject of

consecutive publications.

1. Notoseris. C. Shih in Acta Phytotax. Sin. 25: 196. 1987. –

Type: Notoseris psilolepis C. Shih [ = N. macilenta].

6 species, all in China, 3 endemic ( = *).

Distribution: China (Chongqing, Guangdong, Guangxi, Guiz-

hou, Hubei, Hunan, Jiangxi, Sichuan, Taiwan, Xizang, Yunnan)

and E Himalaya region.

(1) Notoseris yakoensis (Jeffrey) N. Kilian in Wu & al., Fl.

China 20–21: 231. 2011 ; Prenanthes yakoensis Jeffrey in Notes Roy.

Bot. Gard. Edinburgh 5: 203. 1912.

= Prenanthes volubilis Merr.

(2) Notoseris scandens (Hook. f.) N. Kilian in Wu & al., Fl.

China 20–21: 231. 2011 ; Prenanthes scandens Hook. f. in Bentham

& Hooker, Gen. Pl. 2: 527. 1873.

(*3) Notoseris triflora (Hemsl.) C. Shih in Acta Phytotax. Sin.

25: 202. 1987 ; Lactuca triflora Hemsl. in J. Linn. Soc., Bot. 23:

485. 1888.

(4) Notoseris khasiana (C. B. Clarke) N. Kilian in Wu & al.,

Fl. China 20–21: 233. 2011 ; Prenanthes khasiana C. B. Clarke,

Comp. Ind.: 273. 1876.

= Notoseris rhombiformis C. Shih, syn. nov.
(*5) Notoseris macilenta (Vaniot & H. Lév.) N. Kilian in Wu

& al., Fl. China 20–21: 231. 2011 ; Prenanthes macilenta Vaniot &

H. Lév. in Bull. Soc. Bot. France 53: 550. 1906.

= Notoseris psilolepis C. Shih

= Notoseris formosana (Kitam.) C. Shih

= Notoseris nanchuanensis C. Shih, syn. nov.
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= Notoseris guizhouensis C. Shih, syn. nov.

= Notoseris yunnanensis C. Shih, syn. nov.

(*6) Notoseris henryi (Dunn) C. Shih in Acta Phytotax. Sin.

25: 202. 1987 ; Prenanthes henryi Dunn in J. Linn. Soc., Bot. 35:

514. 1903.

= Notoseris porphyrolepis C. Shih, syn. nov.

Excluded species:

Notoseris melanantha (Franch.) C. Shih in Acta Phytotax. Sin. 25:

198. 1987 ; Paraprenanthes melanantha (Franch.) Z. H.

Wang

Notoseris wilsonii (C. C. Chang) C. Shih in Acta Phytotax. Sin. 25:

202. 1987 ; Paraprenanthes wilsonii (C. C. Chang) Z. H.

Wang

2. Paraprenanthes. C. C. Chang ex C. Shih in Acta

Phytotax. Sin. 26: 418. 1988. – Type: Paraprenanthes sororia (Miq.)

C. Shih.

= Lactuca sect. Prenanthesiae Franch. in J. Bot. (Morot) 9: 291.

1895. – Lectotype (here designated): Lactuca melanantha Franch.

10 species, all in China, 8 endemic ( = *).

Distribution: China (Anhui, Chongqing, Fujian, Guangdong,

Guangxi, Guizhou, Hainan, Hubei, Hunan, Jiangsu, Jiangxi,

Shanxi, Sichuan, Taiwan, Xizang, Yunnan, Zhejiang), the E

Himalayan region, Myanmar, Thailand, Vietnam and Japan.

(*1) Paraprenanthes oligolepis (C. C. Chang ex C. Shih) Z.

H. Wang, comb. nov. ; Cicerbita oligolepis C. C. Chang ex C.

Shih in Acta Phytotax. Sin. 29: 398. 1991 ; Melanoseris oligolepis (C.

C. Chang ex C. Shih) N. Kilian, syn. nov.

(*2) Paraprenanthes triflora (C. C. Chang & C. Shih) Z. H.

Wang & N. Kilian, comb. nov. ; Stenoseris triflora C. C. Chang &

C. Shih in Acta Phytotax. Sin. 29: 413. 1991 ; Melanoseris triflora

(C. C. Chang & C. Shih) N. Kilian, syn. nov.

= Stenoseris leptantha C. Shih ; Melanoseris leptantha (C. Shih) N.

Kilian, syn. nov.

(3) Paraprenanthes umbrosa (Dunn) Sennikov in Bot.

Zhurn. 82(5): 111. 1997 ; Lactuca umbrosa Dunn in J. Linn.

Soc., Bot. 35: 513. 1903 ; Mulgedium umbrosum (Dunn) C. Shih

= ? Lactuca parishii Craib in Kew Bull. 1911: 403. 1911, syn.
nov.

(4) Paraprenanthes sororia (Miq.) C. Shih in Acta Phytotax.

Sin. 26: 422. 1988 ; Lactuca sororia Miq. in Ann. Mus. Bot.

Lugduno-Batavi 2: 189. 1866

= Paraprenanthes pilipes (Migo) C. Shih

= Paraprenanthes multiformis C. Shih, syn. nov.

(*5) Paraprenanthes diversifolia (Vaniot) N. Kilian in Wu

& al., Fl. China 20–21: 229. 2011 ; Lactuca diversifolia Vaniot in

Bull. Acad. Int.Geogr. Bot. 12: 245. 1903

= Paraprenanthes sylvicola C. Shih

= Paraprenanthes heptantha C. Shih & D. J. Liou, syn. nov.

= Paraprenanthes gracilipes C. Shih

(*6) Paraprenanthes yunnanensis (Franch.) C. Shih in Acta

Phytotax. Sin. 26: 421. 1988 ; Lactuca yunnanensis Franch. in J.

Bot. (Morot) 9: 264. 1895

= Paraprenanthes sagittiformis C. Shih

= Paraprenanthes longiloba Y. Ling & C. Shih, syn. nov.

= Paraprenanthes auriculiformis C. Shih, syn. nov.

(*7) Paraprenanthes prenanthoides (Hemsl.) C. Shih in

Acta Phytotax. Sin. 26: 423. 1988 ; Crepis prenanthoides Hemsl. in J.

Linn. Soc., Bot. 23: 477. 1888

= Paraprenanthes glandulosissima (C. C. Chang) C. Shih, syn. nov.

= Paraprenanthes polypodiifolia (Franch.) C. Shih, syn. nov.

= Paraprenanthes thirionnii (H. Lév.) C. Shih

= Paraprenanthes luchunensis C. Shih, syn. nov.

(*8) Paraprenanthes meridionalis (C. Shih) Sennikov in

Bot. Zhurn. 82(5): 111. 1997 ; Mulgedium meridionale C. Shihin

Acta Phytotax. Sin. 26: 392. 1988

= Paraprenanthes hastata C. Shih, syn. nov.

(*9) Paraprenanthes melanantha (Franch.) Z. H. Wang,

comb. nov. ; Lactuca melanantha Franch. in J. Bot. (Morot) 9:

291. 1895 ; Notoseris melanantha (Franch.) C. Shih

Note: This species was misinterpreted by Shih & Kilian [13],

where it was treated, under Notoseris, in a wide sense, merged with

actually unrelated other species that have similar pinnately divided

leaves. In the sense of its type, in contrast, it is a species endemic to

Sichuan and Chongqing, well characterised by the combination of

(a) a strikingly narrow, paniculiform, densely glandular synflores-

cence, (b) leaves with a large triangular to ovate or rhombic,

basally cordate to cuneate terminal segment and 0–3(–6) pairs of

lateral segments on a winged rachis, and (c) achenes with a 6

truncate to attenuate apex.

(*10) Paraprenanthes wilsonii (C. C. Chang) Z. H. Wang,

comb. nov. ; Prenanthes wilsonii C. C. Chang in Bull. Fan Mem.

Inst. Biol., Bot. 5: 322. 1934 ; Notoseris wilsonii (C. C. Chang) C.

Shih

= Notoseris gracilipes C. Shih

= Paraprenanthes dolichophylla (C. Shih) N. Kilian & Z. H. Wang in

Wu & al., Fl. China 20–21: 229. 2011, syn. nov. ; Notoseris

dolichophylla C. Shih

Note: Paraprenanthes dolichophylla is apparently very closely related

to P. wilsonii and pending further assessmnent, is tentatively

considered as conspecific here.

3. Melanoseris. Decne. in Jacquemont, Voy. Inde 4: 101.

1843. – Lectotype (designated by Pfeiffer, Nomencl. Bot. 2: 259.

1874): Melanoseris lessertiana (DC.) Decne.

= Chaetoseris C. Shih in Acta Phytotax. Sin. 29: 398. 1991. –

Type: Chaetoseris lyriformis C. Shih [ = Melanoseris cyanea s.l.]

= Stenoseris C. Shih in Acta Phytotax. Sin. 29: 411. 1991. –

Type: Stenoseris graciliflora (DC.) C. Shih [; Melanoseris graciliflora]

= Parasyncalathium J. W. Zhang & al. in Taxon 60: 1680. 2011. –

Type: Parasyncalathium souliei (Franch.) J. W. Zhang & al. [;
Melanoseris souliei]

Some 70 species in total, 17 species in China, 9 endemic ( = *).

Distribution: China (Chongqing, Guizhou, Sichuan, Xizang,

Yunnan); Himalayas and adjacent areas, SW and Central Asia,

sub-Saharian Africa.

Notes: In the Himalayan territories the following seven species

of Melanoseris are distributed but not known to occur in China: M.

brunoniana (Wall. ex DC.) N. Kilian & Z. H. Wang, comb. nov. ;
Prenanthes brunoniana Wall. ex DC., Prodr. 7(1): 195. 1838; M.

decipiens (Hook. f. & Thomson ex C. B. Clarke) N. Kilian & Z. H.

Wang, comb. nov. ; Lactuca decipiens Hook. f. & Thomson ex C.

B. Clarke, Compos. Ind.: 266. 1876; M. filicina (Stebbins) N.

Kilian, comb. nov. ; Lactuca filicina Duthie ex Stebbins in Indian

Forest Rec., Bot. 1: 241. 1939; M. kashmiriana (Mamgain & R. R.

Rao) N. Kilian, comb. nov. ; Lactuca kashmiriana Mamgain & R.

R. Rao in J. Bombay Nat. Hist. Soc. 83: 406–408. 1986; M.

lahulensis (Mamgain & R. R. Rao) N. Kilian, comb. nov. ;
Lactuca lahulensis Mamgain & R. R. Rao in Bull. Bot. Surv. India

27: 120–122. 1987; M. polyclada (Boiss.) Akhani, N. Kilian &

Sennikov, comb. nov. ; Zollikoferia polyclada Boiss., Fl. Orient. 3:

827. 1875; M. rapunculoides (DC.) Edgeworth.

(1) Melanoseris bracteata (C. B. Clarke) N. Kilian in Wu &

al., Fl. China 20–21: 225. 2011 ; Lactuca bracteata C. B. Clarke,

Compos. Ind.: 270. 1876 ; Mulgedium bracteatum (C. B. Clarke) C.

Shih

(*2) Melanoseris souliei (Franch.) N. Kilian in Wu & al., Fl.

China 20–21: 225. 2011 ; Lactuca souliei Franch. in J. Bot. (Morot)
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9: 257. 1895 ; Syncalathium souliei (Franch.) Y. Ling ;
Parasyncalathium souliei (Franch.) J. W. Zhang & al.

= Syncalathium orbiculariforme C. Shih

(3) Melanoseris qinghaica (S. W. Liu & T. N. Ho) N. Kilian

& Z. H. Wang, comb. nov. ; Mulgedium qinghaicum S. W. Liu &

T. N. Ho in Acta Phytotax. Sin. 39: 556. 2001

Note: Tentatively included by Shih & Kilian [13] in a rather

widely circumscribed Melanoseris lessertiana, our analyses since have

revealed that all reports of M. lessertiana from China are actually

referable to M. qinghaica, which is mainly distinguished by the

distinctly longer achene beak and a very short anthertube. M.

lessertiana is restricted to the Himalayas.

(4) Melanoseris cyanea (D. Don) Edgew. in Trans. Linn. Soc.

London 20: 81. 1846 ; Sonchus cyaneus D. Don, Prodr. Fl. Nepal.

164. 1825 ; Chaetoseris cyanea (D. Don) C. Shih

= Melanoseris beesiana (Diels) N. Kilian, syn. nov. ; Chaetoseris

beesiana (Diels) C. Shih

= Chaetoseris hastata (DC.) C. Shih ; Melanoseris hastata (DC.)

Edgew.

= Chaetoseris hispida C. Shih

= Chaetoseris lyriformis C. Shih

= Melanoseris sichuanensis (C. Shih) N. Kilian, syn. nov. ;
Chaetoseris sichuanensis C. Shih

Tentatively included:

Chaetoseris lutea (Hand.-Mazz.) C. Shih in Acta Phytotax. Sin. 29:

409. 1991 ; Cicerbita cyanea var. lutea Hand.-Mazz., Symb. Sin. 7:

1180. 1936.

Melanoseris yunnanensis (C. Shih) N. Kilian & Z. H. Wang in Wu

& al., Fl. China 20–21: 219. 2011 ; Chaetoseris yunnanensis C. Shih

[ = Chaetoseris teniana (Beauverd) C. Shih ; Cicerbita cyanea var.

teniana Beauverd]

Melanoseris pectiniformis (C. Shih) N. Kilian & J. W. Zhang in Wu

& al., Fl. China 20–21: 222. 2011 ; Chaetoseris pectiniformis C. Shih

Note: Melanoseris cyanea is a widespread species and polymorphic

especially with respect to indumentum features. The wider concept

of the species, compared to Shih [12], used by Shih & Kilian [13]

is still too narrow: (1) The delimitation towards M. beesiana

( = Chaetoseris lyriformis C. Shih) as well as towards M. sichuanensis

breaks, when considering besides leaf shape features also relevant

capitula and flower features. (2) The status of the yellow-flowered

plants and populations treated by Shih & Kilian [13] under

Melanoseris yunnanensis ( = Chaetoseris lutea = C. teniana) is still not fully

clear, their very close relationship to M. cyanea is proven, however,

by the molecular analysis. (3) The status and assignment of M.

pectiniformis are still not beyond doubt.

(*5) Melanoseris ciliata (C. Shih) N. Kilian in Wu & al., Fl.

China 20–21: 219. 2011 ; Chaetoseris ciliata C. Shih in Acta

Phytotax. Sin. 29: 403. 1991

(*6) Melanoseris macrocephala (C. Shih) N. Kilian & J. W.

Zhang in Wu & al., Fl. China 20–21: 221. 2011 ; Chaetoseris

macrocephala C. Shih in Acta Phytotax. Sin. 29: 404. 1991

(7) Melanoseris macrorhiza (Royle) N. Kilian in Wu & al.,

Fl. China 20–21: 224. 2011 ; Mulgedium macrorhizum Royle, Ill.

Bot. Himal. Mts. 1: 251. 1835 ; Cephalorrhynchus macrorhizus

(Royle) Tuisl

= Cephalorrhynchus albiflorus C. Shih

(8) Melanoseris violifolia (Decne.) N. Kilian in Wu & al., Fl.

China 20–21: 225. 2011 ; Prenanthes violifolia Decne. in

Jacquemont, Voy. Inde 4. 1843

= Cicerbita sikkimensis (Hook. f.) C. Shih

(9) Melanoseris macrantha (C. B. Clarke) N. Kilian & J. W.

Zhang in Wu & al., Fl. China 20–21: 219. 2011 ; Lactuca

macrantha C. B. Clarke, Compos. Ind.: 267. 1876 ; Chaetoseris

macrantha (C. B. Clarke) C. Shih

(*10) Melanoseris likiangensis (Franch.) N. Kilian & Z. H.

Wang in Wu & al., Fl. China 20–21: 222. 2011 ; Lactuca

likiangensis Franch. in J. Bot. (Morot) 9: 259. 1895 ; Chaetoseris

likiangensis (Franch.) C. Shih

(*11) Melanoseris bonatii (Beauverd) Z. H. Wang, comb.
nov. ; Cicerbita bonatii Beauverd in Bull. Soc. Bot. Genève 2: 126.

1910 ; Chaetoseris bonatii (Beauverd) C. Shih

(12) Melanoseris atropurpurea (Franch.) N. Kilian & Z. H.

Wang in Wu & al., Fl. China 20–21: 221. 2011 ; Lactuca

atropurpurea Franch. in J. Bot. (Morot) 9: 260. 1895 ; Chaetoseris

grandiflora (Franch.) C. Shih, nom. illeg.

= Melanoseris taliensis (C. Shih) N. Kilian & Z. H. Wang, syn.
nov. ; Chaetoseris taliensis C. Shih

(*13) Melanoseris leiolepis (C. Shih) N. Kilian & J. W.

Zhang in Wu & al., Fl. China 20–21: 222. 2011 ; Chaetoseris

leiolepis C. Shih in Acta Phytotax. Sin. 29: 402. 1991

(*14) Melanoseris dolichophylla (C. Shih) Z. H. Wang,

comb. nov. ; Chaetoseris dolichophylla C. Shih in Acta Phytotax.

Sin. 29: 401. 1991

Note: Included in the synonymy of Melanoseris atropurpurea by

Shih & Kilian [13], herbarium work by the first author revealed it

to be a separate species, consistently distinguished by the absence

of a main stem, long rosette leaves and subscapose stems with 1–2

capitula only.

(*15) Melanoseris monocephala (C. C. Chang) Z. H. Wang,

comb. nov. ; Lactuca monocephala C. C. Chang in Contr. Biol.

Lab. Sci. Soc. China, Bot. Ser. 9: 132. 1934 ; Mulgedium

monocephalum (C. C. Chang) C. Shih

Note: This fairly rare species was, with doubts, considered by

Shih & Kilian [13] as conspecific with Melanoseris lessertiana, it is,

however, unrelated and clearly distinct.

(16) Melanoseris graciliflora (DC.) N. Kilian in Wu & al.,

Fl. China 20–21: 223. 2011 ; Lactuca graciliflora DC., Prodr. 7:

139. 1838 ; Stenoseris graciliflora (DC.) C. Shih

= Stenoseris taliensis (Franch.) C. Shih

(*17) Melanoseris tenuis (C. Shih) N. Kilian in Wu & al., Fl.

China 20–21: 223. 2011 ; Stenoseris tenuis C. Shih in Acta

Phytotax. Sin. 29: 412. 1991

Excluded species:

Melanoseris oligolepis (C. C. Chang ex C. Shih) N. Kilian in Wu &

al., Fl. China 20–21: 224. 2011 ; Paraprenanthes oligolepis
(C. C. Chang ex C. Shih) Z. H. Wang

Melanoseris triflora (C. C. Chang & C. Shih) N. Kilian in Wu &

al., Fl. China 20–21: 223. 2011 ; Paraprenanthes triflora
(Chang & C. Shih) Z. H. Wang & N. Kilian

Note: See under Paraprenanthes.

Melanoseris rhombiformis (C. Shih) N. Kilian & Z. H. Wang in Wu

& al., Fl. China 20–21: 219. 2011 ; Chaetoseris rhombiformis C.

Shih. = ‘‘Cicerbita’’ roborowskii
Note: Analysis of the type of the name Chaetoseris rhombiformis by

the first author made it evident that this yellow-flowered species is

actually referable to ‘‘Cicerbita’’ roborowskii. This appears surprising

because the latter species has always been considered to be blue-

flowered (with occasional white forms). However, yellow-flowered

individuals that are clearly conspecific with C. roborowskii, as

inferred from both morphological and molecular analysis, have

been collected from Sichuan (Kilian & al. 10809 at B, KUN; see

also images in [27] under that species).

4. Species of uncertain status and placement. Melanoseris

hirsuta (C. Shih) N. Kilian in Wu & al., Fl. China 20–21: 220. 2011

; Chaetoseris hirsuta C. Shih ; Lactuca hirsuta Franch. 1895 [non

Nutt. 1818]

Melanoseris henryi (Dunn) N. Kilian in Wu & al., Fl. China 20–21:

221. 2011 ; Lactuca henryi Dunn
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Lactuca scandens C. C. Chang in Contr. Biol. Lab. Sci. Soc.

China, Bot. Ser. 9: 133. 1934

Supporting Information

Appendix S1 Plant material used. The data are arranged in

the following order: accepted taxon name in bold and synonyms

used in the phylograms (Fig. 1–2) in square brackets; unique sample

identifier also used in the phylograms and, in square brackets where

applicable, unit ID in the GGBN data portal [91] of stored DNA

sample; abbreviated voucher data (country, locality, collecting date,

collectors and collecting number, herbarium code according to

Thiers [26]), full data can be obtained from the specimen labels;

EMBL/Genbank/DDBJ accession numbers in the following

sequence: ITS, petD, psbA-trnH, 59trnL(UAA)-trnF, rpl32-trnL(UAG),

trnQ(UUG)-59rps16. In the few cases, where already published

sequences were used, only the EMBL/Genbank/DDBJ accession

number preceded by an asterisk is given.

(PDF)

Appendix S2 Positions of mutational hotspots ( = HS) and
exons in the individual chloroplast marker sequences
excluded from phylogenetic analysis. The position within

each marker sequence is calculated without gap; a dash denotes the

absence of this sequence portion in the corresponding samples.

(PDF)

Appendix S3 Indels coded in the phylogenetic analysis.
For each marker, position, length [nt] and description of the coded

indels are given according to the sequences alignment matrix.

(PDF)
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Appendix S1. Plant material used. The data are arranged in the following order: accepted 

taxon name in bold and synonyms used in the phylograms (Fig. 1–2) in square brackets; 

unique sample identifier also used in the phylograms and, in square brackets where 

applicable, unit ID in the GGBN data portal [91] of stored DNA sample; abbreviated voucher 

data (country, locality, collecting date, collectors and collecting number, herbarium code 

according to Thiers [26]), full data can be obtained from the specimen labels; EMBL/Genbank/ 

DDBJ accession numbers in the following sequence: ITS, petD, psbA-trnH, 5’trnL
(UAA)

-trnF, 

rpl32-trnL
(UAG)

, trnQ
(UUG)

-5’rps16. In the few cases, where already published sequences were 

used, only the EMBL/Genbank/DDBJ accession number preceded by an asterisk is given. 

Outgroups: Crepis multicaulis Ledeb.: LAC-003: Russia, S Siberia, Altay Mts, 22 Jun 2002, 

E. von Raab-Straube 020302 (B), KF485539, KF485665, KF485794, KF486050, KF485922, 

KF486178. — Launaea sarmentosa (Willd.) Kuntze: LAC-001: Sri Lanka, S coast, Dikwella, 

25 Dec 2000, N. Kilian 7001 (B), KF485537, KF485663, KF485792, KF486048, KF485920, 

KF486176. — Leontodon tuberosus L.: LAC-002 [DB4947]: Greece, Insel Rhodos, Salakos, 

23 Mar 2009, D. Lauterbach, T. Böhmer & A. Rolf RH2-182 (B), KF485538, KF485664, 

KF485793, KF486049, KF485921, KF486177. — Soroseris erysimoides (Hand.-Mazz.) C. 

Shih: LAC-004: China, Sichuan, Ganzi, 2 Aug 2009, Y. S. Chen & Z. H. Wang 9270 (KUN), 

KF485540, KF485666, KF485795, KF486051, KF485923, KF486179. 

Faberia faberi (Hemsley) N. Kilian [= Prenanthes faberi Hemsley]: LAC-008: China, 

Chongqing, Nanchuan, 18 Sep 2010, Z. H. Wang & L. Chen 245 (KUN), KF485544, 

KF485670, KF485799, KF486055, KF485927, KF486183; LAC-009: China, Yunnan, Qiaojia, 

21 Jul 2009, Y. S. Chen & Z. H. Wang 9034 (KUN), KF485545, KF485671, KF485800, 

KF486056, KF485928, KF486184; LAC-010: China, Guizhou, Hezhang, 1 Sep 2012, Z. H. 

Wang & L. Chen 485 (KUN), KF485546, KF485672, KF485801, KF486057, KF485929, 

KF486185. F. nanchuanensis C. Shih [= Faberiopsis nanchuanensis (C. Shih) C. Shih & Y. 

L. Chen]: LAC-005: China, Chongqing, Nanchuan, 14 Jul 2010, Z. H. Wang & L. Chen 131 

(KUN), KF485541, KF485667, KF485796, KF486052, KF485924, KF486180. F. sinensis 

Hemsley: LAC-006 [DB3264]: China, Sichuan, Emei, 6 Jul 1997, C. H. Li 590 (MO 04513521), 

KF485542, KF485668, KF485797, KF486053, KF485925, KF486181; LAC-007: China, 

Sichuan, Emei, 8 Jul 2010, Z. H. Wang & L. Chen 63 (KUN), KF485543, KF485669, 

KF485798, KF486054, KF485926, KF486182. — Prenanthes purpurea L.: LAC-013: cult. 

Bot. Garten Berlin-Dahlem, Acc. 211-48-74-80, 19 Aug 2010, M. Cubr 47381 (B), KF485548, 

KF485675, KF485804, KF486059, KF485931, KF486187. 

Lactucinae core group: Cicerbita alpina (L.) Wallr.: LAC-012: *AJ633340; LAC-133 

[DB7934]: Norway, Hordaland, Hardangarvidda, 15 Aug 2008, T. Dürbye 4350 (B), —, 

KF485674, KF485803, KF486058, KF485930, KF486186. C. hispida (DC.) Beauverd [= 

Cephalorrhynchus hispidus (DC.) Boiss.]: LAC-011 [DB0050]: Armenia, Vayotsdzor, Vajk, 24 

Jun 2002, C. Oberprieler 10145 (B), KF485547, KF485673, KF485802, —, —, —. — 

Cicerbita II: C. auriculiformis (C. Shih) N. Kilian [= Stenoseris auriculiformis C. Shih]: LAC-
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016: China, Qinghai, Huzhu, 7 Jun 1991, T. N. Ho 1730 (CAS 934678), KF485551, KF485678, 

—, KF486062, KF485934, KF486190; LAC-017: China, Gansu, Yongdeng, 5 Aug 2006, Z. G. 

Sun & al. 06367 (PE), KF485552, KF485679, KF485807, KF486063, KF485935, KF486191. 

C. azurea (Ledeb.) Beauverd: LAC-014: Russia, S Siberia, Altay Mts, 25 Jul 2002, E. von 

Raab-Straube 020364 (B), KF485549, KF485676, KF485805, KF486060, KF485932, 

KF486188; LAC-015: Russia, S Siberia, Altay Mts, 27 Jul 2002, E. von Raab-Straube 020408 

(B), KF485550, KF485677, KF485806, KF486061, KF485933, KF486189. C. roborowskii 

(Maxim.) Beauverd [= Chaetoseris roborowskii (Maxim.) C. Shih]: LAC-018: China, Sichuan, 

Xiaojin, 29 Jul 2009, Y. S. Chen & Z. H. Wang 9184 (KUN), KF485553, KF485680, KF485808, 

KF486064, KF485936, KF486192; LAC-019: China, Sichuan, Xiangcheng, 12 Aug 2010, E. D. 

Liu & al. 2688 (KUN), KF485554, KF485681, KF485809, KF486065, KF485937, KF486193. 

— Lactuca dissecta D. Don: LAC-116: Tadshikistan, Warob gorge, 30 Jul 1991, N. Kilian 

2547 (B), KF485649, KF485777, KF485905, KF486161, KF486033, KF486289. L. 

dolichophylla Kitam.: LAC-117: China, Yunnan, Deqin, 20 Sep 2011, H. J. Dong & al. 615 

(KUN), KF485650, KF485778, KF485906, KF486162, KF486034, KF486290. L. formosana 

Maxim. [= Pterocypsela formosana (Maxim.) C. Shih, P. sonchus (H. Lév. & Vaniot) C. Shih]: 

LAC-122: China, Shanxi, Yongji, 20 Aug 2009, H. Peng & al. 417 (KUN), KF485655, 

KF485783, KF485911, KF486167, KF486039, KF486295; LAC-123: China, Chongqing, 

Nanchuan, 26 Aug 2009, H. Peng & al. 603 (KUN), KF485656, KF485784, KF485912, 

KF486168, KF486040, KF486296. L. indica L. [= Pterocypsela indica L., P. laciniata (Houtt.) 

C. Shih]: LAC-120: China, Chongqing, Nanchuan, 17 Sep 2010, Z. H. Wang & L. Chen 241 

(KUN), KF485653, KF485781, KF485909, KF486165, KF486037, KF486293; LAC-121: China, 

Shanxi, Yuanqu, 20 Aug 2009, H. Peng & al. 500 (KUN), KF485654, KF485782, KF485910, 

KF486166, KF486038, KF486294. L. inermis Forssk.: LAC-119: Togo, 1980, J. F. Brunel 

7281 (B), KF485652, KF485780, KF485908, KF486164, KF486036, KF486292. L. orientalis 

(Boiss.) Boiss. [= Scariola orientalis (Boiss.) Soják]: LAC-126: Iran, Isphahan, 30 Sep 1998, 

Weber (B), KF485659, KF485787, KF485915, KF486171, KF486043, KF486299. L. perennis 

L.: LAC-113: *AJ633334; LAC-334 [DB5188]: Italy, Piemont. Cuneo, 12 Jul 2009, M. Ristow & 

al. MiRi 578/09 (B), —, KF485774, KF485902, KF486158, KF486030, KF486286. L. 

raddeana Maxim. [= Pterocypsela raddeana (Maxim.) C. Shih, P. elata (Hemsl.) C. Shih]: 

LAC-125: China, Sichuan, Dayi, 25 Jul 2009, Y. S. Chen & Z. H. Wang 9101 (KUN), 

KF485658, KF485786, KF485914, KF486170, KF486042, KF486298; LAC-124: China, 

Sichuan, Luding, 6 Aug 2010, E. D. Liu & al. 2608 (KUN), KF485657, KF485785, KF485913, 

KF486169, KF486041, KF486297. L. sativa L.: LAC-130: *AJ633337; LAC-132: cp markers 

*DQ383816. L. serriola L.: LAC-131: China, Yunnan, Kunming, 1 May 2011, Z. H. Wang & L. 

Chen 487 (KUN), KF485662, KF485791, KF485919, KF486175, KF486047, KF486303. L. 

sibirica (L.) Maxim. [= Lagedium sibiricum (L.) Soják]: LAC-128: Russia, Siberia, 2004, M. 

Ristow 991-04 (herb. Ristow), KF485660, KF485789, KF485917, KF486173, KF486045, 

KF486301. L. tatarica (L.) C. A. Mey. [= Mulgedium tataricum (L.) DC.]: LAC-129: China, 

Hebei, 2009, H. Peng & al. 584 (KUN), KF485661, KF485790, KF485918, KF486174, 
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KF486046, KF486302. L. tuberosa Jacq. [= Steptorhamphus tuberosus (Jacq.) Grossh.]: 

LAC-118: Cyprus, Kannavious, 5 May 1998, R. Hand 2410 (herb. Hand), KF485651, 

KF485779, KF485907, KF486163, KF486035, KF486291. L. undulata Ledeb.: LAC-114: Iran, 

Kavir, 1974, K. H. Rechinger 46203 (B), KF485647, KF485775, KF485903, KF486159, 

KF486031, KF486287; LAC-115: China, Xinjiang, Shawan, 11 Jul 1957, S. Xin 509 (KUN), 

KF485648, KF485776, KF485904, KF486160, KF486032, KF486288. L. viminea (L.) J. Presl 

& C. Presl [= Scariola viminea (L.) F. W. Schmidt]: LAC-127: *AJ633333; LAC-135 [DB0126]: 

Italy, Marche, Camerino, 29 Sep 1999, A. Ueckert & al. CHO 10025 (B), —, KF485788, 

KF485916, KF486172, KF486044, KF486300. — Melanoseris atropurpurea (Franch.) N. 

Kilian & Z. H. Wang [= Chaetoseris grandiflora (Franch.) C. Shih, C. taliensis C. Shih]: LAC-

099: China, Xizang, Milin, 11 Aug 2009, Y. S. Chen & Z. H. Wang 9402 (KUN), KF485633, 

KF485760, KF485888, KF486144, KF486016, KF486272; LAC-100: China, Yunnan, Dali, 17 

Oct 2010, Z. J. Yin & al. 3267 (KUN), KF485634, KF485761, KF485889, KF486145, 

KF486017, KF486273; LAC-101: China, Yunnan, Dali, 10 Sep 2009, Z. J. Yin & al. 1971 

(KUN), KF485635, KF485762, KF485890, KF486146, KF486018, KF486274. M. bracteata (C. 

B. Clarke) N. Kilian [= Mulgedium bracteatum (C. B. Clarke) C. Shih]: LAC-072: China, Xizang, 

Cuona, 7 Sep 2012, G. X. Hu & al. 1209024 (KUN), KF485607, KF485734, KF485862, 

KF486118, KF485990, KF486246. M. cyanea (D. Don) Edgew. [= Chaetoseris cyanea (D. 

Don) C. Shih, C. hastata (DC.) C. Shih, C. hispida C. Shih, C. lutea (Hand.-Mazz.) C. Shih, C. 

lyriformis C. Shih, C. sichuanensis C. Shih, C. yunnanensis C. Shih]: LAC-083: China, Xizang, 

Chayu, 17 Sep 2012, G. X. Hu & al. 1209075 (KUN), KF485617, KF485744, KF485872, 

KF486128, KF486000, KF486256; LAC-089: China, Yunnan, Dali, 17 Sep 2009, Z. J. Yin & al. 

2362 (KUN), KF485623, KF485750, KF485878, KF486134, KF486006, KF486262; LAC-080: 

China, Yunnan, Dali, 11 Sep 2009, Z. J. Yin & al. 2135 (KUN), KF485614, KF485741, 

KF485869, KF486125, KF485997, KF486253; LAC-090: China, Yunnan, Eryuan, 22 Sep 

2011, H. J. Dong & al. 640 (KUN), KF485624, KF485751, KF485879, KF486135, KF486007, 

KF486263; LAC-084: China, Yunnan, Dali, 13 Sep 2009, Z. J. Yin & al. 2214 (KUN), 

KF485618, KF485745, KF485873, KF486129, KF486001, KF486257; LAC-085: China, 

Yunnan, Eryuan, 22 Sep 2011, H. J. Dong & al. 632 (KUN), KF485619, KF485746, KF485874, 

KF486130, KF486002, KF486258; LAC-087: China, Yunnan, 2009, J. Y. Xiang 09-112 (KUN), 

KF485621, KF485748, KF485876, KF486132, KF486004, KF486260; LAC-088: China, 

Yunnan, Dali, 17 Sep 2009, Z. J. Yin & al. 2394 (KUN), KF485622, KF485749, KF485877, 

KF486133, KF486005, KF486261; LAC-091: China, Yunnan, Eryuan, 22 Sep 2011, H. J. 

Dong & al. 634 (KUN), KF485625, KF485752, KF485880, KF486136, KF486008, KF486264; 

LAC-086: China, Yunnan, Lijiang, 17 Sep 2011, H. J. Dong & al. 494 (KUN), KF485620, 

KF485747, KF485875, KF486131, KF486003, KF486259; LAC-092: China, Yunnan, Lijiang, 1 

Sep 2012, H. Peng & al. 2012-368 (KUN), KF485626, KF485753, KF485881, KF486137, 

KF486009, KF486265; LAC-081: China, Yunnan, Lanping, 3 Oct 2009, H. Peng & al. 715 

(KUN), KF485615, KF485742, KF485870, KF486126, KF485998, KF486254; LAC-082: China, 

Xizang, Bomi, 21 Sep 2012, G. X. Hu & al. 1209094 (KUN), KF485616, KF485743, KF485871, 
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KF486127, KF485999, KF486255. M. cyanea hybrid [= Chaetoseris cyanea hybrid]: LAC-

093: China, Yunnan, Eryuan, 22 Sep 2011, H. J. Dong & al. 643 (KUN), KF485627, 

KF485754, KF485882, KF486138, KF486010, KF486266; LAC-094: China, Yunnan, Dali, 7 

Nov 2012, Z. H. Wang & L. Chen 479 (KUN), KF485628, KF485755, KF485883, KF486139, 

KF486011, KF486267; LAC-095: China, Yunnan, Dali, 7 Nov 2012, Z. H. Wang & L. Chen 

481 (KUN), KF485629, KF485756, KF485884, KF486140, KF486012, KF486268; LAC-096: 

China, Yunnan, Dali, 7 Nov 2012, Z. H. Wang & L. Chen 480_1 (KUN), KF485630, KF485757, 

KF485885, KF486141, KF486013, KF486269; LAC-097: China, Yunnan, Dali, 7 Nov 2012, Z. 

H. Wang & L. Chen 480_2 (KUN), KF485631, KF485758, KF485886, KF486142, KF486014, 

KF486270. M. graciliflora (DC.) N. Kilian [= Stenoseris graciliflora (DC.) C. Shih, S. taliensis 

(Franch.) C. Shih]: LAC-110: China, Sichuan, Tianquan, 8 Sep 2010, Z. H. Wang & L. Chen 

159 (KUN), KF485644, KF485771, KF485899, KF486155, KF486027, KF486283; LAC-112: 

China, Sichuan, Luding, 8 Sep 2010, Z. H. Wang & L. Chen 188 (KUN), KF485646, 

KF485773, KF485901, KF486157, KF486029, KF486285; LAC-111: China, Sichuan, Luding, 

8 Sep 2010, Z. H. Wang & L. Chen 186 (KUN), KF485645, KF485772, KF485900, KF486156, 

KF486028, KF486284. M. lessertiana (DC.) Decne. [= Mulgedium lessertianum DC.]: LAC-

071: Pakistan, Nanga Parbat, 28 Jul 1993, M. Nüsser 157 (B), KF485606, KF485733, 

KF485861, KF486117, KF485989, KF486245. M. likiangensis (Franch.) N. Kilian & Z. H. 

Wang [= Chaetoseris likiangensis (Franch.) C. Shih]: LAC-098: China, Yunnan, Lijiang, 1 Sep 

2012, H. Peng & al. 2012-396 (KUN), KF485632, KF485759, KF485887, KF486143, 

KF486015, KF486271. M. macrantha (C. B. Clarke) N. Kilian & J. W. Zhang [= Chaetoseris 

macrantha (C. B. Clarke) C. Shih]: LAC-075: Bhutan, 4200 m, 2000, S. Miehe & G. Miehe 00-

223-12 (herb. Miehe), KF485610, KF485737, KF485865, KF486121, KF485993, KF486249. 

M. macrorhiza (Royle) N. Kilian [= Cephalorrhynchus macrorhizus (Royle) Tuisl]: LAC-073: 

Nepal, Mustang, 2001, S. Miehe, G. Miehe & K. Koch 01-120-03 (herb. Miehe), KF485608, 

KF485735, KF485863, KF486119, KF485991, KF486247; LAC-074: China, Xizang, Milin, 22 

Sep 2012, G. X. Hu & al. 1209101 (KUN), KF485609, KF485736, KF485864, KF486120, 

KF485992, KF486248. M. qinghaica (S. W. Liu & T. N. Ho) N. Kilian & Z. H. Wang [= 

Mulgedium qinghaicum S. W. Liu & T. N. Ho]: LAC-078: Bhutan, 4200-4300 m, 2001, S. 

Miehe & G. Miehe 00-346-01 (herb. Miehe), KF485613, KF485740, KF485868, KF486124, 

KF485996, KF486252. M. souliei (Franch.) N. Kilian [= Parasyncalathium souliei (Franch.) J. 

W. Zhang & al.]: LAC-069: China, Xizang, Bomi, 7 Aug 2009, Y. S. Chen & Z. H. Wang 9315 

(KUN), KF485604, KF485731, KF485859, KF486115, KF485987, KF486243; LAC-070: China, 

Sichuan, Dege, 3 Aug 2009, Y. S. Chen & Z. H. Wang 9292 (KUN), KF485605, KF485732, 

KF485860, KF486116, KF485988, KF486244. M. sp. [= Chaetoseris sp.]: LAC-103: China, 

Yunnan, Zhanyi, 7 Nov 2012, Z. H. Wang & L. Chen 486 (KUN), KF485637, KF485764, 

KF485892, KF486148, KF486020, KF486276. M. tenuis (C. Shih) N. Kilian [= Stenoseris 

tenuis C. Shih]: LAC-104: China, Yunnan, Dali, 7 Nov 2012, Z. H. Wang & L. Chen 482_2 

(KUN), KF485638, KF485765, KF485893, KF486149, KF486021, KF486277; LAC-105: China, 

Yunnan, Dali, 7 Nov 2012, Z. H. Wang & L. Chen 482_1 (KUN), KF485639, KF485766, 



 5 

KF485894, KF486150, KF486022, KF486278; LAC-106: China, Yunnan, Dali, 17 Oct 2010, Z. 

J. Yin & al. 3275 (KUN), KF485640, KF485767, KF485895, KF486151, KF486023, KF486279; 

LAC-107: China, Yunnan, Dali, 10 Sep 2009, Z. J. Yin & al. 1969 (KUN), KF485641, 

KF485768, KF485896, KF486152, KF486024, KF486280. M. tenuis hybrid [= Stenoseris 

tenuis hybrid]: LAC-102: China, Yunnan, Dali, 17 Oct 2010, Z. J. Yin & al. 3277 (KUN), 

KF485636, KF485763, KF485891, KF486147, KF486019, KF486275; LAC-108: China, 

Yunnan, Dali, 7 Nov 2012, Z. H. Wang & L. Chen 476_1 (KUN), KF485642, KF485769, 

KF485897, KF486153, KF486025, KF486281; LAC-109: China, Yunnan, Dali,7 Nov 2012, Z. 

H. Wang & L. Chen 476_3 (KUN), KF485643, KF485770, KF485898, KF486154, KF486026, 

KF486282. M. violifolia (Decne.) N. Kilian [= Cicerbita sikkimensis (Hook. f.) C. Shih]: LAC-

076: China, Xizang, Cuona, Mama, 19 Sep 2009, Ze-Long Nie 806 (KUN), KF485611, 

KF485738, KF485866, KF486122, KF485994, KF486250; LAC-077: China, Xizang, Cuona, 7 

Sep 2012, G. X. Hu & al. 1209027 (KUN), KF485612, KF485739, KF485867, KF486123, 

KF485995, KF486251. — Notoseris henryi (Dunn) C. Shih [= N. porphyrolepis C. Shih]: 

LAC-056: China, Chongqing, Nanchuan, 18 Sep 2010, Z. H. Wang & L. Chen 255 (KUN), 

KF485591, KF485718, KF485846, KF486102, KF485974, KF486230; LAC-057: China, 

Chongqing, Nanchuan, 18 Sep 2010, Z. H. Wang & L. Chen 249 (KUN), KF485592, 

KF485719, KF485847, KF486103, KF485975, KF486231; LAC-062: China, Chongqing, 

Nanchuan, 18 Sep 2010, Z. H. Wang & L. Chen 259 (KUN), KF485597, KF485724, 

KF485852, KF486108, KF485980, KF486236; LAC-063: China, Chongqing, Nanchuan, 18 

Sep 2010, Z. H. Wang & L. Chen 260 (KUN), KF485598, KF485725, KF485853, KF486109, 

KF485981, KF486237. N. khasiana (C. B. Clarke) N. Kilian [= N. rhombiformis C. Shih]: LAC-

066: China, Yunnan, Dali, 17 Oct 2010, Z. J. Yin & al. 3263 (KUN), KF485601, KF485728, 

KF485856, KF486112, KF485984, KF486240; LAC-067: China, Yunnan, Midu, 17 Apr 2010, 

Z. H. Wang 10 (KUN), KF485602, KF485729, KF485857, KF486113, KF485985, KF486241; 

LAC-068: China, Yunnan, Yunlong, 23 Sep 2011, Z. H. Wang 473 (KUN), KF485603, 

KF485730, KF485858, KF486114, KF485986, KF486242. N. macilenta (Vaniot & H. Lév.) N. 

Kilian [= N. psilolepis C. Shih]: LAC-064: China, Chongqing, Nanchuan, 18 Sep 2010, Z. H. 

Wang & L. Chen 235 (KUN), KF485599, KF485726, KF485854, KF486110, KF485982, 

KF486238; LAC-065: China, Chongqing, Nanchuan, 17 Sep 2010, Z. H. Wang & L. Chen 243 

(KUN), KF485600, KF485727, KF485855, KF486111, KF485983, KF486239. N. scandens 

(Hook. f.) N. Kilian [= Prenanthes scandens Hook. f.]: LAC-052: China, Yunnan, Gongshan, 

11 Nov 2011, Z. H. Wang, L. Chen & Y. Tang 458 (KUN), KF485587, KF485714, KF485842, 

KF486098, KF485970, KF486226. N. scandens × yakoensis [= Prenanthes scandens × 

yakoensis]: LAC-053: China, Yunnan, Gongshan, 11 Nov 2011, Z. H. Wang, L. Chen & Y. 

Tang 459 (KUN), KF485588, KF485715, KF485843, KF486099, KF485971, KF486227. N. 

triflora (Hemsl.) C. Shih: LAC-058: China, Chongqing, Nanchuan, 18 Sep 2010, Z. H. Wang 

& L. Chen 262 (KUN), KF485593, KF485720, KF485848, KF486104, KF485976, KF486232; 

LAC-059: China, Chongqing, Nanchuan, 26 Aug 2009, H. Peng & al. 574 (KUN), KF485594, 

KF485721, KF485849, KF486105, KF485977, KF486233; LAC-060: China, Yunnan, Qiaojia, 
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21 Jul 2009, Y. S. Chen & Z. H. Wang 9038 (KUN), KF485595, KF485722, KF485850, 

KF486106, KF485978, KF486234; LAC-061: China, Sichuan, Emei, 4 Aug 2011, E. D. Liu & 

al. 3028 (KUN), KF485596, KF485723, KF485851, KF486107, KF485979, KF486235. N. 

yakoensis (Jeffrey) N. Kilian [= Prenanthes yakoensis Jeffrey]: LAC-054: China, Yunnan, 

Gongshan, 10 Nov 2011, Z. H. Wang, L. Chen & Y. Tang 463 (KUN), KF485589, KF485716, 

KF485844, KF486100, KF485972, KF486228; LAC-055: China, Yunnan, Gongshan, 11 Nov 

2011, Z. H. Wang, L. Chen & Y. Tang 457 (KUN), KF485590, KF485717, KF485845, 

KF486101, KF485973, KF486229. — Paraprenanthes diversifolia (Vaniot) N. Kilian [= P. 

gracilipes C. Shih, P. heptantha C. Shih & D. J. Liou]: LAC-041: China, Sichuan, Dayi, 24 Jun 

2011, Z. H. Wang & L. Chen 403 (KUN), KF485576, KF485703, KF485831, KF486087, 

KF485959, KF486215; LAC-040: China, Sichuan, Dayi, 24 Jun 2011, Z. H. Wang & L. Chen 

419 (KUN), KF485575, KF485702, KF485830, KF486086, KF485958, KF486214; LAC-039: 

China, Sichuan, Dayi, 25 Jul 2009, Y. S. Chen & Z. H. Wang 9106 (KUN), KF485574, 

KF485701, KF485829, KF486085, KF485957, KF486213. P. melanantha (Franch.) Z. H. 

Wang [= Notoseris melanantha (Franch.) C. Shih]: LAC-046: China, Sichuan, Mianning, 2 

Aug 2011, Z. H. Wang & L. Chen 489A (KUN), KF485581, KF485708, KF485836, KF486092, 

KF485964, KF486220; LAC-047: China, Sichuan, Mianning, 2 Aug 2011, Z. H. Wang & L. 

Chen 489B (KUN), KF485582, KF485709, KF485837, KF486093, KF485965, KF486221; 

LAC-048: China, Sichuan, Mianning, 2 Aug 2011, Z. H. Wang & L. Chen 489C (KUN), 

KF485583, KF485710, KF485838, KF486094, KF485966, KF486222. P. meridionalis (C. 

Shih) Sennikov [= P. hastata C. Shih]: LAC-036: China, Sichuan, Emei, 8 Jul 2010, Z. H. 

Wang & L. Chen 57 (KUN), KF485571, KF485698, KF485826, KF486082, KF485954, 

KF486210. P. oligolepis (C. C. Chang ex C. Shih) Z. H. Wang [= Cicerbita oligolepis C. C. 

Chang ex C. Shih]: LAC-020: China, Yunnan, Dali, 17 Oct 2010, Z. J. Yin & al. 3268 (KUN), 

KF485555, KF485682, KF485810, KF486066, KF485938, KF486194; LAC-021: China, 

Yunnan, Dali, 17 Oct 2010, Z. J. Yin & al. 3264 (KUN), KF485556, KF485683, KF485811, 

KF486067, KF485939, KF486195; LAC-022: China, Yunnan, Dali, 14 Sep 2011, H. J. Dong & 

al. 416 (KUN), KF485557, KF485684, KF485812, KF486068, KF485940, KF486196; LAC-

023: China, Yunnan, Yunlong, 23 Sep 2011, Z. H. Wang & L. Chen 472 (KUN), KF485558, 

KF485685, KF485813, KF486069, KF485941, KF486197. P. prenanthoides (Hemsl.) C. 

Shih [= P. glandulosissima (C. C. Chang) C. Shih, P. luchunensis C. Shih, P. polypodifolia 

(Franch.) C. Shih]: LAC-034: China, Sichuan, Emei, 8 Jul 2010, Z. H. Wang & L. Chen 67 

(KUN), KF485569, KF485696, KF485824, KF486080, KF485952, KF486208; LAC-031: China, 

Sichuan, Emei, 7 Jul 2010, Z. H. Wang & L. Chen 43 (KUN), KF485566, KF485693, 

KF485821, KF486077, KF485949, KF486205; LAC-033: China, Sichuan, Emei, 7 Jul 2010, Z. 

H. Wang & L. Chen 44 (KUN), KF485568, KF485695, KF485823, KF486079, KF485951, 

KF486207; LAC-035: China, Sichuan, Emei, 7 Jul 2010, Z. H. Wang & L. Chen 52 (KUN), 

KF485570, KF485697, KF485825, KF486081, KF485953, KF486209. P. sororia (Miq.) C. 

Shih [= P. multiformis C. Shih, P. pilipes (Migo) C. Shih]: LAC-032: China, Sichuan, Emei, 7 

Jul 2010, Z. H. Wang & L. Chen 39 (KUN), KF485567, KF485694, KF485822, KF486078, 
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KF485950, KF486206; LAC-037: China, Jiangxi, Jinggangshan, 22 May 2011, H. J. Dong & Z. 

J. Yin 126 (KUN), KF485572, KF485699, KF485827, KF486083, KF485955, KF486211; (b) 

LAC-038: China, Jiangxi, Dayu, 24 May 2011, H. J. Dong & Z. J. Yin 163 (KUN), KF485573, 

KF485700, KF485828, KF486084, KF485956, KF486212. P. triflora (Chang & C. Shih) Z. H. 

Wang & N. Kilian [= Stenoseris triflora Chang & C. Shih, S. leptantha C. Shih]: LAC-024: 

China, Yunnan, Jingdong, 27 Nov 2010, Z. H. Wang & L. Chen 276 (KUN), KF485559, 

KF485686, KF485814, KF486070, KF485942, KF486198; LAC-025: China, Yunnan, 

Jingdong, 27 Nov 2010, Z. H. Wang & L. Chen 272 (KUN), KF485560, KF485687, KF485815, 

KF486071, KF485943, KF486199; LAC-026: China, Yunnan, Gongshan, 10 Nov 2011, Z. H. 

Wang, L. Chen & Y. Tang 462 (KUN), KF485561, KF485688, KF485816, KF486072, 

KF485944, KF486200; LAC-027: China, Yunnan, Eryuan, 22 Sep 2011, H. J. Dong & al. 648 

(KUN), KF485562, KF485689, KF485817, KF486073, KF485945, KF486201. P. umbrosa 

(Dunn) Sennikov [= Mulgedium umbrosum (Dunn) C. Shih, Lactuca parishii Craib]: LAC-028: 

Thailand, Chiang Mai, Doi Sutep, 27 Jan 2004, N. Kilian 10242 (B), KF485563, KF485690, 

KF485818, KF486074, KF485946, KF486202; LAC-029: China, Yunnan, Longling, 1 May 

2011, Z. H. Wang wzh10 (KUN), KF485564, KF485691, KF485819, KF486075, KF485947, 

KF486203; LAC-030: China, Yunnan, Jingdong, 1 May 2011, Z. H. Wang wzh09 (KUN), 

KF485565, KF485692, KF485820, KF486076, KF485948, KF486204. P. wilsonii (C. C. 

Chang) Z. H. Wang [= Notoseris wilsonii (C. C. Chang) C. Shih]: LAC-049: China, Sichuan, 

Dayi, 26 Jun 2011, Z. H. Wang & L. Chen 344A (KUN), KF485584, KF485711, KF485839, 

KF486095, KF485967, KF486223; LAC-050: China, Sichuan, Dayi, 25 Jun 2011, Z. H. Wang 

& L. Chen 344B (KUN), KF485585, KF485712, KF485840, KF486096, KF485968, KF486224; 

LAC-051: China, Sichuan, Dayi, 25 Jun 2011, Z. H. Wang & L. Chen 344C (KUN), KF485586, 

KF485713, KF485841, KF486097, KF485969, KF486225. P. yunnanensis (Franch.) C. Shih 

[= P. longiloba Y. Ling & C. Shih, P. sagittiformis C. Shih]: LAC-042: China, Yunnan, Kunming, 

17 Aug 2010, Z. H. Wang wzh01 (KUN), KF485577, KF485704, KF485832, KF486088, 

KF485960, KF486216; LAC-043: China, Yunnan, Kunming, 1 Jul 2010, C. L. Xiang & al. 429 

(KUN), KF485578, KF485705, KF485833, KF486089, KF485961, KF486217; LAC-044: China, 

Yunnan, Kunming, 1 Jul 2010, C. L. Xiang & al. 432 (KUN), KF485579, KF485706, KF485834, 

KF486090, KF485962, KF486218; LAC-045: China, Yunnan, Lanping, 26 Jul 2010, H. Peng 

& al. 1006 (KUN), KF485580, KF485707, KF485835, KF486091, KF485963, KF486219 



Appendix S2. Positions of mutational hotspots (= HS) and exons in the individual chloroplast marker sequences excluded from phylogenetic analysis. The position within 

each marker sequence is calculated without gap; a dash denotes the absence of this sequence portion in the corresponding samples. 

Sample name in the tree 
petD region: 

exon 

petD 

region: HS1 

psbA-

trnH: HS1 

psbA-

trnH: HS2 

psbA-

trnH: HS3 

psbA-

trnH: HS4 

psbA-

trnH: HS5 

trnL-F: 

exon 

trnL-F: 

HS1 

rpl32-trnL: 

HS1 

Launaea sarmentosa_LAC-001 193-200 —— 94-101 —— 357-365 —— 400-417 442-490 —— 128-128 

Leontodon tuberosua_LAC-002 193-200 —— 93-99 —— 329-342 —— 377-394 431-479 —— 132-132 

Crepis multicaulis_LAC-003 193-200 —— 93-99 —— 338-345 —— 380-387 440-488 —— 132-132 

Soroseris erysimoides_LAC-004 188-195 —— 94-101 —— 331-337 —— 372-389 396-444 —— —— 

Faberiopsis nanchuanensis_LAC-005 200-207 —— 94-101 —— 331-337 —— 372-389 442-490 —— 132-132 

Faberia sinensis_LAC-006 200-207 —— 94-100 —— 330-336 —— 371-388 442-490 —— 132-132 

Faberia sinensis_LAC-007 200-207 —— 94-101 —— 331-337 —— 372-389 442-490 —— 132-132 

Prenanthes faberi_LAC-008 200-207 —— 94-101 —— 331-337 —— 372-389 442-490 —— 132-132 

Prenanthes faberi_LAC-009 200-207 —— 94-101 —— 331-336 —— 371-388 442-490 —— 132-132 

Prenanthes faberi_LAC-010 200-207 —— 94-101 —— 331-336 —— 371-388 442-490 —— 132-132 

Cephalorrhynchus hispidus_LAC-011 193-200 —— 94-101 —— 327-337 —— 372-373 missing missing missing 

Cicerbita alpina_LAC133 193-200 546-562 94-100 —— 326-334 —— 369-381 442-490 —— 132-132 

Prenanthes purpurea_LAC013 193-200 552-568 94-101 —— 331-339 —— 374-388 442-490 —— 132-134 

Cicerbita azurea_LAC014 193-200 —— 94-101 —— 327-339 —— 374-385 442-490 —— 132-132 

Cicerbita azurea_LAC015 193-200 —— 94-101 —— 327-337 —— 372-389 442-490 —— 132-132 

Stenoseris auriculiformis_LAC-016 193-200 —— missing missing missing missing missing 442-490 —— 132-132 

Stenoseris auriculiformis_LAC-017 193-200 —— 94-101 —— 327-337 —— 372-389 442-490 —— 132-132 

Chaetoseris roborowskii_LAC-018 193-200 —— 94-101 —— 327-339 —— 374-391 442-490 —— 132-132 

Chaetoseris roborowskii_LAC-019 193-200 —— 94-101 —— 327-337 —— 372-389 442-490 —— 132-132 

Cicerbita oligolepis_LAC-020 193-200 —— 94-101 —— 332-344 —— 379-396 442-490 —— —— 

Cicerbita oligolepis_LAC-021 193-200 —— 94-101 —— 332-344 —— 379-396 442-490 —— —— 

Cicerbita oligolepis_LAC-022 193-200 544-560 94-101 —— 332-344 —— 379-396 442-490 —— —— 

Cicerbita oligolepis_LAC-023 193-200 —— 94-101 —— 332-344 —— 379-396 442-490 —— —— 

Stenoseris leptantha_LAC-024 193-200 —— 95-103 —— 3-5-316 —— 351-358 442-490 —— —— 

Stenoseris leptantha_LAC-025 193-200 —— 95-103 —— 305-316 —— 351-358 442-490 —— —— 

Stenoseris triflora_LAC-026 193-200 —— 95-103 —— 305-317 —— 352-359 442-490 —— —— 

Stenoseris triflora_LAC-027 193-200 —— 95-103 —— 305-317 —— 352-359 442-490 —— —— 

Lactuca parishii_LAC028 193-200 —— 94-101 —— 327-334 —— 369-386 442-490 —— 132-132 



Sample name in the tree 
petD region: 

exon 
petD 

region: HS1 
psbA-

trnH: HS1 
psbA-

trnH: HS2 
psbA-

trnH: HS3 
psbA-

trnH: HS4 
psbA-

trnH: HS5 
trnL-F: 
exon 

trnL-F: 
HS1 

rpl32-trnL: 
HS1 

Mulgedium umbrosum_LAC-029 193-200 —— 94-101 —— 327-334 —— 369-396 442-490 —— 132-132 

Mulgedium umbrosum_LAC-030 193-200 —— 94-101 —— 327-334 —— 369-396 442-490 —— 132-132 

Paraprenanthes luchunensis_LAC-031 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes multiformis_LAC-032 193-200 544-560 93-98 —— 324-332 —— 367-384 442-490 —— 132-132 

Paraprenanthes polypodifolia_LAC-033 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes glandulosissima_LAC-034 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes prenanthoides_LAC-035 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes hastata_LAC-036 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes pilipes_LAC-037 193-200 544-560 94-101 —— 327-336 —— 371-401 442-490 —— 132-132 

Paraprenanthes pilipes_LAC-038 193-200 544-560 94-101 —— 327-335 —— 370-421 442-490 —— 132-132 

Paraprenanthes diversifolia_LAC-039 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes heptantha_LAC-040 193-200 544-560 93-98 —— 324-334 —— 369-386 442-490 —— 132-132 

Paraprenanthes gracilipes_LAC-041 193-200 544-560 missing missing missing missing missing 442-490 —— 132-132 

Paraprenanthes longiloba_LAC-042 193-200 544-560 94-101 —— 327-336 —— 371-388 442-490 —— 99-99 

Paraprenanthes sagittiformis_LAC-043 193-200 544-560 94-101 —— 327-336 —— 371-388 442-490 —— 99-99 

Paraprenanthes sagittiformis_LAC-044 193-200 544-560 94-101 —— 327-336 —— 371-388 442-490 —— 99-99 

Paraprenanthes yunnanensis_LAC-045 193-200 544-560 94-101 —— 327-337 —— 372-389 442-490 —— 99-99 

Notoseris melanantha_LAC-046 193-200 544-560 94-100 —— 353-360 —— 395-412 442-490 —— 132-132 

Notoseris melanantha_LAC-047 193-200 544-560 94-100 —— 353-360 —— 395-412 442-490 —— 132-132 

Notoseris melanantha_LAC-048 193-200 544-560 94-100 —— 353-360 —— 395-412 442-490 —— 132-132 

Notoseris gracilipes_LAC-049 193-200 544-560 93-100 —— 336-345 —— 380-397 442-490 —— 132-132 

Notoseris gracilipes_LAC-050 193-200 544-560 93-100 —— 336-345 —— 380-397 442-490 —— 132-132 

Notoseris gracilipes_LAC-051 193-200 544-560 93-100 —— 336-345 —— 380-397 442-490 —— 132-132 

Prenanthes scandens_LAC-052 193-200 536-552 94-101 —— 327-339 —— 374-391 442-490 —— 153-153 

Prenanthes scandens * yakoensis_LAC-053 193-200 536-552 94-101 —— 327-340 —— 375-392 442-490 —— 153-153 

Prenanthes yakoensis_LAC-054 193-200 536-552 94-101 —— 327-340 —— 375-392 442-490 —— 153-153 

Prenanthes yakoensis_LAC-055 193-200 536-552 94-101 —— 327-342 —— 377-394 442-490 —— 153-153 

Notoseris porphyrolepis_LAC-056 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris porphyrolepis_LAC-057 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris triflora_LAC-058 193-200 546-562 94-100 —— 326-338 —— 373-390 442-490 —— 132-132 



Sample name in the tree 
petD region: 

exon 
petD 

region: HS1 
psbA-

trnH: HS1 
psbA-

trnH: HS2 
psbA-

trnH: HS3 
psbA-

trnH: HS4 
psbA-

trnH: HS5 
trnL-F: 
exon 

trnL-F: 
HS1 

rpl32-trnL: 
HS1 

Notoseris triflora_LAC-059 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris triflora_LAC-060 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris triflora_LAC-061 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris henryi_LAC-062 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris henryi_LAC-063 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris psilolepis_LAC-064 193-200 546-562 94-100 —— 326-336 —— 371-388 442-490 —— 132-132 

Notoseris psilolepis_LAC-065 193-200 546-562 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris rhombiformis_LAC-066 193-200 544-560 94-100 —— 326-337 —— 372-389 442-490 —— 132-132 

Notoseris rhombiformis_LAC-067 193-200 544-560 94-100 —— 326-338 —— 373-390 442-490 —— 132-132 

Notoseris rhombiformis_LAC-068 193-200 544-560 94-100 —— 326-335 —— 370-387 442-490 —— 132-132 

Parasyncalathium souliei_LAC-069 193-200 —— 94-101 —— 318-332 —— 367-384 442-490 38-40 133-133 

Parasyncalathium souliei_LAC-070 193-200 —— 94-101 —— 327-341 —— 376-393 442-490 38-40 133-133 

Melanoseris lessertiana_LAC071 193-200 544-560 94-100 —— 333-343 —— 378-408 442-490 38-40 132-132 

Mulgedium bracteatum_LAC-072 193-200 549-565 94-101 —— 327-337 —— 372-389 442-490 42-42 132-132 

Cephalorrhynchus macrorhizus_LAC-073 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-39 132-132 

Cephalorrhynchus macrorhizus_LAC-074 193-200 544-560 94-101 —— 327-335 —— 370-390 443-491 38-40 121-121 

Chaetoseris macrantha_LAC075 193-200 544-560 94-101 —— 106-106 —— 141-171 442-490 38-40 132-132 

Cicerbita sikkimensis_LAC-076 193-200 544-560 94-100 —— 326-335 —— 370-390 442-490 38-39 132-132 

Cicerbita sikkimensis_LAC-077 193-200 544-560 94-100 —— 326-335 —— 370-390 442-490 38-39 132-132 

Mulgedium qinghaicum_LAC-078 193-200 544-560 94-100 —— 333-341 —— 376-406 442-490 38-40 132-132 

Mulgedium qinghaicum_LAC-079 193-200 544-560 94-100 —— 333-341 —— 376-406 442-490 38-40 132-132 

Chaetoseris hastata_LAC-080 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetosris yunnanensis_LAC-081 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetosris yunnanensis_LAC-082 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris cyanea_LAC-083 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetosris lutea_LAC-084 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetosris lutea_LAC-085 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sichuanensis_LAC-086 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris lyriformis_LAC-087 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris lyriformis_LAC-088 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 



Sample name in the tree 
petD region: 

exon 
petD 

region: HS1 
psbA-

trnH: HS1 
psbA-

trnH: HS2 
psbA-

trnH: HS3 
psbA-

trnH: HS4 
psbA-

trnH: HS5 
trnL-F: 
exon 

trnL-F: 
HS1 

rpl32-trnL: 
HS1 

Chaetoseris cyanea_LAC-089 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris hispida_LAC-090 193-200 544-560 94-100 —— 326-337 —— 372-392 442-490 38-40 132-132 

Chaetoseris lyriformis_LAC-091 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sichuanensis_LAC-092 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sp2_LAC093 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sp4_LAC094 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sp5_LAC095 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sp6_LAC096 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris sp7_LAC097 193-200 544-560 94-100 —— 326-336 —— 371-391 442-490 38-40 132-132 

Chaetoseris likiangensis_LAC-098 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Chaetoseris grandiflora_LAC-099 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Chaetoseris taliensis_LAC-100 193-200 544-560 94-101 —— 327-336 —— 371-401 442-490 38-40 132-132 

Chaetoseris taliensis_LAC-101 193-200 544-560 94-101 —— 327-336 —— 371-401 442-490 38-40 132-132 

Chaetoseris sp1_LAC102 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Chaetoseris sp3_LAC103 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris tenuis_LAC-104 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris tenuis_LAC-105 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris tenuis_LAC-106 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 —— 

Stenoseris tenuis_LAC-107 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris sp1_LAC-108 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris sp2_LAC-109 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris graciliflora_LAC-110 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris taliensis_LAC-111 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Stenoseris graciliflora_LAC-112 193-200 544-560 94-101 —— 327-335 —— 370-400 442-490 38-40 132-132 

Lactuca perennis_LAC334 192-199 —— 94-101 —— 311-320 —— 349-356 442-490 38-39 —— 

Lactuca undulata_LAC-114 193-200 —— 94-102 —— 310-321 —— incomplete 442-490 38-39 94-96 

Lactuca undulata_LAC-115 193-200 —— 94-101 —— 311-322 —— 357-374 442-490 38-39 94-96 

Lactuca dissecta_LAC-116 193-200 —— 94-101 301-308 335-347 —— 382-389 442-490 38-40 132-132 

Lactuca dolichophylla_LAC-117 193-200 —— 94-101 301-308 335-345 —— 380-392 442-490 38-40 132-132 

Steptorhamphus tuberosus_LAC-118 193-200 —— 94-102 —— 328-338 355-355 374-381 442-490 38-42 132-132 



Sample name in the tree 
petD region: 

exon 
petD 

region: HS1 
psbA-

trnH: HS1 
psbA-

trnH: HS2 
psbA-

trnH: HS3 
psbA-

trnH: HS4 
psbA-

trnH: HS5 
trnL-F: 
exon 

trnL-F: 
HS1 

rpl32-trnL: 
HS1 

Lactuca inermis_LAC-119 193-200 544-560 95-102 —— 339-349 366-370 389-396 442-490 38-39 123-123 

Pterocypsela indica_LAC-120 193-200 —— 94-101 301-315 342-353 370-374 392-409 438-486 38-42 132-132 

Pterocypsela laciniata_LAC-121 193-200 —— 94-101 301-315 342-354 371-375 394-411 438-486 38-42 132-132 

Pterocypsela formosana_LAC-122 193-200 —— 94-101 —— 327-342 359-362 381-398 442-490 38-42 132-132 

Pterocypsela sonchus_LAC-123 193-200 —— 94-101 301-315 342-357 374-378 397-414 442-490 38-42 132-132 

Pterocypsela raddeana_LAC-124 193-200 —— 94-101 301-315 342-355 372-375 394-411 442-490 38-42 132-132 

Pterocypsela elata_LAC-125 193-200 —— 94-101 301-315 342-355 372-376 395-412 442-490 38-42 153-153 

Scariola orientalis_LAC126 193-200 544-560 94-101 300-303 338-346 —— 380-387 442-490 38-43 132-132 

Scariola viminea_LAC-135 193-200 544-560 94-101 296-299 334-344 —— incomplete 442-490 38-42 132-132 

Mulgedium sibiricum_LAC-128 193-200 —— 94-101 —— 327-335 —— 370-387 442-490 26-27 132-132 

Mulgedium tataricum_LAC-129 188-195 —— 94-101 —— 327-340 —— 375-392 442-490 26-30 132-132 

Lactuca sativa_LAC-132 193-200 545-561 94-102 302-305 340-348 —— 382-389 442-490 38-41 —— 

Lactuca serriola_LAC-131 193-200 544-560 94-101 301-304 339-346 —— 380-387 442-490 38-41 —— 

 

 

Sample name in the tree 
rpl32-

trnL: HS2 
rpl32-

trnL: HS3 
rpl32-

trnL: HS4 
rpl32-

trnL: HS5 
rpl32-

trnL: HS6 
rpl32-

trnL: HS7 
rpl32-

trnL: HS8 
trnQ-

rps16: HS1 
trnQ-rps16: 

HS2 
trnQ-

rps16: HS3 

Launaea sarmentosa_LAC-001 160-167 —— 377-387 —— 697-697 —— 777-777 102-103 —— —— 

Leontodon tuberosua_LAC-002 164-173 190-190 406-416 738-744 —— —— 839-839 102-102 —— —— 

Crepis multicaulis_LAC-003 —— 148-148 379-388 —— 698-698 —— —— 96-96 —— 908-917 

Soroseris erysimoides_LAC-004 160-167 177-177 393-401 —— —— —— 809-809 102-102 —— —— 

Faberiopsis nanchuanensis_LAC-005 161-167 177-177 393-402 —— —— —— 830-831 102-102 —— —— 

Faberia sinensis_LAC-006 161-167 177-178 394-403 —— —— —— 831-832 102-102 —— —— 

Faberia sinensis_LAC-007 161-167 177-178 394-402 —— —— —— 830-831 102-102 —— —— 

Prenanthes faberi_LAC-008 161-167 177-178 394-404 —— —— —— 832-833 102-102 —— —— 

Prenanthes faberi_LAC-009 161-167 177-178 394-403 —— —— —— 831-832 102-102 —— —— 

Prenanthes faberi_LAC-010 161-167 177-178 394-403 —— —— —— 831-832 102-102 —— —— 

Cephalorrhynchus hispidus_LAC-011 missing missing missing missing missing missing missing missing missing missing 

Cicerbita alpina_LAC133 164-174 184 400-420 —— —— —— 831-832 102-102 —— —— 
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Prenanthes purpurea_LAC013 166-175 185 401-411 —— —— —— 803-804 102-102 —— 885-891 

Cicerbita azurea_LAC014 164-171 181 397-417 —— —— 802-802 829-829 102-102 —— —— 

Cicerbita azurea_LAC015 164-171 181 397-417 —— —— 802-802 829-829 102-102 —— —— 

Stenoseris auriculiformis_LAC-016 164-174 184 383-403 —— 736-736 789-789 816-817 102-102 —— —— 

Stenoseris auriculiformis_LAC-017 164-174 184 383-403 —— 736-736 789-789 816-817 102-102 —— —— 

Chaetoseris roborowskii_LAC-018 164-174 184 383-403 —— —— 788-788 815-816 102-102 —— —— 

Chaetoseris roborowskii_LAC-019 164-174 184 383-403 —— —— 788-788 815-816 102-102 —— —— 

Cicerbita oligolepis_LAC-020 163-169 179 395-415 —— —— 800-801 828-829 102-102 —— —— 

Cicerbita oligolepis_LAC-021 163-169 179 395-415 —— —— 800-801 828-829 102-102 —— —— 

Cicerbita oligolepis_LAC-022 163-169 179 395-415 —— —— 800-801 828-829 102-102 —— —— 

Cicerbita oligolepis_LAC-023 163-169 179 395-415 —— —— 800-801 828-829 102-102 —— —— 

Stenoseris leptantha_LAC-024 157-163 173 397-417 —— —— 802-802 829-830 102-102 —— —— 

Stenoseris leptantha_LAC-025 157-163 173 397-417 —— —— 802-802 829-830 102-102 —— —— 

Stenoseris triflora_LAC-026 157-163 173 397-417 —— —— 802-802 829-830 102-102 —— —— 

Stenoseris triflora_LAC-027 157-163 173 397-417 —— —— 802-802 829-830 102-102 —— —— 

Lactuca parishii_LAC028 164-175 —— 400-420 763-770 —— 836-837 864-864 102-102 —— —— 

Mulgedium umbrosum_LAC-029 164-175 —— 400-420 740-747 —— 813-813 840-840 102-102 —— —— 

Mulgedium umbrosum_LAC-030 164-175 —— 400-420 740-747 —— 813-814 841-841 102-102 —— —— 

Paraprenanthes luchunensis_LAC-031 164-165 175 391-411 731-738 752-752 793-793 820-820 102-102 —— —— 

Paraprenanthes multiformis_LAC-032 164-165 175 391-411 731-738 752-752 793-793 820-820 102-102 —— —— 

Paraprenanthes polypodifolia_LAC-033 164-165 175 391-411 731-738 752-752 796-796 823-823 102-102 —— —— 

Paraprenanthes glandulosissima_LAC-034 164-165 175 391-411 731-738 752-752 793-793 820-820 102-102 —— —— 

Paraprenanthes prenanthoides_LAC-035 164-165 175 391-411 731-738 752-752 793-793 820-820 102-102 —— —— 

Paraprenanthes hastata_LAC-036 164-171 181 397-417 737-744 758-758 799-799 826-826 102-102 —— —— 

Paraprenanthes pilipes_LAC-037 164-175 185 401-421 741-748 —— 814-814 841-841 102-102 —— —— 

Paraprenanthes pilipes_LAC-038 164-175 185 401-421 741-748 —— 814-814 841-841 102-102 —— —— 

Paraprenanthes diversifolia_LAC-039 164-173 183 399-419 739-746 760-760 801-801 828-828 102-102 —— —— 

Paraprenanthes heptantha_LAC-040 164-173 183 399-419 739-746 760-760 801-801 828-828 102-102 —— —— 

Paraprenanthes gracilipes_LAC-041 164-172 182 398-418 738-745 759-759 800-800 827-827 102-102 —— —— 

Paraprenanthes longiloba_LAC-042 131-138 148 364-384 704-711 —— 761-761 788-788 102-102 —— —— 
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Paraprenanthes sagittiformis_LAC-043 131-139 149 365-385 705-712 —— 762-762 789-789 102-102 —— —— 

Paraprenanthes sagittiformis_LAC-044 131-139 149 365-385 705-712 —— 762-762 789-789 102-102 —— —— 

Paraprenanthes yunnanensis_LAC-045 131-139 149 365-385 705-712 —— 762-762 789-789 102-102 —— —— 

Notoseris melanantha_LAC-046 164-172 182 398-418 738-745 —— 811-811 838-838 102-102 —— —— 

Notoseris melanantha_LAC-047 164-172 182 398-418 738-745 —— 811-811 838-838 102-102 —— —— 

Notoseris melanantha_LAC-048 164-172 182 398-418 738-745 —— 811-811 838-838 102-102 —— —— 

Notoseris gracilipes_LAC-049 164-172 182 398-418 738-745 759-759 800-800 827-827 102-102 —— —— 

Notoseris gracilipes_LAC-050 164-172 182 398-418 738-745 759-759 800-800 827-827 102-102 —— —— 

Notoseris gracilipes_LAC-051 164-172 182 398-418 738-745 759-759 800-800 827-827 102-102 —— —— 

Prenanthes scandens_LAC-052 185-195 206 422-432 —— —— 817-817 844-845 102-102 —— —— 

Prenanthes scandens * yakoensis_LAC-053 185-194 205 421-431 —— —— 816-816 843-844 102-102 —— —— 

Prenanthes yakoensis_LAC-054 185-194 205 421-431 —— —— 816-816 843-844 102-102 —— —— 

Prenanthes yakoensis_LAC-055 185-193 204 420-430 —— —— 815-815 842-843 102-102 —— —— 

Notoseris porphyrolepis_LAC-056 164-175 185 401-421 746-753 —— 819-819 846-846 102-102 —— —— 

Notoseris porphyrolepis_LAC-057 164-174 184 400-420 745-752 —— 818-818 845-845 102-102 —— —— 

Notoseris triflora_LAC-058 164-175 185 401-421 746-753 —— 819-819 846-846 102-102 —— —— 

Notoseris triflora_LAC-059 164-174 184 400-420 745-752 —— 818-818 845-845 102-102 —— —— 

Notoseris triflora_LAC-060 164-174 184 400-420 745-752 —— 818-819 846-846 102-102 —— —— 

Notoseris triflora_LAC-061 164-175 185 401-421 746-753 —— 819-819 846-846 102-102 —— —— 

Notoseris henryi_LAC-062 164-175 185 401-421 746-753 —— 819-819 846-846 102-102 —— —— 

Notoseris henryi_LAC-063 164-175 185 401-421 746-753 —— 819-819 846-846 102-102 —— —— 

Notoseris psilolepis_LAC-064 164-175 185 401-421 746-753 —— 819-819 846-846 102-102 —— —— 

Notoseris psilolepis_LAC-065 164-175 185 401-421 —— —— 811-811 838-838 102-102 —— —— 

Notoseris rhombiformis_LAC-066 164-175 185 401-421 741-748 —— 814-814 841-841 102-102 —— —— 

Notoseris rhombiformis_LAC-067 164-175 185 401-421 741-748 —— 814-814 841-841 102-102 —— —— 

Notoseris rhombiformis_LAC-068 164-177 187 403-423 748-755 —— 821-821 848-848 102-102 —— —— 

Parasyncalathium souliei_LAC-069 165-178 192 408-418 —— 748-748 801-801 828-828 102-102 —— —— 

Parasyncalathium souliei_LAC-070 165-177 191 407-417 —— 747-747 800-800 827-827 102-102 —— —— 

Melanoseris lessertiana_LAC071 164-174 184 400-420 —— 753-753 806-806 833-833 102-102 —— —— 

Mulgedium bracteatum_LAC-072 —— 148 364-384 —— —— 776-776 803-803 102-102 —— —— 
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Cephalorrhynchus macrorhizus_LAC-073 164-172 182 398-408 —— —— 800-800 827-827 102-102 746-751 —— 

Cephalorrhynchus macrorhizus_LAC-074 153-160 170 386-396 —— —— 781-781 808-808 102-102 —— 890-900 

Chaetoseris macrantha_LAC075 164-174 184 400-420 —— 753-753 —— 832-832 102-102 —— 890-900 

Cicerbita sikkimensis_LAC-076 164-174 184 400-420 —— 753-753 —— —— 102-102 —— 890-900 

Cicerbita sikkimensis_LAC-077 164-174 184 400-420 —— 753-753 —— 826-826 102-102 —— 890-900 

Mulgedium qinghaicum_LAC-078 164-174 184 400-420 —— 753-753 806-806 833-833 102-102 —— 890-900 

Mulgedium qinghaicum_LAC-079 164-173 183 399-419 —— 752-752 805-805 832-832 102-102 —— 890-900 

Chaetoseris hastata_LAC-080 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetosris yunnanensis_LAC-081 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetosris yunnanensis_LAC-082 164-174 184 400-420 —— 753-753 —— 826-826 —— —— 888-898 

Chaetoseris cyanea_LAC-083 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetosris lutea_LAC-084 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetosris lutea_LAC-085 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sichuanensis_LAC-086 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris lyriformis_LAC-087 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris lyriformis_LAC-088 164-171 181 397-417 —— 750-750 —— 823-823 102-102 —— 890-900 

Chaetoseris cyanea_LAC-089 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris hispida_LAC-090 164-172 182 398-418 —— 751-751 —— 824-824 102-102 746-751 896-906 

Chaetoseris lyriformis_LAC-091 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sichuanensis_LAC-092 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sp2_LAC093 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sp4_LAC094 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sp5_LAC095 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sp6_LAC096 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris sp7_LAC097 164-172 182 398-418 —— 751-751 —— 824-824 102-102 —— 890-900 

Chaetoseris likiangensis_LAC-098 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Chaetoseris grandiflora_LAC-099 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Chaetoseris taliensis_LAC-100 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 895-905 

Chaetoseris taliensis_LAC-101 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Chaetoseris sp1_LAC102 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 
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Chaetoseris sp3_LAC103 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— —— 

Stenoseris tenuis_LAC-104 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris tenuis_LAC-105 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris tenuis_LAC-106 163-171 181 397-417 —— 756-756 809-809 —— 102-102 —— 890-900 

Stenoseris tenuis_LAC-107 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris sp1_LAC-108 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris sp2_LAC-109 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris graciliflora_LAC-110 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris taliensis_LAC-111 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Stenoseris graciliflora_LAC-112 164-173 183 398-419 —— 758-758 811-811 —— 102-102 —— 890-900 

Lactuca perennis_LAC334 94-104 114 323-333 —— —— 746-747 774-774 102-102 —— —— 

Lactuca undulata_LAC-114 128-136 146 355-375 —— —— 760-760 787-787 102-102 —— —— 

Lactuca undulata_LAC-115 128-136 146 355-375 —— —— 760-760 787-787 102-102 —— —— 

Lactuca dissecta_LAC-116 164-178 188 403-423 —— —— 822-822 849-849 102-102 —— —— 

Lactuca dolichophylla_LAC-117 164-174 184 398-418 —— —— 817-817 844-844 102-102 —— —— 

Steptorhamphus tuberosus_LAC-118 164-174 184 400-420 —— —— 819-819 846-846 102-102 —— —— 

Lactuca inermis_LAC-119 155-165 175 402-412 —— —— 766-766 800-800 102-102 —— —— 

Pterocypsela indica_LAC-120 164-173 183 399-419 —— —— 805-805 832-832 102-102 746-751 —— 

Pterocypsela laciniata_LAC-121 164-173 183 399-419 —— —— 805-805 832-832 102-102 746-751 —— 

Pterocypsela formosana_LAC-122 164-173 183 399-419 —— —— 805-805 832-832 102-102 746-751 —— 

Pterocypsela sonchus_LAC-123 164-173 183 399-419 —— —— 805-805 832-832 102-102 746-751 —— 

Pterocypsela raddeana_LAC-124 164-173 183 399-419 —— —— 805-805 832-832 102-102 —— —— 

Pterocypsela elata_LAC-125 185-193 203 419-439 —— —— 825-825 852-852 102-102 746-751 —— 

Scariola orientalis_LAC126 164-175 185 401-411 —— —— 799-799 826-826 104-105 —— 913-923 

Scariola viminea_LAC-135 164-174 184 400-410 —— —— 799-799 826-826 104-106 —— 898-908 

Mulgedium sibiricum_LAC-128 164-173 183 400-420 —— —— 805-805 832-832 102-102 —— —— 

Mulgedium tataricum_LAC-129 160-172 182 400-421 —— —— 806-806 833-833 102-102 —— —— 

Lactuca sativa_LAC-132 —— —— 319-339 —— —— 728-728 755-755 102-104 —— —— 

Lactuca serriola_LAC-131 —— —— 319-339 —— —— 745-745 772-772 102-104 —— —— 

 



Table S2. Indels coded in the phylogenetic analysis. For each marker, position, length [nt] and description of the coded indels are given according to the sequences alignment matrix. 

ITS region 

No. Position 
Length 

(nt) 
Description 

1 4-4 1 Gap in Faberia sinensis, Prenanthes yakoensis 

2 16-16 1 Insertion of "A" in Scariola orientalis, gap in all other taxa 

3 40-40 1 Insertion of "C" in Prenanthes yakoensis, gap in all other taxa 

4 40-41 2 Gap in Launaea sarmentosa 

5 43-43 1 Gap in Prenanthes yakoensis 

6 49-49 1 Gap in Crepis multicaulis 

7 59-59 1 Insertion of "T" in Cicerbita oligolepis and Stenoseris triflora, Stenoseris leptantha, gap in all other taxa 

8 59-60 2 Gap in Lactuca perennis 

9 83-83 1 Gap in Soroseris erysimoides and Crepis multicaulis 

10 85-85 1 Gap in Soroseris erysimoides and Prenanthes purpurea 

11 87-87 1 Gap in Prenanthes purpurea 

12 89-89 1 Gap in Prenanthes purpurea, Cicerbita oligolepis 

13 91-91 1 Gap in Lactuca inermis, all Pterocypsela except P. raddeana, Scariola orientalis, S. viminea, Lagedium sibiricum, Mulgedium tataricum, L. sativa, L. serriola 

14 94-94 1 Insertion of "T(C)" in all Pterocypsela, Scariola orientalis, S. viminea, Lagedium sibiricum, Mulgedium tataricum, L. sativa, L. serriola, gap in all other taxa 

15 102-103 2 Gap in Scariola orientalis and S. viminea 

16 103-103 1 Insertion of "T" in Parasyncalathium souliei, gap in all other taxa 

17 112-112 1 Gap in Melanoseris lessertiana 

18 118-119 2 Gap in Launaea sarmentosa, Crepis multicaulis, Soroseris erysimoides 

19 119-119 1 Insertion of "T" in Faberia sinensis, gap in all other taxa 

20 119-120 2 Gap in Lactuca sativa and L. serriola 

21 122-122 1 Gap in Prenanthes purpurea 

22 124-124 1 Gap in Leontodon tuberosus 

23 128-129 2 Gap in Parasyncalathium souliei, Lactuc perennis, L. undulata, L. dissecta, L. dolichophylla, L. inermis, Steptorhamphus tuberosus 

24 129-129 1 Insertion of "G" in Cicerbita azurea and Pterocypsela indica, gap in all other taxa 

25 129-130 2 Gap in Launaea sarmentosa and Leontodon tuberosus 

26 133-134 2 Insertion of "AG" in Crepis multicaulis, gap in all other taxa 

27 141-142 2 Gap in all Lactuca clade 

28 151-151 1 Insertion of "G" in Crepis multicaulis, gap in all other taxa 

29 154-156 3 Gap in Faberiopsis nanchuanensis 

30 165-165 1 Insertion of "A" in Leontodon tuberosus,Scariola orientalis, S. viminea, Lagedium sibiricum, Mulgeium tataricum, L. sativa, L. serriola, gap in all other taxa 



ITS region 

No. Position 
Length 

(nt) 
Description 

31 198-198 1 Gap in Prenanthes faberi, Cephalorrhynchus hispidus, Melanoseris lessertiana, all Lactuca clade except L. perennis and L. undulata 

32 201-201 1 Insertion of "A" in Prenanthes purpurea, gap in all other taxa 

33 227-236 9 Gap in one of Faberia sinensis 

34 232-232 1 Insertion of "T" in Launaea sarmentosa 

35 246-246 1 Gap in Lactuca parshii and Mulgedium umbrosum 

36 249-249 1 Gap in Lactuca perennis 

37 257-257 1 Insertion of "A" in Cephalorrhynchus hispidus, gap in all other taxa 

38 443-443 1 Insertion of "C" in Lagedium sibiricum and Mulgedium tataricum, gap in all other taxa 

39 449-449 1 Gap in Lagedium sibiricum and Mulgedium tataricum 

40 449-450 2 Gap in Parasyncalathium souliei 

41 459-460 2 Insertion of "AT" in Leontodon tuberosus and "CT" in Crepis multicaulis, gap in all other taxa 

42 460-460 1 Gap in Launaea sarmentosa 

43 463-463 1 Insertion of "T" in Leontodon tuberosus and "C" in Lactuca inermis, gap in all other taxa 

44 463-465 3 Gap in Crepis multicaulis 

45 465-465 1 Gap in Soroseris erysimoides 

46 468-468 1 Gap in Notoseris triflora 

47 472-476 5 Gap in Lactuca inermis 

48 477-477 1 Gap in Launaea sarmentosa and Prenanthes purpurea 

49 478-478 1 
Insertion of "T(C, A)" in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Prenanthes purpurea, Soroseris erysimoides, all Faberia, gap in all 
other taxa 

50 483-485 3 Gap in all Faberia 

51 484-484 1 Insertion of "T" in Soroseris erysimoides and "C" in Crepis multicaulis, gap in all other taxa 

52 485-485 1 Insertion of "A(T)" in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Soroseris erysimoides and Prenanthes purpurea, gap in all other taxa 

53 487-487 1 Gap in Cicerbita alpina 

54 515-516 2 Gap in Notoseris rhombiformis 

55 516-517 2 Gap in Leontodon tuberosus, Cephalorrhynchus hispidus and Cicerbita alpina 

56 540-540 1 
Gap in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Soroseris erysimoides, all Faberia, Prenanthes purpurea, Cephalorrhynchus 

hispidus, Cicerbita alpina and one of Stenoseris auriculiformis 

57 544-544 1 
Insertion of "C" in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Soroseris erysimoides, all Faberia, Prenanthes purpurea, 
Cephalorrhynchus hispidus and Cicerbita clade, gap in all other taxa 

58 590-590 1 Gap in Leontodon tuberosus 

59 590-591 2 Gap in Cicerbita oligolepis 



ITS region 

No. Position 
Length 

(nt) 
Description 

60 598-604 7 Gap in Lactuca inermis 

61 619-619 1 Insertion of "A" in Faberiopsis nanchuanensis, gap in all other taxa 

62 619-620 2 Gap in Launaea sarmentosa and Cephalorrhynchus hispidus 

63 633-633 1 Gap in Launaea sarmentosa 

64 637-637 1 Insertion of "C(T)" in Notoseris wilsonii and N.. melanantha, gap in all other taxa 

65 640-640 1 Insertion of "A" in one of Notoseris melanantha, gap in all other taxa 

66 650-651 2 Gap in Cicerbita sikkimensis 



petD region 

No. Position 
Length 

(nt) 
Description 

1 6-11 6 Inserton of "TATAGA" in Soroseris erysimoides and all Faberia (replicate), gap in all other taxa 

2 27-31 5 Gap in Mulgedium tataricum 

3 152-162 11 Gap in Soroseris erysimoides 

4 162-162 1 Gap in all Faberia, insertion of "A" in all other taxa 

5 166-167 2 Insertion of "TA" (replicate) in all Faberia, gap in all other taxa 

6 182-182 1 Gap in Lactuca perennis, insertion of "T" in all other taxa 

7 256-256 1 
Insertion of "G" in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Soroseris erysimoides, all Faberia and Prenanthes purpurea, gap in all 
other taxa 

8 349-353 5 Gap in Cephalorrhynchus hispidus and Cicerbita alpina, insertion of "AGATA" in all other taxa 

9 418-418 1 Insertion of "T" in Lactuca sativa, gap in all other taxa 

10 512-512 1 Insertion of "C" in Parasyncalathium souliei, gap in all other taxa 

11 550-554 5 Insertion of "TTTAT" (replicate) in Mulgedium bracteatum, gap in all other taxa 

12 561-575 15 Gap in Prenanthes yakoensis and P. scandens 

13 565-571 7 
Insertion of "TAAAAAT" in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Soroseris erysimoides, all Faberia, Prenanthes purpurea, 

Cephalorrynchus tuberosus, Cicerbita alpina, gap in all other taxa 

14 624-625 2 Insertion of "TC" (replicate) in Notoseris henryi, N. triflora, N. psilolepis, gap in all other taxa 

15 765-770 6 Gap in all Faberia 

16 776-779 4 
Insetion of "TATA" (replicate) in one small clade of Melanoseris, i.e. Chaetoseris likiangensis, Ch. grandiflora, Stenoseris tenuis, S. graciliflora, including 
hybrids between them 

17 801-801 1 Insertion of "A" in Mulgedium bracteatum, gap in all other taxa 

18 819-819 1 Insertion of "T" in Launaea sarmentosa, gap in all other taxa 

19 819-832 14 Insertion of "TTTATATGGATTCA" (replicate) in Launaea sarmentosa 

20 915-915 1 Gap in Lactuca perennis and Scariola viminea, insertion of "T" in all other taxa 

 



psbA-trnH 

No. Position Length (nt) Description 

1 4-4 1 Insertion of "C" in Lactuca inermis, gap in all other taxa 

2 25-25 1 Insertion of "A" in Stenoseris triflora and S. leptantha, gap in all other taxa 

3 48-48 1 Gap in Leontodon tuberosus, Crepis multicaulis, insertion of "A" in all other taxa 

4 83-83 1 Gap in Paraprenanthes diversifolia, P. prenanthoies, P. hastata 

5 96-105 10 Insertion of "ATTTTTTTTT" in Notoseris wilsonii, gap in all other taxa 

6 96-117 22 Gap in all taxa except Notoseris wilsonii, Lactuca inermis 

7 106-117 12 Insertion of "ATTTTTTTTTTT" in Lactuca inermis, gap in all other taxa 

8 122-127 6 Gap in Stenseris triflora and S. leptantha 

9 122-430 309 Gap in Chaetoseris macrantha 

10 155-155 1 Gap in Launaea sarmentosa 

11 161-175 15 Gap in one of Parasyncalathium souliei 

12 169-174 6 Gap in Cephalorrhynchus hispidus, Cicerbita alpina 

13 169-175 7 Gap in Lactuca inermis 

14 170-171 2 Insertion of "TT" in Leontodon tuberosus 

15 195-210 16 Insertion of "TTTCTCTTTGTATAAA" in Launaea sarmentosa, gap in all other taxa 

16 213-213 1 Gap in Scariola orientalis and S. viminea 

17 252-252 1 Gap in Leontodon tuberosus 

18 263-269 7 Insertion of "GTTTTAT" in Melanoseris lessertiana and Mulgedium qinghaicum, gap in all other taxa 

19 263-273 11 Gap in Scariola viminea 

20 314-325 12 Gap in Lactuca perennis and L. undulata 

21 332-341 10 Insertion of "ATTTTATTAT" in Launaea sarmentosa, gap in all other taxa 

22 332-350 19 Gap in all taxa except Launaea sarmentosa, Crepis multicaulis 

23 342-350 9 Insertion of "TTTACATTT" in Crepis multicaulis, gap in all other taxa 

24 356-386 31 Gap in Stenseris triflora and S. leptantha 

25 365-369 5 Insertion of "ATTTT" in Cicerbita oligolepis, gap in all other taxa 

26 374-381 8 Insertion of "GAAAG(T)AAA" in Scariola orientalis, S. viminea, Lactuca sativa and L. serriola 

27 374-385 12 Gap in Lactuca perennis and L. undulata 

28 390-416 27 Insertion of "TATTACTTTGATTTCATAAATAAGAAA" in Notoseris melanantha, gap in all other taxa 

29 425-426 2 Gap in one of Lactuca undulata 

30 431-431 1 Gap in Scariola orientalis and S. viminea 

31 431-436 6 Gap in Lactuca perennis 

32 432-432 1 Gap in Lactuca sativa and L. serriola 

33 454-454 1 Gap in Pterocypsela indica 



trnL-F 

No. Position Length (nt) Description 

1 110-119 10 Gap in Soroseris erysimoides 

2 182-218 37 Gap in Soroseris erysimoides 

3 191-191 1 Insertion of "T" in one of Cephalorrhynchus macrorhizus, gap in all other taxa 

4 191-196 6 Gap in Leontodon tuberosus 

5 217-222 6 Gap in Leontodon tuberosus 

6 248-251 4 Gap in Pterocypsela indica and P. laciniata 

7 263-266 4 Insertion of "CATA" (replicate) in Crepis multicaulis, gap in all other taxa 

8 290-290 1 Gap in Crepis multicaulis 

9 292-295 4 Gap in Crepis multicaulis 

10 308-308 1 Gap in Crepis multicaulis 

11 472-487 16 Gap in Lagedium sibiricum and Mulgedium tataricum 

12 484-487 4 Insertion of "TTTA" in Mulgedium bracteatum, gap in all other taxa 

13 484-507 24 Gap in Launaea sarmentosa 

14 484-508 25 Gap in Crepis multicaulis 

15 494-506 13 Gap in Scariola orientalis 

16 500-506 7 Insertion of "CTTTATC" in Prenanthes scandens and P. yakoensis 

17 508-508 1 Gap in Soroseris erysimoides, insertion of "T" in all other taxa 

18 570-571 2 Gap in all Pterocypsela 

19 575-577 3 Insertion of "TAA" in Crepis multicaulis 

20 575-588 14 Gap in Cicerbita azurea 

21 575-589 15 
Gap in all but Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Soroseris erysimoides, all Faberia, Prenanthes purpurea, Cicerbita 

alpina, C. azurea 

22 596-597 2 Insertion of "TT" in Mulgedium bracteatum, gap in all other taxa 

23 609-612 4 Gap in Lactuca perennis 

24 610-611 2 Insertion of "AT" (SSR) in Lactuca inermis, gap in all other taxa 

25 610-619 10 Gap in Crepis multicaulis, Soroseris erysimoides and all Faberia 

26 643-647 5 Insertion of "GGAAT" (replicate) in Lagedium sibiricum and Mulgedium tataricum, gap in all other taxa 

27 667-674 8 Gap in Crepis multicaulis 

28 743-747 5 Gap in Scariola orientalis 

29 789-794 6 Gap in one of Notoseris rhombiformis, insertion of "ATGAAA" in all other taxa 

30 793-798 6 Gap in Crepis multicaulis 

31 808-811 4 Gap in all Pterocypsela, insertion of "ATGA” in all other taxa 

32 813-817 5 Insertion of "GAATA" (replicate) in Lactuca perennis and L. undulata, gap in all other taxa 



trnQ-rps16 

No. Position Length (nt) Description 

1 79-84 6 Gap in Crepis multicaulis 

2 94-95 2 Insertion of "AT" (replicate) in Scariola orientalis and S. viminea, gap in all other taxa 

3 115-130 16 Insertion of "TTTTTCTTAGCTACAT" (replicate) in Scariola orientalis, gap in all other taxa 

4 139-152 14 Insertion of "AAACATAGATAATC" in Soroseris erysimoides, gap in all other taxa 

5 161-161 1 Insertion of "T" in Cicerbita clade, Melanoseris clade and Lactuca clade, gap in other clade 

6 161-162 2 Gap in Paraprenanthes longiloba 

7 196-196 1 Gap in Crepis multicaulis, Lactuca sativa and L. serriola, insertion of "T" in all other taxa 

8 209-215 7 Gap in Lagedium sibiricum 

9 240-240 1 Gap in Crepis multicaulis 

10 265-269 5 Insertion of "AAAAT" in all Faberia, gap in all other taxa 

11 287-304 18 Gap in Lactuca perennis 

12 317-317 1 Insertion of "A" in Cicerbita alpina, gap in all other taxa 

13 332-339 8 Insertion of "TTGACTCC" in Crepis multicaulis 

14 354-362 9 Gap in Prenanthes purpurea 

15 359-362 4 Insertion of "TCAA" in Scariola orientalis, S. viminea, Lactuca sativa and L. serriola, gap in all other taxa 

16 456-465 10 Insertion of "ATCATTATTT" (replicate) in Soroseris erysimoides, gap in all other taxa 

17 472-476 5 Insertion of "ATTTG" (replicate) in one of Chaetoseris taliensis, gap in all other taxa 

18 495-502 8 Gap in Launaea sarmentosa 

19 495-503 9 Insertion of "TTTTACAGT" (replicate) in Soroseris erysimoides, gap in all other taxa 

20 522-559 38 Gap in all but Mulgedium umbrosum and Lactuca dissecta 

21 547-559 13 Gap in Lactuca dissecta 

22 571-578 8 Insertion of "ATAAGATC" in Lactuca perennis, gap in all other taxa 

23 571-586 16 Gap in all but Lactuca perennis, Notoseris henryi, N. triflora, N. psilolepis 

24 579-586 8 Insertion of "ATAAGAAA" in Notoseris henryi, N. triflora, N. psilolepis, gap in all other taxa 

25 614-617 4 Insertion of "TCGA" in all Paraprenanthes but P. pilipes, Notoseris melanantha, gap in all other taxa 

26 639-643 5 Insertion of "TTAAA" (replicate) in Lactuca perennis and L. undulata, gap in all other taxa 

27 668-673 6 Insertion of "ATAGAT" (replicate) in Lactuca dissecta and L. dolichophylla 

28 698-710 13 Insertion of "GTTAAATATTTAA" (replicate) in one of Notoseris rhombiformis, gap in all other taxa 

29 786-786 1 Insertion of "T" in Launaea sarmentosa 

30 805-836 32 Gap in all taxa but Crepis multicaulis and Soroseris erysimoides and all Faberia 

31 814-832 19 Gap in Soroseris erysimoides 

32 814-836 23 Gap in all taxa but Crepis multicaulis and Soroseris erysimoides 



trnQ-rps16 

No. Position Length (nt) Description 

33 839-839 1 Insertion of "T" in Prenanthes purpurea 

34 845-851 7 Insertion of "CCTATAG" (replicate) in one of Notoseris wilsonii, gap in all other taxa 

35 857-857 1 Gap in Soroseris erysimoides 

36 867-867 1 Gap in Crepis multicaulis 

37 887-891 5 Insertion of "TTTTG" (replicate) in Lactuca parshii and Mulgedium umbrosum, gap in all other taxa 

38 901-904 4 Gap in Steptorhamphus tuberosus, insertion of "ACCT" in all other taxa 

39 947-951 5 Gap in Lactuca inermis, insertion of "TTATC" in all other taxa 

40 963-965 3 Gap in Lactuca perennis and L. undulata, insertion of "CAC" in all other taxa 

41 
1014-

1030 
17 Gap in Crepis multicaulis 

42 
1024-
1028 

5 Insertion of "AACTG" (replicate)  in Lactuca undulata, gap in all other taxa 

43 
1066-
1079 

14 Insertion of "AAAAAAGAAAGAAG" (replicate) in Pterocypsela indica, gap in all other taxa 

44 
1086-
1109 

24 Gap in Leontodon tuberosus 

45 
1087-
1090 

4 Gap in Mulgedium bracteatum 

46 
1097-
1099 

3 Gap in Cicerbita clade II 

47 
1110-

1117 
8 Gap in Prenanths yakoensis and P. scandens 



rpl32-trnL 

No. Position 
Length 

(nt) 
Description 

1 9-62 54 Gap in Paraprenanthes yunnanensis, P. saggitiformis, P. longiloba 

2 42-62 21 Insertionof "ATCAATACTTTTTTAATATAA" in Prenanthes yakoensis, P. scandens, gap in all other taxa 

3 73-81 9 Gap in Launaea sarmentosa 

4 75-80 6 Gap in Stenoseris triflora, S. leptantha 

5 75-85 11 Gap in one of Cephalorrhynchus macrorhizus 

6 75-134 60 Gap in Lactuca perennis, L. undulata 

7 78-86 9 Gap in Lactuca inermis 

8 103-123 21 Insertion of "CTATTCTAATCAATATGAACC" (replicate) in Pterocypsela elata, gap in all other taxa 

9 128-128 1 Insertion of "A" in Parasyncalathium souliei, gap in all other taxa 

10 153-237 85 Gap in Lactuca sativa and L. serriola 

11 157-162 6 Insertion of "AGGTTT" (replicate) in Launaea sarmentosa, gap in all other taxa 

12 167-167 1 Gap in Launaea sarmentosa 

13 181-222 42 Gap in Lactuca perennis 

14 192-227 36 Gap in Mulgedium bracteatum 

15 208-222 15 Gap in Mulgedium tataricum 

16 209-222 14 Gap in Soroseris erysimoides and all Faberia 

17 212-213 2 Insertion of "GC" in Leontodeon tuberosus, gap in all other taxa 

18 212-222 11 Gap in all taxa but Leontodon tuberosus, Parasyncalathium souliei 

19 212-227 16 Gap in Launaea sarmentosa 

20 214-217 4 Insertion of "ACAA' in Parasyncalathium souliei, gap in all other taxa 

21 218-222 5 Insertion of "AGAAT" (replicate) in Leontodon tuberosus, gap in all other taxa 

22 259-266 8 Insertion of "TTTTTTTT" in Crepis multicaulis, gap in all other taxa 

23 259-278 20 Gap in all taxa except Crepis multicaulis, Lactuca inermis 

24 267-278 12 Insertion of "GTAGTATATTTT" (replicate) in Lactuca inermis, gap in all other taxa 

25 300-307 8 Insertion of "TTTTGTGG" (replicate) in Stenoseris triflora and S. leptantha,  gap in all other taxa 

26 300-308 9 Gap in Lactuca inermis 

27 314-317 4 Insertion of "GGTG" (replicate) in Lagedium sibiricum and Mulgedium tataricaum, gap in all other taxa 

28 331-331 1 Gap in Lactuca dolichophylla 

29 350-351 2 Gap in Lagedium sibiricum 

30 354-360 7 Gap in Lactuca perennis and L. undulata 

31 383-383 1 Gap in Lactuca dissecta and L. dolichophylla 



rpl32-trnL 

No. Position 
Length 

(nt) 
Description 

32 393-408 16 Gap in Launaea sarmentosa 

33 400-400 1 Gap in Lagedium sibiricum and Mulgedium tataricaum 

34 402-408 7 Insertion of "AGTTTTT" in Crepis multicaulis, gap in all other taxa 

35 420-436 17 Gap in Stenoseris auriculiformis and Chaetoseris roborowskii 

36 456-456 1 Gap in Launaea sarmentosa 

37 502-524 23 Insertion of "TTTTTAGTAATTACTATATGAAA" in Lactuca parshii, gap in all other taxa 

38 545-550 6 
Insertion of "AATTTT" (replicate) in in one small clade of Melanoseris, i.e. Chaetoseris likiangensis, Ch. grandiflora, Stenoseris tenuis, S. 
graciliflora, including hybrids between them, gap in all other taxa 

39 581-594 14 Insertion of "ATTGTTGC(A)GATATT" in Lactuca dissecta, L. dolichophylla, Steptorhamphus tuberosus, gap in all other taxa 

40 598-643 46 Gap in Crepis multicaulis 

41 603-630 28 Gap in Launaea sarmentosa 

42 608-630 23 Insertion of "AAAGAACTTCATTGTTGAGATAT" (replicate) in Lactuca perennis, gap in all other taxa 

43 674-710 37 Gap in Soroseris erysimoides and Prenanthes purpurea 

44 690-695 6 Gap in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis 

45 693-693 1 Insertion of "A" in all Faberia, gap in all other taxa 

46 696-701 6 Insertion of "T(G)GGTTA" in Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Cicerbita alpina, gap in all other taxa 

47 696-706 11 Gap in all taxa but Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis, Cicerbita alpina, all Notoseris taxa but two of N. rhombiformis 

48 702-706 5 Insertion of all Notoseris taxa but two of N. rhombiformis, gap in all other taxa 

49 731-731 1 Insertion of "C" in Crepis multicaulis, gap in all other taxa 

50 737-737 1 Gap in Scariola orientalis, insertion of "T" in all other taxa 

51 743-743 1 Insertion of "A" in Soroseris erysimoides, gap in all other taxa 

52 743-759 17 Gap in all taxa but Soroseris erysimoides and all Faberia 

53 785-789 5 Insertion of "AAATA" (replicate) in Soroseris erysimoides, gap in all other taxa 

54 802-806 5 Insertion of "ATCAAGT" in Scariola orientalis and S. viminea 

55 802-813 12 Gap in all taxa but Cephalorrhynchus macrorhizus, Scariola orientalis, S. viminea 

56 802-833 32 Gap in Launaea sarmentosa 

57 807-813 7 Insertion of "ATCAAGT" in Cephalorrhynchus macrorhizus, gap in all other taxa 

58 820-826 7 Gap in Cicerbita alpina 

59 821-856 36 Gap in Lactuca inermis 

60 832-832 1 Insertion of "A" in Leontondon tuberosus, gap in all other taxa 

61 832-833 2 Gap in Crepis multicaulis 

62 842-842 1 Insertion of "T" in all Pterocypsela and Cicerbita alpina, gap in all other taxa 



rpl32-trnL 

No. Position 
Length 

(nt) 
Description 

63 850-852 3 Gap in Parasyncalathium souliei 

64 861-862 2 Gap in Lactuca inermis 

65 891-897 7 Gap in all taxa but Prenanthes purpurea and Mulgedium bracteatum 

66 897-897 1 Gap in Prenanths purpurea 

67 903-907 5 Insertion of "ATAAT" (replicate) in Lactuca perennis, gap in all other taxa 

68 930-951 22 Gap in all taxa but Lactuca sativa and L. serriola 

69 935-951 17 Gap in Lactuca sativa 

70 964-967 4 Gap in Paraprenanthes yunnanensis, P. saggitiformis, P. longiloba 

71 965-965 1 Gap in Crepis multicaulis 

72 966-966 1 Gap in Scariola orientalis, S. viminea, Lactuca sativa and L. serriola 

73 971-973 3 Insertion of "GAC" in Paraprenanthes polypodifolia, gap in all other taxa 

74 971-978 8 Gap in all taxa except Lactuca inermis and Paraprenanthes polypodifolia 

75 974-978 5 Insertion of "AGGAC” in Lactuca inermis, gap in all other taxa 

76 983-983 1 Insertion of "C" in Crepis multicaulis, gap in all other taxa 

77 987-989 3 Gap in all taxa except Launaea sarmentosa, Leontodon tuberosus, Crepis multicaulis 

78 988-989 2 Gap in Launaea sarmentosa 

79 989-989 1 Insertion of "A" in Leontondon tuberosus, gap in all other taxa 

80 1009-1020 12 Gap in all Paraprenanthes but P. pilipes and Notoseris melanantha 

81 1013-1018 6 Gap in Cicerbita sikkimensis and Chaetoseris cyanea complex 

82 1048-1054 7 Insertion of "AATTTGA" (replicate) in Lactuca inermis, gap in all other taxa 

83 1086-1090 5 Gap in Lactuca undulata 

84 1101-1101 1 Insertion of "C" in Stenoseris auriculiformis, gap in all other taxa 
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