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We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global
minima on potential energy surfaces of molecular cluster structures. Our optimization approach is
a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging be-
havior of honey bees. We apply our modified ABC algorithm to the problem of global geome-
try optimization of molecular cluster structures and show its performance for clusters with 2–57
particles and different interatomic interaction potentials. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4766821]

I. INTRODUCTION

The prediction of molecular structure by means of nu-
merical calculations represents one of the major fundamen-
tal challenges in computational chemistry and physics. The
formidable problem of locating the global minimum of the
potential energy surface (PES) is a field of intense research,
despite the apparent simplicity of the question. Especially the
accurate determination of the global minimum structure of
complex (bio)molecular systems is known as an extremely
difficult task.1–5 The multimodal character of the potential en-
ergy surface prevents straight minimization pathways; hence,
commonly used geometry optimization techniques will con-
verge to the next local minimum structure.

There are several well established approaches to avoid
the pitfall of local minima trapping during molecular dy-
namics simulations, e.g., parallel tempering,6 simulated
annealing,7–9 and metadynamics.10–12 For global geometry
optimization, a variety of combined minimization and es-
caping strategies have been proposed, in particular min-
ima hopping,13, 14 basin hopping,15–17 and gradient tabu
search,18–21 and in recent years, genetic and evolutionary
algorithms22, 23 have been applied to this problem with great
success.24–33 However, despite the range of methodical ap-
proaches, the accurate and feasible prediction of global min-
ima structures is still far from being a routine problem.

In this study, we propose an alternative global optimiza-
tion approach from the field of swarm intelligence; a field that
is yet not widely used in physics and chemistry. The algorithm
that we introduce is based on the artificial bee colony (ABC)
algorithm,34–36 a stochastic approach for global optimization
of numerical functions. The basic idea relies on the simulta-
neous evaluation of a function at different positions by multi-
ple random walkers and an intelligent communication scheme

a)Electronic mail: daniel.sebastiani@chemie.uni-halle.de.

between the latter to search the function’s hypersurface for
extrema in a very efficient way—inspired by the foraging be-
havior of honey bees.

The original artificial bee colony algorithm34 introduces
three different types of random walkers: Scouts move over
the hypersurface in a random and unconditional manner. Em-
ployees also move randomly, but accept only new positions
with a lower function value than their current location on the
hypersurface. Finally, Onlookers randomly probe the envi-
ronment of Employees to locally accelerate the sampling fre-
quency in promising areas. This approach has been bench-
marked extensively35, 36 and applied to global optimization
problems in engineering37–40 and computer science41–44 with
great success.

The success of the artificial bee colony algorithm for
these types of optimization problems has led us to attempt to
transfer the algorithm to optimization problems in physics and
chemistry45, 46 and, in particular, the optimization of molec-
ular structure. However, preliminary geometry optimizations
for small Lennard-Jones47 clusters with 10–20 particles show
that the original formulation of the algorithm34–36 may some-
times yield a relatively poor performance.

Our aim is to make the algorithm suitable for optimiza-
tion of molecular and supramolecular potential energy sur-
faces without requiring atomic gradients and for systems with
arbitrary symmetry. In particular, we want to minimize the
potential energy E of NP interacting particles.

II. MODIFIED ARTIFICIAL BEE COLONY ALGORITHM

We express the free variables of this optimiza-
tion problem, i.e., the coordinates of the NP particles
(R1, R2, . . . , RNP ) as a single vector x. We also define a
fitness function to gauge the quality of a given structural

0021-9606/2012/137(19)/194110/5/$30.00 © 2012 American Institute of Physics137, 194110-1
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configuration x based on the total interaction energy E(x),

f (E(x)) =
{

1 − E(x), E(x) < 0

(1 + E(x))−1, E(x) ≥ 0.
(1)

This transformation of the total energy into a fitness func-
tion is advantageous because in this way the fitness f(E) is
a strictly monotonically decreasing function of the energy E.
Hence, minima of E correspond to maxima of f(E). In addition
f(E) is by construction non-negative even for very condensed
cluster structures with E > 0; further, f(E) is invertible, and
becomes maximal at the global minimum of the PES.

The optimization is now performed via the collective be-
havior of a population (or a swarm) of NA random walkers (or
agents/bees) Ai, which are associated to structural configura-
tions xi and corresponding qualities fi,

Ai = (xi , fi), (2)

xi = (
R(i)

1 , R(i)
2 , . . . , R(i)

NP

)
, (3)

Ei = E(xi), (4)

fi = f (Ei). (5)

In the following, we outline our modified ABC algo-
rithm by means of its translation operators for the positions
of the individual agents. In comparison with the original ABC
scheme, we no longer repartition the ensemble of agents into
classes of different behavior; instead, our agents are all equal
but can adopt different propagation strategies (translation
operators):

Free Move: The free move operator (FMO) places the
agent at a fully random position on the PES. This be-
havior contributes to the exploratory character of the
algorithm.

Local Move: The local move operator (LMO) propagates
the calling agent locally within a given environment of
its present position. At first, a random trial position is
chosen within the close proximity of the agent’s posi-
tion xi by adding gaussian-distributed random numbers
which are multiplied by a factor rs. The agent accepts
this trial position if the new fitness is better. Otherwise,
the agent keeps its old position.

The choice of operator depends on the history of the call-
ing agent. Initially, all agents are distributed randomly on
the PES by the FMO. Afterwards, all agents use the LMO
by default. Hence, the algorithm normally performs multiple
Markovian downhill searches.

At some stage of such a downhill search, the number of
failed moves will increase due to the proximity of the agent to
a local minimum or saddle point. At this stage the displace-
ment factor rs is consecutively reduced after NL failed moves
for the particular agent. When a given lower threshold for rs

is reached, the FMO is enforced. This two-stage reaction is
motivated by the fact that the fraction of the PES with bet-
ter fitness becomes increasingly small in close proximity of a

local minimum. By reducing the displacement factor rs, this
fraction is amplified, and thus is the probability to make suc-
cessful local moves near local minima.

So far, this approach resembles NA simultaneous but
independent Markovian downhill searches. The particular
strength of the artificial bee colony algorithm, however, lies
in the shared information on the positions of the agents on the
PES and the focus on promising areas. This means that such
areas on the PES with low energies are sampled in much more
detail than the remaining parts. In case of our implementation,
agents with low energies perform more move attempts than
agents with higher energies. For this purpose, the algorithm
repeats two different phases:

Employee phase: During this phase, all NA agents call
once the LMO or FMO depending on their current state.
This phase ensures progress of all agents.

Onlooker phase: Here successful agents make additional
calls to LMO or FMO. In this phase the computational
resources for NO additional calls are distributed to those
agents that are in promising areas of the PES. The rel-
ative quality within the whole population determines if
an agent is considered successful: the probability to be
chosen for an additional move increases with the fitness
of the agent according to

pi = fi∑NA
j=1 fj

. (6)

The cyclic repetition of the Employee and Onlooker
phases is sketched in Figure 1. Every agent makes one move
attempt during the Employee phase, which is either a local
downhill move or a global reset to escape from a local mini-
mum. In the Onlooker phase, agents with high relative fitness
values make additional move attempts to accelerate the sam-
pling of low energy areas on the potential energy surface.

III. RESULTS

We have applied the modified artificial bee colony al-
gorithm to the problem of global geometry optimization of
molecular clusters of 2–57 atoms. For the interatomic interac-
tion, we use three of the most common potential types. In the
following, we show the performance of our ABC algorithm
during the optimization process with respect to the cluster
size. For all systems, the parameters of the optimization al-
gorithm are adjusted as a function of the number of particles
in the cluster.

The exact settings are shown in Table I. As outlined
above, NA and NO denote the numbers of agents in the swarm
and Onlooker steps. NL is the number of successively failed
attempts to make a local move until the displacement fac-
tor rs is reduced by a factor 0.5 and ND denotes the maxi-
mum number of reductions of rs before a free move is en-
forced. The initialization box B0 defines the allowed range
of cartesian coordinates of the particles for free moves. Dur-
ing the local downhill search the cartesian coordinates are
not restricted. Thus, a cluster optimization starts from a very
compact state, but is allowed to expand freely during the
optimization.
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FIG. 1. Schematic description of the optimization cycle of the modified artificial bee colony algorithm.

To account for the stochastic nature of our optimization
approach, we have performed a large number of independent
optimizations for each cluster size and type of interaction po-
tential. The performance of the algorithm is computed as the
average. In particular, we present the mean computational cost
that was necessary to locate the global minima on the PES.
The reference global minima were taken from the Cambridge
cluster database15, 48–51 (CCD). The computational cost of a
single optimization run is quantified by the total number of
energy evaluations (single point calculations, SPC) during the
optimization process.

A. Morse cluster

As first interaction potential, we optimized clusters of
particles without internal structure using the purely distance-
based Morse52 potential,

E(rij ) = ε eφ(1−rij /r0)(eφ(1−rij /r0) − 2). (7)

The depth of the potential well ε and the pair equilibrium
distance r0 are set to 1 by convention. The parameter φ > 0
determines the width and steepness of the potential well. Here
we used three values which correspond to a very broad poten-
tial well (φ = 3), a potential well with roughly the same cur-

TABLE I. General settings for the modified artificial bee colony depending
on the number of particles (NP) in the cluster.

Agents NA 2 × NP Displacement factor rs 0.01
Onlooker steps NO 20 × NP Initialization box B0 0.02 × 3

√
NP

Limit NL 5 × NP Divisions ND 7

vature as the Lennard-Jones47 potential (φ = 6) and a more
narrow potential well (φ = 10).

Figure 2 shows the computational cost for the optimiza-
tion of Morse clusters with NP = 5, . . . , 19 particles and φ

= 3, 6, 10; each data point was averaged over 1000 indepen-
dent optimization runs. The mean computational cost scales
roughly exponentially with the system size NP. We observe
that the computational cost is affected by the width of the
potential well: with increasing φ (more short-sighted inter-
action, see Eq. (7)), the optimization becomes more expen-
sive. This is in line with the common assumption that steep
potential funnels render geometry optimizations more expen-
sive. The standard deviations of the computational cost were
of the same order of magnitude as the average.
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FIG. 2. Average cost and standard deviations in single point calculations for
the global structural optimization of clusters of NP = 5, . . . , 19 Morse52 par-
ticles with 1000 independent optimization runs each.
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FIG. 3. Average cost in single point calculations for the global structural op-
timization of clusters of NP = 2, . . . , 57 Lennard-Jones47 particles with 200–
1000 independent optimization runs each. For comparison, the corresponding
data points for Morse52 particles (with NP = 5, . . . , 19) are repeated from
Figure 2.

Note that our implementation assumes convergence only
at the energy value of the global minimum structure known
from the CCD.

B. Lennard-Jones cluster

We have extended our analysis to molecular clusters of
up to 57 particles interacting via a Lennard-Jones47 potential,

E(rij ) = 4ε

(
σ 12

r12
ij

− σ 6

r6
ij

)
. (8)

Again, we employed reduced variables (ε = σ = 1). For
small clusters NP ≤ 25, we averaged over 1000 independent
optimization runs. Bigger clusters were averaged over 200
runs.

Figure 3 shows the average cost for the optimization of
cluster structures with 2, . . . , 57 particles. As in the case of the
Morse clusters, the average cost scales roughly exponentially
with the system size NP; the overall scale is comparable. For
bigger clusters (NP > 25), we observe large fluctuations in the
computational costs between clusters of similar sizes. Again,
the standard deviations of the computational costs are roughly
of the same order as the shown averaged values.

Interestingly, the cluster with NP = 38, which is com-
monly assumed a difficult optimization case due to a steep
double-funnel53 turned out to be a comparable easy case for
our modified ABC algorithm.

C. TIP5P cluster

We finalized our analysis with the geometry optimization
of a series of clusters of water molecules, which have an in-
ternal structure (see Figure 5 for a cluster with six molecules).
We used a rigid water model, specifically the five point trans-
ferable intermolecular potential (TIP5P);54 the potential en-
ergy of two molecules a and b is given by

Ea,b = e2

4πε0

on a∑
i

on b∑
j

qiqj

rij

+ 4ε

(
σ 12

r12
OO

− σ 6

r6
OO

)
. (9)
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FIG. 4. Average cost and standard deviation in single point calculations for
the global structural optimization of clusters of NW = 2, . . . , 10 TIP5P54

water molecules with 31–1000 independent optimization runs each.

This type of potential combines a Coulomb interaction
with charges q = ±0.241 (relative to the elementary charge
e) located on the hydrogen atoms and the sites of the lone
pair electrons of the oxygen atom, as well as a van der Waals
term, with the energy scale ε = 0.66944 kJ mol−1 and length
scale σ = 3.12 Å. The variable rij denotes the intermolecular
distances between the charged sites and rOO is the distance
between the oxygen atoms. For the setting of the optimization
algorithm, we use NP = 3 × NW, with NW being the number
of water molecules.

The mean computational cost is shown in Figure 4. We
used a sample size of 1000 independent optimizations for
the smaller clusters 2, . . . , 5 and the cluster with 7 water
molecules. The bigger clusters were averaged over 31–242
independent runs. Except for the cluster with NW = 6 water
molecules, we observe a perfect exponential scaling with the
system size.

Regarding the cluster with six water molecules, which is
known to be hard to optimize,55, 56 we have observed that our
algorithm got trapped in a local minimum at E ≈ −195.8 kJ
mol−1 after typically 5 × 106 single point calculations, which
would correspond to the interpolated computational cost for
NW = 6. While the algorithm still converged to the referenced
global minimum at E ≈ −197.9 kJ mol−1 during all the opti-
mization runs, the optimal structure was extremely difficult to
reach. Both minima are shown in Figure 5.

Although the NW = 6 water cluster is the only sys-
tem for which our modified ABC algorithm experienced
such difficulties, this case illustrates that the optimization of
supramolecular structures with complex interaction types can
be unpredictable in terms of the required optimization ef-
fort. Note that a convergence criterion based on stagnation
at a particular conformation would have led to a structure
(Figure 5, left) that is energetically more than 2 kJ mol−1

above the global minimum (Figure 5, right).

IV. DISCUSSION

We have presented a modification of the artificial bee
colony algorithm, a stochastic optimization approach from the
field of swarm intelligence. We have applied our algorithm
to the global geometry optimization of molecular cluster
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FIG. 5. Stable clusters of six rigid water molecules interacting via the
TIP5P54 potential: a local minimum at E = −195.777 kJ mol−1 that often
appeared during the optimizations (left); the global minimum as referenced
in the Cambridge cluster database,48, 51 E = −197.9372 kJ mol−1 (right).

structures for three different potential types. The algorithm is
fully unbiased and does not rely on atomic gradients. We have
shown that our algorithm is able to find the global minima on
the potential energy surfaces for every system size and poten-
tial type at a computational cost that scales exponentially with
the number of particles.

Note that the absolute cost is presently sizeably above
that of competing approaches such as minima hopping. Nev-
ertheless, we believe that further improvements of our ABC
algorithm can considerably speed up its convergence. In
particular, the use of gradient-based local minimization tech-
niques will greatly enhance the performance near a local min-
imum. We are presently adding this feature to our implemen-
tation. In the present study, we have used a stable but not
specifically tuned setting for the algorithm (see Table I). We
are currently studying the influence of these control parame-
ters on the performance of the algorithm.

However, we believe already now that the artificial bee
colony algorithm represents a competitive member among the
currently established schemes for the global optimization of
molecular structures.
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