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Zusammenfassung

Strukturelle Umordnungen sind essenziell fiir die biologische Funktion von Pro-
teinen. Bei solchen Umordnungen handelt es sich oft um komplexe Zustands-
iiberginge, die durch eine Vielzahl von Pfaden durch einen hochdimensionalen
Konformationsraum charakterisiert sein kdnnen. Bisher sind keine Experimente
verfiigbar, die mogliche Mechanismen solcher Uberginge identifizieren kénnen.
Direkte Computersimulationen der Proteindynamik sind dazu ebenso ungeeignet,
da die gegenwirtig erreichbare Simulationszeit mehrere Grofenordnungen unter
der typischen Zeitdauer komplexer Uberginge liegt. In dieser Arbeit wird ein
Divide-and-Conquer Ansatz basierend auf Transition Networks (TN) vorgestellt.
Ein TN ist ein gewichteter Graph, welcher die experimentell bestimmten End-
zustande durch ein dichtes Netzwerk von Teiliibergingen (der Kanten) iiber Zwis-

chenzusténde niedriger Energie (der Knoten) verbindet.

Es wird gezeigt, wie die Generierung und Analyse von TN, die bisher nur fiir
kleine Polypeptide moglich war, fiir Proteine durchgefiihrt werden kann. Zur
Erzeugung der TN Knoten wird eine effiziente hierarchische Methode entwickelt.
Diese generiert eine gleichférmig verteilte Menge von Protein-Konformationen in
einem fiir den Zustandsiibergang relevanten konformationellen Unterraum. Die
Bestimmung der TN Kantengewichte ist sehr berechnungsaufwindig. Hierzu wird
ein graphentheoretischer Ansatz vorgestellt, der es ermoglicht, globale Netzwerk-
eigenschaften zu bestimmen, wobei lediglich die Werte einer kleinen Untermenge
von Kantengewichten tatséchlich ermittelt werden miissen. Auf diesem Ansatz
basierend werden Algorithmen angegeben, welche die besten Pfade des Ubergangs

sowie die Energiegrate zwischen den Endzustdnden berechnen.

Die hier vorgeschlagene Vorgehensweise wird auf den konformationellen Schalter
des Proteins Ras p21 angewandt. Die 32 besten Ubergangspfade mit Raten-
bestimmenden Energiebarrieren von bis zu 15 kcal/mol iiber dem besten Pfad
werden ermittelt. Weiterhin werden die zwei wichtigsten Energiegrate zwischen
den Endzustinden bestimmt. Diese sind jeweils mit der Umordung der Switch I
und Switch IT Bereiche im Protein assoziiert. Basierend auf den Ergebnissen wer-
den drei konkurrierende Mechanismen fiir den Ubergang von Switch I identifiziert.

In all diesen Mechanismen bewegt sich die Seitenkette von Tyr32 unterhalb des



Proteinriickgrates, danach erfolgt der Raten-bestimmende Ubergang von Switch
II. Die Entfaltung der Switch II Helix folgt in allen moglichen Pfaden einem &hn-
lichen Muster und verlauft vom N-terminalen zum C-terminalen Ende hin. Trotz
dieser Gemeinsamkeiten unterscheiden sich die zuginglichen Ubergangpfade hin-
sichtlich der genauen Abfolge und der detaillierten Realisierung der konforma-
tionellen Ereignisse. Dies zeigt, dass komplexe Zustandsiiberginge in Proteinen

tatsachlich durch strukturell verschiedene Pfade realisiert werden konnen.

Wie die Anwendung auf Ras p21 demonstriert, konnen die hier vorgestellten
Methoden dazu dienen, sehr komplexe Mechanismen in Proteinen, unabhéngig von
deren Zeitdauer, aufzukldren. Dies ist ein signifikanter methodischer Fortschritt

im Bereich der molekularen Biophysik.



Abstract

Structural rearrangements in proteins are essential for biological function. Of-
ten, these are complex transitions, involving a multitude of pathways through a
high-dimensional conformational space. As yet, no experiments are available to
identify the possible mechanisms of these transitions. Direct computer simula-
tions of protein dynamics can neither be used, as the simulation time presently
accessible to them is several orders of magnitude below the timescale on which
complex transitions occur. In the present work, a divide-and-conquer approach
based on Transition Networks (TN) is proposed. TN are weighted graphs, which
connect the experimentally determined end-state structures by a dense network
of sub-transitions (the network edges) via low-energy intermediates (the network

vertices).

It is shown here how the computation of TN, previously feasible only for small
polypeptides, can be achieved for a protein. To generate the TN vertices, an
efficient hierarchical procedure is developed which uniformly samples the confor-
mational subspace relevant to the transition. As the determination of TN edge
weights is computationally very expensive, a graph-theoretical approach is pre-
sented here which allows global network properties to be determined while only
having to compute a small subset of edge weights. Following this approach, algo-
rithms are presented to compute the best path connecting, and the energy ridge

separating the transition end-states.

The approach is illustrated on the conformational switch of Ras p21. The 32
best transition pathways with rate-limiting barriers up to 15 kcal/mol above the
globally-best pathway were determined, as well as the two main energy ridges,
which involve rearrangements of the Switch I and Switch II loops, respectively.
Based on these results, three competing pathways for the rearrangement of Switch
I were identified, in all of which Tyr32 is threaded underneath the protein back-
bone. Subsequently, the rate-limiting unfolding of Switch II occurs, which follows
a similar pattern among the best paths and progresses from the N-terminal to the
C-terminal end. Despite these similarities, the precise order and the detailed re-
alization of conformational events in Switch I and II varies, showing that complex

conformational transitions in proteins may indeed occur via multiple pathways.



As the Ras p2l1 application demonstrates, the methodology developed here is
useful to understand very complex mechanisms in proteins independent of their
typical timescale. This represents a significant methodological progress in the field

of molecular biophysics.
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Life emerges from a complex network of interactions between agents on multiple
levels of hierarchy: organisms, organs, cells, organelles and biomolecules. On the
smallest scale, proteins and other biomolecules serve as nanomachines that are
specialized to perform particular tasks involving communication, transport, stor-
age, chemical modification or mechanical work. Proteins are complex, dynamical
systems, consisting typically of several thousand atoms. Most proteins are able
to 1) self-organize through the process of protein folding from the unfolded state
in which they are manufactured into the native state in which they perform their
task, and to 2) switch among a finite number of native sub-states. These confor-
mational changes are ubiquitous processes and are critical for biological function.
For example, the cooperative rearrangement of the Hemoglobin subunits between
the oxygen-bound and -unbound states (Fig 1.1A) allows for an efficient uptake
of oxygen in the lungs and its transport to the muscles [1, 2|. The contraction
of the muscle is based on the relative sliding motion of filaments that consist of
the proteins actin and myosin. This sliding motion is caused by a conformational
change in the myosin proteins, called power-stroke, which rotates the myosin head
relative to a lever arm [3, 4] (Fig 1.1B). As a third example, the growth and
reproduction of cells is a complex process which involves the coordination of the
cooperative work of several thousand different types of proteins. The Ras p21 pro-
tein carries a binary state of information that is communicated to other proteins
involved in the process. The transition between the active and inactive forms of
Ras, called molecular switch (Fig 1.1C), is an essential control for cell metabolism
and is strongly related to the occurance human tumors [5, 6]. A detailed under-
standing of the mechanism of these transitions is interesting from the theoretical
point of view and has a high potential impact on medical and biotechnological

applications.

Like most conformational transitions, the above examples are thermally activated.
This involves that the end-states of the transition (the reactant and product struc-
tures) are both metastable, i.e. if the protein is in one of these states, it remains
there on a relatively long timescale (typically up to microseconds), until a suffi-
ciently strong thermal activation carries it out of that state. This allows to design
experiments using X-ray crystallography and nuclear magnetic resonance spec-
troscopy that provide atomic-detail structures of the end-states, and sometimes

long-lived intermediates, of conformational transitions [7].



A) Hemoglobin

deox

Figure 1.1: Well-known examples for complex conformational changes in proteins. A)
The cooperative rearrangement of the subunits in the hemoglobin tetramer upon oxygen
uptake. B) The power-stoke in myosin (red), when it is attached to actin (green). C)
The conformational switch of Ras p21 from the active to the inactive form. Most changes
occur in the Switch I (red) and Switch II (yellow) regions.
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Figure 1.2: Relationship between the
energy barrier of a transition and the
time required for it. In the nanosecond
time scale, biomolecules diffuse and vi-
brate in their stable end-states. Occa-
sionally (microsecond time scale), suffi-
cient thermal energy is accumulated to
overcome the transition barrier.

Reactant  Transition state Product

The probability p to find the protein in a particular conformation is related to the
energy E of that conformation via the Boltzmann distribution p o exp(—FE/kgT),
where kg is the Boltzmann constant and 7" is the temperature. This implies that
stable states, such as the transition end-states are characterized by energy basins.
A thermally activated process is the departure of the system out of such an energy
basin by overcoming an energy barrier through random thermal excitation (see
Fig. 1.2). Given constant temperature 7', the probability of such an event per
unit time decreases exponentially with increasing barrier height. Conformational
changes in proteins typically involve barriers such that one transition event is
expected to happen on a timescale of microseconds or longer. The activated
transition states involved in such a transition, however, are very short lived as the
system quickly relaxes towards lower-energy regions. Because of this transition-
state instability, the structural mechanism of transitions can normally not be
experimentally resolved. Complex or large-scale conformational transitions pose
a particular challenge because their mechanism (i.e., the order and nature of their
sub-transitions) is difficult to predict and may, in principle, occur via various

pathways. Computer simulation can help to gain insight into these mechanisms.

The state-of-the-art approach to model proteins is through atom-based models
where the interatomic interactions are defined by an empirical potential energy
function. The energy function is typically a sum of bonded and non-bonded inter-
action terms. Bonded interaction terms account for deformation of bond lengths
(distances between covalently bonded atom pairs), valence angles (angles between
covalently bonded atom triples) and dihedral angles (torsion angles between cova-
lently bonded atom quadruples). Nonbonded interaction terms evaluate electro-

static interaction between charged atoms and van-der-Waals interactions (most



importantly steric clashed between nonbonded atom pairs below some distance).
See Fig. 1.3A for an overview of the typical energy terms. Adding up these
terms for all interacting atom-pairs in a given protein yields the empirical energy
function. This energy function contains many parameters (e.g. standard bond
lengths, bond stretching force constants, atomic charges), which have been deter-
mined by fitting simulation data obtained by using the energy function against
data from experiments or quantum-mechanical ab initio calculations. Several
molecular simulation packages, such as Charmm [8], Amber [9], or Gromos [10],
include a definition of the energy functional terms and also deliver parameters
for the atom types that typically occur in biomolecules. By specifying the topol-
ogy of a protein (i.e. which atoms are contained in the protein and how are they
bonded), the energy function for this particular protein is defined and can be used

as a computational model.

The energy function assigns a value E,,(x) to each molecular configuration x, i.e.
to each atom position vector. For a N-atomic system, a configuration is defined by
3N coordinates. Therefore Eq(x) defines an energy surface on a 3N-dimensional
hyperspace. For proteins in the native state, this potential energy surface (PES)
is known to be rough and to contain a vast number of minima and saddle points.

Fig. 1.3B shows a scheme of such a potential energy surface.

A rigorous computer simulation method to explore the dynamics of the protein on
the energy surface is molecular dynamics. Initial conditions are defined by setting
the atomic coordinates according to one of the experimentally known transition
end-states of the protein, say xg, and the velocities v according to a distribution
that yields a desired overall temperature 7. One then integrates a system of
(possibly stochastic) differential equations (e.g. Newtonian dynamics or Langevin
dynamics) and thereby follows the trajectory of the system through phase-space.
The limitation of this approach is that the presently accessible simulation time is
in the range of 10 to 100 nanoseconds, given the complexity of the calculations and
the allowable length for an integration time step. Since complex conformational
transitions typically occur on a timescale of microseconds or more (see Fig. 1.2),
the simulation time is much too short to observe even a single transition event.

This is an aspect of the well-known sampling problem.

Variations of molecular dynamics have been proposed to overcome this timescale
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Figure 1.3: Empirical energy function and potential energy surface defined by it. A)
Typical terms in the empirical energy function that is used to model biomolecules. Co-
valent bond lengths and valence angles are described as harmonic springs. The periodic
torsional potentials are modeled by sine functions. Torsions around covalent single bonds
involve low-energy barriers and yield very flexible degrees of freedom. Steric repulsion
and dispersive attraction between non-bonded atoms is modeled with the van-der-Waals
interaction. Atoms carrying partial charges may attract or repel each other, as described
by a Coulomb term. B) The energy function terms add up to a function that maps a
3N-dimensional coordinate vector to a real-valued potential energy. It therefore defines
a potential energy surface (PES) on a 3N-dimensional hyperspace that is very rough,
containing a vast amount of minima and saddle-points.



problem. For example, multiple time-step methods [11] are quite successful in
other multiple-timescale contexts but do not achieve sufficient speedup for the
present purposes [12, 13]. Other methods bias the underlying energy potential
|14] or reduce the dimensionality of the conformational space [15|. These meth-
ods face the difficulty that a good guess of the energy surface along the whole
transition must in principle be known a priori, which is usually not possible for
complex transitions in proteins. Steered and targeted molecular dynamics [16, 17]
incorporate a constraint into the energy function that directs the system toward
the desired product structure. While these methods are successful in cases where
the transition follows a pathway that is compatible with these constraints [18],
they lead to unnatural structures and unrealistic energy barriers in other cases
[19]. A further variant is conformational flooding [20], which approximates the
local shape of the underlying energy surface explored by a molecular dynamics
trajectory by computing its main directions of motion and then escapes the local
energy minimum by adding a corresponding multivariate Gaussian function to the
energy function. Although this method allows the trajectory to overcome high

energy barriers, it does not necessarily yield the desired transition.

Pathway methods are a different approach to simulating molecular transitions.
Starting from an initial guess of the transition pathway, the latter is allowed to
relax on the energy surface by constrained molecular dynamics [21] or by local
minimization methods [22, 23, 24]. These methods have been applied successfully
in cases where the transition does not involve too complex rearrangements of the
protein, such that a number of reasonable initial guesses of the pathway can easily
be formulated [25, 26, 27]. However, when the transition involves rearrangements
of the protein fold, a guess for the initial path is more difficult to make. Moreover,
such transitions can follow multiple pathways, as the energy landscape is likely to
include broad energy ridges with many saddle-points of similar energies. There-
fore, the determination of a single reaction pathway (even if it is the lowest-energy

one) is not sufficient to fully describe the transition [19].

To represent multiple pathways, the Transition Network approach may be used,
which is formulated in the present work. Transition Networks (TN) are a discrete
and simplified representation of configurational space. Following a “divide and
conquer”-strategy they encode the possible transition pathways in a network of

sub-transitions. Each sub-transition occurs between two conformations that are
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relatively close in conformational space. Each conformation in the network can be
reached and left through at least one, but usually several, sub-transitions. Each
sub-transition has an associated energy barrier that can be used to determine a

rate constant or a mean passage time (i.e. “cost”) for it.

The construction of Transition Networks is documented in a large number of
studies which have addressed the analysis of energy surfaces by mapping their
local minima and saddle points [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41,42, 43, 44, 45, 46, 47, 48, 49]. These stationary points can be generated by local
optimization starting from conformational ensembles that are generated by high-
temperature molecular dynamics [32, 36, 39, 42, 50|, by a mode-following guided
parallel search starting from a deep initial minimum [38, 45, 51|, or by Discrete
Path Sampling (DPS) [46, 48, 52]. The kinetics between groups of stationary
points may be recovered using Master-Equation dynamics (MED) [31, 32, 35, 38,
39, 41, 42, 43, 45, 46, 48, 49|, Kinetic Monte Carlo (KMC) [48], or, again, by
Discrete Path Sampling (DPS) [46, 48, 52|. Typical applications of the above
methodology are the rearrangement of atomic or molecular clusters |32, 33, 34|,
the rearrangement or folding of peptides 30, 31, 35, 36, 38, 39, 41, 43, 46, 48] and
of model proteins [37, 45, 53].

The applicability of these approaches to complex transitions between native con-
formations of a protein is limited by two main difficulties. The first involves the
generation of the minima which serve as TN vertices: It is a priori unclear how
a conformational ensemble can be generated that adequately covers the volume
of conformational space that is relevant for the transition. In particular, the di-
rect manipulation of the backbone torsion angles or high-temperature dynamics
are likely to disrupt the native structure, while search-based procedures may get
lost in the huge number of possibly distant low-energy minima. Discrete Path
Sampling is likely to be successful in identifying a connected channel between the
end-states, but it is unclear how it can identify a collection of considerably differ-
ent channels. The second problem involves the computation of energy barriers.
The determination of global properties of the network, such as the kinetics or
the optimal path between two end-states [54|, requires the barriers of the sub-
transitions in the network to be known. Dense Transition Networks for complex
macromolecular transitions typically have so many edges and the computation

of each sub-transition barrier is so CPU-demanding, that the computation of all



sub-transition barriers cannot be afforded. Both problems are addressed in the

present work.

The thesis is organized as follows: Chapter 2 provides a theoretical framework
of Transition Networks. It relates the theory of Transition Networks to other
molecular simulation approaches and lays down a computational formalization
for the biophysical questions relevant to this work. Chapter 3 presents a graph-
theoretical approach that allows to determine global network properties (such
as the best transition pathway or the dividing energy ridge) based on the com-
putation of only a limited subset of all sub-transition barriers. This allows the
Transition Network approach to be applied to very complex transitions, involv-
ing networks with O(10*) to O(10°) edges. While the methodology developed to
that point can be used to generate and analyze Transition Networks of arbitrary
molecular processes, the subsequent chapters are dedicated to the specific case
of proteins. Chapter 4 presents a procedure for efficiently sampling the relevant
degrees of freedom of a complex transition in a protein, such as to determine the
Transition Network vertices in these cases. In Chapter 5, the methods introduced
here are applied to identify likely pathways and the order of events in an example
system, the molecular switch of Ras p21. This chapter reports the first successful
attempt to generate and analyze a comprehensive set of multiple pathways in-
volved in a complex conformational transition of a protein. Chapter 6 concludes

the work and proposes a number of promising follow-up studies.
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Transition Networks (TN) can in principle be used to model the kinetic behavior
of any dynamical system that can be appropriately described by a (possibly large)
number of states and interstate transition rules. This chapter provides a theoreti-
cal framework which establishes a connection between the potential energy surface
of the system, the kinetics emerging from the dynamics on this surface, and the
modeling steps required to formulate a network description of kinetic processes
in the system. Methods are introduced which allow to analyze the Transition
Network for global properties which predict aspects of the large-scale behavior of

the system.

Assume that we are given a model for the system which maps a system config-
uration, or state vector x (here: the atomic coordinates) to a real-valued state
property Epe(x) : REm&) — R (here: the potential energy; dim(x) = 3N, where
N is the number of atoms). When the system undergoes dynamical motion under
specified conditions (e.g. Newtonian dynamics at some defined temperature), it
samples configurations from a configurational state density p(x). A Transition
Network is a discrete representation of states and state-changes in the system,
which abstracts local dynamical behavior and captures the system’s relevant ki-
netic behavior. Formally, a Transition Network is equivalent to a weighted graph,
G = (V,€,...) whose vertices, V, represent states that are metastable under dy-
namical motion (e.g. energy minima or probability maxima) and whose edges,
& represent sub-transitions between the states (e.g. saddle points or probability
bottlenecks) of the system. Each vertex, u € V, corresponds to a group of system
micro-states (here: a group of geometrically similar molecular configurations). It
has a weight associated with it which quantifies that vertex’ energy or probability.
Each edge, e = (u € V,v € V) € & represents the transition through a boundary
surface separating two neighboring vertices. The weight associated with the edge

quantifies its transition energy, rate, or mean passage time.

We distinguish between static and dynamic Transition Networks. Static TN de-
scribe features of the potential energy surface Epq(x) and their network weights
correspond to energies. Sec. 2.1 describes how static TN energies can be ob-
tained. Dynamic TN incorporate thermodynamic and kinetic information, their
network weights correspond to residence probabilities, transition rates or mean
passage times. How to obtain these properties is described in Sec. 2.2. The

remaining sections in this chapter concentrate on how global network properties
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Figure 2.1: Nlustration of the relationship of the Transition Network approach developed
and followed in this work (red arrows) to other molecular simulation approaches (black
arrows).

can be derived from either static or dynamic TN: best transition pathways (Sec.
2.3), energy ridges and rate-limiting transition surfaces (Sec. 2.4). As the the-
ory which is appropriate to describe the relationship between static and dynamic
TN depends on the class of the physical system that is described, the following

sections concentrate on TN for molecular systems.

The general goal of molecular simulation is to compute some system properties
which are, in general, global (i.e. they arise from the collective interplay of the
microscopic interaction rules), such as the most dominant pathway for a transition
between two defined system states or the mean time required for this transition.
Fig. 2.1 illustrates how the present Transition Network approach is related to

other approaches of molecular simulation. In the state-of-the-art procedure, the
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system dynamics (e.g. classical) is computed based on the potential energy sur-
face, giving rise to a time series (a trajectory through configurational space) and
distributions (e.g. a configurational state density). Statistical mechanics is used
to calculate the desired global system properties [55]. In the approach proposed
here, one samples the potential energy surface and represents its features in a
static TN. From this, a dynamic TN is generated using either equilibrium statisti-
cal mechanics (equilibrium case) or a master-equation approach (non-equilibrium
case). Using graph theory paired with statistical mechanics allows to derive global
system properties from the dynamic TN. Recent studies that are complementary

to ours allow to derive dynamic TN from time series [56].

2.1 STATIC TRANSITION NETWORK ENERGIES

In static TN, a vertex represents a region R of the configurational space, corre-
sponding to an attraction basin. Given a procedure, minimize(x), which maps a
state x by direct minimization (e.g. steepest descent) to a local minimum Xy,
an attraction basin is defined as the union of configurations that converge to the

same minimum [35]:
R(Xmin) := {x|minimize(x) = Xmin}

Any given vertex v has associated with it the configuration of the corresponding
minimum X, and its energy E,. The TN edges represent sub-transitions through
the boundary regions separating adjacent vertices. They are therefore defined
between pairs of neighboring vertices. Each edge e = (u,v) is also associated with
an edge energy F,,. Fig. 2.2 shows a schematic representation of a static TN

(vertex energies are not shown).

Ideally, FE, would correspond to the relative free energy of region R, AG, =
G, —Go, where (G is some arbitrary reference energy. The edge energy E,, should
likewise correspond to the relative free energy of the transition state AG,, =
G} — Gy. According to the first law of thermodynamics, free energy differences

can be expressed as:

AG = AE,o + AEn + A(pV) — TAS, (2.1)
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Figure 2.2: Static Transition Network on a schematic two-dimensional energy surface.
The network vertices (white bullets) correspond to low-energy intermediates between
the reactant and product end-states of the transition (black bullets). The network edges
(white lines) correspond to sub-transitions between the vertices and are associated with
the rate-limiting barrier energies along the sub-transitions (white numbers).

where E,o is the potential energy, Eiin is the kinetic energy, p is the pressure, V' is
the volume, T is the temperature and S is the entropy. In liquid and solid systems
and at low pressure, the pressure-volume product is nearly constant (A(pV') = 0)
[67]. Also, if the temperature and the number of particles are constant, AFy;, = 0,

on average. Thus:
AG ~ AE,o — TAS. (2.2)

Accurate free energies are required for the static TN to derive reliable dynamic
TN weights from these. Given current methodological and computational short-
comings, however, the calculation of reliable free energies is difficult, often even

impossible. We therefore need to consider several levels of accuracy:
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1. Constant-entropy approximation

It is assumed that the entropic changes are negligible (AS = 0) and the free
energy difference is therefore approximated by the potential energy differ-
ence: AG ~ AE;.

2. Harmonic approximation

The system is assumed to reside in the vicinity of a harmonic expansion
around the minima and the paths of minimum energy. Free energy differ-
ences are given by an harmonic approximation:

AG ~ AE,q; — TASharm.

3. Free energy differences AG are computed.

The vertex and edge energies can be shifted by subtracting an arbitrary constant
value Ej without affecting the results. To avoid numerical problems when using
exponentials of E,,, it is desirable to keep E,, small. Here this is done by choosing

Ej as the minimal vertex energy in the network.

The following subsections describe how vertex and edge energies, using the above
three levels of precision, can be obtained. They also discuss the cases in which
the different levels of precision are meaningful to be applied and when it is com-

putationally and methodologically possible.

2.1.1 CONSTANT-ENTROPY APPROXIMATION

In the constant-entropy approximation, we assume that the regions of configura-
tional space corresponding to the different vertices are of approximately similar
size and shape. We furthermore assume the transitions between them to lead
through narrow reaction channels such that the transition-pathways are well de-
fined. Following these assumptions, energy differences are dominated by enthalpic
contributions, while the entropic contributions are comparatively small. Here, we
set AS =0 in Eq. 2.2 which gives AG ~ AE,,. The approximation is useful for
systems with few degrees of freedom, having well-defined structures separated by
high energy barriers, and which are studied at low temperatures. Biomolecules in
physiological conditions (aqueous solvent, 7' > 300K’) do not satisfy these condi-

tions. For the dynamics of biomolecules, the constant-entropy approximation is
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severe. When computing the weights for dynamic TN, errors on the energies are
exponentially magnified. Therefore, this approximation disables any quantitative
accuracy of the thermodynamics and kinetics and one has to confine oneself to
qualitative conclusions based on correlations (see Sec. 2.2). The benefit of this
approximation, is that the theory is very mature and it is always feasible to obtain

potential energy differences AE,,; even for very large and complex systems.

Determination of the vertex energies FE, is trivial as it simply requires a local
optimization of Epq(x,) starting from some initial point x, (The selection of
these initial points is not trivial - this issue is addressed in chapter 4). The edge
energy FE,, is given the value of the rate-limiting saddle point of the reaction
channel connecting v and v. For this, we define a pathway of “least effort”, i.e.
one that can be accessed with a minimum amount of energy. Such a Minimum
Energy Path (MEP) is a continuous path z()\) connecting x, and x, (z(0) = x,,
z(1) = x,, A € [0, 1]), satisfying following criteria:

1. VE,ot(2(A))|L = OV A € [0,1], i.e. the gradient orthogonal to the path

tangent is zero everywhere along the path.

2. H(z()\))|L is positive definite V A € [0, 1], i.e. the Hessian matrix at each
path-point, formulated in the subspace orthogonal to the path tangent, has
only positive eigenvalues. Therefore, all path-points have a minimum of

potential energy in all directions except the path tangent.

All local energy maxima along the MEP are first-order saddle points on Epe(x)
[58]. The highest-energy saddle point gives the transition state structure and the
edge energy FE,,.

MEP are computed here with the Conjugate Peak Refinement (CPR) method
[24]. CPR is an iterative method which is given as an initial pathway a set of
points P = [xy, ...,X,], which are e.g. generated by an interpolation between
X, and x,. In each iteration, CPR adds points to, removes points from or refines
points in P, according to a heuristic set of rules, such as to refine the initial path
to an MEP. The basic idea is to identify the points with maximum energy along
the path (the “peaks”) and to move these points closer to the MEP by a controlled

conjugate gradient minimization in the complementary subspace (see Fig. 2.3). In
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contrast to other MEP methods, such as Self-Penalty Walk [22], Nudged Elastic
Band (NEB) [23] or the String Method [59], CPR automatically finds all saddle
points along the path to a desired accuracy. The algorithm does not evaluate
second derivatives, but uses only the energy (which must be continuous) and its

gradient.

Figure 2.3: Hlustration of the Conjugate Peak Refinement method. (a) Starting from an
initial guess of the path (here: a linear interpolation between reactant (R) and product
(P) states), the point of highest energy is found by maximization along the path (e).
This point is moved closer to the MEP by a series of successive line-minimizations along
directions conjugate to the path direction at (e). On the displayed 2D surface, this
amounts to only one line-minimization (shown as —). (b) The optimized point (x) is
inserted into the path. (c¢) This process of maximization/minimization is repeated until
all local energy maxima along the path are identified as first-order saddle points. The
path thus obtained (R-x-x-x-P) is a good approximation to the MEP (- - - .- ).

2.1.2 HARMONIC APPROXIMATION

In the special case of the energy minima being deep and the reaction channel be-
ing a narrow pipe, the dynamical trajectories stay close to the minima and MEP.
We therefore approximate the energy surface by a quadratic expansion around the
minima and rate-limiting saddle points, assuming that the anharmonic portions
of the energy surface (if any) are not sampled. This assumption is reasonable
for local rearrangements in many solid state systems such as crystals, for most
systems in the gas phase and for temperatures below the dynamical transition
temperature the occurs in the range of 180 to 220 K [60]. Proteins in aqueous
solvent at physiological temperature behave highly anharmonic, such that esti-

mating their entropy based on a harmonic approximation cannot be expected
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to be a considerable improvement over the constant-entropy approximation (Sec.
2.1.1) [61].

The application of the harmonic approximation is straightforward. Given a sta-
tionary point (minimum or saddle point), the vibrational frequencies can be ob-
tained as the positive eigenvalues of a normal-mode analysis [62]. As the main
contribution to entropy is given by the lowest-frequency motions, a full diagonal-
ization of the Hessian matrix is often not necessary, so that a harmonic analysis

can be conducted for very large systems [63].

Given the vibrational frequencies, or eigenvalues of the mass-weighted Hessian,
v;, corresponding to the eigenvector representing the vibrational motion i, the

vibrational entropy can be computed as':

D

kT
&mz@mHB
=1

hl/,' ’

(2.3)

where kg and h are the Boltzmann and Planck constants, respectively, and 7T is
the temperature. “Soft” potentials with low frequency motions allow to explore
a wider range of configurations and therefore have a larger entropy than “stiff”
potentials with high frequency motions?. The vertex energies E,, in the harmonic

approximation are given by substituting Spam into Eq. (2.2):

To obtain the edge energy we compute the harmonic expansion at the rate-limiting
saddle point of the MEP (see Sec. 2.1.1), where only the D —1 positive eigenvalues

are considered. We obtain:

D kT
_ Iy B
Eyy = Epot(x;,) — kT In | | P

=2 uv,8

IThe precise formula is Sharm = kg In H?Zl zi, where z; is the partition function of mode i:
z; = [1 —exp(—hv;/kpT)] [57]. For low frequencies v;, which contribute most to the vibrational
entropy, we can use the approximation exp(z) ~ 1 + z [64], which leads to z; = kT /hv;.

2To be precise, the “stiffness” of the potential determines the frequency only if a mass-
weighted potential is used, because of v = y/k/m, where k is the force constant (second deriva-
tive of the unweighted potential along the vibrational mode) and m is the reduced mass of the
mode.
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2.1.3 FREE ENERGIES

Both approximations given above are generally not quantitatively valid for bio-
molecules in aqueous solution at physiological temperature. The dynamics of
these systems often involves considerable changes in entropy and is not restricted
to the harmonic regime near the energy minima. A rigorous treatment requires
that vertex energy F, is determined as free energy of the vertex region R, and
edge energy F,, as the free energy of the boundary region between R, and R,,
Ry,.

Free energy calculation methods, such as free energy perturbation or thermo-
dynamic integration [55], attempt to compute free energy differences AG,, =
G, — G, between two thermodynamic states of the system by slowly changing one
state into the other. Free energy barriers of transitions AG}, = G} — G, can be
obtained with the umbrella sampling method |65, 66]. As any vertex u can serve
as a reference point with GG, = 0, the static TN energies can be determined from

free energy differences.

Two practical problems exist with this approach. Firstly, it must be assured that
free energy calculations are confined to the regions R,, R, and to the reaction
channel between them. To our best knowledge there is presently no free energy
calculation method which would allow to use constraints of such a general type.
Furthermore, free energy calculations on large systems such as proteins typically
face the problem that convergence of the entropic contribution to free energy is
very difficult to achieve. As a consequence, the present application of TN (Chapter

5) uses constant-entropy approximation (Sec. 2.1.1).

2.2 DYNAMIC TRANSITION NETWORK WEIGHTS

Dynamic TN describe the thermodynamics and the kinetics of the system. Vertex
weights p,, correspond to the probability of finding the system in the state u, while
edge weights K, ¢y correspond to the rate (average number of transitions in

unit time) and to the “cost” or effort of transition u — v, respectively.

In the equilibrium, or stationary, case, the weights are by definition symmetric:

K., = K,,. In this case, which will be assumed throughout this work, the dynamic
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TN weights can be directly obtained from the static TN weights using equilibrium
statistical mechanics. The current section covers the computation of p,, K,, and

Cyp for this case.

For a network which has not yet reached equilibrium, it is K, # K,,. Networks
with vertices that act as sources or sinks never reach equilibrium. In the general
non-equilibrium case the dynamic TN weights are time-dependent: p,(t), Ky, (t)
and T,,(t) and global network properties which depend on these weights also
change with time. The instantaneous network weights of non-equilibrium dynamic
TN can be followed over time using a master-equation approach [35]. Because of
the non-symmetric weights, time-dependent dynamic TN must be modeled with

directed graphs, which can distinguish between edges (u,v) and (v, u).

As illustrated in Fig. 2.1, the structure and weights of dynamic TN are not
necessarily based on static TN. In an approach that is similar to the sampling
of the potential energy surface, dynamic TN can also be derived directly from
dynamic data, such as molecular dynamics times series. Such an approach is
followed in [56], where a hidden Markov model is generated that switches between
discrete system states. Such a model is, in its spirit, similar to a dynamic TN.
The difficulty with this route is that one first requires a time series in which the
distribution of the global system property of interest has converged, and this is

often difficult to obtain for large systems.

2.2.1 VERTEX WEIGHTS p,

The vertex weights p, correspond to the probability of finding the system in state
u. In the equilibrium case, this probability equals the fraction of the partition

function associated with u [57]:

Ey
oz ow (i)
Py = 7

- 2 pev OXP (_kI;J;T) | .
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2.2.2 SUB-TRANSITION RATES K, OBTAINED WITH TRANSITION
STATE THEORY

In a TN, the rate K, of a transition u — v is given as:
Ky, = pukuva (25)

where p, is the population or probability at state v and k,, is the rate constant
that captures the kinetic properties of that transition, such as the height and the

form of the energy barrier.

To determine the rate constant k,,, we apply Transition State Theory (TST).
In TST, the reaction channel is partitioned into a reactant (R) and product (P)
region, which are separated by a (possibly nonlinear) (D —1)-dimensional dividing
surface, where D are the number of degrees of freedom in the system. Here, R
and P correspond to two configurational regions R,, R, associated with vertices
v and v and the dividing surface corresponds to the boundary between R, and
R,. The TST equations are a result of “counting” the number of trajectories per
unit time which pass across the dividing surface in the R—P direction. It relies

on the following two assumptions [61]:

1) Identification of a perfect dividing surface. “Perfect” means, that no trajectory
crosses the dividing surface twice. This requirement becomes irrelevant when one
introduces a transmission coefficient k € [0, 1] that is multiplied with the rate and
is defined in such a way that it corrects the rate to account for re-crossings. If the
dividing surface is placed such that the probability density of finding the system
in the surface is minimal (usually at the highest energy ridge of the reaction

channel), the number of re-crossings is low and & is close to 1.

2) The transitions within the R region are assumed to be much more likely than
the transition R—P. In this case, for each reactive trajectory, the reactant config-
urations can be assumed to have equilibrated and the likelihood of the transition
can be computed taking into account only equilibrium properties of the R region
and the dividing surface. This requirement is fulfilled if the energy barrier coin-
ciding with the dividing surface is considerably higher than any energy barriers

internal to R and also considerably higher than the thermal energy kgT'.
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If both conditions are satisfied, TST applies. There are two equivalent formu-
lations of the general TST equation for the rate constant, depending if they are
derived from a phenomenological (macroscopical) or the statistical mechanical

(microscopical) approach. Here, we choose the phenomenological formulation:

AG
krsT = yexp <_/€B—T) ; (2.6)

where AG = Gt — Gy is the free energy difference between the transition state and
the reactant region and the unspecified pre-factor v contains dynamical effects,
coming e.g. from recrossings, friction or viscosity. Using the nomenclature of TN,
we can write for the rate constant of a transition from vertex u to vertex v:

Euv - Eu)

— 2.7)

kuy = vy exp (_

For the equilibrium case, we can combine this equation with Egs. (2.4) and (2.5)

and obtain the equilibrium rate as:

Keq Y _Eu e Euv - Eu ’76 Euv (2 8)
= —eX I a— X —— | = 5€X - . .
w = 7P G ) P kT 7P\ ksT

The quality of the rate K depends on which level of accuracy is used to compute

the edge energy F,, (Sec. 2.1). As already denoted, using the constant-entropy
approximation (Sec. 2.1.1) for proteins is such a severe approximation that one
gives up quantitative accuracy at the level of rates. One may, however, still give

a qualitative dependency of the rate on the (potential) edge energy:

FE
K2 o exp (—k—T) | (2.9)
B

which only states that the magnitude of the rate is proportional to the inverse
exponential of the potential edge energy FE,, while entropic contributions are
included in some unknown proportionality constant. Assuming K is dominated
by Epyot v, there is a strong correlation between the two which allows us to give

an approximate ranking of rates as a qualitative measure:

Epot,12 > Epot,34 = k12 é k34- (210)
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2.2.3 MEAN PASSAGE TiMES AND EDGE COSTS

We use graph-theoretical algorithms to compute best paths (Sec. 2.3) which
require having edge costs which are additive. In contrast to energies or rates, the
mean passage time 7 is an additive quantity. For a given transition, the mean

passage time is simply the inverse of the rate:
P K (211)

Using the rate law in the form of Eq. 2.8, we can write:

A E,,
= — ; 2.12
Tuv ’Yexp (kBT) (2.12)

We define the edge costs as the normalized 7,, which are obtained by setting
the constant Z/+ to unity. The edge costs c,, are therefore equal to the inverse

Boltzmann weight of the edge energies:

E’UU
Cyy = €XD T ) (2.13)

As for the rates above, if the constant-entropy approximation is used to compute
the edge energies, the edge costs must be understood as to yield a qualitative

ranking of costs according to the energy.

AEﬂpot,lZ > AEﬂpot,?ﬂl = C12 g C34- (214)

2.3 BEST PATHS

For a path connecting vertices v; = vg and v,, = vp via a series of m vertices,
P = (v1, v, ..., Uy,), travelling over edges ((vi,v2), .-, (Um—1,Um)), the best path is

defined as that which minimizes the cumulative edge costs

-1
CP) = oo (2.15)

1

3
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This definition of a best path is similar to the previously proposed notion of the
continuous pathway with “maximum flux” or “minimum resistance” [67, 68]. To
determine the best path in practice, the edge energies are transformed into a cost-
vector ¢ using Eq. (2.13). c has size |£| and assigns a cost ¢, to each edge (u,v)
in £. Subsequently, the Dijkstra algorithm [54] is used to identify a best path
between the two end-states through the weighted network defined by (V,€,c).
This path minimizes the path cost C(P) given in Eq. 2.15.

Because of the exponential weighting of energies in (', the best path tends to be
one that minimizes the highest barrier along the path, 7.e. it optimizes the rate-
limiting step. Fig. 2.4 illustrates the concept of a best path through an energy

surface.

Figure 2.4: Illustration of a tran-
sition between two transition end-
states (R and P) on a potential en-
ergy surface. The best path con-
necting R and P is shown as a white
line. The energy ridge is shown as
a black line. Alternative transition
states crossing the energy ridge are
shown as white arrows.

It is important to consider the limitations of the present definition of the best
path. The edge costs, c,,, used for this definition are based on the mean passage
time, T,,, given in Eq. 2.12 which estimates the mean time that is expected
between two passages over the barrier, based on the total number of passages per
time unit. This quantity depends on the population on vertex u, p,. The mean
passage time is generally different from the average time that a single molecule
needs to undergo the transition u — v, as the latter does not depend on p,. The
best path, as it is defined here, measures the pathway of maximum traffic, but not
the pathway for which a single molecule requires the least time. Fig. 2.5 shows
an example where these two definitions of a best path differ. If comparison with
experimental data is desired, an appropriate definition must be applied. In most
cases, however, the precise definition of the best pathway is not critical, as for
all reasonable definitions the highest energy barrier are the rate-limiting steps for

the transition.
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Figure 2.5: Illustration of the different meaning of the path cost C, which only takes
into account the transition-state energies, and the normalized mean passage time 1y of
a single molecule along the path, which is also affected by the depth of intermediates.
According to the path cost C, the red path is preferred, while according to the mean
passage time of the single molecule, the black path is preferred (bold).

A single best path dominates the transition only if the barriers of alternative
pathways are considerably higher. However, the best path furnishes a preliminary
understanding of the transition [19] or may be used as a guess for a reaction coor-
dinate for free energy calculations [61]. A more extensive picture of the transition
is given by computing multiple best paths (Sec. 2.3.3) or the energy ridge (Sec.
2.4).

2.3.1 DIJKSTRA ALGORITHM

The path connecting two network vertices vg and vp that minimizes Eq. (2.15) can
be identified using the Dijkstra algorithm [54]. The algorithm actually identifies
a whole tree of best paths from a given source vertex vg to each other vertex
v. If desired, the algorithm can be terminated as soon as the best path to the
target vertex vp is determined. This is not done here as the CPU time saved by
this premature termination is not significant for the current purpose, and to avoid

complications in the dynamic updates described in the following sections.

To each vertex v, two pieces of information are attached: The best-path distance
from the source, §(v) (here: the accumulated cost to reach v from vg), and the
predecessor vertex in the best-path, P(v). The predecessorships define a directed
tree, the best-path-tree, and we may follow it from any vertex v back to the source
of the tree, vg, to reconstruct the best path from vg to v. Upon initialization, the

distances are set to 6(vg) = 0 and §(v) = coVv € V\{vg}, while the predecessors
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are undefined. All vertices v € V are added to a todo-list ). Subsequently,
the Dijkstra iteration loop starts which runs until () is empty. In each iteration,
the vertex v with the smallest distance §(v) (in the first iteration, this is vg) is
removed from (). Then, all neighbors u of v are checked. If it is found that the
distance to u wia v is shorter than its current shortest distance, §(u), following

correction is made:

d(u) = 0(v)+ Cup,
P(u) = w.

An illustration of the Dijkstra algorithm is given in Fig. 2.6. The time complexity
of the Dijkstra algorithm is O(|€[log|V|) (this is achieved if a Fibonacci heap? is
used for ). When applied to Transition Networks, the Dijkstra algorithm is
guaranteed to produce a globally optimal best-path-tree?.

Figure 2.6: Illustration of the Dijkstra algorithm. The best path and the distance from
vertex (a) to each other vertex is computed. A) Initialize distance to (a) with 0 and
the distances of all other vertices with oo (distances in brackets). All vertices are added
to a todo-list. B-F) Until the todo-list is empty, the vertex with the smallest distance
is removed from it and updated. During the update of vertex v, all neighbors u of v
are considered (red arrows). If any neighbor u can be reached from the v by a shorter
distance than previously, the distance and predecessor of u is corrected (changes in red).
For each vertex, its predecessor is at the root of the arrow pointing to it.

3 A Fibonacci-Heap is a data structure that can be used as a sorted queue. One can efficiently
add elements (in constant time) with a defined priority to the heap in an arbitrary order, while
always retrieving the element with the highest priority (in logarithmic time). Here, the elements
are the TN vertices and their priority is given by their negative distances.

4Transition Networks have non-negative costs. For graphs containing negative weights, Di-
jkstra fails and other methods have to be used [69, 70].
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2.3.2 DYNAMICAL COST UPDATE

As described in Secs. 2.3.3 and 3.2, we will have situations where the best path
needs to be recomputed many times, after changing a single edge cost each time.
To avoid unnecessary overhead in the re-computations, the algorithms of Frigioni
and Marchetti-Spaccamela [71] are used to dynamically update the shortest path
tree with minimal effort. These algorithms distinguish between two cases, the
decrease and the increase of the edge cost between (u,v) from its old value ¢y, to
its new value c,,. Without loss of generality we define d(v) > d(u) (we choose v

to be the vertex with the larger distance).

The cost-decrease (¢, < ¢y,) only has an effect on the best-path tree if it reduces
d(v): If the edge (u,v) is not part of the best-path tree, a cost-change in (u,v)
might be without effect on the best-path-tree. If, on the other hand, d(v) is
reduced, then the distances of all vertices in the best-path-subtree with v as a
root will also decrease. Furthermore, additional vertices might be added to this
best-path subtree. This happens when the changed edge (u,v) allows them to
be reached by a new and less expensive path via (u,v). The dynamic update is
computed by adding v to the todo-list ) and starting the Dijkstra iteration cycle.
In contrast to the standard Dijkstra iteration, whenever the distance of a vertex
changes, this vertex is also added to (). In this way, the whole subtree with v
as a root and all other affected parts of the graph are updated. An illustrative
example is given in Fig. 2.7.

The cost-increase (¢, > ¢,,) has an effect on the best-path tree exactly if (u,v)
is part of the best-path-tree. In this case, the complete subtree with v as a root is
affected. In a first step, all vertices of the subtree are marked for being processed
by ’coloring them red’ 5. All vertices i at the border of the red region (those which
have at least one non-red neighbor) are assigned the minimum possible distance
d(2) == 6(j) + ci; and predecessor P(i) := j, where j is any non-red neighbor of i.

All red vertices are added to () and the Dijkstra iteration cycle is started normally.

5In the original formulation of the algorithm, vertices can also be colored in blue, which means
that their predecessor changed, but their distance did not because they can be reached by another
best path with equal cost. This does not change the result, but allows to save computation time
because best-path sub-trees starting from blue vertices are unchanged. As Transition Networks
operate with non-integer weights this case is extremely unlikely and therefore not considered
here.
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An illustrative example is shown in Fig. 2.8. The proofs and complexity analyses

of these algorithms are given in [71].

Figure 2.7: Re-computation of the best-path tree when a single cost is decreased. (A)
The cost (a-d) is decreased from 10 to 7 (red flash). (B) This cost-change decreases
the distance to vertex d (§(a) + cqq < 0(d)) , whose predecessor is changed to vertex
(a). Vertex d is added to the todo-list. (C) The Dijkstra iteration is started. In each
iteration, a neighbor whose distance is decreased is also added to the todo-list. Here,
vertices d,f,e are updated until the todo-list is empty and the algorithm terminates.

C

F

Figure 2.8: Re-computation of the best-path tree when a single cost is increased. (A)
The cost of (b-d) is increased from 3 to 10. There is now a new best path from (a) to
(d) because d(a) + cqq < 0(b) + cpe- The distance to (d) and its predecessor are changed
accordingly. (B) All vertices in the best-path subtree with vertex d as a root are marked
red (“to be updated”) and are added to the todo-list. (C) All vertices at the border
of the red region (those which have at least one non-red neighbor, here (d) and (e))
are assigned the nearest non-red neighbor as predecessor and are given an appropriate
distance value. (D-E) The Dijkstra iteration cycle is started, each updated vertex is
colored white. (F) shows the new best-path tree after the update.
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2.3.3 MULTIPLE BEST PATHS

To obtain an idea of the number of different accessible pathways and their as-
sociated structures, it is useful to determine the set of k different pathways,
(Py, P, ..., Py) with costs (C; < Cy < ... < C%), where P; is the path with the
lowest cost, C, Ps is the path with the second-lowest cost, Cy, etc. This so-called
“k best path problem” is well-known in graph theory [72]. To precisely define it,
one must define in which way two paths must differ in order to be treated as dif-
ferent. In a transition network, it is clearly not very meaningful to distinguish two
pathways which differ only in two low-energy, non-rate-limiting barriers. There-
fore, two paths are treated as different only if their rate-limiting steps (i.e. their
highest-energy edges) do not coincide. The k best paths are determined in k steps:
The second best path is found by using the Dijkstra algorithm after “blocking”
the edge (u,v) associated with the highest energy barrier in the previously-found
best path (by setting its EL® = 0o). The third best path is found by blocking the
highest edges of the best and second best paths, etc.

2.4 ENERGY RIDGES

The collection of rate-liming transition states from all different (as defined above)
paths from a defined reactant to a defined product belongs to a (D-1)-dimensional
transition surface that divides the D-dimensional conformation space into a re-
actant and a product side. In terms of topography, this transition surface corre-
sponds to an energy ridge, as illustrated in Fig. 2.4. On a geographical landscape,
it is analogous to a water-shed, i.e. the mountain ridge that separates water flows
towards distinct oceans. The particular interest of the energy ridge, is that it
allows to quickly get a feeling for how degenerate the transition is, i.e. how many
significantly different paths are likely to be accessible. For instance, if one tran-
sition state in the ridge has a significantly lower energy than the other transition
states in the ridge, then the transition mechanism is dominated by a well-defined
bottle-neck. In contrast, if the ridge contains many different transition states with

similar energies, the transition mechanism is not well defined.

In graph-theoretical terms, an energy ridge is a cut. The name “cut” stems from
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the fact that deletion of its edges dissociates the network into two disconnected
subnetworks. Formally, the cut C' is a set of M edges C = {(uy,v1), ..., (unr, var)}
with the property that each vertex u; belongs to one set, U (e.g. “reactant side”),
each vertex v; belongs to another set, V' (e.g. “product side”), and (U, V') partition
the set of all vertices (i.e., UUV =V and UNV = ).

When the best and all next-best paths each have a dominant (rate-limiting) step,
the energy ridge is identical to the cut whose total flux kyy across it is minimal.
kyy is given by the sum of all localized rates k,,,, in the direction U — V' across

edges (u;, v;) in the cut:

kuv =Y kuu, (2.16)

(u;,v;)€EC

where k,,,, is the equilibrium rate from Eq. (2.8). By dismissing the constant

pre-factor v/Z, we obtain the normalized total flux, kyy:

kUV,O = Z exp (_I{)B—ZT> . (217)

(ui,vi)EC

Note that the cut that minimizes kyv,o (the rate-limiting cut) and the cut asso-
ciated with the topographic energy ridge are not always identical. For example,
consider a case where the topographic ridge is very broad, its cut containing many
edges of similar energy, whereas another cut contains only a single edge of slightly
lower energy than those of the topographic ridge. Then the cut with the single
edge has a lower kyy, than the cut of the topographic ridge, because the many
individual fluxes across the broad topographic ridge add up to a larger total flux.

In the current context, however, this theoretical difference is not of importance.

The rate-limiting cut can be found by defining the vector of weights w = (wg,), ..., We, ),
where for each edge (u,v) in the network wy, = exp(—Fy,.,/ksT), and minimiz-
ing the total weight of the cut using the algorithm of Nagamochi and Ibaraki
[73]. However, this algorithm is computationally expensive (scaling as O(|V|?) or

O(|V|2+|V||€log|V]), depending on the implementation). Since the computation



32 CHAPTER 2. THEORETICAL FRAMEWORK

of the cut has to be repeated many times (see Sec. 3.3), we used the topographical

energy-ridge cut rather than the rate-limiting cut.

2.4.1 COMPUTATION OF THE ENERGY RIDGE

The topographical energy-ridge cut is determined by an algorithm that can be
likened to flooding the energy landscape by stepwise filling up its basins. The ridge
that last divides the reactant and product “lakes” before they become connected
is the energy ridge. This ridge is similar to the rate-limiting cut, because the
Boltzmann weight of a set of edges is most likely dominated by the lowest-energy

edge. This is formulated by following proposition:

Proposition: For any two sets of edges £ and & in a TN, it holds that:

. 3 Ei E.
min{ Fice, } < min{Ejee,} = Z exp <_kBT> 2 Z exp (_kaT)

1€ JEE2

Assuming that this proposition is exact rather than approximate, the following

iterative definition for the energy ridge can be given:

1. Select a cut such that its lowest-energy edge is as high as possible, otherwise

the cut is arbitrary. Add the lowest-energy ridge to the set FR.

2. Select a cut which has the edges in E R as members and whose second-lowest-
energy edge is as high as possible, otherwise the cut is arbitrary. Add the
second-lowest-energy ridge to the set E'R.

3. Continue this procedure until the cut is fully defined. It now coincides with

the energy ridge and its edges are stored in the set ER

To find the ridge according to this definition, the edges which define the energy
ridge are identified iteratively, starting from an edge-less network, G, consisting
only of the vertices, V. In each iteration, a new edge e € £ is added to the network
in order of increasing edge energy. At each iteration, the topology of G allows to
identify connected subgraphs (i.e. sets of vertices in which each vertex has at least
one link to another vertex in the set). Each vertex is assigned an identifier that

is unique for the connected subgraph it belongs to. The subgraph containing the
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reactant vertex is always assigned the identifier iz while the subgraph containing
the product vertex is always assigned ip. Whenever an edge would be added
that connects two vertices with identifiers i and ip, this edge is not added, but
marked as part of the energy ridge. The full ridge is determined when all edges
have been iterated. An illustrative example for the algorithm is shown in Fig.
2.9 and a formal description is given in the pseudo code below. In the worst
case, the algorithm runs at O(|€|log|E|+ |V|log|V|). Proofs of the correctness and

complexity are given in Appendix A.1.

B 21 [-1 C [2] [-]

Figure 2.9: Tllustration of the computation of energy ridges. (A) shows the full network
with transition end-states a and f, which are initially associated with vertex groups 0
and 1, respectively (see brackets). (B-C). All edges are removed and re-included into
the network in an order of nondecreasing edge energy. Whenever an edge is placed,
the two groups of vertices connected thereby are associated to a common group. (D-E)
Edges which would connect the end-state-groups are not placed, but rather marked as
members of the energy ridge. (F) shows the set of edges comprising the energy ridge.

2.4.2 DvYNAMIC EDGE ENERGY UPDATE

Similarly as for the best path, there are situations where the energy ridge needs
to be recomputed many times, after changing a single edge weight each time (see
Sec. 3.3). To avoid repeating the full algorithm 1 each time, a quick update

scheme is introduced here.

For this, the list of ordered edges computed in step (1) of algorithm 1 is stored
rather than being recomputed each time. Upon the change of a single energy E,,
to E!

wo the old weight is removed and the new weight inserted into the sorted
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Algorithm 1 Energy Ridge
1) Sort the edges e = (u,v) € £ by nondecreasing energies E,,.

2) Define an array of vertex group identifiers F' := [—1... — 1] with an
entry for each vertex. Assign end-states to groups 0 and 1: F[vg] := 0,
Flvp] :=1.

Set next group identifier: ig := 2.
Initialize a yet empty set of energy ridge edges B := ().

3) For each e = (u,v) € €. Define u and v such that the group with
identifier F'[u| is the larger one; if the groups have equal sizes, define u
and v such that Fu] > Flu].

3.1) If (F[u] = Flvg] and F[v] = Flvp]):
ER = ERUe (e is part of the ridge).

3.2) Else if Flu] = —1 and F[v] = —1:
Flu] :==ig, F[v] :==ig. Increment ig.
(form new vertex group).

3.3) Else if Flu| # F[v]:
For all vertices w with identifier F[v]: Flw]:= F[u].
(join two vertex groups)

4) Return ER.

list in the appropriate place. Using sorted heaps, these operations are of order
O(log|€]).

If the energy is decreased (E., < Ey,), and (u,v) is not part of the ridge, the ridge
does not change. If it is part of the ridge, the ridge may change and steps (2)-(4)
of algorithm 1 are executed with the new sorted edge list. The energy decrease

therefore has a maximum complexity of O(log|E|+ |V|log|V|) (see Appendix A.1).

If the energy is increased (E., > E,,), and (u,v) is part of the ridge, the ridge
does not change. If (u,v) is not part of the crest and the new energy is not
larger than the minimum energy of the ridge (E}, < FEp,ass), the energy ridge
does also not change, as this cannot generate a new ridge whose minimum energy
is higher than the one of the present ridge. if E| > E,s, however, the ridge
may change in such a way that the new ridge contains (u,v). This can only be
the case if there is no pathway connecting v and v whose maximum edge energy
is lower than F,, because the existence of such a pathway would mean that
the minimum energy of a cut through (u,v) must also be lower than Ej,s. The
existence of this pathway can be checked with a breadth-first search starting from

u which explores only neighbors than can be reached by edges with energies less
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than Fl.s. The breadth-first search has complexity O(|€| + |V|) [74], therefore
the maximum complexity of the energy increase is O(|€] + log|E| + [V|log|V|) (see
Appendix A.1).

2.5 CONCLUSION

Global properties of the molecular system, such as best paths and energy ridges
can be obtained from a Transition Network for that system. By definition, the
construction of the TN does not depend on the height of energy barriers on the
energy surface. This circumvents the main problem with molecular dynamics
simulations whose sampling time is typically too short to observe events that
involve high-barrier passage. However, two other problems must be solved for the
construction of TN: 1) The choice of molecular conformations (which yield the
static TN vertices) is trivial only for simple molecules, but difficult for complex
systems such as proteins. The solution to this problem depends on the class
of molecular systems, and a solution specific to proteins will be given later in
Chapter 4. 2) The computationally expensive calculations involved in determining
energy barriers are too demanding to determine all edge weights for large TN. The
solution of this problem is general to all molecular systems and will be covered in

the next chapter.
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CHAPTER 3

EFFICIENT DETERMINATION OF
BEST PATHS AND ENERGY RIDGES
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The determination of edge energies is computationally very expensive (see Sec.
2.1.1). It is typically not affordable to determine all edge energies of a large static
TN. Nevertheless, we want to determine global properties of the network, such as
the best path connecting the pair of vertices which corresponds to the end-states
of a transition (Sec. 2.3) and the energy ridge separating these vertices (Sec. 2.4).
However, the Dijkstra and the energy ridge algorithms introduced above require
the knowledge of all edge energies of the static TN. This dilemma is resolved by
the algorithms presented in this chapter.

Sec. 3.1 extends the definition of Transition Networks by introducing TN with
bounded weights. These bounds express the fact that the TN edge weights (i.e.
energies or costs) are initially unknown, but are nevertheless guaranteed to be
within a certain range of values. When additional knowledge on a certain edge
weight becomes available, which allows to narrow the range of possible values
for this weight, this is expressed by changing the bounds accordingly. Sec. 3.2
presents an algorithm that allows to compute the best path (or multiple best
paths) using weight-bounded TN. This algorithm exploits the fact that in real-
istic TN only a few edges actually contribute to the determination of the best
path while most edges can be ignored solely based on their energy bounds. The
algorithm singles out the relevant edges in an iterative manner and determines
their energies and costs until the best path is determined. Sec. 3.3 present a very
similar algorithm that allows to compute the energy ridge. Sec. 3.4 shows how the
performance of both algorithms can be increased by 1) determining the selected
energy barriers in several steps rather than in a single step, by 2) introducing un-
certainty on the less relevant parts of the best path or energy ridge or by 3) using
statistically estimated bounds on the edge energies (and thereby costs). Sec. 3.5

proposes a parallel version of the algorithms introduced here.

3.1 WEIGHT-BOUNDED TRANSITION NETWORKS

Weight bounds express the fact that TN weights are initially unknown, but are
nevertheless guaranteed to be within a certain range of values. As shown later
(3.4.3) the use of statistical estimates as bounds can also be desirable. The mean-

ing of statistically derived bounds is that the edge weights are expected to reside
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within these bounds with a certain probability.

For static TN, we define two edge energy bounds, the lower bound E™ < E,,
and upper bound E;;** > E,,. If there is no knowledge available on the edge

energies, we use following a prior: bounds:

E™ = max{E,, E,} (3.1)
E} = max{E,,E,} + M, (3.2)

where M is a number that is larger than the anticipated maximum energy barrier®.
In some cases, it is convenient to refer to relative barriers instead of absolute

energies, so we define the edge barrier B,,?:
By = Ey, — max{FE,, E,}, (3.3)

such that Egs. 3.1 and 3.2 translate into

Bmr .= (3.4)
BMa .= M. (3.5)

Formally, we define two static TN, G™* with the lower bounds as edge energies,
and G™* with the upper bounds as edge energies. From these, a pair of dynamic

min

oo and

TN, g;n_vin and G3®, are derived, which have lower and upper edge costs, c
- An edge is said to be undetermined if its edge weight is unknown (i.e. if
Emin o4 pmax gp emin £ cmax) Tt i gaid to be determined, if its edge weight is

min

known (i.e. Ey, = En™ = ER¥ 0r ¢y = Cop™ = CtX).

3.2 BEFFICIENT COMPUTATION OF BEST PATHS

We propose an iterative algorithm to compute the best path in a weight-bounded

Transition Network while determining only a small number of edge energies.

1M is used instead of oo because this avoids some numerical problems

2By is to be distinguished from the usual definition of an energy barrier, which is the
difference between transition state and reactant energies (such as in Sec. 2.2.2). Such a definition
would produce two different barriers for each edge (byy, = Eyy — Ey and byy = Eyy — E).
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3.2.1 ALGORITHM

Given a TN with bounded edge energies, the following algorithm iteratively de-
termines the best path through the network by identifying, in each iteration, a
critical edge, e..;;, whose energy barrier is likely to give the most information on
the best path. For this, a hypothetical “optimistic” best path BP™" is deter-
mined (see Sec. 2.3) as the best path through the “optimistic” TN G™™ whose
yet-uncomputed edge energies are taken to be their lower bounds, E™™. The
critical edge e..;; is defined as one with the highest energy along that optimistic
best path BP™® 3 Then, the CPU-intensive step is performed by determining
the real energy of e..;;. This may lead to a different optimistic best path in the
next iteration. This is repeated until all edge energies along the optimistic best

path have been computed, giving the truly best path.

To obtain a preliminary estimate of the result, the best path can also be deter-
mined in each iteration for the “pessimistic” TN G™* whose yet-uncomputed edge
energies are taken to be their upper bounds, E},**. This “pessimistic” best path
BP™® yields an upper limit to the rate-limiting energy barrier, and also to the
cost-value of the true best path. During successive iterations both the optimistic
and the pessimistic limits converge to the values of the rate-limiting barrier and
cost of the true best path (see Fig. 3.1). Following pseudo code gives a formal

representation of the algorithm:

Algorithm 2 Efficient determination of best path

1) Compute two best paths: BP™ on G and BP™* on G2 hetween vg and
vp. Output the maximum energy barriers and the cost values for both paths.

2) If all edge energies along BP™" are determined (i.e. E™ = EMaXYe ¢ BP™n),
RETURN(BP™n).

3) Choose from BP™ the edge e, with EJ® = max{E}naX| f € BP™n A E}“i“ <
EF®} (critical edge with undetermined energy). If e, exists: determine ecp;;.

1) GOTO 1.

Proofs for the termination and the correctness of the algorithm are given in Ap-

pendix A.2. Fig. 3.2 illustrates the algorithm.

3In practice, E™2* instead of E™i" is used to identify the edge with the highest energy bound,
despite the best-path algorithm is otherwise working with the E™i". This is of advantage when

edge energies are determined in multiple steps (see Sec. 3.4.1). To understand the algorithm,
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Rate-limit. barrier

Path cost
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Figure 3.1: Convergence behavior of the best-path, using different settings. The al-
gorithm determines an “optimistic” and a “pessimistic” guess of the best path in each
iteration, allowing to derive a lower and an upper bound for the rate-limiting barrier
of the true best path (A) and its path-cost (B). These optimistic and pessimistic pairs
of values are equal when the true best path is determined. If a priori bounds [0, M]
are used on the edge energy barriers (black lines), the upper bound for the path-energy
and the path-cost is very far from their true values for many iterations but then quickly
converges when any full pathway between the transition end-states has been determined
on G™# (j.e. when the current pessimistic hypothesis of the best path does not contain
any uncomputed barriers with height M). If the values of edge energies are refined in
two steps (green lines) rather than one, the initial convergence is much faster, because
the first step of refinement is first performed on all edges along the current best path
hypothesis before the CPU-intensive full determinations of the edge energies begin. The
use of statistical estimates for the edge energy bounds (red lines) also allows the lower
and upper estimates for the best-path energy and cost to converge faster, and may
significantly speed up the computation.
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Figure 3.2: Illustration of the algorithm to determine the best path through a weight-
bounded TN. A) The TN with its (initially unknown) true edge energies. B) Each edge
is given lower and upper bounds for the edge energies (here a priori bounds are shown).
Best paths are computed between the end-states (a) and (d) on the optimistic and
pessimistic TN, giving rise to the yellow and blue paths, respectively. The critical edge
(b)-(d) is rate-limiting on the optimistic best path and its true energy is determined.
C)-G) The process is iteratively repeated, until all edge energies along the optimistic
best path are determined. Both, the optimistic and pessimistic best path coincide with
the true best path.

3.2.2 PERFORMANCE

The CPU time needed for the best path algorithm is dominated by the determina-
tion of the edge energies. Therefore, to evaluate the performance of the algorithm,
we measure the number of computed edge energies, n.., necessary to determine
the best path.

Theoretical maximum

We first derive an approximate theoretical maximum of n... Consider a set of
edges, &. The inverse Boltzmann weight of this set of edges is most likely domi-
nated by the highest edge energy. We can therefore formulate following proposi-

tion:

Proposition: For any two sets of edges & and & in a TN, it holds that:

max{E} < max{E,} = Y exp(E;/kpT) $ Y exp(E;/ksT)

1€€1 j€E2

however, this technical detail is not relevant.
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Assuming this proposition is exact rather than approximate, then edges (u,v)
with Efj;}n > Epeax are never refined, where Ej,px is the highest edge energy of the

best path®. This gives us following approximate upper bound for n.,:
Nec é Now = |{€ S £|Eénin S Epeak}‘

This upper bound is only approximate because proposition 1b is itself only ap-
proximate. However, not as single case with ne. > ni,, was observed (see Fig.
3.5).

In most cases, it holds that n.. < niow, as it is not necessary that all edges with
Emin < Feax are determined. Some of them may lie in regions of the network
which are separated from the transition end-states by edges with ERin > F .\
and are therefore never considered. A typical example for this is a conforma-
tional transition that occurs between two native conformations of a protein, for
which transitions in the non-native (e.g. unfolded) conformation need not to be

considered.

ne. varies strongly depending on the topology of the network, on its edge energies
and on the location of the two end-state vertices. The performance of the best-
path algorithm was evaluated on an ensemble of random networks and measured

in terms of the average number of edges computed to determine the best path(s),
(Nee)-
Evaluating (n..) on Random TN

For all the simulations in this chapter, random networks with |V| = 1000 were
generated. The connectivity of these random networks was chosen such as to rep-
resent the distribution of edges typical for TN for biomolecules. The distribution
of vertex and edge energies is characterized by the order parameter o € [0, 1]. Here,
o = 1/|V| corresponds to a random noise network whereas o = 1 corresponds to

a network over a single harmonic basin with some local random fluctuations (see

4 Proof: In each iteration of Algorithm 2, BP™® is computed using minimum energies E™i®,
As an edge determination may only increase, but never decrease E™", the next-iteration’s
BP™" is guaranteed to have an equal or higher inverse Boltzmann weight than the current
one. Therefore, the inverse Boltzmann weights of BP™" are nondecreasing until termination.
If the above proposition holds exactly, then the maximum edge energies of BP™™ are also
nondecreasing. When the algorithm terminates, the maximum edge energy of BP™i" = B pPmax
equals, by definition, Epeax. This is then the highest energy-edge that was refined. |
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Fig. 3.3 and Appendix B for details)

Figure 3.3: Ilustration of the effect of the order parameter o on the energy surface
underlying of random networks. Here, the energy of a two-dimensional energy surface
E(z,y) is shown. A minimum value of 0o = 1/|V| (here 0.001) corresponds to a random
noise surface, while 0 = 1 represents a harmonic surface with some local roughness.

For each measurement of (n..), 50 random networks were generated and for each
of these networks, 50 pairs of end-states were randomly chosen as described in
Appendix B and the best paths between them were determined. The a priori
barrier bounds B™" = 0 and B™# = 5 kcal/mol were used. The edge energies
were determined in a single step, i.e. a determination of (u,v) resulted in setting
Bmin .— pmax . B .

We first tested how the form of the underlying energy surface influences the per-
formance of the best-path algorithm, by computing (n..) for random networks
with different values for the order parameter o. The results are shown in Fig.
3.4. For random noise networks, (n..) has a maximum value, while for networks
with some local structure, (n..) decreases significantly towards a constant value
(o > 0.01). This result is expected, as random noise networks contain many more
pathways of similar energies than TN with more order. The random noise network
is therefore a worst-case scenario. It is used as a model for all computations of

(nee) in the present chapter, unless stated otherwise.

Fig. 3.5 shows a plot of n.. depending on n,, for a total of 10000 best-path
computations on random noise networks. Most values of n.. are about 2 orders
of magnitude below ne. = miow. The average number of computed edges, (nec)

increases linearly with n,,, for large values of njoy.
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Figure 3.5: The number of computed
edges, Mee, for best paths on random
networks correlated with the number
of low-energy edges, nioy (see text).
The black dots show all value-pairs that
have been generated by simulations on
random noise networks. All data points
are below the approximate theoretical
maximum of ne. = Moy (solid line).
The average number of computed edges,
(nec) (diamonds) approaches (ne.) =
0.0044 10y (dashed line).
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3.2.3 MULTIPLE BEST PATHS

The best-path algorithm 2 can directly be used to compute multiple, k-best paths,
when the protocol described in Sec. 2.3.3 is followed. Typically, there is an overlap
between the sets of edges which need to be determined to compute the k-best paths
individually. Therefore, the number of edges required to compute k best paths,
(Nec,k), is expected to be less than the theoretical maximum & - (ne.1), where n.;
is the number of edges required to compute the best path. This is indeed visible in
Fig. 3.6, which shows (n..) that has been computed for values of k < 16. (necx)
increases linearly with & for the numbers of (ne.x) observed here®, approaching
the function (necr) = 0.78 k(nec,1)-

3(nee,k) is of course bounded from above by |€], and can therefore not continue to rise linearly,
but the present simulations don’t come close to this value
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3.3 ENERGY RIDGES

Given the best path algorithm for weight-bounded TN, an algorithm for comput-

ing the energy ridge that proceeds along the same lines is easily formulated.
3.3.1 ALGORITHM

As defined in Sec. 2.4, the energy ridge is the set of edges that describes the
rate-limiting dividing surface between reactant and product. The algorithm that
computes the energy ridge while determining only a limited number of edge bar-
riers uses a strategy similar to the one used to find the best-path (see Sec. 3.2.1).
The energy ridge ER™® is computed (see Sec. 2.4.1) on a TN G™* whose yet
uncomputed edge energies are set to the upper edge energy bounds E;;?*. Then,
the critical edge e..;;, here: the lowest-energy edge on this hypothetical energy
ridge is determined. This process is repeated in successive iterations. The true

energy ridge has been found when all its edge barriers have been determined.

As for the best-path computation, a preliminary estimate of the result can be
obtained by computing the energy ridge in each iteration also for the “optimistic”
TN g™ whose yet-uncomputed edge energies are taken to be their lower bounds,
Em™in This energy ridge FR™" yields a lower limit to the true energy ridge’s
minimum barrier, E,,s. During successive iterations these limits converge to the
values of the rate-limiting barrier and cost of the true best path (see Fig. 3.1).
Following pseudo code gives a formal representation for the algorithm. The proof

is analogous to the proof of Algorithm 2 given above.
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Algorithm 3 Efficient determination of the energy ridge

1) Compute two energy ridges: ER™" on G™" and FR™®* on M3 separating
vg and vp. Output the minimum energy barriers and the weight values for
both ridges. _

2) If all edge energies along FR™** are determined (i.e. EM™ = EM* Ve €
ER™*>) RETURN(ER™).

3) Choose from ER™ the edge e ;; with EJ** = min{E}na"| feE RI’“*’“"/\E}’[lin <
E7#} (critical edge with undetermined energy). If e.; exists: determine e ;.

4) GOTO 1.

3.3.2 PERFORMANCE

According to an argumentation analogous to the one given in Sec. 3.2.2, we obtain

an approximate upper bound for n.. when computing energy ridges:
Nee é Nhi = ‘{6 € 5|Eénax 2 Epass}|-

Here, Epuss is the minimum energy edge on the ridge (which is typically® equivalent
to the highest-energy edge of the lowest-energy pathway) and ny; are the number
of edges in the network whose upper energy bounds are higher than Ep,. As
above, this upper bound is only approximate, but no single case with ne. > ny;

was observed.

As for the best path algorithm, we tested how the average number of computed
edges, (n..), required to compute the energy ridge depends on the form of the
energy landscape underlying the transition network. (n..) was computed using
random networks with a different amount of order in the underlying energy sur-
face, o, between o = 0.001 (random noise network) and o = 0.5 (two harmonic
basins with added noise). Fig. 3.7 shows that there is a nearly linear decrease
of (ne.) with increasing amount of order on the energy surface. As for the best
path calculations, the random noise network is the worst-case scenario also for
the computation of the energy ridge. It is used as a model for all computations

of (ne.) for energy ridges in this chapter, unless states otherwise.

Fig. 3.8 shows a plot of n.. depending on ny; for a total of 10000 energy-ridge

6This equivalence is not strict as the best path is determined by all barriers along the path
(Eq. 2.15) rather than by the rate-limiting barrier alone. For the understanding of the present
section, however, this possible difference is not critical.



48 CHAPTER 3. DETERMINATION OF PATHS AND RIDGES

computations on random noise networks. For small values of ny; (i.e. for small
networks or very high ridges), ny; is a good upper bound for n... For larger values

of nyi, Nec is considerably lower and (n..) increases with the square root of ny;.

Zz'_ é* h S | Figure 3.7: Average number of computed
s *%)} % | edges, (ne.) depending on the amount of
200 *’B % | order of the energy surface, measured by
23400’ X XXg 1 the order parameter o (see Fig. 3.3).
vV 300- X% 1 A value of o =0.5 represents two large
200 4 harmonic wells with some superimposed
Lool- 1 noise, while a value of 0=0.001 represents
0 ‘ ; ] the random noise network.
0.001 0.01 0.1 1
Order parameter, o

A Figure 3.8: The number of computed
1000¢ 3 edges, Mec, for energy ridges on random
i networks depending on the number of
high-energy edges, nni. The black dots
show all value-pairs that have been gen-
c8 erated during the simulation. All data
100? points are below the approximate theo-
retical maximum of ne. = ny; (solid line).
The average number of computed edges,
(nec), approached the function (ne.) =

104 HiE e 1.7 /npi(dashed line).

%o 100 1000
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3.4 INCREASING PERFORMANCE

3.4.1 STEPWISE DETERMINATION OF EDGE ENERGIES

In the previous sections we always assumed that edges are determined in a single
step. That is, in each iteration of the algorithm the critical edge e.;; was chosen,

its edge energy FE. . was determined and its bounds were changed from their

€crit

initial values [EX", EX] to [E,,., Fe.,].- The determination of the edge energy
E,,, is usually performed by an iterative method, which achieves the convergence

of the edge energy to the result F,_. through optimization or sampling (see Secs

crit
2.1.1 and 2.1.3). These methods generally approach the result quickly in the

beginning and slower at the end of the computation. Therefore, a considerable
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improvement of the edge energy bounds is available at a cheap price by running
the determination method only for a few steps and incorporating the preliminary
result. Formally, we replace the single-step determination algorithm by a refine-
ment algorithm refine(x,,x,) which delivers some refined bounds EJ% > Enin
and EpPF, < ER°F. To assure the termination of the best-path and energy ridge
algorithms, we require that for a pair (x,,x,), at most a finite number of ng
calls to refine(x,,x,) are necessary to obtain equal bounds and therefore a deter-
mined edge energy: E,, = E™" = E™a  To simulate this approach, we used a
two-step refinement algorithm whose first step changed the bounds [Emn Emax

uv ?

into [ERin B, + 0.5kcal/mol], and whose second step delivered the determined
energy [Eyy, Fyy]. Such a multi-step determination approach does not guarantee
to find the best path or the energy ridge faster (i.e. to reduce n..). However, it
remarkably improves the lower and upper bounds for the energy barrier and the
best path cost during the runtime of the algorithm, as shown in Fig. 3.1 (green
line). While this is actually an improvement of perceived performance (the user
gets a good estimation of the result at an earlier time), a multi-step determination
approach can also improve real performance (i.e. a reduction of n..) when used

in combination with the method of partial computation introduced below.

3.4.2 PARTIAL COMPUTATION OF BEST PATHS AND ENERGY
RIDGES

The computation time can be significantly reduced if it is not required to compute
the best path or the energy ridge in their full detail. We first introduce a strategy
for reducing the computing time by introducing uncertainty on the low-energy
regions of the best path. One is often not interested in the details of how the best
path travels in the low-energy regions, since the highest-energy edges along the
whole path are rate-determining. Computation time can thus be saved if only the
high-energy edges of the best path, i.e., those with energies within a range A Fg.
of the highest energy along the path, Elc.x, are requested to be correct (see Fig.
3.9A). To achieve this, Algorithm 2 is extended such that the already-computed
edge barriers along the current best path, for which E,, < Epeax — AEgre, are
reset as if they were barrier-less transitions (i.e. By, := 0). This prevents the next

Dijkstra computation from finding different best paths that would circumvent the
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low-energy barriers of the current best path.

Fig. 3.10A shows that the use of a AFEgy. can considerably reduce (ne.). The
amount of reduction, however, depends on the amount of order on the energy
surface. For random noise networks (n..) is only reduced by a small fraction
when using AFg,. = 0 instead of AFEgye = 00, but the reduction amounts 50%
for networks with o = 0.2. The reason for this difference is that energy surfaces
with a significant amount of underlying order, the edge energy bounds already
give a good estimate of where the highest edges of the best paths may be located.
In contrast, for random noise networks, nearly all edges are candidates for these
highest edges, so that the reduction of (n..) compared with a full computation of

the best path is small.

As shown in Fig. 3.10B, the reduction of (n..) is stronger, when edge energies
are refined in two steps rather than in a single step (see Sec. 3.4.1). In this case,
the percentage of (n..) that saved by using AFEg. = 0 instead of AFg,. = o0
is approximately doubled. The reason for this is that for many edges which
are below Fleac — AFEgure, a partial refinement is already sufficient to obtain an
upper barrier bound of B;™* < Epeax — AFgyre, after which the edge energy is no

longer improved. Since (n..) counts the number of full edge refinements, partial

refinements do contribute.

The computation of the energy ridge can be accelerated if only the lowest-energy

barriers along the energy ridge are requested, which is often sufficient as higher-

Energy

Path Coordinate, 1-dim. Energy Crest Coordinate, (D—-1)-dim.

Figure 3.9: Schematic representation of the concept of partial determination of best
paths and energy ridges. A) Profile of vertex and edge energies along a pathway through
the network. Given AFgyr., the edges in the range [Epeak — A FEgyre, Fpeak] are guaranteed
to belong to the true best path (indicated by squares). B) Profile of the energy ridge
separating two regions of the energy surface. Only edges in the range [Epass, Epass +
AFEgyre] are guaranteed to belong to the true energy ridge.
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Figure 3.10: Dependency of the average number of computed edges, (nec), for best
paths and energy ridges on random networks, on the fraction of the best path or energy
ridge that has been determined. A) and B): All path edges with energies in a range
of rsure(Epeak — Enin) below the rate-limiting barrier of the path, Epeax,are guaranteed
to belong to the true best path (Epn, is the minimum vertex energy in the network).
A): Edge energies were determined in a single step, B): Edge energies were determined
in two steps, after the first step the upper bound was 0.5 above the true edge energy.
Using AFgyre < 00 is more beneficial for well-ordered energy surface (bullets, squares)
than for random noise networks (crosses). A two-step refinement enhances the savings
at low values of AFgye. C) and D): All energy ridge edges with energies in a range of
T'sure(Fmax — Fpass) above the ridge’s minimum height, El,s are guaranteed to belong to
the true energy ridge (Fmax 18 the maximum vertex energy in the network). The same
edge energy determination procedure was used as in A) and B), respectively.
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energy barriers are less likely to be populated. One may only be interested in
energy barriers of the energy ridge that are up to AFEg,. above the energy of the
lowest energy in the ridge, Epass (see Fig. 3.9B). To achieve this, already computed
edge barriers of the current energy crest for which E,, > Ejow + AFEgy. are reset
to Ey, = oo. This fools the energy-ridge finding algorithm so that it leaves these
high-energy barriers in the ridge. To avoid computing barriers whose energies must
be above the energy region of interest (i.e., which have E™® > E .o + AFqyre,
where Ep,g is taken from the current guess of the ridge), their energies are also
set to E,, = 0o, thereby excluding them from being determined at all. The values
of (ne.) for the partial determination of the energy ridge are plotted in Fig. 3.10C
and D. For random noise networks, there is a reduction of (n..) by about 30% if
only the rate-limiting step (AEgye = 0) is computed compared to AFEgye = 0.
For TN energy surfaces with a higher degree of order, the reduction can be drastic,
amounting more than 90%. Again, a two-step refinement procedure is superior to
a one-step refinement, but the advantage is less expressed than for the best-path

computation.

3.4.3 STATISTICAL EDGE ENERGY ESTIMATES

The computing time can be drastically reduced, at the expense of possibly failing
to identify the true best path or energy ridge, if the a prior: bounds for the edge

barriers BRin = (0 and B2 = M are replaced by statistical estimates.

For the best-path calculation, the problem exists that the lower energy bound
is not necessarily correct and might overestimate some barriers. That is, edges
which are not included in the resulting best path and have been rejected based on
their lower estimate E™™ might in fact have a true edge energy E,, < E™". The
highest barrier of the truly best path may be lower by up to the maximal difference
found between any estimated lower barrier bound and its a priori bound, 7.e., the

error on the rate-limiting barrier is less than:

maX{B@Ian)in}allpairs (u,v) (36)

Estimated energy bounds may also be used to speed up the computation of energy

ridges. Here, the true energy ridge might be missed because the upper barrier
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estimate may still underestimate some barriers, which would otherwise be included
in the energy ridge. Unfortunately, no a priori upper bound lower than M can

be specified, such that a maximum error as in Eq. 3.6 cannot be specified.

Fig. 3.11 shows the dependence of (n..) on the confidence ratio ¢ of the lower
bound estimate for both best paths and energy ridges. c is defined as follows:
For each random network, the lower estimate B™™ was set such that c|£| edge
energies were greater than B™®, and likewise the upper estimate B™® was set
such that c|€| edge energies were smaller than B™** (j.e. ¢ is the fraction of
correctly estimated bounds). For the best-path computation, even for ¢ = 1,
(nee) &~ 15 is only about half compared to the value of (n..) ~ 30 with a priori
bounds. (see Fig. 3.4). In general, ¢ = 1 does not guarantee that B™™ are lower
bounds for the barrier. This is because usually only a limited number of barrier
energies are known when the statistics are set up such that ¢ = 1 only means
that B™™ and B™® are true bounds for all observed barriers. However, the result
shows that a statistical estimate that involves only little potential error, can save

a considerable amount of CPU time.

Smaller values of ¢ can further reduce (ne.) for the best-path calculation by a
factor of three. For energy ridges, the relative further reduction of (n..) is not

significant.

- ‘ ‘ — 71 1 1| Figure 3.11: Dependency of the av-
2oFA g p y

I | erage number of computed edges,
A&S 60- % %”% %I (nec), for best paths (B) and energy
g o %i %‘ %l 1 ridges (A) on random networks,

50%' on the confidence of statistically-

40—t L L 1.1 . Ll estimated edge energy bounds.
200"7‘0"75‘ 0(8‘0"85‘ 0"9‘0"95‘ "‘L For best paths (crosses), even a
15;8 XY& confidence-value of ¢ = 1 (energy
A8 g % X ™ bounds are true bounds for all ob-
c 10? x X 1 served network energies), allows to

\Y X
5ix x - save a factor of two compared to

o) N S N R .| the use of hard edge energy bounds
0.70.750.8 0.85 0.9 095 1 (compare Fig. 3.4).
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3.5 PARALLELIZATION

Algorithms 2 and 3 can be executed in parallel if each computing node runs
one instance of a modified version of the algorithms while the communication is
realized by accessing the same database of edge energies. The individual instances
need some minimal synchronization to avoid that two instances compute the same
edge energy concurrently. For this, it is necessary that an edge can be flagged in
the database as being currently computed. If one of the instances determines a
flagged edge as critical edge e..;, this instance assigns a hypothetical edge energy
E38 for it, which might be predefined by the user, by a statistical estimate (see
Sec. 3.4.3), or simply by E*8 = {(EX™ + FmaX)  The edge ecri is added to a
list of forged edges and the algorithm continues to the next iteration, determining
another critical edge. In each iteration, the list of forged edges is checked. If the
refinement flag for any of these edges has meanwhile been removed, that edge
is removed from the list of forged edges and its energy bounds are reset to the
current database values. As the presence of forged edges in the network may
produce wrong best paths and energy ridges, the parallel implementation of these
algorithms requires that the list of forged edges is empty, before it can terminate
successfully. As the parallel algorithms for the best path and that for the energy

ridge are analogous, only the parallel best path algorithm is given here.

Algorithm 4 Parallel Best-path order

1) Be F := @ a list of “forged” edges.

2) For each member f € F not flagged as being refined:
reset Ef™ and EF® to their database values, F':= F\{f}.

3) Compute two best paths: BP™® on G™" and BP™* on G™3 between
vg and vp. Output the maximum energy barriers and the cost values for
both paths. . _

4) If all edge energies along BP™" are determined (i.e. B = E™*Ve €
BP™") and F = @: RETURN(BP™").

5) Ch(_)ose from BP™®" the edge e..;; with Eg® = max{Ej*|g € BP™n A
Bt < EFe} (critical edge with undetermined energy). If no such edge

exists, GOTO 2.
6) If et is flagged as being currently computed, assign a hypothetical edge

energy to it: Eg:i’;t = Eg> = E2'8 . Add this edge to the list of “forged”
edges :F := F{ecit}-

Else flag e..;+ as being currently computed, determine it and then remove
the flag thereafter. GOTO 2.
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As the forged edges may be set to wrong values temporarily, and these values
determine which edges are determined next, the local instances of the parallel
algorithm may explore regions of the network which are not relevant to determine
the best path or the energy ridge. Because of these unnecessary computations,
there is some loss of efficiency with increasing amount of parallelization. To
quantify this effect, we have simulated the computation of best paths and energy
ridges on random networks in parallel on a number of p virtual processors. In
this simulation, all refinement jobs were assumed to have equal run-times. The
total number of edges computed in one such simulation is (n..,), giving rise to an
average runtime per processor of (n..,)/p. The normalized runtime compared to
the single-processor process iS (7ecp)/({Nec,1)p). Thus, the speed-up is defined as

<neC,1 )P
<nec,p>

speed — up :=

and the efficiency as:

efficiency := ec,)
(Tecp)
A25“5‘1‘0‘1‘5‘2‘0‘25‘3‘0‘35 ‘ ‘1‘0‘1‘5‘2‘0‘25‘?70‘35
% 20? ////5( — -
-§ 15 - 8 8
10- X7 . .
8- 5 w(’ ] |
Te 1
508? XX B
gost T 1 ]
S 04f . .
T 0.2- . : .
07 A E R R B B 07 A E R R B B
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of processors p Number of processors p

Figure 3.12: Dependency of the parallelization efficiency and speed-up for best paths
and energy ridges on random networks, on the number of parallel processors, p, the job
was distributed on. A) the speed-up for parallel best paths increases approximately as
0.7p (crosses), the solid black line shows the theoretical maximum (speed-up = p). The
efficiency is nearly 1 for up to three processors and drops to a value of 0.7 for larger p’s.
B) For energy ridges, the speedup increases approximately as 0.55p, the efficiency drops
to 0.55 at 16 processors.
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The results are shown in Fig. 3.12. For a large number of processors, the
speed-up increases linearly with the number of processors and the efficiency is
therefore constant. Computing best paths on up to three processors is practi-
cally lossless, the efficiency being near 1. For a larger number of processors,
we have a speed —up ~ 0.7p (efficiency of 0.7) for the parallel best path and
speed — up ~ 0.55p (efficiency of 0.55) for the parallel energy ridge.

3.6 CONCLUSION

The algorithms presented here allow to efficiently determine the best path and the
energy ridge. The number of edges that need to be determined is generally several
orders of magnitude below the total number of edges in the network. Using the
very efficient parallel version presented here, this allows to compute best paths and
energy ridges for large Transition Networks of complex systems such as proteins
in several days or weeks on a small PC cluster. Here, we conclude the system-
independent part of the work and focus on TN for proteins. The following chapter
addresses the problem of how to generate appropriate conformational samples that

yield the TN vertices for complex conformational changes in proteins.



CHAPTER 4

HIERARCHICAL SAMPLING METHOD
FOR COMPLEX REARRANGEMENTS
IN PROTEINS
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For all but the simplest systems, the determination of the TN vertices v € V is
nontrivial. Ideally, the set of vertices V should represent the full range of system
configurations that are significant to the process under observation, irrespective
of the system size and the location of these configurations. In general, the sam-
pling problem (see Introduction) limits the generation of such a set of vertices for
systems with many degrees of freedom. Despite there is no general recipe to over-
come the sampling problem without making severe approximations, the problem
can be alleviated if one concentrates on finding a solution for a restricted class
of systems and processes, exploiting the particular structure of this class. The
present chapter proposes an efficient sampling method which is specific to the
system class of proteins and to the process class of (possibly complex) conforma-
tional changes. We illustrate the method by generating a set of TN vertices for

the conformational switch in the Ras p21 protein.

Available importance sampling methods, such as molecular dynamics or Metro-
polis Monte Carlo, successfully generate Boltzmann distributions, in which low-
energy conformations are strongly preferred over higher-energy conformations.
For this reason, they are inefficient in sampling the full conformational space if
this requires crossing high energy barriers. To avoid this problem, the present
sampling procedure first generates conformers uniformly distributed over a con-
formational (sub)space and subsequently retains only the low-energy conformers.
To obtain a sufficient sampling density, the dimensionality of the sampling prob-
lem must be reduced. Therefore, the degrees of freedom which only contribute
by flexible deformations are interpolated (Sec. 4.2) while the sampling subspace
includes those degrees of freedom that undergo significant changes to facilitate the
conformational change to be studied (Sec. 4.3). Out of the generated conformers,
only collision-free structures are retained (Sec. 4.4) and minimized (Sec. 4.5).
Subsequently, the number of conformers in the low-energy regions is increased
until a desired density is obtained (Sec. 4.6). Figs. 4.2 and 4.1 show schematic

overviews of the steps involved in the generation of TN vertices.
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Figure 4.1: Overview of the steps involved in generating the Transition Network (TN).
(A) The potential energy surface and the minimized reactant and product end-states
of the transition. (B) Conformers are uniformly spread over the part of conformational
space that is relevant to the transition (see Fig. 4.2 and Sec. 4.3), (C) Structures
without steric clashes are accepted (see Sec. 4.4) and energy-minimized (see Sec. 4.5).
(D) More low-energy minima are generated by pairwise interpolation between available
conformers and minimization (see Sec. 4.6). These minima form the TN vertices. (E)
Pairs of neighboring minima are associated, forming the TN edges. The sub-transitions
barriers of selected edges are computed (see Chapter 3).
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4.1 THE SAMPLING(S) AND INTERPOLATION(I)
REGIONS

Uniform sampling of all degrees of freedom in the protein is not desirable when
studying conformational transitions in the native state. Most conformational
transitions are relatively local in the sense that the major part of the protein
retains its native fold. While there might be complex rearrangements in certain
regions, even refolding of parts of the backbone (such as in Ras p21), the remainder
of the protein only adapts flexibly to these changes. Therefore the protein is
partitioned into an Interpolation (I) and a Sampling (S) region (see Fig. 4.2a for
an illustration). The rotable torsion angles of the S-region (including backbone
¢/ angles and single-bond side-chain angles) constitute the degrees of freedom in
which the conformational sampling is performed. The I-atoms respond flexibly to
changes in the S-region, and can be seen as controlled by a reaction coordinate,
such as the interpolation distance between the transition end-states. (see Fig.
4.2B for an illustration). Notably, the motion of the protein is not constrained to
degrees of freedom defined by S, as all other degrees of freedom are locally relaxed

in the minimizations following the sampling step.

Fig. 4.2A shows the S and I regions used here for Ras p21. The sampling
(S) region was chosen to encompass the Switch I (residues 30-35) and Switch II

(residues 61-70) regions.

4.2 INTERPOLATION OF [-ATOMS

To obtain a smooth variation of the positions of atoms in the I region near the
boundary to the S region, the coordinates of the I region are generated by interpo-
lating between the end-states of the transition. For this, a combined interpolation
procedure is used: First, the backbone atoms are interpolated in Cartesian coor-
dinates so as to preserve the backbone fold, and then the side-chain atoms are
built onto the interpolated backbone, using internal coordinate values that are
interpolated between the end-state values. This interpolation method was shown

to produce less distorted structures than Cartesian or internal coordinate inter-
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Figure 4.2: Tllustration of the sampling procedure. (A) A number of intermediate con-
formations are generated by interpolating a subset of the protein atoms (the I-region)
between their end-state positions (“R” and “P”, here 3 intermediate structures are gen-
erated). From each interpolated structure, a large set of conformations is generated by
sampling the torsional angles of the S-region of the proteins. (B) the interpolation (I)
and sampling (S) regions. Left: The atoms of the I-region are interpolated between
the transition end-states (shown in white and dark blue), here producing three interme-
diates (shown in shades of blue). Right: For the S-region (Switch I in red, Switch II
in yellow), the single-bond torsion angles are sampled uniformly (examples of several S
conformations are overlaid on the right side). The full set of conformations is defined
by all combinations of the five conformations for the I-region with each sample of the
S-regions.
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polation alone [19].

For practical convenience, the combined interpolation is done for all atoms of the
protein (including the atoms of the S region). Because the S region has by defi-
nition very different conformations in the end-states, the interpolated structures
involve distorted internal coordinates in the S part of the backbone. To start the
S sampling with reasonable values of the internal coordinates of the S region, each
interpolated structure is energy minimized with positional harmonic constraints
on the T atoms (force constant 1 kcal mol~' A~1). In the example treated here,
Ninterpol =3 interpolated structures of Ras p21 were generated in this way, yielding

5 structures along the interpolation including the endstates.

4.3 CONFORMATIONAL SAMPLING OF THE S REGION

For each of the interpolated structures and the two end-states, a uniformly dis-
tributed set of conformers of the S region is generated (see Fig. 4.1b). Sampling
of the S region is performed uniformly in the space of flexible torsion angles, com-
prising the ¢/1 backbone and single-bond side-chain angles. The stiff internal
degrees of freedom (i.e. bond lengths, valence angles and backbone w angles) are

not sampled here.

If the sampling region is located at one of the termini of the polypeptide chain,
there are no closure constraints on the backbone, allowing the ¢/t angles to be
sampled directly by setting them to random values. When the sampling region
is an intermediate part of the polypeptide chain (as is the case for the Switch I
and Switch IT loops in Ras P21), this “free” sampling is not possible, as it would
violate backbone closure (i.e. backbone bond lengths and angles would not be

preserved).

4.3.1 GENERATION OF BACKBONE CONFORMERS WITH A
WINDOW METHOD

Random backbone conformations were generated using a variant of the window

method proposed in |75, 76]. This procedure allows backbone variation of a se-
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Figure 4.3: Tllustration for a backbone window move. A) The conformation within the
window (white) may vary while the window’s boundaries (gray) have a fixed position.
The flexible ¢/1-torsions are labeled. The w torsion angle around the peptide bond
(dotted) gives rise to the stiff peptide planes (rectangles). B) The cut atom (Cqc)
separates the left and the right arm, which are moved independently according to the
pre-rotations defined by the user (here, at ¢2, 12). C) The method rotates the ¢/1)-
torsions at the joints such that backbone closure and the y-valence angle is restored at
the cut. Thereby, the method determines the six torsion angles at the joints and at the

cut (here: ¢1, 91, ¢3, ¥3, da, Pa).

ries of 7 > 3 consecutive residues (the window) while preserving the boundary
condition of that window. Out of the window’s 2r ¢/ torsion angles, 2r — 6
can be freely chosen and pre-rotated. The remaining six torsion angle values are
being determined by the method, as six degrees of freedom are required to define

translational and rotational invariance of the window boundaries.

The C,’s of the first and last residue in the window are here termed left joint C, 1,
and right joint C, g, respectively. One of the C,’s between the joints is selected
as cut atom Cyc. The set of atoms between (Cy, 1, Coc) and (Cy o, Co,r) are

termed left and right arm, respectively. See Fig. 4.3 for an illustration.

The pre-rotations are defined by assigning random values to all 2r — 6 ¢/-angles

inside the window, excluding those at Cy 1, Co,c and Cy g 1. Here, the atoms of

1Proline ¢ angles are chosen in the range [—80, —40] degrees, while all other ¢/1)-angles may
vary in the range [—180, 180]



64 CHAPTER 4. EFFICIENT SAMPLING IN PROTEINS

the two arms are rotated independently, ¢.e. one introduces an imaginary cut at
Ca,c, splitting it into a ’left’ and ’'right’ C, . Rotations around bonds in the
left /right arm are only propagated up to the left/right C, ¢.

The six remaining degrees of freedom are used to correct the backbone confor-
mation inside the window such as to restore the backbone closure. That is, the
arms need to be rotated about their joints in such a way as to connect the left
and right C, ¢ while restoring the valence angle v = £(N¢, Cy,c, Cc). If the sum
of the arm lengths is smaller than the distance |x¢, ; — X¢, /|, then there is no
solution for this set of pre-rotations because the arms are too short to restore
backbone closure. Otherwise, the new position of C, ¢ may lie on a circle which

is perpendicular to the axis through the joints, having its center at x.:

_ |XCa,L - XCa,C|2 - ‘Xca,C - XCQ,R‘Z
c =

(4.1)

2 |Xca,L - XCa,R |2

and a radius R of:

R=\/Ixc,c = Xcuul? = Ixe = %c, . (42)

In general, not all points on the circle are permitted for the new C, ¢ positions,
because only certain circle sections (up to 4) contain points of possible backbone

closure (see Fig. 4.4).

Figure 4.4: By rotating the two rigid
pre-rotated arms around their joints,
the left and right Cy ¢ reach points on
an iris, i.e. the section of a sphere (a
full sphere would be accessible only if
the ¢ and 1 angles at each of the cuts
would have a 90°-angle relative to each
other). Both irises intersect at the cut
circle, on which the new C, ¢ is located.
Figure taken from [75].

To determine the allowed regions for C, ¢, a line-search is performed on the cut-
circle. One point every 10° is tested for a solution by positioning C, ¢ there. Now
the positions of the second backbone atom in the window, C7, and the second-

last one, Ng, are computed. To do this, one takes into account that the distances
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|xn, —Xc, s [xc, , —%c, |, and |x¢, — ¢, .| remain unchanged during the whole
process, and uses triangulation to compute x¢, from xy,, x¢, ,, and x¢, . [76].
Xy in the right arm is computed in an analogous way. If both triangulations give

solutions, the tested point x¢_ , is a position that recovers backbone closure. For

,C
each such point, there are up to four possible backbone conformations, because

each triangulation delivers two (typically different) solutions.

As a further requirement, a solution must fulfill:

f=y—v=0 (4.3)

Because of the four different solutions for x¢, ., f has four branches on all sections
of the cut-circle. To identify possible solutions of f, one identifies, for each branch
of f, pairs of adjacent points (7,7 4+ 1) on the cut-circle which give a solution for
Xc, . and which have the property sign(y;) = -sign(yit1). If all intermediate
points give a solution for x¢, ., then there is also at least one such solution with
f = 0. This solution is approached by subsequently subdividing the interval

between i, 7 + 1.

Given the up-to-4 sections on the cut-circle which yield a solution for x¢, ., and
the four branches of f, a total of up to 42 = 16 correct solutions can be found
for x¢, . For each solution the remaining backbone atoms are then rebuilt (their
positions are uniquely determined) and the side-chains are rigidly translated and
rotated to their new position. The method returns all conformations that were

found for a given set of pre-rotations.

4.3.2 UNIFORM GENERATION OF BACKBONE CONFORMERS

The above sampling method is repeated, each time choosing a random location and
length of the window in the S region and its pre-rotation. A solution is considered
“valid” if the resulting backbone atoms do not collide with the I region of the
protein and if atoms whose positions are directly determined by the backbone
configuration (i.e. backbone O and H, H,, Cg, Proline side-chains) can be placed

without collision. Sec. 4.4 describes how these collision checks are performed.

To obtain a conformational sample that is approximately uniform, conformers that
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are valid (i.e. have no collisions) are “accepted” (i.e. added to a “conformational
repository”) only if they significantly differ from already-accepted conformers as
measured by the ¢/1 dihedral RMS difference, which must exceed a chosen value,
ds- The choice of 5 determines the density of sampling. It is set according to
how finely the details of the transition should be probed. Backbone conformers
are generated until the sampling density defined by d; has been reached. The
criterion used here for this is that no “valid” structure are “accepted” anymore for
a number of neject successive attempts. This yields a number of nPa backbone
conformations for each interpolation step i (¢ € {0, 1, ..., Ninterpot +1}, where ¢ =0
and ¢ = Ninterpol + 1 are associated with the end-states and 1, ..., Ninterpor are the

interpolated intermediates).

For Ras p21, the Switch I and II S-regions were sampled independently, using
ds = 50° and nyeject = 1000. For each interpolation step, i (i € {0, ..., 4}), this
yielded nbak! ~ 30 backbone conformers for Switch T and nP2*? ~ 10* backbone
conformers for Switch II. This difference can be explained by the different number
of free backbone dihedrals in Switch I (2-6 — 6 = 6 free ¢/1 angles) and Switch
IT (2-10—6 = 14 ¢/v angles). A backbone conformer was generated by ran-
domly combining a Switch I with a Switch II conformation associated with the
same interpolation intermediate. This yields a total number of 1.5 x 10° possible

backbone conformers.

4.3.3 UNIFORM GENERATION OF SIDE-CHAIN CONFORMERS

To obtain a complete conformation, the side-chains of the S region are build onto a

randomly picked backbone out of the n?a* generated backbones, using randomly-
chosen single-bond torsion angles. The resulting conformer is accepted if it does

not involve atom collisions (see Section 4.4), giving for each interpolation step i

full

! full _ kmden?ack,

a number n;"" of sterically valid conformations of the S region. n;
where k%9 is the desired average number of sidechain conformers per backbone
conformer. This trivial method is not very efficient in practice, firstly because
some backbone conformers may never allow a given side-chain to be built without
collisions, and secondly because for a given backbone conformer it is unlikely that
placing all sidechains at once produces a conformation without collisions. Here,

a more efficient method is used that consists of the following steps: 1) For each
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backbone conformation ¢, a weight w, is computed which is equal to the proba-
bility that a set of noncolliding sidechains can be built on this backbone, when a
uniform distribution of sidechain torsion angles is used. 2) A random backbone
conformation is selected according to the probability p. = w./ >, wg. 3) Onto the
selected backbone, each sidechain is build by itself in a number of conformations
that do not produce collisions with the backbone and the non-sampled regions of
the protein. 4) Side-chain conformations from step 3 are combined randomly to
form a fully build protein conformation, which is accepted if is does not have any
collisions. Steps 2-4 are repeated until a desired number of conformations have

been generated.

The weight w, is computed as follows: For each backbone conformation ¢, an
acceptance probability p.; for each side-chain ¢ is calculated by generating a large
number of random rotamers for that side-chain (in the absence of the other side-
chains of the S region) and counting the number of non-colliding rotamers. If any
Pe,i = 0 (i.e. some side-chain cannot be placed at all without producing collisions),
then backbone conformation ¢ is permanently rejected and w. = 0. Otherwise,
the probability ¢g. to find a noncolliding combination of the individually valid
sidechain conformations is computed. This is done by generating a large number
N, of random combinations of valid side-chain rotamers and counting the number

n. of non-colliding combinations, ¢. = n./N.. The weight w. is obtained as
We = 4¢ Hz De,i-

For Ras p21, an average of kgge = 10 side-chain conformations per backbone
conformer were generated, yielding nf""" ~ 300 and nf"'? ~ 10° collision-free con-
formations of Switch I and II, respectively. Combining pairs of these Switch I
and II conformers yielded 3 x 107 fully build protein structures for each interpo-
lation step ¢. Thus, the total number of collision-free and significantly different
structures is nf"' = 1.5 x 108, forming a large conformational repository from
which structures can be drawn and further energy optimized. The conformations
in this repository are distributed uniformly within the sterically accessible regions
of the conformational subspace spanned by the torsional coordinates of S and the

interpolation coordinate of 1.
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4.4 VALIDATING CONFORMERS IN THE INITIAL
SAMPLE

During the sampling procedure described above, new conformers are validated by
checking that they do not produce very high potential energies (see Fig. 4.1C).
For this, conformations are rejected if they involve atom collisions. A collision
between a pair of atoms %, j is defined such that the Lennard-Jones and Coulomb
interaction energy of that pair exceeds a tolerance value Ey, (Ejy = 20kcal mol™!
was used in this study). The collision check needs to be repeated so often that it
is a computational bottleneck for the sampling method. To avoid computing the

min

interaction energies for all pairs, we compute a minimum allowed distance d;;

for each atom-pair, which is the root of following equation:

12 6
g o q:4;
w - — | — ——— — E =0, 4.4
6 kdm) (dm) ] T redip o

where ¢, is the van der Waals well depth, o;; is the effective van der Waals

radius for atoms 7 and j, ¢; and g; are the partial charges of atoms 7 and j and
€-€g is the dielectric constant. Above equation is solved for d;‘f;“ with Newton’s
root-finding method. For the Ei, used in this study, there was always a unique
solution for d*". If smaller Fi, are used, Eq. (4.4) may have two solutions, in
which case, the smaller solution must be used so as to assure that d;;" reflects the
repulsive interaction. The resulting d;”;" values are stored. A given conformation
is treated as valid if all non-bonded atom distances, d;; (excluding 1-4 pairs)
fulfill the criterion dZ;-"” < d; ;. The number of distance computations is kept
small by embedding the protein coordinates in a lattice and computing distances
only between atoms which have been changed in a given sampling step and atoms

which are in the same or adjacent lattice cells.

4.5 MINIMIZING THE CONFORMERS

To obtain a representative collection of low-energy minima, a number of n,;,

conformers is drawn randomly from the conformational repository and energy-
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minimized on the potential U(x) (see Fig. 4.1¢). Only minima which reach a low-
energy region defined by U(x) < Ejo are accepted, where Ej,, is a predefined
constant. Minimization of many conformers is expensive, so it is desirable to
reject structures early which are not likely to fall into low-energy minima. An
efficient method to do this is to reject high-energy minima can based on statistics
set up during a number of full minimizations. The following method is used here:
For Ras p21, 100 samples were retrieved from the sample repository and fully
minimized to a gradient RMS of 1072 kecal mol~! A=, Each of these minimization
trajectories delivered a series of gradients (go, g1, ..., 8») and associated potential
energies (Uy, Uy, ..., Uy,), where the pair (g,, U,) corresponds to the fully minimized
structure. All tuples (g;, U;) from all 100 minimization trajectories were used to
set up a correlation statistics between g; and AU = U; — U,, i.e. the energy
difference from the fully minimized structure. These statistics, shown in Fig. 4.5,
were used to obtain for each range of gradient values a corresponding value of
AU that was higher than 90% of the AU’s in that range. This yields an upper
estimate of AU, given a certain gradient g. This estimate was used to reject
structures during minimizations if their minimum energy, predicted from this
upper estimate, considerably exceeded the energy tolerance threshold: U(x) —
AU > Ejyy + 10 kcal mol L.

For Ras p21, 15000 conformers were randomly retrieved from the sample repos-
itory out of which 189 reached the low-energy region (Fo, was defined to be 50
kcal/mol above the reactant energy). These were minimized to a gradient RMS
of 1072 kcal mol~! A~! and formed a low-density set of conformations in the low

energy region E(x) < Ejoy-
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Figure 4.5: Using the gradient during minimizations to predict the expected energy
at the minimum. Based on the minimizations of 100 different conformers, each mini-
mization going through a series of intermediates with gradients (gp, ..., &n) and energies
(Uy, ..., Uy), the difference between the energy of an intermediate and the final (mini-
mum) energy, U; — U, is plotted against the current gradient g;. 90% of the points are
below the dashed line, which can be used to estimate how much more the energy may
decrease during a minimization, based on the current gradient value, thus allowing to
abort non-promising minimizations.

4.6 INCREASING THE LOW-ENERGY-CONFORMER
DENSITY

Increasing the density of conformers in the low-energy regions can, in principle, be
done by minimizing more structures from the conformational repository. Given
the low yield of this approach (see above: 189/15000~ 1.25%), this is compu-
tationally inefficient. Instead, additional conformers are built by interpolation
between the already-found low-energy conformers. This can be done in various
ways. The strategy used here was to select each pair of low-energy conformers
separated by a distance in the range 6" = 0.75 A and el — 9 A (mea-
sured as Cartesian RMSD of the C, atoms in the S region) and to generate an
interpolation pathway between them using the method described in Sec. 4.2. Two
structures were generated, one third and two thirds of the way along each inter-
polation, respectively, and energy minimized as described in Sec. 4.5 (see Fig.
4.1d). This procedure was efficient in finding low-energy minima, increasing the
number of conformers below FE, from 189 to 10831. This considerably increased

the average number of neighbors for each minimum from 3 to 267 (“neighborhood”
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being defined by a cutoff distance §<orrect),

During minimization, it is possible that some conformers end up in similar minima.
This produces conformational redundancy, which was subsequently removed. For
this, minima were considered in the order of increasing energy, accepting only
those minima whose nearest-neighbor distance to any already-accepted minimum
was at least 6comect — (.75 A . This led to a final number of |V| = 6242 diverse

minima which served as the vertices of the transition network.

4.7 CONCLUSION

The sampling method presented in this chapter allows to uniformly sample con-
formations for complex conformational changes in proteins. Although it does
not generate a statistical ensemble which obeys the Boltzmann distribution, it
allows to efficiently explore the conformational space relevant to the conforma-
tional change without being hindered by energy barriers. Statistical ensembles,
which allow for the computation of free energies, probabilities and rates can be
computed later for certain regions of interest, defined by a subset of the confor-

mational sample (see also Sec. 2.1.3 and the discussion in Chapter 6).

The conformational sample obtained here allow to generate a static TN for Ras
p21 based on potential energies. Together with the algorithms introduced in
Chapter 3, it enables a comprehensive analysis of the Ras p21 conformational

switch, which is given in the next chapter.
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CHAPTER 5

COMPREHENSIVE ANALYSIS OF THE
RAS P21 CONFORMATIONAL SWITCH
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Ras p21 is a protein that can switch between two stable conformations in order
to communicate a growth signal (or the lack thereof) to the interior of the cell |6,
77]. Although the end-states of the switch are known from X-ray crystallography
|78, 79], no experimental evidence of the actual mechanics of the switch transition
is available. The switch is extremely slow (the rate was measured to be on the
order of 107* s7* [80], i.e. one event per every few hours), rendering standard
molecular dynamics simulation useless. The switch transition is also very complex,
involving a rearrangement of parts of the backbone that include more than 30
flexible torsion angles, so that no unambiguous guess of the reaction pathway is
possible. Nevertheless, previous studies have attempted to describe this transition
using methods which rely on such an initial guess [19, 81, 82], yielding the main
result that the switching process is by far too complex to be captured by a single
reaction pathway. In the present chapter, we demonstrate the capability of the
methods developed in this work to model complex molecular processes by giving a
comprehensive Transition Network analysis of the Ras p21 conformational switch
that yields valuable insight into its mechanism. Among the questions that have
been raised by a previous study of this conformational transition [19] and that
are addressed here are: 1) Is the rearrangement of Switch I characterized by the
side-chain of Tyr32 threading underneath the backbone or by moving it through
the solvent (see Fig. 5.1)7 2) Is there a coupling between the Switch I and Switch
IT transitions, i.e. is the relative order of events in the two Switch regions strictly
defined? 3) Is there a well-defined unfolding pathway of Switch II?

The computational methods presented in Chapter 3 were used to compute best
transition pathways (Sec. 5.2) and energy ridges (Sec. 5.3) for the conformational
switch, demonstrating the order of complexity that can be accessed with these
methods (The system setup is described in Appendix C). The analysis of the best
paths and the energy ridges, together with a residue-based energy decomposition
of the transition states (Sec. 5.4), yields extensive information on the mechanism

of the conformational switch and give answers to the questions posed above.

In lack of reliable methods to compute appropriate free energies for TN vertices
and edges (see Sec. 2.1.3), the Ras p21 TN is based on potential energies only. The
results shown in this chapter should therefore be treated in the sense of Eq. 2.10:
Comparing alternative pathways or transition states is based on a correlation.
A large energy difference AE,o > kgT (kg1 ~ 0.6 kcal/mol at T = 300 K)
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between two alternative pathways gives clear preference to the lower-energetic
pathway, while energetically similar pathways cannot be reliably distinguished
and the energy barriers cannot be directly transfered into rates (see also Sec.
2.2.2).

5.1 THE FUNCTIONAL CYCLE OF RAS P21

Before going into the details of the molecular switch it is useful to have an overview
of the functional context. The intrinsic! functional cycle of Ras p21 consists of
four main states, in which Ras is switched between an active (Ras*) and inactive
(Ras) form:

A)Ras* - GTP + H,O — B)Ras*-GDP-P;

1 )
D)Ras+GDP +P; « C)Ras-GDP + P

A) In the active form Ras p21 is bound to the molecule guanosine-tri-phosphate
(GTP) and enables cell growth.

B) The hydrolysis reaction GTP + H,O — GDP + P; has “discharged” GTP
into guanosine-di-phosphate (GDP) and inorganic phosphate (P;).

C) After the conformational change and the release of P;, Ras is in the inactive
form Ras - GDP.

D) When GDP has been released to the solvent, Ras is in an (structurally
unknown) inactive form. It is ready to be recharged by GTP, and to re-

enter the cycle in step A.

Fig. 5.1 illustrates the functional cycle of Ras. Cycle step B—C involves the
conformational switch that is modeled here. A critical process is the release of
the P;, which might, in principle, occur before, after, or during the conformational
change. To test which of the three options are the most likely, the energetics of
the Ras- GDP - P; and Ras:- GDP + P; networks were compared. A sampling of the

M4ntrinsic” means that the cycle only involves Ras and its ligands. In vivo, steps A — B and

C — D — A are normally accelerated by the interaction between Ras with two other proteins:
the GTPase Activating Protein (GAP) catalyzes GTP hydrolysis and the Guanine Nucleotide
Exchange Factor (GEF) catalyzes the nucleotide exchange.
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Figure 5.1: Structures in the intrinsic functional cycle of Ras p21. A) Ras p21 is active
when it is bound to GTP (pdb entry 5p21, [78]). B) Immediately after hydrolysis
(GTP + HoO — GDP + P;) Ras is still in an (unstable) active form, but GDP and
inorganic phosphate, P;, are bound to it. C) The release of the inorganic phosphate
from the binding site is associated with a conformational change. In this conformational
switch of Ras p21, the Switch I loop rearranges such that Tyr32 moves to the other
side of the backbone, and the Switch II helix unfolds. After the switch has completed,
Ras p21 enters its inactive GDP-bound form (pdb entry 1g21, [79]). D) When GDP
leaves the binding site, Ras is in an inactive form in which no nucleotide is bound (no
experimental structure available). To become active again, Ras must be “recharged”
with GTP.

conformational subspace relevant for the switch was conducted for both systems.
The resulting TN for Ras - GDP - P; had |V|=8445 and the one for Ras - GDP
(sampling described in Chapter 4) had |V|=6242 vertices. The connectivity of
both TN was defined by connecting all vertices-pairs by an edge if their distance
(measured as RMS distance of the C,-atoms of the S regions) was less than 1.5
A. To have an a priori definition of the edge energies, the mean value from the

energy barrier statistics given in Appendix C.3 was used.
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An “energetic flooding” was performed for both TN starting from the reactant
vertex (the active form, see also Sec. 4.6). For this, we increased the flooding
energy, starting from the reactant energy, gradually in steps of 5 kcal /mol. In each
step, all vertices V,., that are newly reached by overcoming barriers not higher
than the flooding energy, are marked. The set V., is assigned an energy equal
to the minimum energy of its vertices, and a distance equal to the mean distance
between the reactant and each of its vertices (where the distance is measured as
RMS difference between the C,-atoms of the S regions, normalized to the distance
between reactant and product). Barriers between the subsequent vertex-sets are
defined by taking for their energy the flooding energy that needs to be overcome
to reach a set and a distance is assigned to each barrier by the average of the
distances of the previous and the next vertex sets. In this way, an energy profile
as plotted in Fig. 5.2 is obtained?.

Comparing the energy profiles shows that the Ras- GDP + P; profile is flatter and
lower than the Ras - GDP - P; profile. The product energy on the Ras - GDP - P;
profile exceeds the rate-limiting barrier for the full transition on the Ras-GDP+ P;
profile, such that it is unlikely that the inorganic phosphate, P;, is released after

2In either TN setup, P; or H,O was in the y-phosphate place of the magnesium ion coor-
dination sphere. Thus, the systems for which energies were computed are a) Ras- GDP - P;
and b) Ras- GDP - H,O. To allow for a meaningful comparison, they are transformed to a’)
Ras - GDP - P; + H,O and b’) Ras - GDP - H2O + P; by adding the solvation energies and trans-
lational entropies of HoO to the Ras- GDP - P; TN (Esf(lj‘? TSH29 ~ —20.5 keal /mol) and
P; (BN — TSgi., ~ —142 keal/mol), respectively. The solvation energy is the free energy
difference gained by putting the compound from vacuum into water and was computed with the
ACE 2 implicit solvent model[83]. The translational entropy was computed at T=300K and a
pressure of 1 bar.
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the conformational change. The second energy barrier on the Ras-GDP -P; profile
also exceeds this rate-limiting barrier, suggesting that P; is released before, or in
an early step, of the conformational switch and the conformational change occurs
(at least mainly) on the Ras - GDP + P; surface.

Consequently, all further calculations were performed using the Ras- GDP TN (P;
is assumed to have left to the solvent already and is not treated as a part of the
system). To reduce the complexity of the network, the number of neighbors for
each vertex was restricted to the 20 nearest neighbors. The resulting transition
network had |V|=6242 vertices and |£|=47404 edges.

The “reactant” and “product” vertices were redefined on the network by selecting
the lowest energy minima within the vicinity of the crystallographic reactant and
product structures after quenched MD (see Appendix C). The “vicinity” was
defined here to be within both a ¢/1¥-RMSD of 50° and a Cartesian RMSD of 1.5
A for the C,-atoms of the Switch regions. The resulting Cartesian RMSD over all
C, atoms between the crystal structures and the so-chosen reactant and product

conformers was 1.4 and 1.5 A | respectively.

5.2 BEST PATHS

Best paths between the reactant and product structures of the Ras p21 confor-
mational switch (defined in Sec. 4.6) were computed using the iterative algorithm

described in Sec. 3.2.1, and then structurally analyzed.

5.2.1 COMPUTATIONAL EFFORT

To evaluate the performance of these algorithms on the Ras p21 TN, a prior:
values for the upper and lower bounds on edge barriers (i.e. BM™" = ( and
B2® = 00), as well as statistically estimated bounds (described in Appendix
C.3) were used. We also examined the partial computation of best paths, in
which only the best-path-sections within an energy interval AFEg,,. below the
rate-limiting steps are determined (see Sec. 3.2 and Fig. 3.9A). Table 5.1 shows
the number of edges required to be computed with CPR, n.., for the best path

under these different conditions to be determined (starting the count from scratch
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for each setting).

To determine the whole best path using a priori bounds on the energy barriers
required nearly four times as many computations (n..=2252) as to compute it
using statistical estimates of the bounds (n..=603). This faster convergence be-
havior agrees to our results for random TN in Sec. 3.4.3, demonstrating that the
computation time for best paths can be greatly reduced by introducing a small
uncertainty. The maximum error on the rate-limiting barrier resulting from the
present estimates of E™" would be 5.25 kcal/mol (from Eq. 3.6), but here, sta-
tistical estimation determined the correct best path nearly completely. Indeed,
except for one additional, insignificant low-energy edge, the estimated best path
is equal to the true best path. In particular, the rate-limiting energy barriers are

the same.

The computational savings are even larger when the determination of the best
path is limited to its highest-energy barriers. The value of n.. when only the
highest barrier along the path is certain (AFEgy. = 0) are compared with n,.. when
all barriers along the best path are determined (A Fgye = 00). In conjunction with
a priori bounds (BR® = 0, B2 = 00), using A Egye = 0 reduces n,, only slightly
(from 2252 to 2059). However, in conjunction with statistical estimates on the
edge energies, using AFEg,. = 0 reduces the ne. by a factor of six (from 603 to
106). This is due to the fact that, when statistical estimates are used, many
edges have an upper energy bound which is already below the energy region of
interest (£ < Epeax — AFEgye), which means that their barriers do not need to

be computed.

5.2.2 STRUCTURAL ANALYSIS

The 13 pathways of lowest energy (with rate-limiting barriers within a range of 10
kcal /mol) were computed and structurally analyzed. This showed that in the best
path, about half of the Switch II helix first unfolds before the rearrangement of
the Switch I, in which Tyr32 passes underneath the backbone. Subsequently, the
rearrangement of Switch II completes. This latter step has the highest potential
energy barrier along the best path (E e =45 kcal/mol relative to the reactant),

indicating that it is rate-limiting. In these aspects, the 12 next best pathways
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‘ AFqgre? ‘ Prior® ‘ Est.d ‘

0 2059 | 106
5 2059 | 114
10 2069 | 212
15 2115 | 321
20 2208 | 505
25 2224 | 565
30 2246 | 589
oco® | 2252 | 603
| Len® | 23 [ 24

| Barr! | 45.7 [ 45.7 |

Table 5.1: Number of edges computed to determine
the best path, assuming no barrier has been previ-
ously computed. Computing an edge on a 3 MHz PC
took around 2 hours CPU time, on average. a) Energy
range below the highest barrier within which lower bar-
riers are known to belong to the best path (see Fig.
3.9A). b) The correct best path is determined. ¢) Us-
ing BRM — (), BMaX — oo as bounds on the unknown
edge energy barriers. d) Using stat. estimates (Ap-
pendix C.3) to guess B™" and B™#*. e) Number of
edges along the fully-determined best path. f) Rate-
limiting energy barrier along path, in kcal/mol relative
to reactant.

are similar, the differences between them mainly lie in the precise order of events

in the Switch II unfolding (e.g. in the degree of Switch II unfolding at the time

when Tyr32 passes underneath the backbone). A sketch of the best pathways

is shown in Fig. 5.3. The timescale of the Ras p21 conformational switch[80]

requires that no free energy barrier along the path exceeds 23 kcal/mol. This

implies that a significant entropic contribution, due possibly to an increase of

backbone flexibility, reduces the high enthalpic barrier found here.
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Figure 5.3: 2D representation of the potential energy surface of Ras p21. The horizontal
and vertical axis measures, respectively, the orientation of Tyr32 on the Switch I loop
(dihedral angle Pg,C32,N32,0Hg3o, in degrees), and the helicity of Switch II (number of
a-helical H-bonds). The energies are those of the TN vertices and are encoded by color
(dark gray=0 kcal/mol, light gray=60 kcal/mol). Reactant and product structures are
shown by the 'R’ and 'P’ bullets. The triangles mark the rate-limiting transition state
of the Switch I transition along low-energy paths and correspond to the lowest-energy
points shown in Figs 5.8b and c. The best transition pathway is shown in white, the
next-best transition pathways whose rate-limiting step is up to 10 kcal/mol higher are
shown in yellow, red, magenta and cyan. The best path with Tyr32 moving through the
solvent is shown in blue.

Is the rearrangement of Switch I necessarily associated with a passage of Tyr32
underneath the backbone? The energy barrier associated with the Tyr32 passage
is 25 kcal/mol along the best path. For comparison, along paths in which Tyr32
passes the other way (i.e. through the solvent), the barrier of that passage is
at least 40 kcal/mol. Although still lower than the rate-limiting barrier of the
whole pathway, this clearly indicates that passage underneath the backbone is

the preferred mechanism.

Is there a typical order of events in Switch II? To examine this, the a-helical hy-
drogen bonds between the Switch II residues 64 to 73 were evaluated along the 5
best paths. Fig. 5.4A shows which hydrogen bonds are present at different posi-

tions along these pathways. An a-helical hydrogen bond was defined as 'present’,



82 CHAPTER 5. APPLICATION TO RAS P21

if the distance between the backbone-O atom of residue r and the backbone-H
atom of residue r + 4 was < 2.2A. All 5 pathways exhibit a relatively similar be-
havior as to the order of rupture or formation of these hydrogen bonds: H-bond
69-73 (the hydrogen bond between residues 69 and 73) stays active along all best
paths and is only temporarily broken or weakened to allow for rearrangements
of neighboring residues. H-bond 68-72 is very weak in the reactant and becomes
transiently active during the transition, stabilizing intermediate structures. H-
bonds 65-69, 66-70 and 67-71 are lost at about half of the transition whereas
H-bond 64-68 is lost very early in all paths and only transiently reformed for
paths 3 to 5. The overall tendency is that the Switch II helix unfolding progresses
from its N-terminal (nucleotide-near) to its C-terminal (nucleotide-far) end. This
is also apparent in Fig. 5.4B which shows four structures of Switch II along the
best path.
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Figure 5.4: A) Evaluation of the a-helical hydrogen bonds present in Switch IT along the
5 best transition pathways (See text for definition of present a-helical H-bonds). The
structures along the 5 best transition pathways (black: best, orange: 5th-best path) were
checked for such hydrogen bonds in residues r = 64...69 (Switch IT). The horizontal axis
measures the position along the path coordinate A = k/K, where k counts the number
of edges between the reactant and the current vertex, and K is the total number of edges
in the path. Each colored line-segment means that a hydrogen bond is present at that
point of the path of corresponding color. B) Structure of the Switch IT helix (residue
64 to 73) along the best path. Residues that can form a-helical hydrogen bonds (black
lines) are shown in equal colors. The actual a-helical part is denoted by a dotted box.



5.2. BEST PATHS 83

5.2.3 STRUCTURE OF THE BEST-PATH NETWORK

What is the structure of the network consisting of the edges belonging to the
best paths? This question is related to the question: what is the structure of
the essential subspace, i.e. the set of configurations that are accessible at a given
temperature. The best-path network is embedded in the essential subspace and
“marks” the conformational transition routes which are, on average, most popu-
lated. For this, the 32 best paths with rate-limiting barriers within a range of
15 kcal/mol were computed. They describe a subnetwork of the full TN with
|[Vpp| = 180 vertices and |Epp| = 448 edges.

A commonly used tool to reduce the dimensionality of a dataset to prepare it for
visual representation is the Principal Component Analysis (PCA, [84]). In PCA,
an Eigenbase is determined for the covariance matrix of the data. The principal
components are the eigenvectors with the largest eigenvalues, i.e. those vectors in
whose directions the variance of the data is maximal. If up-to-three eigenvectors
account for the majority of the total variance of the data, it can be reasonably well
visualized by projecting its coordinates on its up-to-three first principal compo-
nents. For the vertices of the present best-path network 24 principal components
are required to cover 95% of the variance in the data. A projection on three prin-
cipal components therefore does not yield a projection, which captures the correct
relative distances of vertices. Another projection method, Sammon mapping [85],
which attempts to find an arrangement of low-dimensional data points such as to
optimally reproduce the pairwise distances of the high-dimensional data, failed to
achieve a small projection error because of the intrinsic high-dimensionality of the
data. To cope with these difficulties, we developed another mapping method, the
Topology-Preserving Mapping (TMP), which attempts to find an arrangement of
low-dimensional data points such that the close data points (here: pairs of vertices
which are directly connected by an edge) remain close, while all other data points
must be further apart (but no specific requirements are made on their distance).
It can thus be understood as a relaxed derivate of Sammon mapping. A detailed

description of TMP is given in Appendix D.

A three-dimensional TMP projection of the best-path network is shown in Fig.
5.5. The 4 best pathways with rate-limiting barriers within 5 kcal/mol follow

three largely disjoint channels: Apart from a junction close to the reactant that
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is used by 3 paths, they explore different, non-adjacent regions of the essential
subspace. This shows that despite a number of structural similarities shared by
the best paths (such as the Tyr32 motion in Switch I and the H-bonding pattern
in Switch II, see previous section), the precise conformations explored during the
transition may vary significantly. This indicates that a large number of confor-
mations can realize similar structural properties. Considering the 13 best paths
within 10 kcal/mol, again significantly increases the variability of the transition.
This subnetwork has more junctions: some of the higher-energy pathways deviate
from lower-pathways just in a part of the way, rejoining them later. The full best-
path network with rate-limiting barriers within 15 kcal /mol is a complex network
that is particularly dense near the product structure, which can be accessed from

many different conformations.

Fig. 5.6 highlights the emergence of dense regions in the best-path network by
showing the best paths accessible at different levels of energy above the best path.
At a level of 12 kcal /mol, there are a few conformational regions in which the best-
path network is so dense, that these regions are likely to be fully accessible, only
“interrupted” by some forbidden sub-regions, e.g. corresponding to steric clashes.
This allows to switch between different pathways within those dense regions, i.e.
they function as “hubs”. Hubs are mutually connected by single pathways or

narrow channels of pathways.
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Figure 5.5: Three-dimensional projection of the TN vertices contained in the 32 best
pathways between reactant (R) and product (P) whose rate-limiting barriers are in a
range of 15 kcal/mol. Topology-Preserving Mapping (TMP, see Appendix D) was used
for the projection. Each line junction or kink corresponds to a TN vertex, each straight
line segment corresponds to a TN edge. The colored surfaces mark the regions explored
by the best paths. Red: the best path, orange: 3 best paths with rate-limiting barriers
within 5 kcal/mol, Yellow: 11 paths within 10 kcal/mol.

Energy (kcal/mol)

Figure 5.6: Accessible paths at different energy levels. The same projection as in Fig.
5.5 is used. Here, the best paths which are accessible at a certain energy (horizontal
axis, relative to the rate-limiting barrier of the globally best path) are shown.
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5.3 ENERGY RIDGES AND RATE-LIMITING STEPS

To better characterize the mechanism of the rate-limiting steps of the transition,
the two energy ridges of the Switch I and Switch II rearrangements were deter-
mined. The Switch I energy ridge (abbreviated as: ridge 1) is due to the rearrange-
ment of Tyr32 as it passes from a conformational region with —30° < a@ < —10°
to a region with 60° < o < 110° (where a characterizes the position of Tyr32
and is measured as the dihedral angle P,Cs9,N35,0H3,). The other energy ridge
(ridge 2) is the globally-highest energy ridge and is due to rearrangements in the
Switch II.

5.3.1 COMPUTATIONAL EFFORT

Ridge 1 was computed with AFEgy,e = 30 kcal/mol and using a priori values for
the barrier bounds (B™" = (0, B™> = o0). Ridge 2 was computed fully (i.e.
AEgyre = 00), with both a priori barrier bounds and with statistical estimates for

the barrier bounds (see Appendix C.3).

To test the performance of the algorithm given in Sec. 3.3, the number of energy
barriers needed to be computed by CPR to determine Ridge 2 was evaluated using
different settings. The results are shown in Table 5.2, where the counting is started
from scratch for each setting, assuming that no energy barrier has been computed
yet. When the full energy ridge is computed (AFg. = 00), statistical estimates
reduce the computational cost by a factor of less than 2. This agrees with the
results on random TN in Sec. 3.4.3, where it was shown that using statistical
estimates to compute energy ridges gives less computational savings than for best
paths. However, when only the lowest energy barrier of the ridge is determined
(AFEsue = 0), a factor of 4 is saved when statistical estimates are used instead of a
priori barrier bounds. The statistically determined energy ridge 2 (A FEgye = 00)
agrees with the “exact” ridge 2 in the lower-energy edges (up to 5 kcal/mol above
the lowest edge). For edges of higher energy, only about 25% of the edges in the
“estimated” ridge really belong to the true energy ridge. This confirms that the
use of estimated barrier bounds is less safe for the determination of energy ridges
than of best paths (see Sec. 3.4.3).
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‘ AFEg el ‘ Priord ‘ Est.d ‘ Table 5.2: Number of edges that must be

0 305 214 computed with CPR to determine the en-
5 362 203 ergy ridge of the Switch II rearrangement,
10 397 333 assuming no energy barrier has been pre-

R 1092 T 509 :}ilously comput.ed. a) Num’?er of edges in

e fully determined energy ridge. b) Lowest
20 1092 622 edge barrier of the energy ridge, in kcal /mol
o 1092 667 relative to the reactant. c¢) oo means that
‘ Size? ‘ 174 ‘ 162 ‘ all barriers of the ridge are determined. d)
‘ Barr.P ‘ 45.7 ‘ 45.7 ‘ Same meaning as in table 5.1.

5.3.2 STRUCTURAL ANALYSIS

Energy ridge 1 and 2 impose an ordering of events on all possible pathways: The
subnetwork defined by the reactant-side of ridge 2 is divided by ridge 1, and wvice
versa the subnetwork defined by the product-side of ridge 1 is divided by ridge
2. This implies that all trajectories from reactant to product must pass through
ridge 1 before passing through ridge 2. Therefore, the rearrangement of Tyr32 is
always finished before the rate-limiting rearrangement of Switch II starts. The

position of the two energies ridges can be seen in Fig. 5.7.

Figure 5.7: Transition states of the energy ridges. The same projection as in Fig. 5.5
is used. The edges whose transition states lie on an energy ridge are marked by colored
balls. Yellow: energy ridge 1, Tyr32 is passing underneath the backbone. Orange: energy
ridge 1, Tyr is passing through the solvent. Blue: energy ridge 2, which corresponds
to the final rearrangement of Switch II towards the product conformation. The ridges
mark an order of events in the Ras p21 conformational switch: Each pathway first passes
through ridge 1 (i.e. the Tyr32 repositioning) before passing through ridge 2 (i.e. the
rate-limiting Switch II rearrangement).
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Figure 5.8: Two-dimensional projection of the energy ridges of the Ras p21 transition.
Transition states from each ridge were projected on their two first Principal Components
(computed from the Cgy-coordinates). Each panel (b,c,d) shows one ridge and the corre-
sponding conformation of the Switch I loop (box in top right corner of each panel). The
projected points cluster (ellipsoids) according to their different Switch II conformations
(typical backbone conformation shown for each cluster). The energy of the transition
structures, is coded by color. (a) Reactant state: Switch I has Tyr32 pointing to the
'right’, Switch II is a helix. From here, the conformational change proceeds through pan-
els b or c. (b) Energy ridge of the Switch I-transition, with Tyr32 passing underneath
the backbone. There is a large variety of alternative Switch II-conformations at this
step of the transition. (c) Energy ridge of the Switch I-transition with Tyr32 moving
through the solvent. (d) Energy ridge of the Switch II-transition, which is globally rate-
limiting. The transition of Switch I is already completed and Tyr32 is pointing to the
'left’. Various iso-energetic ways for the Switch II rearrangement coexist. (e) Product
state: Switch I is pointing to the ’left” and Switch II helix has fully unfolded.
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To visualize the two energy ridges, Fig. 5.8 shows a two-dimensional projection
of the transition states contained in ridge 1 and ridge 2. Ridge 1 was split into
two sets: one set containing the transition states that involve the passage of
Tyr32 underneath the backbone, and the other set containing the transition states
having Tyr32 passing through the solvent. In the case where passage of Tyr32
is underneath the backbone, there are 7 different transition states in Ridge 1 up
to 10 kcal/mol above the lowest transition state in Ridge 1. These considerably
differ in the amount of unfolding of the Switch II helix: some still form a perfect
helix, while in others the helix is fully unfolded (Fig. 5.8b). In the unlikely case
that Tyr32 passes through the solvent, the conformation of the partially unfolded
Switch II helix is well defined, as can be seen from its similar structure in the
next-higher transition states (Fig. 5.8c).

Ridge 2 contains the globally rate-limiting transition states. 14 of them are up to
10 kcal /mol above the lowest transition state in ridge 2 (which is the rate-limiting
barrier in the globally best path). These alternative transition states are highly
scattered in Fig. 5.8d, showing that the structure of Switch II varies considerably.
Thus, there are many different ways in which Switch II can rearrange toward the
product structure (in agreement with Sec. 5.2.3) and the coupling between Switch
I and II is weak enough to allow for different orders of the conformational events
in both Switch regions. This confirms that the Ras p21 conformational switch is
highly degenerate, thus involving a possibly significant entropic contribution to

the free energy profile of the conformational switch [19].

5.4 ENERGY DISTRIBUTION IN TRANSITION STATES

To further extend our understanding of the structure and interactions in the tran-
sition states, an energy decomposition was obtained for all saddle points of both
energy ridges. The concept here is to decompose the potential energy of a given

structure, Epet(x), into contributions by the individual residues, Epot r(X):

Epu(®) = D eilxix)=> | > ei,j(Xian)‘F% D e(xixg)

pairs (,5) resR | (i,j)€ER 1€ER,j¢R

= Z Epot,r(x). (5-1)

res R
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The contribution by each residue is the sum of its self-energy (which is the sum
over all interactions internal to that residue®) and half of the interaction energy
with the rest of the protein (which is the sum over all interactions between atoms
of that residue and atoms of other residues). Such a decomposition may yield a
detailed understanding of the transition state and its energetics which are given

by the interactions of the individual residues.

5.4.1 ENERGY DECOMPOSITION FOR LOWEST SADDLE POINTS

Here, the energies of all saddle points in energy ridge 1 and 2 were decomposed into
the contributions of the Switch I residues, the Switch II residues, the magnesium
and GDP ligands and four water molecules which act as magnesium coordination
partners. Fig. 5.9 shows a visualization of the Switch I residue energies for the
lowest-energy transition states in energy ridge 1. There are several ways how the
rearrangement of Tyr32 can occur in detail. In the reactant state, the flexibility
of Switch I is limited as the Thr35 backbone is attached to the magnesium, which
hinders the passage of Tyr32 underneath the backbone. To enable the Tyr32

passage, there are three options:

1. Switch I is deformed such that Tyr32 can avoid Thr35 (Fig. 5.9B and C).

The residue energies are relatively equally distributed over Switch I.

2. Thr35 temporarily detaches from the magnesium, opening a cleft through
which Tyr32 passes (Fig. 5.9A and D). Thr35 and the Mg ion are energeti-
cally excited. The lowest-energy transition state shown in Fig. 5.9A is more
beneficial than the one shown in Fig. 5.9D because Thr35 is stabilized by a
hydrogen bond to the backbone of Asp33.

3. Thr35 detaches from the Mg ion and is replaced by Water173 (Fig. 5.9E).
Switch I now has enough flexibility to let Tyr32 pass. The energies of both
Waterl73 and the magnesium are reduced because of their newly-formed
interaction. The GDP energy increases as its relative contribution to the
coordination of the Mg ion is reduced. The Thr35 energy increases because

it has lost the Mg ion as a coordination partner.

3If an implicit water model is used, as is the case here, the residual self-energy also contains
contributions from solvation and hydrophobic energies.
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A (0 keal/mol) B (2.1 kecal/mol)  C (7.9 kecal/mol)

AsSp33

(kcal/mol)

GO

Figure 5.9: Visualization of the residue energies for the best six transition structures
in ridge 1. The total energies, relative to the best transition structure (A) are given in
parentheses. The residue energies, relative to their average value in the reactant and
product end-states, are computed as defined in Eq. 5.1 and coded by color (see legend).

A (O kcal/mol) B(1.7 kcal/mol) C (5.4 kcal/mol)

(kcal/mol)

D (6.5 kcal/mol) E (7. 5 kcal/mol) F (7.7 kcal/mol)

Figure 5.10: Visualization of the residue energies for the best six transition structures
in ridge 2. See also Fig. 5.9.
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The energy decomposition of the ridge 2 structures into Switch II residues shows
that the large amount of variation in ridge 2 is not only in the structures but
also in the residue-energy patterns (see Fig. 5.10). The residues at the Switch II
boundary, Alab9, Gly60, Asp69 and GIn70 have similar conformations and in the
different transition state energies. The conformations of the intermediate residues
GIn61 to Arg68 differ significantly as well as the distribution of energies. Arg68 is
(at least slightly) excited in all cases. Tyr64 is considerably excited in Fig. 5.10D
and E, GIn61 in Fig. 5.10D, and Ser65 in Fig. 5.10F.

5.4.2 CORRELATIONS BETWEEN RESIDUE ENERGIES

A more comprehensive picture of the interactions between individual residues is
obtained when correlations between the residue energies are analyzed. In energy
ridge 1, for example, we expect a negative correlation between the energies of
Wat173 and Thr35 as they are competing for interaction with the magnesium ion
(path 3, above). The energies of Tyr32 and Asp33, however, should be positively
correlated as they collaborate to facilitate the Tyr32 transition (path 2, above).

The correlation ¢;; € [—1, 1] between two residue energies F; and E; is computed

as:

o = \BiEj) — (Ei)(Ej)
Y o(E)o(E;)

(5.2)

where (E,E;) — (E;)(E;) is the covariance between E; and E;, weighted by their
standard deviations o(F;) and o(E;). By computing the correlations between
the residue energies over all transition states in ridge 1 and ridge 2 each, two

correlation matrices are obtained. The results are shown in Fig. 5.11.

In ridge 1 (Fig. 5.11A and B) the strongest correlations are within the ligand
cluster and Switch I loop. There are strong (anti)correlations between the mag-
nesium ion and its coordination partners. These correlations are of little interest
as the coordination sphere does not undergo conformational changes. The only
exception here is, the Wat173 whose energy is correlated with the magnesium
energy and anti-correlated with the energies of the magnesium coordination part-
ners. This is because Wat173 is separated from the magnesium in the reactant

state, but within the coordination sphere in the product state, thus competing
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with GDP and the other waters.

Among the Switch I residues, there is an anti-correlation between the energy of
Thr35 and the energies of Tyr32 and Asp33. This is explained by different com-
peting pathways for the Tyr32 passage. If the Tyr32 passage is facilitated by
detaching Thr35 from the magnesium (path 2, above), the Tyr32 energy is com-
paratively low as it can pass unhindered, and during the passage the hydrophobic
ring is buried and the OH-group can interact with Thr35 and the magnesium. The
Asp33 energy may also decrease as its backbone can form a strong hydrogen bond
with Thr35. However, the energy of Thr35 is high as the very favorable interac-
tion with the magnesium ion is lost. In the alternative pathway (path 1, above),
Tyr32 is threaded underneath the backbone by a deformation of Switch 1. This
pathway is less favorable for Tyr32 because of steric clashes and for Asp33 as it
cannot hydrogen-bond with Thr35. It is very favorable for Thr35 as it can remain
in the coordination sphere of the magnesium ion. The third possible pathway
(path 3, above) involves Wat173 which replaces Thr35 in the magnesium coordi-
nation sphere. As expected, there is an anti-correlation between the Wat173 and
Thr35 energies (reflecting the competition of these residues for the magnesium
ion coordination) while Wat173 is positively correlated with Tyr32 and Asp33 (as
these residues do not need to be deformed in path 3).

The main correlations in the energy ridge 1 transition states are among Switch
I and the ligands while the correlations with Switch II and within Switch II are
relatively weak. The possible transition states are structurally similar, but there is
significant competition between the residues for three pathways of moving Tyr32
underneath the backbone that are different in detail. This competition leads to
a frustration between the participating residues within the ridge (i.e. there is
no “perfect” transition state configuration in which all residue energies are low),

reflected by anti-correlations between these residues’ energies.

The picture of the transition over energy ridge 2 (Fig. 5.11C and D) is considerably
different. Apart from its boundary residues 59,60 and 69,70, the energetics and the
structure of Switch II are not well-defined. Apart from some correlations internal
to Switch I and the ligands there is a very clear block of positive correlations
involving most residue pairs in Switch II. The energies of the residue triple Tyr64-

Ser65-Ala66 are strongly correlated. Less strongly, but also positively correlated
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Figure 5.11: Relationship between transition state structure and correlations in be-
tween residue energies. A) Best transition state structure in energy ridge 1. B) Cross-
correlations between residue energies, computed over all transition states of energy ridge
1. Anti-correlations are shown in blue, positive correlations in red. C) and D) are same
as A) and B), but for energy ridge 2.

are the triples Gly60-Gln61-Glu62 and Arg68-Asp69-GIn70, as well all of these
three triples with their neighbor triples. No significant anti-correlation is present

between the Switch II residue energies.

What is the impact of such a cluster of positive correlations on the total energy
of the system? To answer this question, imagine following model system: We
are given a number n of degrees of freedom in a heat bath with temperature
T. Each degree of freedom, i, can assume either of two states 0 and 1 with
different potential energies E; € {0 kgT,1 kgT}. If the degrees of freedom are
independent, each degree of freedom will have its state population given by the
Boltzmann distribution (p(0) = 1/(1 +e™'), p(1) = e7'/(1 +e71)). The total
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potential energy of the system is given by Epo = >, E;. Thus, the total potential

energy is distributed as

Epot
n

pEw) = (77 o0y Erpo (53)

i.e. as a Poisson distribution.

If there are correlations between the energies of the individual degrees of free-
dom, the total energy distribution will deviate from Eq. (5.3). Anti-correlations
between individual degrees of freedom sharpen the energy distribution because
high values in some degrees are compensated by low values in others. Positive
correlations, on the other hand broaden this distribution as the system prefers to
collectively explore both low and high-energy states. Thus, a pairwise positive
correlation between residue energies, as is visible for the Switch IT in Ras p21,
above, increases the likelihood that this part of the protein explores extreme po-
tential energy values. It is therefore able to faster overcome high potential energy
barriers, such as the one involved in unfolding the Switch II Helix. Note that
this effect is neither enthalpic nor entropic: In fact it does not change the ener-
gies at all, but rather the magnitude of excitations on certain parts of the energy

landscape.

It may be a general evolutionary strategy to craft parts of proteins in such a way
that collaborative inter-residual correlations that are active in particular confor-

mations allow to assume otherwise inaccessible states.
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6.1 CONCLUSION

This is a computational work with a molecular biophysical application. In the
molecular biophysics community, problems are typically not formalized in such
a way that they can be addressed by a computer scientist, whereas the com-
puter science community does not yet seem to pay much attention to the field
of biophysics. For example, some basic ideas of Transition Networks have been
formulated |35, 50|, but no rigorous computational formalization had been made.
Except for some very recent work [86, 87|, no graph-theoretical methods had been
used to address this class of problems. In the present work, such a formalization
was laid down. We feel this is an important step in providing a basis of com-
munication between the fields of computer science and biophysics, at least in the

problem field of conformational transitions.

Hitherto it was not possible to generate and analyze the vast Transition Networks
involved in complex protein transitions for two reasons: (1) no efficient sampling
procedure was available to find and distribute the network vertices and (2) the cal-
culations to determine the energy barriers of the many edges are expensive. Both
these problems have been overcome in the present study. An efficient sampling,
selection and minimization procedure generates uniformly distributed conformers
in a conformational subspace that is energetically accessible and geometrically
relevant for the transition. The presented graph-theoretical approaches allow to
determine global properties of the network, such as best paths connecting and the
energy ridges separating the end-states while computing only a small subset of

the total number of sub-transitions in the network.

When applied to the conformational switch of Ras p21, the energetically best
pathways and the two main energy ridges could be identified. These results give
detailed information on the structural mechanism of the conformational switch
which had previously been subject to speculation [19, 81, 82]: 1) The rearrange-
ment of Switch I always occurs such that Tyr32 is threaded underneath the protein
backbone. Within this restriction, there exist at least three competing pathways:
a) the Thr35 detaches from the magnesium ion coordination sphere such as to
open a cleft for the Tyr32 passage, b) Wat173 replaces Thr35 in the magnesium

ion coordination sphere, allowing Tyr32 to pass freely, or ¢) Switch I is deformed
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such that Tyr32 passes while avoiding the magnesium coordination sphere. 2)
The rearrangement of Switch I is finished before the rate-limiting rearrangement
of Switch II starts. 3) The hydrogen-bonding pattern of the Switch II helix un-
folding is similar in the best paths. The general tendency is that the helix unfolds
from the nucleotide-near (N-terminal) to the nucleotide-far (C-terminal) end. 4)
Despite the above similarities, the precise order of conformational events in Switch
I and IT and the detailed way of rearrangement in Switch II varies substantially.
This shows that complex conformational transitions in proteins such as Ras may

occur via multiple pathways.

An analysis of the transition-state energetics for contributions by the individ-
ual residues showed that there is considerable competition between the Switch
I residues, supporting the view that a few mutually exclusive pathways for the
Switch I rearrangement exist. In contrast, the residue energies in Switch II are
cooperative, thereby enhancing the ability to overcome large potential energy bar-

riers which promotes the unfolding of the Switch II helix.

As the Ras p21 application demonstrates, the methodology developed here is use-
ful to understand very complex mechanisms in proteins independent of their typ-
ical timescale. This was hitherto impossible and represents a significant method-

ological progress in the field of molecular biophysics.

6.2 OUTLOOK

This work has inspired a number of promising follow-up projects concerning the
extended application of the methods presented, further methodological develop-

ment, and the fundamental understanding of proteins and other complex systems.

The methodology developed here is applicable to complex conformational changes
in many proteins whose functional timescale and complexity precludes the use of
direct simulation. An application that is related to work on Ras p21 here would be
to compute Transition Networks for the conformational switch of other members of
the GTPase protein super-family, such as Ran and Rap [88]. These proteins have
different functions than Ras p21, but are speculated to have a similar mechanism
as they share some structural properties and they also involve a conformational

change that is triggered by the hydrolysis of GTP. Their mechanism and simi-
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larities with the Ras p21 mechanism could be explained with Transition Network
analyses. Using the methodological tools from this work, this would only require
an investment of several weeks of CPU time. Any general findings on the mech-
anism of GTPases is not only interesting to a broad audience, but would also
enlighten our understanding of a large number of structural-biological processes
in the cell [89].

A major limitation of the results obtained from the Ras p21 Transition Network so
far is that they are qualitative rather than quantitative in nature. This is because
the Transition Network weights are given by potential energies, rather than free
energies. The reliable computation of free energies for complex systems such as
proteins is an open problem of great interest in the biophysical chemistry commu-
nity [55]. Its difficulties are given by the sampling problem: “Physical” sampling
methods, like molecular dynamics or Monte-Carlo, are in principle a rigorous ap-
proach to obtain free energies, but can in practice not achieve convergence for
free energy values as they fail to sample a sufficient volume of the conformational
space in the limited simulation time. The main obstacles here are a) high energy
barriers which are not overcome, and b) large-scale diffusional motions which are
not fully explored. Both problems could be addressed by combining these physi-
cal sampling methods with the “computational” sampling approach presented in
Chapter 4. Problem a) may be avoided by distributing a number of samplers
across the accessible conformational subspace according to the sampling method
proposed here. Problem b) may be overcome by defining partitions of the confor-
mational space with the aid of the sampled points, such that each sampler only

has to explore a limited region of the diffusive motion.

A third project involves research on the physical properties underlying the dy-
namics of proteins as complex systems. A concept that has recently received
considerable attention is that of the essential subspace of a protein, or generally
of a complex dynamical system [15]. The essential subspace is the part of confor-
mational space that is accessible to the protein at a given temperature. Available
knowledge on the form, size and connectivity of that space has been obtained
either indirectly from interpreting experimental data, such as relaxation times
[90], or by analysis of simulation data [91], the latter of which is of course limited
by the sampling problem. The Transition Network presented here samples the

full conformational subspace that is relevant for a given transition, so our data
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is an ideal basis for analyses of large-scale properties of the essential subspace:
What is the general form of this space, i.e. is it compact, star-like, or more like a
labyrinth? Is there any small-world behavior, i.e. is there a short conformational
route between any pair of accessible conformations? What is the connectivity of
the space, i.e. are there regions which are more dense than others and is this
related to functional importance? Is there any relationship between the energy
of a region and the number of neighboring regions? Does the connectivity of the
essential subspace have any impact on the dynamics of the system (e.g. through
entropic effects)? Answering these questions might help us not only to under-
stand the physics of proteins but also to enhance our ability to model and predict

complex system dynamics in general.



102 APPENDIX . CONCLUSION AND OUTLOOK




APPENDIX A

ALGORITHMIC PROOFS

A.1 ENERGY RIDGE

Here we prove the correctness and the time complexity of the energy-ridge algo-
rithm (Algorithm 1, p. 34)

Correctness: We require that the minimum edge energy of the energy ridge is
higher than the end-state energies, i.e. that there is a real barrier. Furthermore
the Transition Network is required to have a pathway between the transition
endstates. Given these conditions, Algorithm 1 returns the optimal energy ridge

for the transition network.

1. At the end of the algorithm, all edges are iz-ip, ig-ig Or ip-ip edges:

Whenever a set of vertices V; that belongs neither to iz nor ¢p is connected
to a set of vertices Vathat belongs to ig or ip, Vi is also changed to ig or
ip (step 3.3). Vertices which belong to ip or ip are never put into another
group. Since the Graph is connected, all vertices will be iz or ip vertices

and therefore all edges will be ig-ip, ig-ig Or ip-ip.

2. The algorithm returns the set of igz-ip edges: The only step where a iz-ip
edge is created is when an ig-vertex and an ip-vertex are connected (in 3.1)
and then this edge is added to the set ER. A different edge can never become

a ir-ip edge, as classes ig and ip are not added after the initialization and a
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1g-X or ip-X would be transformed to ig-ig or ip-ip immediately. Therefore,

E'R contains all ig-ip edges and ER is returned from the algorithm.

3. The set of iz-ip edges is a cut: It separates the ig set which is connected to

the reactant from the 7p set which is connected to the product.

4. The energy ridge consists of ig-ip edges: Consider each edge e in the energy
ridge in the order of ascending edge energies. For each e, there is at least
one path from either vertex of e to either endstate (say vy to eg and vp to
e1) whose maximum edge energy is not higher than E,. Therefore, ey has
been connected to i and e; to ip before e is considered and e is a ip-ip

edge.

5. There are not other ig-ip edges in the network: Since the energy ridge is a
cut (see 3) and all edges of the energy ridge are ig-ip edges (see 4), there
can be no other iz-ip edges, otherwise the set of 1z-ip edges would not form

a cut (and therefore produce a contradiction with c).

Combining 1)-5), it is proved that the algorithm returns the set of edges compris-
ing the energy ridge. [

Complexity
The complexity of the energy-ridge algorithm is at most O(|€|log|E| + [V[log|V]).

The edge sorting in step (1) is done with a standard sorting algorithm (e.g. quick-
sort), which has a complexity of O(|€|log|&]) [92].

The loop in step (3) is iterated |€| times. If none of (3.2)-(3.3) is executed, this
adds a complexity of O(|€|). If (3.2)-(3.3) are executed, additional computation
time is spent to add vertices to the lists of other vertex-groups and to change their
list indexes. To minimize the complexity, the smaller group is always added to
the larger group (see Algorithm 3). We construct the worst case as follows: only
pairs of groups with equal size are associated, during the whole iteration cycle.
This may occur only if the number of associated vertices is a power of 2. To
further maximize the size of vertex groups, we require that only a single vertex
(one of the endstates) is on one side of the ridge, while all other vertices are on
the other side. In the beginning, (|V| —1)/2 vertex-pairs are formed and for each

pair one vertex needs to be reordered. As a last step, two equally-sized groups
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are associated and (|V| — 1)/2 vertices need to be reorded. In general, a number
of

V-1
2

V-1 V| -1 V| -1 V| -1

.1 N PR 1. —1 -1

5 + 1 4+ 1 + 5 ogy (V| )
vertices need to be reordered.

Therefore, a total complexity of O(|€|log|E| + |V|log|V|) is obtained.

A.2 EFFICIENT COMPUTATION OF BEST PATHS

Termination: If the algorithm does not return in 2), one edge is refined in 3).

The algorithm thus terminates after at most |E| cycles.
Correctness: The returned path is the globally best path after termination:
Assume the algorithm returns P,.;, but the real best path is P # P,;.

If all edge energies of P are determined, P is computed as best path in 1), then
it must be P = BP™® = BP™ in 2) and therefore P = P,; (contradiction).

Otherwise, be {E 2, Ea3...Ex_1} the edge energies of the edges along P. Since
ER™ < Ey, the path cost of BP™" in 1) was less or equal than that of P and
therefore less than that of P,.; which means BP™" £ P,.,, so P, is not returned

in 2) (contradiction). [
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APPENDIX B

RANDOM TRANSITION NETWORKS

For the test of algorithms as those presented in Chapter 3, it is useful to have
a model that generates random transition networks. Depending on the under-
lying physical system, Transition Networks can have various different topologies
and edge weights. Nevertheless, Transition Networks are not well represented by
purely random graphs [93] with random weights, as they do have the following

particular properties:
Embedding

The TN vertices are embedded in a D-dimensional space. Typically, the degrees
of freedom of the system are strongly coupled, so that there is a strong correlation
amongst them. As a result, the system configurations mostly reside in an essential
subspace with a dimensionality much lower than D. It has been shown that for
proteins with many thousand degrees of freedom less than 1% of the degrees of
freedom is sufficient to cover most of the variance in the data [15]. Therefore,
the random TN vertices are here embedded in a (C < D)-dimensional space.
For the vertices of all random TNs in this study we choose a C' = 5-dimensional
hypercubic space. Molecular conformations are often specified in terms of torsion
angles. To achieve a similar coordinate system, each dimension of the random
TN embedding space has values in | — 180, 180] degrees and periodic boundary

conditions. Initially, all |V'| vertices are embedded as random points in this space.
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Connectivity

Given the positions of the vertices, the connectivity of the network is defined by
drawing an edge between all vertex-pairs within a distance of d (Here, a root mean
square distance of 40° is used). A commonly used measure for the connectivity
of the network is its degree distribution p(k): The degree of a vertex, k, is the
number of neighbors it has; the degree distribution is the probability distribution
of all vertex degrees in the network. In TN, the degree of a vertex is equal to
the number of other vertices within a hypersphere of radius d, so that the degree
distribution also is a measure for the vertex density distribution. For a random
TN to be representative, it must have a degree distribution that is typical for the

class of physical systems one is interested in.

For TNs of molecular conformational changes, we have found that the degree
distribution is of a poisson type. The degree distribution of the Ras p21 TN
analyzed in Chapter 5 is shown in Fig. B.1. All random TNs in this study are

generated in such a way that they exhibit the same degree distribution.

0.06

005t © Figure B.1: Degree distribu-
2004 (ﬁ& tion of the Ras p21 network.
% i §P \ The distribution is Poisson-
£ oo 1 like, closely following a Gaus-

sian distribution around the
mean of 19 (dashed line).

s
10 20 30 40 O
Vertex degree

To obtain a random network with a predefined degree distribution pyt(k), we use

following Monte-Carlo algorithm on the initial vertex embedding:

Algorithm 5 Random TN Embedding

(1) Given an initial vertex embedding (x,...,X ), compute the adjacency list
and from this the degree distribution p(k). Compute the distribution error
Ep(k) = Zzio(p(k) - pref(k“))2

(2) i :=0. While ¢ < imax and €y(k) > €401, Tepeat:
(2.1) Randomly chose a vertex v with embedding x, and randomly choose a
new point x) in the embedding space.
(2.2) Compute the degree distribution p(k)’ for the case that v is moved to
x;, and the distribution error ep(y].
(2.3) If epky < €pk), accept move: x, := Xy, p(k) 1= p(k)’, €pk) := €p(y
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The algorithm terminates when the maximum allowed error in the distribution,

€t0l, OF the maximun number of iterations, ¢my.y, is reached.
TN weights

In TNs, the weights correspond to the form of the energy surface of the underlying
physical system. Two extreme cases are (a) the energy surface has the form of
one large basin (with some local roughness) and (b) the energy surface has no
underlying form, the weights are just uncorrelated random numbers. Between
these two extremes are the cases of local structure (c): the energy surface has a
number of basins (with some local roughness), which are mutually connected. We

propose a multi-harmonic-basin model as given by the following algorithm:

Algorithm 6 Random Transition Network
(1) Generate Topology according to pyes(k)
(2) Place ng = 1/0 seeds randomly on different vertices
(3) For each vertex v:
(3.1) d = distance to next seed
(3.2) E, = d* + Gaussian(0, 0)
(4) For each edge e = (u,v):
(4.1) E, = max{E,, E,} + |Gaussian(0, o)|

Here, Gaussian(y, o) generates a random value drawn from a Gaussian distribu-
tion with mean g and standard deviation . The parameter ng is equal to the
number of harmonic basins underlying the energy function, the order-parameter o,
which is the inverse of ng, quantifies the amount of order on the potential energy
surface. For ng =1 (o = 1), we have case (a) and for ng = |V| (o0 minimal), we
have a random noise network, case (b). All values in between are examples for
the case of local structure, case (c) (see Fig. 3.3). Unless stated otherwise, o = 1
and ng = |V/| are used in this study. Sec. 3.2.2 and 3.3.2 treats the effects of

using different values of ng.

In this study, best path(s) are computed on random TNs. This requires the
definition of a pair of endstates for each computation. As transition endstates
usually are at the energy minima of the endstate basins, the pair of endstates
was not selected in a completely random way. Rather, two random vertices were
chosen and then both of them were minimized on the network, i.e. each endstate

was repeatedly moved to the lowest-energy neighbor vertex until all its neighbor
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vertices had higher energies. If, after this minimization, both vertices coincided,

the process was repeated until two distinct endstates were found.



APPENDIX C

RAS P21 SETUP AND DETAILS

C.1 RAS P21 SETUP

Crystallographic structures exist for both the GTP-bound (Protein Data Bank
structure 5p21 [78]) and GDP-bound states (1q21 [79]) of Ras p21. The ~-
phosphate was deleted from 5p21, to yield the reactant state. The 1q21 structure
served as product state. The HBUILD facility in CHARMM |[8] was used to place

the missing hydrogens.

All calculations were performed using the extended-carbon potential function
(PARAM19) [94] and with version 2 of the Analytical Continuum Electrostatics
(ACE) method to model the solvent [83]. Non-bonded interactions were smoothly

brought to zero by multiplying them with a switching function between 8 and

12 A.

The structure of a protein may be affected by the crystal environment. Therefore,
both the reactant and the product structures were first relaxed using molecular
dynamics simulations. For this 20 ps of heating were followed by 100 ps of equi-
libration and a 10 ns production run. One structure every 100 ps (making up
100 structures in total) was selected and energy minimized to a gradient RMS of
1073 keal mol=! A=!. The structures with the lowest energies were selected as re-
actant and product structures. The potential energy of these structures was lower
than that obtained by a direct minimization of 5p21 and 1q21 by 30-45 kcal mol*.

Structurally, the differences compared to 5p21 and 1q21 were rather small, con-
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sisting mainly of exposed side-chain rearrangements, while the backbone fold of
the Switch regions was preserved. The RMS coordinate deviations from the di-
rectly minimized crystallograph end states were <1.8 A for the non-fixed atoms
(<2.4 A for the switch regions).

To remove insignificant degrees of freedom, residues which were not involved in the
conformational switch and whose atoms had similar positions in both end-states
were fixed (residues 1-4, 42-53, 77-95, 110-115, 124-143, 155-167), leaving 1001
atoms free to move. To obtain the same positions for the fixed atoms in the two
end-states, the product structure was oriented onto the reactant structure so as to
minimize the RMS deviation between the fixed atom coordinate sets. Then, the
reactant and product values of these coordinates were averaged. The averaged
coordinates of the fixed atoms were used for all calculations. Furthermore, in-
significant differences in the side-chains of non-Switch regions were removed from
the end-states as described in [19]. Finally, both end-states were minimized to a
gradient RMS of 1073 kcal mol=* A-1.

C.2 CPR seTUP

Here, the refinement algorithm used to determine edge energy barriers was Con-
jugate Peak Refinement (CPR, introduced in Sec. 2.1.1), which refines an initial
path P to a Minimum Energy Path (MEP). Unless stated otherwise, the edge
energies were determined in a single refinement step. All MEP were computed
with the CPR code implemented in the TReK module of the CHARMM program
[8] version 29, using the default CPR settings for identifying saddle points: With
these settings, the gradient RMS at a saddle point is required to be smaller than
Gsaa = 0.05 kcal mol™* A~! for an uninterrupted number of /N conjugate line

minimizations, where N is the number of moving atoms (for Ras p21, v N = 32).

C.3 STATISTICAL ESTIMATION OF EDGE BARRIERS

A method is given for the statistical estimation of lower and upper bounds for the
energy barriers of sub-transitions. For this, one correlates available information

on the edges (u,v), such as distance between its vertices d,, = |Xy — Xy |, With the
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Figure C.1: Predicting lower and upper bounds to the edge energy barriers. The energy
barrier is plotted versus the distance between the end-states of a given sub-transition
in Ras p21, using different distance metrics: A) RMSD in ¢/v-dihedral space of the S-
regions, B) All-atom RMSD in Cartesian space C) same, but with each atomic distance
weighted by the absolute atomic charge. 90% of the points lie below the upper dashed
line, 10% below the lower dashed line. These were used as lower and upper estimates for
the estimation of optimistic and pessimistic best paths. The solid line shows the average
barrier.

already-computed energy barriers By, = E,, —max{E,, FE,}. Using a certain con-
fidence interval, one obtains upper and lower estimates, B™"(4,,) and B™%(§,,)

which may be used to replace the strict edge-barrier bounds.

For Ras p21, after computing the first ~ 2000 energy barriers, these barriers were
correlated with the distance between the corresponding minima so as to yield
a distance-dependent barrier estimate which was later used to replace the edge-
weight bounds. Fig. C.1 shows plots of these barriers against three different
distance measures. The average value and the boundaries of a 90% confidence
interval are given. Clearly, the ¢/¢-RMSD is not a useful measure here as it
is not correlated with the energy barrier. The Cartesian RMSD gives a better
correlation whereas the charge-weighted RMSD, d¢(x,y), defined as:

i (% —vi)’q;
dC(X7Y):\/Z_1( N Y) ’

where N is the number of atoms and ¢; is the charge on atom i, here gives the best
correlation of the three distance measures. The 90% confidence interval bounds
of the latter statistic were used as estimates for subsequent computations which

used statistical estimates for the energy barriers.
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APPENDIX D

TOPOLOGY-PRESERVING MAPPING
(TMP)

Topology-Preserving Mapping (TMP) is a method that allows to map a manifold
that is embedded in a high-dimensional space into a low-dimensional space for the

sake of visualization.

If the manifold exploits many dimensions of the embedding space, it is not possible
to find a projection that properly represents all pairwise distances between points
of the manifold in a low-dimensional space. For this reason, mapping methods
which consider all pairwise distances to be equally important, such as Principal
Component Analysis [84] or Sammon’s Mapping [85] fail to find an appropriate
low-dimensional representation. TMP achieves a good low-dimensional projection
by putting more emphasis on local connectivity (the topology) while it does not

attempt to correctly reproduce large pairwise distances.

In particular, TMP distinguishes between (locally) connected and not (locally)
connected points. TMP enforces that in the image space:

a) the distance of a pair of connected points lies within the range [d;, d,]. Thus,

local connectivity must be represented in the image space.

b) the distance of a pair of unconnected points is larger than d,. Typically, it is
d, > d,, so than one can distinguish between connected and disconnected points

in the image space.
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One way to enforce these conditions is to define a cost-function

V-1 Y
C=> > cu (D.1)
u=0 v=u+1

which sums over all pairs of points in the image space. Its terms are defined as:

{ (min{dy,, d;} — d;)* + (max{dy,, d,} — d,)?, if (u,v) neighbors (D.2)
Cuy = -

(min{duva dr} - dr)2a otherwise.

Here, d,, is the distance of the points in the image space. To obtain a mapping,
the points are first randomly distributed in the image space and varied in such a

way as to minimize C.

TMP was used here to map the vertices of a Transition Network on a 3-dimensional
space. Connectivity was deduced directly from the Transition Network: two ver-
tices are locally connected if a direct edge exists between them and disconnected
otherwise. To define the cost function, we set the reference distances to d; = 1.0,
d, = 1.2 and d, = 2.0 length units. The image points were restricted to be in a
box of 40x40x40 length units size. After distributing them randomly in the box,
the cost function Eq. (D.1) was optimized using an adaptive-steplength Monte

Carlo procedure. In each iteration, one random image point u was displaced:
X, 1= X, + AT

Here, x and x’ are the old and the new positions of point u, r is a random vector
whose coordinates are drawn from a uniform distribution over [—1,1], and A is
the steplength (initially 40). A move was only accepted if x!, was within the box
and if this step reduced the value of C. If 100 steps were made without any
acceptance, A was reduced by multiplying it with a factor of 0.75, but was never
reduced below 0.2 length units. The optimization was stopped when no move was
accepted during the previous 10° steps, which happened after about 5 - 10° steps

in total.
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