Chapter 3

| mplicit solvent models

3.1 Introduction

In this chapter a number of approaches to approximate dodffacts in molecular dynamics
are outlined. The solvent degrees of freedom are not carsidexplicitly in these treatments,
hence the namienplicit solvent modelsThe interaction between solvent and solute is instead
described as function of the solute coordinates solely.efificts due to the solvent, such as
polar screening of charges, or even van der Waals interecénd entropy costs for cavity
formations, are accounted for by suitable functions. Tioeee the effective energy function of
a macromolecule, containing both intramolecular intéoast and solvent-molecule coupling
terms, has the form:

W(r™) = Hm(r™) 4+ AGeon(r™) (3.1)
if the molecule consists dfl atoms with Cartesian coordinatés= (i, Vi, z), withi=1,...,M.
In section (3.6) this expression is derived based on edquiiib statistical mechanics. The
solvation energy termGeg)y, is usually divided into three contributions. The first is tavity
formation, that is the rearrangement of solvent moleculestd the solute. The second term is
the hydrophobicity or tendency of polar solvent to avoid¢batact with the non polar regions
of the protein. The third contribution is the electrostatidvation, that is the shielding effect
of polarized solvent on the electrostatic interactionse fitst two terms have both an entropic
and enthalpic character, while the electrostatic compbigepurely enthalpic and is mainly
considered in the models discussed in this chapter.
An implicit solvent approach in molecular dynamics dradtic reduces the computational
time, since the number of degrees of freedom is decreasedumhly one order of magni-
tude. Furthermore the equilibration of solvent induceddrgé conformational changes in the
solute, like folding or unfolding, occurs instantaneoustyfact, during a molecular dynamics
simulation the solvation free energy is updated at eachagtegrding to the new solute coordi-
nates. This implies that the solvent reaches an instantarthermodynamic equilibrium with
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the solute. The rearrangement of explicit solvent moleciganstead slow and the solvent-
solute interactions need to be averaged over relatively fones in order to provide meaning-
ful results [63]. Hence, in case of conformational trapsis studied by molecular dynamics,
the use of implicit solvent has some advantage, since itigegsva more efficient sampling by
reducing the solute-solvent interactions to their mead fiélracteristics. In chapters 4 and 5
two applications featuring implicit solvent models areganeted.

In many cases a detailed description of solvent-solutednt®ns is however most important
[64], for instance in the simulation of hydrogen bonds. Efgr explicit representation of
solvent molecules is required, since implicit solvent mMedannot account for specific solvent-
solute hydrogen bonding. In chapter 6 the pattern of ingl&cal hydrogen bonds in a bacterial
cytochrome c is simulated. The use of explicit water molesallows for a correct simulation
of surface intra-protein hydrogen bonds.

In the subsequent sections the continuum Poisson-Boltzrfmmalism and the generalized
Born approximation are presented. The former constitutesekact theoretical treatment of
electrostatic interactions in continuous media. The dastdased on the same framework and
yields an approximate calculation of the solvent-induaeattion field energy.

Another approach to implicit solvent models focuses on theening of of electrostatic inter-
actions by solvent charges. The EEF1 energy function m&#g) fleveloped along this line,
is also presented in this chapter.

The reduction from explicit to implicit solvent, in the foaiism of equilibrium statistical me-
chanics, is then discussed in the last section.

3.2 Poisson-Boltzmann equation

The exact description of electrostatic interactions in atiooous dielectric medium is pro-
vided by the Poisson equation. Given a spatial charge lligiton p(T) in an environment with
uniform dielectric constard, the electrostatic potentig(T) satisfies the equation:

A@(T) = —411@ (3.2)
If the dielectric medium is not homogeneous, that is theedteic constant depends on the
position,e = (T), the equation is generalized as follows:

0- [6(F) 0(F)] = —4mp(7) (33)

In the simple case of constagitthe solution to Poisson equation is the well known Coulomb
potential: o
_ [ p(r)dr
S Nefr—r|

@(T) (3.4)

A protein can be represented as a set of atomic point chaisfeibated in space and immersed
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in a low dielectricum. The surrounding solvent is given byghtdielectric medium, containing
ions.
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Figure 3.1: Sketch of a molecule embedded in a ionic solut@cording to the continuum
representation [66].

One can therefore write a Poisson equation for a proteimidgfithe charge distributiop(T)

as sum of delta functions representing point charges. Téledaliic function assumes two
different values in two space regions separated by the ipretgface, namely a low value
within the protein interior, like 2 or 4, and a value close @i8 aqueous solution. The correct
value ofe within the solute is matter of debate [67, 68, 69].

In order to obtain a realistic description of a solvated @irgtions in solution surrounding the
molecule are also needed. Their effect is included usingatalistribution resulting from a
Boltzmann statistics in a mean field approximation. Thigritlistion is given by:

Pion(T) = Cs(F)asexp(—PBase(r)) (3.5)

if the indexsruns over the number of present ion speaigss the local concentration of species
sandgs represents its charge. The Boltzmann constant is alsorgresece = % In this
way the Poisson-Boltzmann equation is obtained:

0-[e(MOQF)] = —41p(F) + Pion] (3.6)
= —4mp(1) — 41y cs(T)osexp(—Bas®(T)) 3.7)

A linearized version of the Poisson-Boltzmann equation lmanvritten by expanding the ex-
ponential as power series in in the electrostatic potegtiad to first order:

S cs()asexp(—Bas@(r) = 3 cs(F)as—BS co(MBe(T) + .. (3.8)
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The term of order zero vanishes under the hypothesis ofreteattrality of the ionic solution:
ch(?)qs =0 (3.9)
so that the linearized Poisson Boltzmann equation (LPBE)ines:
0 [e(F) Dg(F)] — 81 (F)@(F) = —4p () (3.10)

using the definition of the ionic strengtfr):

I(F) =

NI

Y cs(F)as (3.11)

3.3 Numerical solution of the LPBE and applications

The LPBE can be solved analytically only if the system geoynistsimple enough. This is
the case for few systems [70]. The geometry dictated by ajprathape is far too complex
to be treated analytically and requires numerical algoritHor the electrostatic potential to
be determined. A common solving procedure bases on a firfferetice method on a grid
[71, 72]. The system is mapped onto a cubic grid, with a steplsiwhich is usually in the

order of 0.5 A or less.
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Figure 3.2: Elementary grid element in the solution of th&EP

In the center of the elementary cube of the grid (see fig. \&2)oint chargeyy is placed,
together with the ionic strength and the potentialy. On the six faces of the cube the dielectric
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functiong(i), with i = 1,...,6 is defined. The electrostatic potenti@ chargeg; and ionic
strengthl; in the six points corresponding to the centers of the adjandre, are related tqy,
(o andlg by means of the linearized Poisson-Boltzmann equationtemrin integral form for
the elementary cube:

/ 0. [e(F) Dg(F)] — / 81 (F)@(F) = —4mt / o(F) (3.12)
Veube Veube Veube
This is equivalent to:
0- [e(F)O(F)] = 8mBlogol® + 4ol 2 (3.13)
Veube
The left side is transformed via Gauss’ theorem into a sarfategral:
0. () Dg(F)] = / £(F)OQ(F) - AdS (3.14)
Sube

Veube

The discretized form dflgis the incremental ratio ap from the center of one cube to the next
one, so that the flux appearing in eq. (3.14) is explicithcakdted and the equation becomes:

izei((ﬂ_li%)lz — 8mBlogol® = —41 (3.15)

The resulting expression fgy is then:

6 4o
@ = (lelslcﬂ)"' ] (316)

~ (38.&@) + 8riBlgl2

Starting from arbitrary values, each point is calculatedsitively, until a required convergence
is reached.

The grid resolution might be critical for a good result. Sseges in the order of 0.3 A would
be required, what is often not feasible for a large molecsyatem like a protein, due to com-
putational limits. One can instead apply a procedure cdtledsingin which, after calculating
the whole system on a coarse grid (typically with step size A &), smaller grids with higher
resolution are generated and subsequently positionedrtioqmof the system. On the bound-
ary of the small grids the potential is defined by interpoigtvalues resulting from the coarser
grid, and the calculation is then repeated inside the smidll g

The determination of the electrostatic potential on a guitess from an artifact, due to the self
energy of the system. This quantity, which diverges for apoharge in continuum limit, is
finite in a discretized system, yet it depends on the gridluéisoa and geometry, like number
and position of grid points. Therefore, the numericallyleated absolute electrostatic en-
ergy of a molecular system is an ill-defined quantity. Theifigance of Poisson-Boltzmann
calculations relies on the comparison between valuesraaddor the same molecular system
under different spatial conformations, charge statesplgeat environments. Very good results
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are for instance obtained in the calculation of internal ‘skad protonation as well as redox
equilibria in proteins [73, 74, 75].

The description of molecular electrostatic energy by RwisBoltzmann equation allows for a
very accurate determination of the electrostatic poteafia solvated molecule, which in turn
provides the polar part of the solvation free energy, asaéxetl next.

When a charge, distributed on a molecular system with diéteconstanteiy,; = €p, is trans-
ferred from the uniform phasey = &int = €p t0 a solvent witheeys = &y, it €Xperiences a
reaction field, given by the difference between the origelaktrostatic potential, when ev-
erywheree = €, and the potential obtained as solution of the PoissonzBwitn equation in
presence of the solvent:

@reac = Psol — Puac (3.17)

Thus, the electrostatic component of the solvation eneogyafmolecular system of atomic
partial chargesj is the electrostatic energy due to the reaction field:

1
AGpo = > IZqi Qreac(Ti) (3.18)
while for a continuous charge distributiqtr) one has:

BGpoi = 5 [ PPN D" (3.19)

Nonpolar contributions to solvent-solute interactiorsraot included in the Poisson-Boltzmann
formalism. Also solvent entropy, which plays an importaérin protein stability, as discussed
in section (1.2), is not accounted for. These limitations lsa overcome by adding suitable non
polar and entropy terms [63].

In molecular dynamics simulations the application of thésBan-Boltzmann equation is in
principle possible (see for instance [76]) but the cost ve in solving it directly limits its
use. However, progress is being made with simulation scheha¢ overcome the problem of
a complete calculation of the electrostatic potential argtime step, for instance by updating
the forces due to solvent less frequently [77, 78] or by ojziimy the repeated solution for
similar conformations [79].

3.4 Generalized Born approximation

Since the solution of the Poisson-Boltzmann equation ges/an accurate description of the
electrostatic part of solvation, but is numerically quitg@pensive, there is a clear interest in
exploring efficient approximations, compatible with malks dynamics.

The generalized Born approximatioils based on Poisson-Boltzmann theory, but the iterative
self-consistent solution to the electrostatic potensiakplaced by an approximate calculation
of the solvent-induced reaction field energy. It is presghtere following a review of Bashford
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and Case [80], which is suggested for further reading.
The basic assumption is that the electrostatic contributiothe solvation free energy is pro-
vided by a pairwise sum over interacting partial chamges the solute alone, as given by the

following expression:
1

1 1 Giq;

AGpoi = —5 (s—p — Q) % fGB(rJij) (3.20)
where fgg(rij) is a function that interpolates between the distamcef the pair (i,j) valid at
large distances and an “effective Born radi&®’at short distances, defined in analogy with the
Born formula for a single ion. The above expression is a foigeaeralization of the reaction
field energy , eq. (3.18), experienced by a single sphericatge of radiusa and internal
dielectric constant, in an implicit solvent with dielectric constasy, [81]:

/11
AGgom = —g—a <£— - €—> (3.22)
p Ew

The functionfgp(rij ) is defined as follows:

2

2 pR T ’
r,J+R.RJexp< 4R|'Rj>] (3.22)

Whenrﬁ >> RR; the reaction field energy neglects the size of the atoms, ealseat short
distance the Born radii are dominant and expression (3@®&paches eq. (3.21).

The exact values of the Born radi&s of chargei can in principle be determined by means
of the Poisson-Boltzmann equation. Considering chargdone in the solute interior, if the
reaction potential is known, the corresponding reactidd &eergy as obtained from eq. (3.18)
can be set equal to the Born energy of eq. (3.21), settingRalsca:

Qi Preac(ri) i§ (1 1>

fea(rij) =

€ Ew

AG) 2l

The above equation is however not applicable for practiogb@ses if one wants to reduce the
computational effort of solving the Poisson-Boltzmannaggpn. Another expression f&; can
be instead derived, which finally leads to a result, by meé#muiverse numerical or analytical
procedures and further approximations. For the derivatifaine Born radius of chargeit is
useful to consider the alternative formulation for elestatic energy in terms of electric field
and displacement vector:

1 1 /e
W = é/pi (M@ (7)d* = S_T[/Ei -Did® (3.24)

The vectors are indexed bgince the chargg; generates both vector fields.
At this point theCoulomb field approximatiors invoked, which states that the displacement
vectorD; of a point chargey; maintains a Coulombic shape also in case of non-spherieal di
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electric volume:

B; ~ % (3.25)

so that the electrostatic energy for charge presence of an external dielectric constast
and of an internal dielectric constegy becomes:

\Niext _ %T/%.D’idSr
o~ /—|Di|2d3r
€
2 2
= [ G [ (3.26)
int I*€p ext M"Eext

if the integration is splitted into the internal (solute)datme external (solvent) volume part.
The reaction field is given at each point by the differencevben the potential in a homoge-
neous dielectric environment and the potential in presefieesolute, as stated in eq. (3.18).
Thus,the reaction field energy for chariges given by the difference in electrostatic energy
upon transferring the charge from the unifoggto the solvent,, as stated in eq. Therefore:

i 1/1 1 P
AGL =WV -WP=——(=_= / a3 57
Gpol ( i 8n (s £W> . r4d r (3.27)
Setting this expression equal to the Born formula eq. (3udtt) a = R;, one gets:

1 1 1 1 1 1
= Zdr=— —d3r—/ —d3r 3.28

R 4m/exr? 4n[ v ré int I (3.28)
where the integral over the solvent is replaced by an intexyer the whole space minus a
integral over the solute. Moreover, if the point chargeconsidered to be spread over a small
spherical surface of radius;, to avoid singularities in the integration, the integrakpthe
whole space yieldsm}(l, such that the Born radius results:

1 1 1 1
- = _ —dd 3.29
R« 4Tt/im,r>q ré (3.29)

whereq; is usually defined as the van der Waals radius of @tom

The playground for different generalized Born approackebé calculation of the integral in
eg. (3.29). Many different methods have been applied, fetaimce the transformation of the
volume integral into a surface integral [82, 83], or the aa#ibn of the volume integral on a
grid [84]. Also analytical techniques have been developaitwise summations to mimic the
volume integration [85] or pairwise integration using gsias atomic functions [86].

Salt effects can also be incorporated at the level of Debyekkl theory. This is achieved by
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performing the following substitution in eq. (3.20):

(i B i) . (i B eXD(—KfGB(rij))> (3.30)

€ Ew €p Ew

wherek is the Debye-Huckel screening parameter [87]. A qualigativgument to explain this
substitution is that in both limits of large and small distes this expression leads to the correct
equations [63].

Recent developments of the generalized Born approximaiituiiess the question of defining
the solvent boundary at the molecular surface. This is &aritssue, since it may result in
microscopic solvent-inaccessible voids of high dieledimithe interior of large biomolecules.
A switching function [88] was introduced to modulate thevsoit-solute boundary and corre-
spondingly the dielectric function in the generalized Bapproach implemented in CHARMM
and applied in chapter 5. This approach is based on an aralgkfinition of the molecular
volume V() as a superposition of atomic functions. The switching fiamct/ (F) is used to
define this molecular volume. This is a smooth volume excluiinction going from zero in
the interior of the solute to one in the solvent region. Itisdtion of all atomic positions.

The switching function can be expressed as product of paljaoatomic volume exclusion
functionsH;(r), with r; indicating the atomic position:

5 (7, (1)) = [TH (7 7)) (3.31)

Each polynomial functiot; is defined as follows:

0, r<Rbg—w
H(F-f) = { 3—2 (r—Rog) -2 (1—Rb)®, Rog—w<r<Rog+w (3.32)
1, r>Rog+wW

Thus it is zero below the van der Waals radR}LsB of atomi, is equal to one at distances larger
than this radius, and a smooth connection between the twevas done within a window
of length 2v which is in the order of tenths of an Angstrom. wfis set to zero, the van der
Waals surface is regained. The molecular volume functi@d us the integration is linked to
the switching function via the equation:

v(r)=1—4(7,{Fi}) (3.33)

The solvent dielectric function, involved in the calcutatiof the integral in eq. (3.29), goes
smoothly from zero in the protein interior to one in the bubkvent and has the form:

e(r) =1+ (ew— 1) (7,{Fi}) (3.34)

The implementation of generalized Born formalism in CHARBIMdiscussed above and ap-
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plied in chapter 5 also contains an empirical correctiomé&@oulomb field approximation, in
order to reproduce deviations from the spherical symmdttigeomolecular system [89].

3.5 EEF1energy function

This is a so callegolvent exclusion modelvhich provides an alternative formulation for the
solvation free energy of a protein. The effect of water on lgeptide is estimated from the
solvation of each single atom, modified by the presence adratblute groups that exclude
solvent. The parametrization of the function is derivedrfrexperimental data on solvation,
and requires further empirical corrections. Despite thenst approximation and its empirical
character, the model works for molecular dynamics, namedydéceeds in describing protein
thermodynamics under native conditions, discriminatiegMgen native and unfolded confor-
mations, and giving unfolding pathways in agreement witpliek water simulations [90].
Moreover, the speed of a molecular dynamics simulation #wi1 water model is only 50%
slower than a simulatioim vacuo

The solvation free energy of a given conformat'r@h as in eq. 3.1, can be written as a volume
integral of a densityf (T):

AGeon = /V (F)dr (3.35)

The densityf (') contains contributions from solvent-solute and solverNent interactions,
both of enthalpic and of entropic origin. When the confoiiorabf the macromolecule changes,
the solvation free energy of each group is also changingusecaf two reasons: first, the sol-
vent is excluded from a volume now occupied by the new condgion of the macromolecule;
second, density and orientation of solvent molecules amifiad in the remaining space. The
latter property, which causes charge screening, is suggodgave an important role for polar
residues only.

The basic assumption of the EEF1 model is that for a polyat@ulute the solvation free
energy can be written as a sum over atomic contributions:

AGson = Y AGLoy, (3.36)
|

Such an expression can be formally derived by consideriagdlute solvent interactions as an
additive function of the different groups [65].

Taking into account only the contribution to solvation eyedue to the solvent exclusion
effect, one can write;

AGloy = AGler— Y /V fi(F)dr (3.37)
] i

whereAG‘ref is the reference solvation free energy, that is the solvdtiee energy of group
i in a appropriate small molecule where the group is largeposgd to solvent. The volume
Vj is occupied by group and the sum runs over all groupssurroundingi. To simplify the
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calculation, the integral ovéf; is approximated by the produéf(ri; )V;:

AGisoIv = AGiref - ; fi(rij )V (3.38)
A

Therefore, the free energy of solvation of grouim the macromolecule is given by the ref-
erence value in a nearly completely solvated state minusetthgction in solvation due to the
presence of the surrounding groups. The model does notritckadcount the finite size of wa-
ter molecules, thus all cavities are instantaneously fikét solvent. However, this does not
lead to a significant error if cavities are surrounded by dapgroups, for which the solvation
energy is small [65].

The functionfi(rij) is assumed to be Gaussian:

. _ R 2
fi(r) = %exp [— (r }\iR'> ] (3.39)

and contains a number of parameteRs.is the van der Waals radius of atanfwhich is the
corresponding parameter in CHARMML19 set) s a correlation length, corresponding to the
length of the first solvation shell. The choice of a gaussiattion with this correlation length
ensures that about 80% of the solvation energy is providetéfjrst solvation shell, what was
shown to be the case in computer simulations of water andodllsennard-Jones fluids [65].

Thea; coefficient is related to the free energy of solvation of groin isolation, AG},,, that
is given by the integral offi(r) over the whole space. This free energy differs frﬁ@iref,
which is affected by the presence of a small compound linkgbld atom. The parametey is
defined such that the solvation free energy of atoms deepigdinside a protein is close to
zero, with deviations depending on the number of atoms sodiog the given group. For the
ionic groups, which are mostly exposed to the solvVA®, ., = AG| is set.

The free energy values in the reference stA@‘,,ef, are derived from experimental measure-
ments [91].

The excluded volume effect, which defines the free energyletiion, accounts for the self
energy of a charge transferred from a high to a low dielectréclium. The charge screening
effect is not included in expression (3.37), but can be takém account easily by defining
a distance dependent dielectric constant, naraélyr ~1, which shortens the range of elec-
trostatic interactions. With this choice, the short-rahgdrogen bonding interactions are left
almost unaltered, while at large distances interactioashielded. However, ionic side chains
interact strongly with each other and with polar groups #@spresence of the distance de-
pendent dielectric constant, which is in contrast with eixpental data. Therefore, a further
empirical approximation is required, namely the origipa@harged side chains are neutralized,
while their polarity is increased and a penalty is added &ir tholvation energy in order to
prevent them to be buried in the interior of the protein.

The implementation of this model in CHARMM is related to théemded model for topol-
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ogy and parameters CHARMM19 (see section 2.3.1), in whigipatar hydrogen atoms are
included in the definition of the corresponding carbon gsoup

3.6 Statistical mechanics of a solvated protein

Anfinsen [2] formulated the hypothesis that the native stéee protein is essentially a unique
conformation corresponding to the thermodynamically nstelble state. This means that the
molecule during folding is able to explore the conformatibspace within the experimental
time scales, overcoming barriers, until it reaches theligguim. At the equilibrium the con-
formations are populated according to the Boltzmann digtion.

The validity of the thermodynamic hypothesis is suggestednbny experiments on protein
folding. Nevertheless larger and more complex proteinshirfiggd under kinetic control, thus
reaching the kinetically most accessible state insteadeofrtost stable one.

The statistical description in terms of energy landscape &ection 1.7) is able to represent
both situations, namely thermodynamic and kinetic contfofolding into the native state.
In all cases one can suppose that although the macromaletedeees of freedom might not
equilibrate during a conformational change, the solveniemdes actually reach the thermo-
dynamic equilibrium within a couple of picoseconds, or lentn the case of internal cavities,
but always within the experimental time scales. This melhasih the study of protein confor-
mational stability the solvent can be considered at equilib and it can be averaged over the
corresponding degrees of freedom.

One can describe the statistical mechanics of a solvatetcomatecule using the formalism of
the canonical ensemble. The following treatment is baseal r@eent review by Lazaridis and
Karplus [92].

The macromolecule consists bf atoms with Cartesian coordinatés= (x,V;,z), with i =
1,...,M and internal coordinateg;, with j = 1,...,3M — 6. The solvent is made & rigid
molecules with coordinateg andk = 1,...,N. Each§ contains the Cartesian coordinates
of the center of mass and three Euler angles specifying fieatation. We can define the
hamiltonianH of the interacting system of macromolecule and solvent anité ¥he canonical

partition function:
z

Q= NIASMASN (3-40)
whereZ is the classical configuration integral, given by:
7= / exp(—BH )drMdsN (3.41)

with B = %. The solvent degrees of freedom can be easily integratedaty if the Hamil-
tonian is additive, namely if one can separate the solvelneat(ss) interactions from the
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molecule-molecule (pp) and from the molecule-solvent {jpEractions:
H = Hss+ Hps+ Hpp (3.42)
The configurational integral can be written as:
z - / dr™ exp(—BHpp) / dsN exp(—BHss— BHps)
— [ dr exp(~BHyp) (exp(— BHps) s Zss (3.43)

where;
y / exp(—BHsg ds\ (3.44)

and the ensemble average on the solvent degrees of freedom is

(exp(—BHps))ss= Jas" eXp(—ZE:'ss— BHps) (3.45)

By eliminating the solvent degrees of freedom one can defireffactive energy functiokV
given by the sum of two terms: the macromolecular interactioergyHmm and the solvation
free energ\WGqqv:

AGsoly = —ksT In(exp(—BHps))ss (3.46)

so that the configurational integral in eq. (3.41) becomes:

Z=Zes / expl—B(Hpp+ AGson)]dr = / expl— pW]dr (3.47)

The effective energy only depends on the macromolecularedsgof freedom. Energy and
entropy of solvation are included if the solvent is at eduilim. The effective energW
defines a hypersurface in the conformational space of theamextecule which is nothing but
the energy landscape.

Introducing the internal coordinatefg instead of the Cartesian ones we can rewrite the integral
in 3.47 after integrating over the six external degreese#dom describing the translation of
center of mass and the rigid rotation:

Z = Z.\/8P / expl— W (d)]dg (3.48)

including the constant Jacobian of the coordinate transdition intodd.

For a molecule at thermal equilibrium one can show that tbéatility of finding the system
at a given configuratioq is: .
exp—PW(d)]

PO = Fexp—pWi(d)]dd

(3.49)
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One can show that:

[ p@inpedd = —inz +inzestInverd g [pai(cdd (350

Since the Helmholtz free energy of the system is obtained fiee canonical partition function
Q as follows:
A= —KTINQ=—kgTInZ+kgT In(NIASMA3N) (3.51)

one can derive the logarithm of the configurational integrélom the expression given in eq.
(3.50) and write the free energy:

A = ksTIN(NIAMAN) —KkgTInZyy — KT INVEIE
~kaTin [ exdi—pi(d)dg

/\3M
= A0+kBT|nW+/p(Q){pr(q)_AGsolv(q)}dq
= kT [ p@mnp(@ad

3M

N ~

A is the free energy of the pure solvent, the second term isdibal icontribution coming
from translation and rigid rotation of the molecule. Thedhierm is the effective internal
energy, comprising interaction energy and solvation gnangl the fourth is the conformational
entropy. The Gibbs free energy differs from the Helmholeefenergy in that it contains an
additive termpV where p indicates the pressure. Since under typical native camditihis
term is constant, it can be neglected and thus the expressem (3.52) is equivalent to the
Gibbs free energy.

3.6.1 Native state and thermodynamic stability

If the native conformation of a protein is reached underrttegtynamic control, the system is
at thermal equilibrium. Therefore, under physiologicahditions the phase space is defined
by an ensemble of conformations obeying the probabilityriigtion in eq. (3.49) and with a
free energy defined in eq. (3.52). The phase space can bedliritb two subsetdl andD
consisting of two configurations of the molecule, namelyftiided (native) and the unfolded
(denatured) conformations. Then the configurational nalegj consists of the sum of two
terms:

Z=27Zn+2Zp (3.53)

with
Zy = ZoV8T2 /N exp(—RW)dg (3.54)
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and the same expression is valid for suli3givhere the integration is restricted to the sutiset
of phase space. Also the probability distributigng d) andpp(d) can be defined by restricting
the integration in eq. (3.49) respectively to subidair D. Using eq. (3.52) the free energy for

subseiN is
3M

N on f
An=Ro+keTIn sy + (Win — TS (3.55)
and the same for subset
/\3M on f
Ap=Ag+keTIN—— + W)p - TS (3.56)
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Therefore, the free energy difference between NedsdD is:
A —Ap = (W) — TS - ") = A(Hpp) + AAG™Y) — TAS" (3.57)

The last equation defines the Helmholtz free energy of fgldinder native conditions. The
Gibbs free energy of folding is then obtained from the Heltlithfvee energy of eq. (3.57) by
adding thepAV term:

AG = A(Hpp) +A(AGY) — TASO 1 pAV (3.58)



