
Chapter 3

Implicit solvent models

3.1 Introduction

In this chapter a number of approaches to approximate solvent effects in molecular dynamics

are outlined. The solvent degrees of freedom are not considered explicitly in these treatments,

hence the nameimplicit solvent models. The interaction between solvent and solute is instead

described as function of the solute coordinates solely. Alleffects due to the solvent, such as

polar screening of charges, or even van der Waals interactions and entropy costs for cavity

formations, are accounted for by suitable functions. Therefore, the effective energy function of

a macromolecule, containing both intramolecular interactions and solvent-molecule coupling

terms, has the form:

W(~rM) = Hmm(~rM)+ ∆Gsolv(~rM) (3.1)

if the molecule consists ofM atoms with Cartesian coordinates~r i = (xi ,yi ,zi), with i = 1, . . . ,M.

In section (3.6) this expression is derived based on equilibrium statistical mechanics. The

solvation energy term∆Gsolv is usually divided into three contributions. The first is thecavity

formation, that is the rearrangement of solvent molecules due to the solute. The second term is

the hydrophobicity or tendency of polar solvent to avoid thecontact with the non polar regions

of the protein. The third contribution is the electrostaticsolvation, that is the shielding effect

of polarized solvent on the electrostatic interactions. The first two terms have both an entropic

and enthalpic character, while the electrostatic component is purely enthalpic and is mainly

considered in the models discussed in this chapter.

An implicit solvent approach in molecular dynamics drastically reduces the computational

time, since the number of degrees of freedom is decreased by roughly one order of magni-

tude. Furthermore the equilibration of solvent induced by large conformational changes in the

solute, like folding or unfolding, occurs instantaneously. In fact, during a molecular dynamics

simulation the solvation free energy is updated at each stepaccording to the new solute coordi-

nates. This implies that the solvent reaches an instantaneous thermodynamic equilibrium with
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the solute. The rearrangement of explicit solvent molecules is instead slow and the solvent-

solute interactions need to be averaged over relatively long times in order to provide meaning-

ful results [63]. Hence, in case of conformational transitions studied by molecular dynamics,

the use of implicit solvent has some advantage, since it provides a more efficient sampling by

reducing the solute-solvent interactions to their mean field characteristics. In chapters 4 and 5

two applications featuring implicit solvent models are presented.

In many cases a detailed description of solvent-solute interactions is however most important

[64], for instance in the simulation of hydrogen bonds. Thereby explicit representation of

solvent molecules is required, since implicit solvent models cannot account for specific solvent-

solute hydrogen bonding. In chapter 6 the pattern of intra-helical hydrogen bonds in a bacterial

cytochrome c is simulated. The use of explicit water molecules allows for a correct simulation

of surface intra-protein hydrogen bonds.

In the subsequent sections the continuum Poisson-Boltzmann formalism and the generalized

Born approximation are presented. The former constitutes the exact theoretical treatment of

electrostatic interactions in continuous media. The latter is based on the same framework and

yields an approximate calculation of the solvent-induced reaction field energy.

Another approach to implicit solvent models focuses on the screening of of electrostatic inter-

actions by solvent charges. The EEF1 energy function model [65], developed along this line,

is also presented in this chapter.

The reduction from explicit to implicit solvent, in the formalism of equilibrium statistical me-

chanics, is then discussed in the last section.

3.2 Poisson-Boltzmann equation

The exact description of electrostatic interactions in a continuous dielectric medium is pro-

vided by the Poisson equation. Given a spatial charge distributionρ(~r) in an environment with

uniform dielectric constantε, the electrostatic potentialφ(~r) satisfies the equation:

∆φ(~r) = −4π
ρ(~r)

ε
(3.2)

If the dielectric medium is not homogeneous, that is the dielectric constant depends on the

position,ε = ε(~r), the equation is generalized as follows:

∇ · [ε(~r)∇φ(~r)] = −4πρ(~r) (3.3)

In the simple case of constantε, the solution to Poisson equation is the well known Coulomb

potential:

φ(~r) =

Z

V

ρ(~r ′)d~r ′

ε|~r −~r ′|
(3.4)

A protein can be represented as a set of atomic point charges distributed in space and immersed
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in a low dielectricum. The surrounding solvent is given by a high dielectric medium, containing

ions.

Figure 3.1: Sketch of a molecule embedded in a ionic solution, according to the continuum
representation [66].

One can therefore write a Poisson equation for a protein, defining the charge distributionρ(~r)

as sum of delta functions representing point charges. The dielectric function assumes two

different values in two space regions separated by the protein surface, namely a low value

within the protein interior, like 2 or 4, and a value close to 80 in aqueous solution. The correct

value ofε within the solute is matter of debate [67, 68, 69].

In order to obtain a realistic description of a solvated protein, ions in solution surrounding the

molecule are also needed. Their effect is included using theion distribution resulting from a

Boltzmann statistics in a mean field approximation. This distribution is given by:

ρion(~r) = ∑
s

cs(~r)qsexp(−βqsφ(~r)) (3.5)

if the indexsruns over the number of present ion species,cs is the local concentration of species

s andqs represents its charge. The Boltzmann constant is also present, sinceβ = 1
kBT In this

way the Poisson-Boltzmann equation is obtained:

∇ · [ε(~r)∇φ(~r)] = −4π[ρ(~r)+ ρion] (3.6)

= −4πρ(~r)−4π∑
s

cs(~r)qsexp(−βqsφ(~r)) (3.7)

A linearized version of the Poisson-Boltzmann equation canbe written by expanding the ex-

ponential as power series in in the electrostatic potentialφ up to first order:

∑
s

cs(~r)qsexp(−βqsφ(~r)) = ∑
s

cs(~r)qs−β∑
s

cs(~r)q
2
sφ(~r)+ . . . (3.8)
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The term of order zero vanishes under the hypothesis of electroneutrality of the ionic solution:

∑
s

cs(~r)qs = 0 (3.9)

so that the linearized Poisson Boltzmann equation (LPBE) becomes:

∇ · [ε(~r)∇φ(~r)]−8πI(~r)φ(~r) = −4πρ(~r) (3.10)

using the definition of the ionic strengthI(~r):

I(~r) =
1
2 ∑

s
cs(~r)q

2
s (3.11)

3.3 Numerical solution of the LPBE and applications

The LPBE can be solved analytically only if the system geometry is simple enough. This is

the case for few systems [70]. The geometry dictated by a protein shape is far too complex

to be treated analytically and requires numerical algorithms for the electrostatic potential to

be determined. A common solving procedure bases on a finite difference method on a grid

[71, 72]. The system is mapped onto a cubic grid, with a step size l , which is usually in the

order of 0.5 Å or less.

Figure 3.2: Elementary grid element in the solution of the LPBE.

In the center of the elementary cube of the grid (see fig. (3.2)) a point chargeq0 is placed,

together with the ionic strengthI0 and the potentialφ0. On the six faces of the cube the dielectric
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function ε(i), with i = 1, . . . ,6 is defined. The electrostatic potentialφi , chargeqi and ionic

strengthIi in the six points corresponding to the centers of the adjacent cube, are related toφ0,

q0 andI0 by means of the linearized Poisson-Boltzmann equation, written in integral form for

the elementary cube:

Z

Vcube

∇ · [ε(~r)∇φ(~r)]−
Z

Vcube

8πβI(~r)φ(~r) = −4π
Z

Vcube

ρ(~r) (3.12)

This is equivalent to:

Z

Vcube

∇ · [ε(~r)∇φ(~r)] = 8πβI0φ0l3 +4πq0l3 (3.13)

The left side is transformed via Gauss’ theorem into a surface integral:

Z

Vcube

∇ · [ε(~r)∇φ(~r)] =

Z

Scube

ε(~r)∇φ(~r) ·~ndS (3.14)

The discretized form of∇φ is the incremental ratio ofφ from the center of one cube to the next

one, so that the flux appearing in eq. (3.14) is explicitly calculated and the equation becomes:

6

∑
i=1

2
εi(φi −φ0)l2

l
−8πβI0φ0l3 = −4πq0 (3.15)

The resulting expression forφ0 is then:

φ0 =

(

∑6
i=1εiφi

)

+ 4πq0
l

(

∑6
i=1εiφi

)

+8πβI0l2
(3.16)

Starting from arbitrary values, each point is calculated iteratively, until a required convergence

is reached.

The grid resolution might be critical for a good result. Stepsizes in the order of 0.3 Å would

be required, what is often not feasible for a large molecularsystem like a protein, due to com-

putational limits. One can instead apply a procedure calledfocusingin which, after calculating

the whole system on a coarse grid (typically with step size 1 or 2 Å), smaller grids with higher

resolution are generated and subsequently positioned on portions of the system. On the bound-

ary of the small grids the potential is defined by interpolating values resulting from the coarser

grid, and the calculation is then repeated inside the small grid.

The determination of the electrostatic potential on a grid suffers from an artifact, due to the self

energy of the system. This quantity, which diverges for a point charge in continuum limit, is

finite in a discretized system, yet it depends on the grid resolution and geometry, like number

and position of grid points. Therefore, the numerically evaluated absolute electrostatic en-

ergy of a molecular system is an ill-defined quantity. The significance of Poisson-Boltzmann

calculations relies on the comparison between values obtained for the same molecular system

under different spatial conformations, charge states, or solvent environments. Very good results
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are for instance obtained in the calculation of internal pKa’s and protonation as well as redox

equilibria in proteins [73, 74, 75].

The description of molecular electrostatic energy by Poisson-Boltzmann equation allows for a

very accurate determination of the electrostatic potential of a solvated molecule, which in turn

provides the polar part of the solvation free energy, as explained next.

When a charge, distributed on a molecular system with dielectric constantεint = εp, is trans-

ferred from the uniform phaseεext = εint = εp to a solvent withεext = εw, it experiences a

reaction field, given by the difference between the originalelectrostatic potential, when ev-

erywhereε = εp, and the potential obtained as solution of the Poisson-Boltzmann equation in

presence of the solvent:

φreac = φsol−φvac (3.17)

Thus, the electrostatic component of the solvation energy for a molecular system of atomic

partial chargesqi is the electrostatic energy due to the reaction field:

∆Gpol =
1
2 ∑

i

qiφreac(~r i) (3.18)

while for a continuous charge distributionρ(~r) one has:

∆Gpol =
1
2

Z

ρ(~r)φreac(~r)d
3r (3.19)

Nonpolar contributions to solvent-solute interactions are not included in the Poisson-Boltzmann

formalism. Also solvent entropy, which plays an important role in protein stability, as discussed

in section (1.2), is not accounted for. These limitations can be overcome by adding suitable non

polar and entropy terms [63].

In molecular dynamics simulations the application of the Poisson-Boltzmann equation is in

principle possible (see for instance [76]) but the cost involved in solving it directly limits its

use. However, progress is being made with simulation schemes that overcome the problem of

a complete calculation of the electrostatic potential at every time step, for instance by updating

the forces due to solvent less frequently [77, 78] or by optimizing the repeated solution for

similar conformations [79].

3.4 Generalized Born approximation

Since the solution of the Poisson-Boltzmann equation provides an accurate description of the

electrostatic part of solvation, but is numerically quite expensive, there is a clear interest in

exploring efficient approximations, compatible with molecular dynamics.

Thegeneralized Born approximationis based on Poisson-Boltzmann theory, but the iterative

self-consistent solution to the electrostatic potential is replaced by an approximate calculation

of the solvent-induced reaction field energy. It is presented here following a review of Bashford
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and Case [80], which is suggested for further reading.

The basic assumption is that the electrostatic contribution to the solvation free energy is pro-

vided by a pairwise sum over interacting partial chargesqi in the solute alone, as given by the

following expression:

∆Gpol = −
1
2

(

1
εp

−
1
εw

)

∑
i, j

qiq j

fGB(r i j )
(3.20)

where fGB(r i j ) is a function that interpolates between the distancer i j of the pair (i,j) valid at

large distances and an “effective Born radius”Ri at short distances, defined in analogy with the

Born formula for a single ion. The above expression is a formal generalization of the reaction

field energy , eq. (3.18), experienced by a single spherical charge of radiusa and internal

dielectric constantεp in an implicit solvent with dielectric constantεw [81]:

∆GBorn = −
q2

2a

(

1
εp

−
1
εw

)

(3.21)

The function fGB(r i j ) is defined as follows:

fGB(r i j ) =

[

r2
i j +RiRj exp

(

−
r2
i j

4RiRj

)]
1
2

(3.22)

When r2
i j >> RiRj the reaction field energy neglects the size of the atoms, whereas at short

distance the Born radii are dominant and expression (3.22) approaches eq. (3.21).

The exact values of the Born radiusRi of chargei can in principle be determined by means

of the Poisson-Boltzmann equation. Considering chargeqi alone in the solute interior, if the

reaction potential is known, the corresponding reaction field energy as obtained from eq. (3.18)

can be set equal to the Born energy of eq. (3.21), setting alsoRi = a:

∆Gi
pol

qiφreac(r i)

2
= −

q2

2Ri

(

1
εp

−
1
εw

)

(3.23)

The above equation is however not applicable for practical purposes if one wants to reduce the

computational effort of solving the Poisson-Boltzmann equation. Another expression forRi can

be instead derived, which finally leads to a result, by means of diverse numerical or analytical

procedures and further approximations. For the derivationof the Born radius of chargei it is

useful to consider the alternative formulation for electrostatic energy in terms of electric field

and displacement vector:

Wi =
1
2

Z

ρi(~r)φi(~r)d
3r =

1
8π

Z

~Ei · ~Did
3r (3.24)

The vectors are indexed byi since the chargeqi generates both vector fields.

At this point theCoulomb field approximationis invoked, which states that the displacement

vector~Di of a point chargeqi maintains a Coulombic shape also in case of non-spherical di-
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electric volume:
~Di ≃

qi~r
r3 (3.25)

so that the electrostatic energy for chargei in presence of an external dielectric constantεext

and of an internal dielectric constantεp becomes:

Wext
i =

1
8π

Z ~Di

ε
· ~Did

3r

≃
Z

|Di|
2

ε
d3r

=

Z

int

q2
i

r4εp
d3r +

Z

ext

q2
i

r4εext
d3r (3.26)

if the integration is splitted into the internal (solute) and the external (solvent) volume part.

The reaction field is given at each point by the difference between the potential in a homoge-

neous dielectric environment and the potential in presenceof a solute, as stated in eq. (3.18).

Thus,the reaction field energy for chargei is given by the difference in electrostatic energy

upon transferring the charge from the uniformεp to the solventεw, as stated in eq. Therefore:

∆Gi
pol = Ww

i −Wp
i = −

1
8π

(

1
εp

−
1
εw

)

Z

ext

q2
i

r4 d3r (3.27)

Setting this expression equal to the Born formula eq. (3.21)with a = Ri , one gets:

1
Ri

=
1
4π

Z

ext

1
r4 d3r =

1
4π

[

Z

V

1
r4 d3r −

Z

int

1
r4 d3r

]

(3.28)

where the integral over the solvent is replaced by an integral over the whole space minus a

integral over the solute. Moreover, if the point chargei is considered to be spread over a small

spherical surface of radiusαi , to avoid singularities in the integration, the integral over the

whole space yields 4πα−1
i , such that the Born radius results:

1
Ri

=
1
αi

−
1
4π

Z

int,r>α

1
r4 d3r (3.29)

whereαi is usually defined as the van der Waals radius of atomi.

The playground for different generalized Born approaches is the calculation of the integral in

eq. (3.29). Many different methods have been applied, for instance the transformation of the

volume integral into a surface integral [82, 83], or the evaluation of the volume integral on a

grid [84]. Also analytical techniques have been developed,pairwise summations to mimic the

volume integration [85] or pairwise integration using gaussian atomic functions [86].

Salt effects can also be incorporated at the level of Debye-Hückel theory. This is achieved by
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performing the following substitution in eq. (3.20):

(

1
εp

−
1
εw

)

→

(

1
εp

−
exp(−κ fGB(r i j ))

εw

)

(3.30)

whereκ is the Debye-Hückel screening parameter [87]. A qualitative argument to explain this

substitution is that in both limits of large and small distances this expression leads to the correct

equations [63].

Recent developments of the generalized Born approximationaddress the question of defining

the solvent boundary at the molecular surface. This is a critical issue, since it may result in

microscopic solvent-inaccessible voids of high dielectric in the interior of large biomolecules.

A switching function [88] was introduced to modulate the solvent-solute boundary and corre-

spondingly the dielectric function in the generalized Bornapproach implemented in CHARMM

and applied in chapter 5. This approach is based on an analytical definition of the molecular

volumev(~r) as a superposition of atomic functions. The switching function H (~r) is used to

define this molecular volume. This is a smooth volume exclusion function going from zero in

the interior of the solute to one in the solvent region. It is function of all atomic positions.

The switching function can be expressed as product of polynomial atomic volume exclusion

functionsHi(r), with~r i indicating the atomic position:

H (~r ,{~r i}) = ∏
i

Hi(|~r −~r i|) (3.31)

Each polynomial functionHi is defined as follows:

Hi(|~r −~r i|) =











0, r ≤ Ri
PB−w

1
2 −

3
4w

(

r −Ri
PB

)

− 1
4w

(

r −Ri
PB

)3
, Ri

PB−w < r < Ri
PB+w

1, r ≥ Ri
PB+w

(3.32)

Thus it is zero below the van der Waals radiusRi
PB of atomi, is equal to one at distances larger

than this radius, and a smooth connection between the two values is done within a window

of length 2w which is in the order of tenths of an Ångstrom. Ifw is set to zero, the van der

Waals surface is regained. The molecular volume function used in the integration is linked to

the switching function via the equation:

v(~r) = 1−H (~r ,{~r i}) (3.33)

The solvent dielectric function, involved in the calculation of the integral in eq. (3.29), goes

smoothly from zero in the protein interior to one in the bulk solvent and has the form:

ε(~r) = 1+(εw−1)H (~r ,{~r i}) (3.34)

The implementation of generalized Born formalism in CHARMM31 discussed above and ap-
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plied in chapter 5 also contains an empirical correction to the Coulomb field approximation, in

order to reproduce deviations from the spherical symmetry of the molecular system [89].

3.5 EEF1 energy function

This is a so calledsolvent exclusion model, which provides an alternative formulation for the

solvation free energy of a protein. The effect of water on a polypeptide is estimated from the

solvation of each single atom, modified by the presence of other solute groups that exclude

solvent. The parametrization of the function is derived from experimental data on solvation,

and requires further empirical corrections. Despite the strong approximation and its empirical

character, the model works for molecular dynamics, namely it succeeds in describing protein

thermodynamics under native conditions, discriminating between native and unfolded confor-

mations, and giving unfolding pathways in agreement with explicit water simulations [90].

Moreover, the speed of a molecular dynamics simulation withEEF1 water model is only 50%

slower than a simulationin vacuo.

The solvation free energy of a given conformation~rM , as in eq. 3.1, can be written as a volume

integral of a densityf (~r):

∆Gsolv =
Z

V
f (~r)d~r (3.35)

The densityf (~r) contains contributions from solvent-solute and solvent-solvent interactions,

both of enthalpic and of entropic origin. When the conformation of the macromolecule changes,

the solvation free energy of each group is also changing because of two reasons: first, the sol-

vent is excluded from a volume now occupied by the new conformation of the macromolecule;

second, density and orientation of solvent molecules are modified in the remaining space. The

latter property, which causes charge screening, is supposed to have an important role for polar

residues only.

The basic assumption of the EEF1 model is that for a polyatomic solute the solvation free

energy can be written as a sum over atomic contributions:

∆Gsolv = ∑
i

∆Gi
solv (3.36)

Such an expression can be formally derived by considering the solute solvent interactions as an

additive function of the different groups [65].

Taking into account only the contribution to solvation energy due to the solvent exclusion

effect, one can write:

∆Gi
solv = ∆Gi

ref−∑
j

Z

Vj

fi(~r)d~r (3.37)

where∆Gi
ref is the reference solvation free energy, that is the solvation free energy of group

i in a appropriate small molecule where the group is largely exposed to solvent. The volume

Vj is occupied by groupj and the sum runs over all groupsj surroundingi. To simplify the
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calculation, the integral overVj is approximated by the productfi(r i j )Vj :

∆Gi
solv = ∆Gi

ref−∑
j 6=i

fi(r i j )Vj (3.38)

Therefore, the free energy of solvation of groupi in the macromolecule is given by the ref-

erence value in a nearly completely solvated state minus thereduction in solvation due to the

presence of the surrounding groups. The model does not take into account the finite size of wa-

ter molecules, thus all cavities are instantaneously filledwith solvent. However, this does not

lead to a significant error if cavities are surrounded by nonpolar groups, for which the solvation

energy is small [65].

The function fi(r i j ) is assumed to be Gaussian:

fi(r) =
αi

4πr2 exp

[

−

(

r −Ri

λi

)2
]

(3.39)

and contains a number of parameters.Ri is the van der Waals radius of atomi (which is the

corresponding parameter in CHARMM19 set),λi is a correlation length, corresponding to the

length of the first solvation shell. The choice of a gaussian function with this correlation length

ensures that about 80% of the solvation energy is provided bythe first solvation shell, what was

shown to be the case in computer simulations of water and alsoof Lennard-Jones fluids [65].

Theαi coefficient is related to the free energy of solvation of group i in isolation,∆Gi
free, that

is given by the integral offi(r) over the whole space. This free energy differs from∆Gi
ref,

which is affected by the presence of a small compound linked to the atom. The parameterαi is

defined such that the solvation free energy of atoms deeply buried inside a protein is close to

zero, with deviations depending on the number of atoms surrounding the given group. For the

ionic groups, which are mostly exposed to the solvent,∆Gi
free = ∆Gi

ref is set.

The free energy values in the reference state,∆Gi
ref, are derived from experimental measure-

ments [91].

The excluded volume effect, which defines the free energy of solvation, accounts for the self

energy of a charge transferred from a high to a low dielectricmedium. The charge screening

effect is not included in expression (3.37), but can be takeninto account easily by defining

a distance dependent dielectric constant, namelyε ∝ r−1, which shortens the range of elec-

trostatic interactions. With this choice, the short-rangehydrogen bonding interactions are left

almost unaltered, while at large distances interactions are shielded. However, ionic side chains

interact strongly with each other and with polar groups alsoin presence of the distance de-

pendent dielectric constant, which is in contrast with experimental data. Therefore, a further

empirical approximation is required, namely the originally charged side chains are neutralized,

while their polarity is increased and a penalty is added to their solvation energy in order to

prevent them to be buried in the interior of the protein.

The implementation of this model in CHARMM is related to the extended model for topol-
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ogy and parameters CHARMM19 (see section 2.3.1), in which nonpolar hydrogen atoms are

included in the definition of the corresponding carbon groups.

3.6 Statistical mechanics of a solvated protein

Anfinsen [2] formulated the hypothesis that the native stateof a protein is essentially a unique

conformation corresponding to the thermodynamically moststable state. This means that the

molecule during folding is able to explore the conformational space within the experimental

time scales, overcoming barriers, until it reaches the equilibrium. At the equilibrium the con-

formations are populated according to the Boltzmann distribution.

The validity of the thermodynamic hypothesis is suggested by many experiments on protein

folding. Nevertheless larger and more complex proteins might fold under kinetic control, thus

reaching the kinetically most accessible state instead of the most stable one.

The statistical description in terms of energy landscape (see section 1.7) is able to represent

both situations, namely thermodynamic and kinetic controlof folding into the native state.

In all cases one can suppose that although the macromolecular degrees of freedom might not

equilibrate during a conformational change, the solvent molecules actually reach the thermo-

dynamic equilibrium within a couple of picoseconds, or longer in the case of internal cavities,

but always within the experimental time scales. This means that in the study of protein confor-

mational stability the solvent can be considered at equilibrium and it can be averaged over the

corresponding degrees of freedom.

One can describe the statistical mechanics of a solvated macromolecule using the formalism of

the canonical ensemble. The following treatment is based ona recent review by Lazaridis and

Karplus [92].

The macromolecule consists ofM atoms with Cartesian coordinates~r i = (xi ,yi ,zi), with i =

1, . . . ,M and internal coordinates~q j , with j = 1, . . . ,3M − 6. The solvent is made ofN rigid

molecules with coordinates~sk andk = 1, . . . ,N. Each~sk contains the Cartesian coordinates

of the center of mass and three Euler angles specifying the orientation. We can define the

hamiltonianH of the interacting system of macromolecule and solvent and write the canonical

partition function:

Q =
Z

N!Λ3MΛ3N (3.40)

whereZ is the classical configuration integral, given by:

Z =
Z

exp(−βH)d~rMd~sN (3.41)

with β = 1
kBT . The solvent degrees of freedom can be easily integrated formally if the Hamil-

tonian is additive, namely if one can separate the solvent-solvent(ss) interactions from the



44 Chapter 3. Implicit solvent models

molecule-molecule (pp) and from the molecule-solvent (ps)interactions:

H = Hss+Hps+Hpp (3.42)

The configurational integral can be written as:

Z =

Z

d~rM exp(−βHpp)

Z

d~sN exp(−βHss−βHps)

=

Z

d~rM exp(−βHpp)〈exp(−βHps)〉ssZss (3.43)

where:

Zss=
Z

exp(−βHss)d~sN (3.44)

and the ensemble average on the solvent degrees of freedom is:

〈exp(−βHps)〉ss=

R

d~sN exp(−βHss−βHps)

Zss
(3.45)

By eliminating the solvent degrees of freedom one can define an effective energy functionW

given by the sum of two terms: the macromolecular interaction energy,Hmm, and the solvation

free energy∆Gsolv:

∆Gsolv = −kBT ln〈exp(−βHps)〉ss (3.46)

so that the configurational integral in eq. (3.41) becomes:

Z = Zss

Z

exp[−β(Hpp+ ∆Gsolv)]d~rM =

Z

exp[−βW]d~rM (3.47)

The effective energy only depends on the macromolecular degrees of freedom. Energy and

entropy of solvation are included if the solvent is at equilibrium. The effective energyW

defines a hypersurface in the conformational space of the macromolecule which is nothing but

the energy landscape.

Introducing the internal coordinates~q j instead of the Cartesian ones we can rewrite the integral

in 3.47 after integrating over the six external degrees of freedom describing the translation of

center of mass and the rigid rotation:

Z = ZssV8π2
Z

exp[−βW̃(~q)]d~q (3.48)

including the constant Jacobian of the coordinate transformation intod~q.

For a molecule at thermal equilibrium one can show that the probability of finding the system

at a given configuration~q is:

p(~q) =
exp[−βW̃(~q)]

R

exp[−βW̃(~q)]d~q
(3.49)
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One can show that:

Z

p(~q) ln p(~q)d~q = − lnZ+ lnZss+ lnV8π2−β
Z

p(~q)W̃(~q)d~q (3.50)

Since the Helmholtz free energy of the system is obtained from the canonical partition function

Q as follows:

A = −KT lnQ = −kBT lnZ+kBT ln(N!Λ3MΛ3N) (3.51)

one can derive the logarithm of the configurational integralZ from the expression given in eq.

(3.50) and write the free energy:

A = kBT ln(N!Λ3MΛ3N)−kBT lnZww−KT lnV8π2

−kBT ln
Z

exp[−βW̃(~q)]d~q

= A0 +kBT ln
Λ3M

V8π2 +
Z

p(~q){Hpp(~q)−∆Gsolv(~q)}d~q

= +kBT
Z

p(~q) ln p(~q)d~q

= A0 +kBT ln
Λ3M

V8π2 + 〈W̃〉−TScon f (3.52)

A0 is the free energy of the pure solvent, the second term is the ideal contribution coming

from translation and rigid rotation of the molecule. The third term is the effective internal

energy, comprising interaction energy and solvation energy and the fourth is the conformational

entropy. The Gibbs free energy differs from the Helmholtz free energy in that it contains an

additive termpV where p indicates the pressure. Since under typical native conditions this

term is constant, it can be neglected and thus the expressionin eq. (3.52) is equivalent to the

Gibbs free energy.

3.6.1 Native state and thermodynamic stability

If the native conformation of a protein is reached under thermodynamic control, the system is

at thermal equilibrium. Therefore, under physiological conditions the phase space is defined

by an ensemble of conformations obeying the probability distribution in eq. (3.49) and with a

free energy defined in eq. (3.52). The phase space can be divided into two subsetsN andD

consisting of two configurations of the molecule, namely thefolded (native) and the unfolded

(denatured) conformations. Then the configurational integral Z consists of the sum of two

terms:

Z = ZN +ZD (3.53)

with

ZN = ZssV8π2
Z

N
exp(−βW̃)d~q (3.54)
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and the same expression is valid for subsetD, where the integration is restricted to the subsetD

of phase space. Also the probability distributionspN(~q) andpD(~q) can be defined by restricting

the integration in eq. (3.49) respectively to subsetN or D. Using eq. (3.52) the free energy for

subsetN is

AN = A0+kBT ln
Λ3M

V8π2 + 〈W̃〉N −TScon f
N (3.55)

and the same for subsetD:

AD = A0+kBT ln
Λ3M

V8π2 + 〈W̃〉D −TScon f
D (3.56)

Therefore, the free energy difference between setsN andD is:

AN −AD = 〈W̃〉N −〈W̃〉D −T(Scon f
D −Scon f

N ) = ∆〈Hpp〉+ ∆〈∆Gsolv〉−T∆Scon f (3.57)

The last equation defines the Helmholtz free energy of folding under native conditions. The

Gibbs free energy of folding is then obtained from the Helmholtz free energy of eq. (3.57) by

adding thep∆V term:

∆G = ∆〈Hpp〉+ ∆〈∆Gsolv〉−T∆Scon f + p∆V (3.58)


