
Chapter 2

Molecular dynamics of proteins

2.1 Introduction

Theoretical description is the basis for comprehension of natural phenomena, as they are ob-

served in experiments. Nevertheless in practice exact solutions for these descriptions are rather

the exception than the rule and most theoretical results rely heavily on analytical and numer-

ical approximations. Samples typically measured in experiments contain large numbers of

molecules and cannot be theoretically studied by exactly enumerating all energy minima.

Computer simulation methods can be used instead of analytical approximations to generate

representative conformations of a molecular system in equilibrium. Also in case of complex

time dependent events, a simulation can provide a picture ofthe way in which a molecular

system changes from one configuration to another.

Computer simulation is entirely based on physical theory, but the use of approximations is

replaced by a more elaborate computational effort. The computation is not merely intended to

generate an expected result, it is rather a virtual laboratory in which the behavior of a system

can be described and predicted. In this respect computer simulation represents an intermediate

level between experiment and theory [26, 27] .

Molecular dynamics (MD) is a computational methodology aimed at the solution of the N body

problem, based on the classical analytical mechanics of Hamilton and Lagrange. A system of N

interacting atoms is studied by solving the Newtonian equations of motion. Rigid molecules are

described by the Euler angles. The system under study is thenentirely classical, this means the

quantum nature of atomic and molecular degrees of freedom isneglected. Therefore, molecular

dynamics can be applied only to describe phenomena where quantum effects are not relevant

or can be included as semi-classical corrections. Also relativistic effects are not taken into

account, which means that the speed of light is infinite and all interactions are instantaneously

propagated.

During an MD simulation, starting from arbitrary initial conditions, a trajectory in phase space

is generated by numerically integrating the equations of motion. Each point in phase space
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represents a set of positions and velocities of allN degrees of freedom forming the molecular

system. The dynamic trajectory is a sequence of points generated at following time steps that

entirely describes the motion of the molecular system. Timeis the discrete independent variable

used in the integration of the equations of motion.

Standard equilibrium MD corresponds to the micro canonicalensemble in statistical mechan-

ics, but in certain cases properties at constant temperature or pressure are required. Thereby

the equations of motion are modified and the trajectories areno longer solutions of the original

Newton’s equations, but are derived from more complex Hamiltonian functions (see section

2.6).

2.2 Ensemble and time averages

Equilibrium statistical mechanics provides the theoretical framework for many body systems,

like for instance macromolecules. The concept of ensemble average is crucial, since it relates

the microscopical energetics of a system in equilibrium to physically measurable quantities. A

classical system ofN interacting particles in equilibrium at constant temperatureT is described

in the canonical ensemble by the Boltzmann distribution. The ensemble average of a quantity

G(~rN), that is solely a function of the position of allN atoms~rN, is expressed as phase space

integral involving the potential energyU(~rN):

〈G〉 =

R

G(~rN)exp(−βU(~rN))d~rN

R

exp(−βU(~rN))d~rN
(2.1)

Velocities are integrated out andβ = 1
kBT wherekB is the Boltzmann’s constant.

Under certain conditions one can prove that a system in equilibrium is exploring the whole

phase space when evolving with time. Therefore, following asingle trajectory long enough is

sufficient to visit the entire set of positions and velocities over which an ensemble average like

the one in eq. (2.1) is calculated. This is the ergodic theorem [28] and implies that an ensemble

average is equivalent to a time average over an infinitely long trajectory, which is defined as:

〈G〉t = lim
M→∞

〈G〉M = lim
M→∞

1
M

M

∑
µ=1

G(~rN(tµ)) (2.2)

where 〈G〉M is the average overM measurements of quantityG at subsequent time steps

{tµ}M
µ=1. For a sufficiently largeM the time average〈G〉M is then according to the ergodic

theorem a good approximation to the equilibrium ensemble average. Such time averages of

energies and other quantities related to conformational properties are typically evaluated and

analyzed during a molecular dynamics simulation.
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2.3 Molecular dynamics of biomolecules

A theoretical study of structural and function properties of biological molecules at the atomic

level is one of the goals of biocomputing. Although classical mechanics is in principle not

suited for the simulation of such systems because of their quantum nature, a quantum mechan-

ical treatment is still not feasible for molecules containing more than a few atoms. Therefore,

one turns to classical MD simulation and uses empirical potential energy functions, which can-

not take into account quantum effects. In this respect a crucial point is given by the parametriza-

tion of the energy function: parameters are adjusted in order to give agreement with quantum

mechanical calculations on small compounds. Typical quantum phenomena like bond forma-

tion or disruption cannot be modeled via molecular dynamics: they require a more accurate

treatment involving quantum calculations, which can be embedded in so called QM/MM sim-

ulations.

In the MD simulation of proteins and nucleic acids most used programs are CHARMM [29],

AMBER [30], GROMOS [31]. In the following the main features of CHARMM, which was

used throughout this work, are discussed. Most of the properties presented here are however

common to all programs. The major packages have similar capabilities in terms of what molec-

ular systems can be studied, the kind of simulations they allow to perform, and the tools for

simulation data analysis [32].

2.3.1 Force field

The potential energy function describing the interaction betweenN atoms is a sum of energies,

which depend on the atomic positions{~rN} . One can distinguish between bonded and non-

bonded interactions, so that the potential energy can be written as:

U({~rN}) = Vbonded({~rN})+∑
i, j

Vnon−bonded(~r i ,~r j) (2.3)

The bonded energy term describes the interaction among atoms involved in covalent bonds and

consists of three different contributions. These are:

1. the bond energy, which for each pair of covalently bound atoms(i, j) describes deviations

from the ideal bond lengthbi, j
0 by means of a harmonic potential:

Estretch= ∑
(i, j)

K i, j
B (‖~r i −~r j‖−bi, j

0 )2 (2.4)

2. the bond angle energy defined for three subsequent atoms covalently bound and forming

an angle which deviates from the ideal valueθ0. This is a harmonic potential in the

angle:

Eangle= ∑
(i, j,k)

K i, j,k
θ (θ(i, j,k)−θi, j,k

0 )2 (2.5)
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3. the torsion angle potential which models the presence of steric barriers between four

atoms separated by three covalent bonds. The motion associated with this term is a

rotation, described by a dihedral angle and coefficient of symmetry n, around the middle

bond. This potential is assumed to be periodic and is often expressed as a cosine function:

Etorsion= ∑
(i, j,k,l)

K i, j,k,l
φ (1−cos(nφ)) (2.6)

So, the final expression for the bonded energy term is:

Vbonded({~rN}) = Estretch+Eangle+Etorsion (2.7)

Notice that all force constants and equilibrium values in the previous expressions depend on

the atom species involved, therefore they are indexed.

The non-bonded potential energy is a sum of pair energy terms. Each one of theN(N− 1)

pairs given in a system ofN atoms provides two such terms: one is given by the van der Waals

interaction energy and the other one by the electrostatic interaction. Both terms are function of

the atom-atom distancer i, j = ‖~r i −~r j‖.

The van der Waals interaction between two atoms arises from abalance between repulsive and

attractive forces. The repulsive force is present at short distances where the Pauli exclusion

principle is relevant. The attractive force arises from fluctuations in the charge distribution

in the electron clouds, which generates instantaneous dipoles. The attractive interaction is

longer range than the repulsion, whereas at short distancesthe repulsive interaction becomes

dominant. This produces a minimum in the energy, which is defined as follows:

Evdw(~r i ,~r j) =
N

∑
i, j=1

(

Ai, j

r12
i, j

−
Ci, j

r6
i, j

)

(2.8)

Again the parameters depend on the chemical type of involvedatoms.

From the electrostatic point of view, each atomi is considered to carry a point chargeqi located

at the atomic position. Therefore, the electrostatic interactions between two atomsin vacuois

simply given by the Coulomb potential energy:

Eelec(~r i ,~r j) =
N

∑
i, j=1

qiq j

ε0r i, j
(2.9)

and the total non-bonded energy function is then:

∑
i, j

Vnon−bonded(~r i ,~r j) = Evdw(~r i ,~r j)+Eelec(~r i ,~r j) (2.10)

Point charges are defined for each atom depending on the topology of the compound consid-

ered. A list of values concerning bond distances, angles, charges and atom types is given for all
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amino acids and other relevant compounds in the topology file. All parameters involved in the

potential energy function, like equilibrium distances andangles and van der Waals interaction

parameters, are contained in the parameter set, which together with the topology file defines

the force field. There are different versions of topologies and parameters available for bio-

logically relevant molecules, like proteins, nucleic acids and carbohydrates. Each molecular

dynamics program is usually equipped with its own force field, although force fields can be

used independently with different programs. In the case of proteins and nucleic acids the most

recent topology file developed for CHARMM is the CHARMM22 set[33], characterized by an

explicit representation of all atoms, including non polar hydrogens. The atomic charges were

derived fromab initio calculations of interactions between water molecules and small model

compounds. In the preceding CHARMM19 topology file [34, 35] polar hydrogen atoms are ex-

plicitly represented, while non polar hydrogens are implicitly included in the binding partners:

these are carbon atoms whose radius, mass and charge are modified in order to take into ac-

count the presence of hydrogens. Such a description, calledextended model, has the advantage

that the number of degrees of freedom and therefore the computation time are reduced.

Energy parameters are crucial in ensuring a correct representation of interactions. They are

adjusted in order to give agreement with quantumab initio calculations and tested on a number

of different peptides and proteins in vacuo and crystals. The CHARMM22 parameter set is

associated with the CHARMM22 topology file. The two files completely define the force field

and are loaded together at the beginning of a computation.

2.3.2 Treatment of long range interactions

The most time consuming part of a molecular dynamics simulation is the calculation of the non

bonded terms in the potential energy function. Namely a system ofN atoms providesN(N−1)

pairs for which electrostatic and van der Waals forces should be computed. To speed up the

computation, a cutoff distance can be introduced, such thatall interactions between two atoms

separated by a distance greater than the cutoff are ignored.There are several methods to achieve

this, while respecting the smoothness of the energy function. For instance the shift cutoff

method modifies the potential energy terms at all distances,such that at cutoff distance the

interactions are zero. A drawback of this method is that all equilibrium distances are reduced.

The switch cutoff method instead changes the interaction profile only over a predefined range

of distances. The potential takes its usual value up to a firstcutoff and is then switched to zero

between the first and the second cutoff distance. This methodhas the disadvantage that strong

forces arise in the transition region and is therefore not recommended, when using short cutoff

distances.

By itself, the usage of cutoff distances may not strongly reduce the computation time during

dynamics. This is because all distances between atom pairs should be calculated before decid-

ing which ones are within the cutoffs and thus relevant for the calculation. Thenon-bonded

neighbor list is a device by which atoms to be included in the non-bonded calculations are
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automatically given at each step and only a periodical checkand updating is required. In this

way one avoids the computation ofN(N−1) distances at each step. The list contains all atoms

within the cutoff distance of any other atom, together with all neighbor atoms, that are slightly

further away than this cutoff. The distance used to calculate the neighbors, or neighbor cut-

off, defines a sort of reservoir of atoms. It should be large enough to contain all atoms that

in the time between two checks can enter the interaction range of a given atom. The list is

regularly updated during the dynamics. A typical updating frequency is every 5 steps, which is

a compromise between accuracy and efficiency.

Although the elimination of forces at large distances provides a significant improvement in

calculation efficiency, one should point out that long rangeelectrostatic interactions are indeed

very important in biological molecules, as demonstrated ina number of experimental studies

[36, 37]. Therefore, in many cases instead of using cutoff distances it is preferable to adopt

one of the algorithms that have been developed in order to take into account the contribution

of long range forces. The Ewald summation method is typically used for periodic systems

like protein crystals [38], whereas for non periodic systems such as a molecule in solution a

multipole expansion [39, 40] can be applied: this proceduredistinguishes between a short range

component of the electrostatic interactions, which is treated in the usual pairwise fashion, and

a long range part approximated by a multipole expansion.

2.3.3 Boundary conditions

Boundary effects can play an important role in MD simulations especially in case of small

numbers of atoms, with a large ratio between surface and volume parts [27]. The correct

treatment of boundaries is crucial to MD simulations because it enables the calculation of bulk

properties, which characterize a macroscopic molecular system. In the simulation of a protein

in solution, it is of great importance that water molecules completely surround the protein, as

it is in real systems. This configuration can be achieved either using a very large number of

solvent atoms surrounding the protein and being confined by acavity potential function, or by

applying periodic boundary conditions. The latter procedure consists in putting the molecular

system into a box, usually of cubic shape, and then generating a number of identical copies or

images of the system adjacent to each face of the central box.The central molecular system

evolves according to the Newtonian equations and interactswith the images, whose motion is a

replica of the central dynamics. This method has the advantage that all atoms forming the real

system, including those on the boundary, are surrounded by neighbors and the total number of

degrees of freedom is still manageable. Moreover, the number of atoms in the central box is

conserved, since for each particle leaving the box on one side the corresponding image enters

the same box on the opposite side. In order to further reduce the number of degrees of freedom

and therefore the computer time, other geometries than the cubic can be employed, like for

instance the truncated octahedron, which was used in the longest protein folding simulation

published so far [41].
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2.4 Integrators: Verlet, leap-frog, velocity Verlet

Under the influence of a continuous potential energy function, the atoms moving according to

a dynamics simulation give rise to a many-body problem that cannot be solved analytically.

Therefore the equations of motion are integrated numerically using a finite difference method.

The basic idea is that the integration is broken down into many small stages, each separated

in time by a fixed time stepδt. The total force on each atom in the configuration at timet

is calculated as sum of all interactions with other atoms. Using the Newtonian equation the

acceleration is obtained from the force. Then, combining itwith the positions and velocities at

time t, the new positions and velocities at the subsequent time step t + δt are computed, forces

are also calculated and the procedure is repeated to get new values at timet +2δt. The force is

assumed to be constant during each time step.

There are different algorithms for integrating the equations of motion. Some of them assume

that positions and dynamical quantities can be expressed asTaylor series expansions:

~r(t + δt) =~r(t)+ δt~v(t)+
1
2

δt2~a(t)+ . . . (2.11)

~v(t + δt) =~v(t)+ δt~a(t)+
1
2

δt2~b(t)+ . . . (2.12)

~a(t + δt) =~a(t)+ δt~b(t) (2.13)

where~r(t), ~v(t), ~a(t) and~b(t) indicate respectively position, velocity, acceleration and first

derivative of the acceleration, all evaluated at timet. Acceleration is obtained at all times by

means of the Newton’s equation. In a system ofN interacting atoms described by the potential

energy functionU({~rN}) defined as in eq. (2.3), the acceleration of i-th atom with mass mi is

mi~ai = −
∂

∂~r i
U({~rN}) (2.14)

The most employed integration algorithm is theVerlet integrator[42], which uses positions

and accelerations at timet, as well as positions at the previous stept −δt, to calculate the new

positions att + δt. From the Taylor expansion in eq. (2.11) follows for each particle:

~r(t + δt) =~r(t)+ δt~v(t)+
1
2

δt2~a(t)+ . . .

~r(t −δt) =~r(t)−δt~v(t)+
1
2

δt2~a(t)− . . . (2.15)

Adding these two equations gives, approximated to the fourth order int:

~r(t + δt) = 2~r(t)−~r(t −δt)+ δt2~a(t) (2.16)

Velocities do not appear explicitly in the integration algorithm. They can be estimated from the
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positions:

~v(t) = [~r(t + δt)−~r(t −δt)]/2δt (2.17)

One drawback of this integrator is that the positions at timet +δt are obtained by adding a small

term,δt2~a(t), to the difference of two much larger quantities, leading toa loss of precision. In

addition, at the starting stept = 0, the positions~r(−δt) must be estimated using the Taylor

expansion.

The leap-frogalgorithm includes explicity the velocities and does not require the calculation

of differences of large numbers. It uses the following relationships:

~r(t + δt) =~r(t)+ δt~v(t +
1
2

δt)

~v(t +
1
2

δt) =~v(t −
1
2

δt)+ δt~a(t) (2.18)

Here the velocities are always calculated at intermediate time steps between two subsequent

position calculations. The disadvantage of this method is that positions and velocities are not

synchronized, which for instance makes it impossible to calculate the total energy at a given

time step.

Finally, thevelocity Verletalgorithm gives positions, velocities and accelerations at the same

step, thus with less efficiency but higher precision than theprevious methods. Following equa-

tions are used:

~r(t + δt) =~r(t)+ δt~v+
1
2
~a(t)

~v(t + δt) =~v(t)+
1
2

δt[~a(t)+~a(t + δt)] (2.19)

All these algorithms are based on equations derived from a hamiltonian function, so that the

total energy, sum of potential and kinetic part, is in principle conserved and fully determined

by the initial conditions when running a simulation. The stability of the integrator is measured

in terms of deviation of the numerical trajectory from a reference analytical trajectory, where

energy is fully conserved. Therefore, the stability is directly related to the ability of conserving

energy and momentum throughout the dynamics. The stabilityalso depends on the choice of

the time step size: a stable algorithm permits a time step of 1-2 fs for protein simulations,

which provides an efficient sampling of the phase space.

2.5 Set up of a (N, V, E) protein simulation

The standard molecular dynamics simulation is performed under conditions of constant energy

E, number of particlesN and volumeV. This corresponds to the microcanonical ensemble in

statistical mechanics. The trajectory propagation used for data analysis -so called production

run- follows a series of preliminary operations.
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The choice of the correct initial configuration is crucial indetermining the success of a sim-

ulation. For simulations of systems at equilibrium it is recommended to choose a starting

conformation that is close to the state which is desired to simulate. If an experimentally de-

termined configuration is known, like for instance an X-ray or NMR structure published in the

Protein Data Bank [43], this should be used. In case of a crystal structure some modeling is

required, namely the missing hydrogen atoms must be correctly placed, using the information

contained in the topology file.

Proteins are usually solvated, and the solvent must be modeled. In the next chapter the use of

implicit solvent representations will be discussed. More often one chooses an explicit solvent

model, namely a set of water molecules entirely surroundingthe solute, filling a box and sub-

jected to some boundary conditions, as described in the previous sections. Various models of

water molecules are available in CHARMM force field, the TIP3model [44] is widely used.

The water molecules also need a starting configuration reasonably close to a realistic liquid at

the desired temperature. This is usually obtained by running a preliminary molecular dynamics

simulation of water alone at the required temperature, until equilibrium is reached.

After inserting the protein into the water box and deleting all water molecules that happen to

be closer than a hydrogen bond distance, 2.6 Å, to the protein, the interactions between solute

and solvent must be correctly modeled, in order to obtain a good starting configuration. This is

achieved by means of anenergy minimizationaccording to the following scheme:

1. solvent molecules are energy minimized first while the solute is kept fixed;

2. the protein energy is minimized while constraining the solvent, in order to remove hot

spots within the molecule;

3. finally both sets are minimized simultaneously, in order to reach a mutually optimized

configuration.

At this point the dynamic integrator is invoked, time step size is defined, non-bonded interaction

options are given and the dynamics can start. A (N, V, E) simulation is made of three steps,

each one producing a segment of dynamic trajectory. After each step the dynamics is stopped

and restarted, which means that information on positions and velocities of all particles at the

end of one step is stored and used to initialize the subsequent step. The steps are listed here:

heating At time zero velocities are assigned according to a Maxwell-Boltzmann distribution

corresponding to a temperature close to 0 K. After a number ofsteps, temperature is

increased by 5 or 10 K, by rescaling the velocities (see next section). After a number of

cycles the desired simulation temperature is reached.

equilibration At the beginning of this phase the system has reached the finaltemperature but

it is usually far from equilibrium. During equilibration energy can flow within the sys-

tem, bonded and non-bonded interactions are relaxed and hotspots are removed. Tem-

perature is kept constant at the final value by means of a thermostat (see next section)
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which rescales velocities if the temperature change exceeds a threshold. When the ob-

served quantities like total energy and temperature assumea behavior characterized by

small fluctuations and constant average (typically after tens or hundreds picoseconds)

equilibrium is reached.

production At this point any temperature control is removed, the systemis isolated and be-

comes strictly microcanonical. Now energy is conserved, while temperature is fluctuat-

ing. Various quantities can be monitored during time evolution. Velocities and coordi-

nates can be stored for later analysis, when thermodynamic quantities are evaluated.

2.6 Temperature control

In (N, V, E) MD simulations it is required to control the temperature, namely during heat-

ing and equilibration. There may also be other situations where temperature control plays a

fundamental role in MD simulation, like for instance (N,V,T) or constant temperature simula-

tions, related to the canonical ensemble, or (N,p,T) simulations, known as constant pressure

simulations.

The temperature of a molecular system is related to the average kinetic energy according to the

equipartition theorem:

〈K〉NVT =
1
2

N

∑
i=1

mi〈~v
2
i 〉 =

3
2

NkBT (2.20)

for a system ofN atoms. Given the proportionality between squared velocities and temperature,

the simplest way to control the temperature is to scale the velocities using an appropriate factor

[45]. For instance, if temperature at timet is Tcurr, and the required temperature isTreq, it is

sufficient to multiply all velocities by:

λ =

√

Treq

Tcurr
(2.21)

to obtain the required temperature. This procedure is knownasvelocity rescaling. Other scal-

ing procedures use more complicated time-dependent scaling factors, to obtain an exponential

decay of the molecular system towards the desired temperature [46]. These methods do not

generate canonical averages in general: velocity scaling may artificially delay temperature

equilibration differences between different parts of the system.

Theextended systemmethod, introduced to perform constant temperature MD simulations by

Nosé [47] and Hoover [48] generates a canonical ensemble. Inthis approach a thermal reservoir

is defined as an additional degree of freedom, in the molecular system. A brief description of

the method, using the canonical representation, is given here.

Given a system of N interacting atoms, defined by the canonical variables{~qi ,~pi} that evolve
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in time t according to equations of motion derived from the Hamiltonian:

H =
N

∑
i=1

p2
i

2mi
+U(~q1, . . .~qN) (2.22)

one defines a transformation into an extended virtual system{~ρi ,~πi} dependent on timeτ and

containing an additional degree of freedom,s, by means of the following relationships:

s =
dτ
dt

ρi = qi (2.23)

πi = spi

πs =
ds
dτ

(2.24)

A new Hamiltonian for the virtual system, includingsand its virtual massMs, is written as:

H∗ =
N

∑
i=1

π2
i

2mis2 +U(~ρ1, . . .~ρN)+
π2

s

2Ms
+(3N+1)kBT lns (2.25)

One can show that this Hamiltonian leads to a canonical ensemble. The equations of motion of

the virtual system:

dπi

dτ
= −

∂H∗

∂ρi

dπs

dτ
= −

∂H∗

∂s
dρi

dτ
=

∂H∗

∂πi

ds
dτ

=
∂H∗

∂πs
(2.26)

can be written as functions of the real variables and of timet, and the coupling with the ther-

mostat is then explicit. Defining

ζ =
1
s

ds
dt

(2.27)

the equations of motion in terms of the real system become:

dpi

dt
= −

∂U
∂qi

−ζpi
dζ
dt

=
1

Ms

[

N

∑
i=1

p2
i

2mi
− (3N+1)kBT

]

dqi

dt
=

pi

mi

d lns
dt

= ζ (2.28)

Each state visited by the virtual system during the dynamicsgiven by equations (2.26) corre-

sponds uniquely to a state of the real system described in eq.(2.28). The virtual massMs is a

parameter, which controls the energy flow between the real molecular system and the reservoir

s. If Ms is very large the energy flow is slow and in the limit of infiniteMs no energy exchange

takes place, thus conventional molecular dynamics is regained.
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2.7 Stochastic molecular dynamics

The effect of solvent molecules on a solute consists of two contributions: on one hand the

solvent molecules randomly interact with solute moleculesby means of collisions in which

energy is exchanged. On the other hand, the net effect of these collisions with solvent is

a friction mechanism which slows down dynamics of solute andsolvent. At thermodynamic

equilibrium energy between solute and solvent flows such that both parts of the system fluctuate

around the equilibrium temperature.

When performing a molecular dynamics simulation one can replace the explicit solvent molecules

with a set of forces accomplishing the two effects describedabove. This provides an efficient

way of controlling temperature. In fact such a solvent modelplays the role of a thermal bath

exchanging energy with the molecular system under consideration.

The above method [49, 50] relies on the stochasticLangevin equation, which governs the solute

motion including solvent effects and therefore replaces the Newton equation. For a system of

N interacting atoms with interaction given by the potential energy functionU({~rN}) as in eq.

(2.3), the Langevin equation for the generic i-th atom states:

mi
d2~r i

dt2
= −

∂
∂~r i

U({~rN})− γimi
d~r i

dt
+~Ri(t) (2.29)

The first term on the right is the deterministic force derivedfrom the underlying potential

energy function. To simplify the dynamics by eliminating uninteresting degrees of freedom,

this potential function can be replaced by apotential of mean force, whose derivatives are

obtained from ensemble averages. The second term represents the friction force, proportional

to the velocity, which describes the damping effect of solvent. The coefficientγi represents the

frequency of collisions and is the inverse of the velocity relaxation time. This time describes

how long a particle moves before loosing memory of its initial velocity due to collisions. The

intensity of the damping effect depends on the collision frequency: the more frequent are the

collisions, the stronger is the damping effect. The third term on the right side is the stochastic

force~Ri(t), which describes the force, given by random interactions. The instantaneous value

of each component of~Ri(t) is taken from a Gaussian distributionw(Ri) with zero mean, that is:

〈Ri〉 = 0 ; w(Ri) ∝ exp

(

−
R2

i

2〈R2
i 〉

)

(2.30)

Friction and random force are related. Friction is dissipative. The average stochastic force van-

ishes, but in second order it increases the kinetic energy. Thus, cooling by friction compensates

heating by noise, as governed by thefluctuation-dissipation theorem[51]:

〈Ri(0)Rj(t)〉 = 2kBTγiδi, jδ(t) (2.31)

where the correlation function of random force, given as ensemble average of the product
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of two componentsRi(t) at different times, is related to temperatureT and to the friction

coefficientγi . The delta function in time indicates that random forces at different times are

uncorrelated, as well as different components.KB is Boltzmann’s constant. The algorithm used

to solve eq. (2.29) numerically in a MD simulation depends onthe relationship between the

size of the time step∆t and the collision frequencyγ [49]. In case of mild interactions between

solvent and solute, that is small friction coefficient, or, in other words, a propagation velocity

relaxation time much longer that the step used for time:

γ∆t ≪ 1 (2.32)

the equation is integrated as follows, under the assumptionthat the force is constant during the

time step:

~r(t + ∆t) = ~r(t)+~v(t)∆t +
1
2
~a(t)δt2

~v(t + ∆t) = ~v(t)+~a(t)∆t

~a(t) = −γ~v(t)+
1
m

(

−
∂
∂~r

U({~rN})+~R(t)

)

(2.33)

For values ofγ∆t up to about 0.3 the Langevin algorithm implemented in CHARMMproduces

a stable dynamics and the fluctuation-dissipation theorem is satisfied.

2.8 The origins of CHARMM

The basis of modern physical research on biomolecules was set in the 1960s at the Weizmann

Institute in Israel, in the group of Shneior Lifson [52]. Under his direction Ariel Warshel as

PhD student and Michael Levitt, as a visiting student in 1967, wrote together the first computer

program for simulating the properties of a molecular systemfrom a simple potential energy

function. There was considerable interest in developing empirical potential energy functions

for small molecules. The new idea was to use a functional formthat was able not only to calcu-

late vibrational spectra, but also to determine the minimumenergy structure. This program was

called CFF [53] and provided energy and forces of a molecule.Levitt applied it subsequently to

proteins, eventually obtaining the first energy minimization of an entire protein structure [54].

As Martin Karplus joined Lifson’s group at the Weizmann Institute in the late 1960s, Chris

Anfinsen was a regular visitor to the Weizmann, and many discussions on protein folding in

solution inspired Karplus’ work on this topic, for instancethe diffusion-collisionmodel for

protein folding [18, 53]. With Szabo’s molecular model on hemoglobin cooperativity [55],

new questions arose about the energetics of structural transition from the unliganded to the

liganded state of hemoglobin. It was time to develop a program that would make it possible

to take a given amino acid sequence (e.g, that of hemoglobin)and a set of coordinates (e.g

those obtained from the x-ray structure of deoxy hemoglobin) and to use this information to
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calculate the energy of the system and its derivatives as function of the atomic positions. This

program, developed by Bruce Gelin and Martin Karplus and inspired to the work of Michael

Levitt [56, 54], was in fact PreCHARMM, although it did not have a name. It was successfully

used in a range of applications [57, 58].

Given this program, the next step was to use the forces, originally computed for energy min-

imization, to solve Newton’s equation and therefore calculate the dynamics. This task was

performed by Andrew Mc Cammon when he joined Karplus’ group.

Molecular dynamics was historically related to two kinds ofproblems. One direction concerned

the study of simple chemical reactions, which finally led to modern semiclassical, QM/MM and

quantum methods. The other was devoted to the computation ofthermodynamical quantities

in many particle systems, like the hard spheres liquid [59],the soft Lennard-Jones spheres

representing liquid argon [60] and liquid water [61]. A molecular dynamics program suited for

proteins had to base on sufficiently accurate potential functions, able to represent long enough

(at least 10-100 ps) the features of an inhomogeneous systemand sample the neighborhood of

the native state. This was first achieved in 1975 with the simulation of BPTI [62], a small and

stable protein, for which a relatively accurate x-ray structure was available. It was simulatedin

vacuofor 9.2 ps. This was enough to show that proteins are not rigid, but flexible structures,

where internal motions can play a functional role. After this conceptual breakthrough, the

evolution of molecular dynamics has been concerned with more detailed potentials, longer MD

runs for improved statistics and description of more complex systems. The primary limitation

of simulation methods yet remains, and it is that they are approximate. Experiment plays

an essential role in validating the simulation methods, in other words the comparison with

experimental data serves to test the accuracy of the calculated results and provides criteria for

improving the methodology.


