Chapter 2

Molecular dynamics of proteins

2.1 Introduction

Theoretical description is the basis for comprehensionatdinal phenomena, as they are ob-
served in experiments. Nevertheless in practice exactisotufor these descriptions are rather
the exception than the rule and most theoretical resulshedvily on analytical and numer-
ical approximations. Samples typically measured in expenits contain large numbers of
molecules and cannot be theoretically studied by exactlyremating all energy minima.
Computer simulation methods can be used instead of araldfproximations to generate
representative conformations of a molecular system inlibguim. Also in case of complex
time dependent events, a simulation can provide a pictutbeofvay in which a molecular
system changes from one configuration to another.

Computer simulation is entirely based on physical theowy, the use of approximations is
replaced by a more elaborate computational effort. The coatipn is not merely intended to
generate an expected result, it is rather a virtual laboratowhich the behavior of a system
can be described and predicted. In this respect computefation represents an intermediate
level between experiment and theory [26, 27] .

Molecular dynamics (MD) is a computational methodology edhat the solution of the N body
problem, based on the classical analytical mechanics ofilttemand Lagrange. A system of N
interacting atoms is studied by solving the Newtonian equnatof motion. Rigid molecules are
described by the Euler angles. The system under study isthtéely classical, this means the
guantum nature of atomic and molecular degrees of freedaeygiected. Therefore, molecular
dynamics can be applied only to describe phenomena wherdumaffects are not relevant
or can be included as semi-classical corrections. Alsdivedic effects are not taken into
account, which means that the speed of light is infinite ahisht@ractions are instantaneously
propagated.

During an MD simulation, starting from arbitrary initial editions, a trajectory in phase space
is generated by numerically integrating the equations dfiano Each point in phase space
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represents a set of positions and velocities oNatlegrees of freedom forming the molecular
system. The dynamic trajectory is a sequence of points gerteat following time steps that
entirely describes the motion of the molecular system. Tatige discrete independent variable
used in the integration of the equations of motion.

Standard equilibrium MD corresponds to the micro canorécelemble in statistical mechan-
ics, but in certain cases properties at constant temperatupressure are required. Thereby
the equations of motion are modified and the trajectoriem@aitenger solutions of the original
Newton’s equations, but are derived from more complex Hami&n functions (see section
2.6).

2.2 Ensemble and time averages

Equilibrium statistical mechanics provides the theoedtitamework for many body systems,
like for instance macromolecules. The concept of ensemigmage is crucial, since it relates
the microscopical energetics of a system in equilibriumhygsically measurable quantities. A
classical system dfl interacting particles in equilibrium at constant temperaf is described

in the canonical ensemble by the Boltzmann distributione €hsemble average of a quantity
G(rT\'), that is solely a function of the position of &l atomsrT\', is expressed as phase space
integral involving the potential energy(rT\'):
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Velocities are integrated out afid= & wherekg is the Boltzmann’s constant.

Under certain conditions one can prove that a system inibguih is exploring the whole
phase space when evolving with time. Therefore, followirgingle trajectory long enough is
sufficient to visit the entire set of positions and veloater which an ensemble average like
the one in eq. (2.1) is calculated. This is the ergodic thed&8] and implies that an ensemble
average is equivalent to a time average over an infinitely tosectory, which is defined as:

(G = lim (G = im = 5 G(r(t,) 22
where (G)y is the average ovelM measurements of quantif$ at subsequent time steps
{tu}h":l. For a sufficiently largeM the time averag€G)y is then according to the ergodic
theorem a good approximation to the equilibrium ensembéame. Such time averages of
energies and other quantities related to conformatiorgbeaties are typically evaluated and
analyzed during a molecular dynamics simulation.
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2.3 Molecular dynamics of biomolecules

A theoretical study of structural and function propertiédiological molecules at the atomic
level is one of the goals of biocomputing. Although classioachanics is in principle not
suited for the simulation of such systems because of thaintgun nature, a quantum mechan-
ical treatment is still not feasible for molecules contaghmore than a few atoms. Therefore,
one turns to classical MD simulation and uses empiricalmg@keenergy functions, which can-
not take into account quantum effects. In this respect aarpoint is given by the parametriza-
tion of the energy function: parameters are adjusted inrdalgive agreement with quantum
mechanical calculations on small compounds. Typical qurargthenomena like bond forma-
tion or disruption cannot be modeled via molecular dynamibgy require a more accurate
treatment involving quantum calculations, which can be extded in so called QM/MM sim-
ulations.

In the MD simulation of proteins and nucleic acids most usedyams are CHARMM [29],
AMBER [30], GROMOS [31]. In the following the main feature§ ©GHARMM, which was
used throughout this work, are discussed. Most of the ptiggepresented here are however
common to all programs. The major packages have similabiijEs in terms of what molec-
ular systems can be studied, the kind of simulations theyalb perform, and the tools for
simulation data analysis [32].

2.3.1 Force field

The potential energy function describing the interactietwleenN atoms is a sum of energies,
which depend on the atomic position{usT“} . One can distinguish between bonded and non-
bonded interactions, so that the potential energy can deewms:

U({FT\'}) :Vbondec({r_N})—i-ZVnon—bondec(ﬁaﬁ) (2.3)
]

The bonded energy term describes the interaction amongsatmuived in covalent bonds and
consists of three different contributions. These are:

1. the bond energy, which for each pair of covalently bounda(i, j) describes deviations
from the ideal bond Iengtb'o’J by means of a harmonic potential:

Esvech= Y Kg ([l — 1] —b)? (2.4)
(i.1)

2. the bond angle energy defined for three subsequent atoralenty bound and forming
an angle which deviates from the ideal valBg This is a harmonic potential in the
angle:

Eange= Y Ky (8(i,],k) — 65" (2.5)
(i7K)



2.3. Molecular dynamics of biomolecules 21

3. the torsion angle potential which models the presenceeoicsbarriers between four
atoms separated by three covalent bonds. The motion atsbeidth this term is a
rotation, described by a dihedral angle and coefficient ofragtry n, around the middle
bond. This potential is assumed to be periodic and is oftpressed as a cosine function:

Etorsion = Z Kci;;LkJ (1—cogng)) (2.6)
(i,3k1)

So, the final expression for the bonded energy term is:

Vbonde({{r_r\I }) = Estretch+ Eangle+ Etorsion (2-7)

Notice that all force constants and equilibrium values im pinevious expressions depend on
the atom species involved, therefore they are indexed.

The non-bonded potential energy is a sum of pair energy tefBagsh one of theN(N — 1)
pairs given in a system & atoms provides two such terms: one is given by the van derdVaal
interaction energy and the other one by the electrostateantion. Both terms are function of
the atom-atom distanag; = Hﬁ Y II.

The van der Waals interaction between two atoms arises froatesce between repulsive and
attractive forces. The repulsive force is present at shistauces where the Pauli exclusion
principle is relevant. The attractive force arises fromtilations in the charge distribution
in the electron clouds, which generates instantaneoudedipdlhe attractive interaction is
longer range than the repulsion, whereas at short distahee®pulsive interaction becomes
dominant. This produces a minimum in the energy, which ieelfias follows:

S oo N L. Ci .
Eu.11) = (A“——> @

i,]=1 i,] i,
Again the parameters depend on the chemical type of invaiteahs.

From the electrostatic point of view, each atoimconsidered to carry a point chargdocated
at the atomic position. Therefore, the electrostatic attons between two atoniis vacuois
simply given by the Coulomb potential energy:

N 01
Eelec(r',r1) = —qlq_J_ (2.9)
i.f=1 €0l

and the total non-bonded energy function is then:

zvnorkbondet(ﬁ,ﬁ) = Evdw(ﬁaa) + Eelec(ﬁaa) (2-10)
1)

Point charges are defined for each atom depending on theotppof the compound consid-
ered. A list of values concerning bond distances, anglesgels and atom types is given for all
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amino acids and other relevant compounds in the topologyAllgparameters involved in the
potential energy function, like equilibrium distances amgjles and van der Waals interaction
parameters, are contained in the parameter set, whichhgeith the topology file defines
the force field. There are different versions of topologiad parameters available for bio-
logically relevant molecules, like proteins, nucleic acahd carbohydrates. Each molecular
dynamics program is usually equipped with its own force fielthough force fields can be
used independently with different programs. In the caseaatfjns and nucleic acids the most
recent topology file developed for CHARMM is the CHARMM22 §&3], characterized by an
explicit representation of all atoms, including non polsditogens. The atomic charges were
derived fromab initio calculations of interactions between water molecules amallsnodel
compounds. In the preceding CHARMM19 topology file [34, 38lgy hydrogen atoms are ex-
plicitly represented, while non polar hydrogens are imthiégncluded in the binding partners:
these are carbon atoms whose radius, mass and charge afedcivdorder to take into ac-
count the presence of hydrogens. Such a description, @ttedded model, has the advantage
that the number of degrees of freedom and therefore the datigrutime are reduced.

Energy parameters are crucial in ensuring a correct remiagien of interactions. They are
adjusted in order to give agreement with quantlminitio calculations and tested on a number
of different peptides and proteins in vacuo and crystalse THARMM22 parameter set is
associated with the CHARMMZ22 topology file. The two files cdetgly define the force field
and are loaded together at the beginning of a computation.

2.3.2 Treatment of long range interactions

The most time consuming part of a molecular dynamics sinauas the calculation of the non
bonded terms in the potential energy function. Namely sesysifN atoms provide®N(N — 1)
pairs for which electrostatic and van der Waals forces shbel computed. To speed up the
computation, a cutoff distance can be introduced, suchathatteractions between two atoms
separated by a distance greater than the cutoff are igndhete are several methods to achieve
this, while respecting the smoothness of the energy fumctibor instance the shift cutoff
method modifies the potential energy terms at all distansgesh that at cutoff distance the
interactions are zero. A drawback of this method is thatuildrium distances are reduced.
The switch cutoff method instead changes the interactiofilpronly over a predefined range
of distances. The potential takes its usual value up to aclitsiff and is then switched to zero
between the first and the second cutoff distance. This médthedhe disadvantage that strong
forces arise in the transition region and is therefore ndmemended, when using short cutoff
distances.

By itself, the usage of cutoff distances may not stronglyuoedthe computation time during
dynamics. This is because all distances between atom paiuddsbe calculated before decid-
ing which ones are within the cutoffs and thus relevant fer ¢hlculation. Thenon-bonded
neighbor listis a device by which atoms to be included in the non-bondecdutaions are
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automatically given at each step and only a periodical claeckupdating is required. In this
way one avoids the computation §fN — 1) distances at each step. The list contains all atoms
within the cutoff distance of any other atom, together witmaighbor atoms, that are slightly
further away than this cutoff. The distance used to caleulaé neighbors, or neighbor cut-
off, defines a sort of reservoir of atoms. It should be largeugh to contain all atoms that
in the time between two checks can enter the interactionerafigh given atom. The list is
regularly updated during the dynamics. A typical updatirggifiency is every 5 steps, which is
a compromise between accuracy and efficiency.

Although the elimination of forces at large distances ptesi a significant improvement in
calculation efficiency, one should point out that long raalpetrostatic interactions are indeed
very important in biological molecules, as demonstrated mumber of experimental studies
[36, 37]. Therefore, in many cases instead of using cutaffadices it is preferable to adopt
one of the algorithms that have been developed in order witdk account the contribution
of long range forces. The Ewald summation method is typicasled for periodic systems
like protein crystals [38], whereas for non periodic systesuch as a molecule in solution a
multipole expansion [39, 40] can be applied: this procedistnguishes between a short range
component of the electrostatic interactions, which isteé@an the usual pairwise fashion, and
a long range part approximated by a multipole expansion.

2.3.3 Boundary conditions

Boundary effects can play an important role in MD simulagia@specially in case of small
numbers of atoms, with a large ratio between surface andnelparts [27]. The correct
treatment of boundaries is crucial to MD simulations beeatsnables the calculation of bulk
properties, which characterize a macroscopic moleculstersy. In the simulation of a protein
in solution, it is of great importance that water moleculempletely surround the protein, as
it is in real systems. This configuration can be achieveceeitising a very large number of
solvent atoms surrounding the protein and being confineddayisy potential function, or by
applying periodic boundary conditions. The latter progedronsists in putting the molecular
system into a box, usually of cubic shape, and then gengratitumber of identical copies or
images of the system adjacent to each face of the central Tox.central molecular system
evolves according to the Newtonian equations and intevaithshe images, whose motion is a
replica of the central dynamics. This method has the adgarttzat all atoms forming the real
system, including those on the boundary, are surroundecigyibors and the total number of
degrees of freedom is still manageable. Moreover, the nuwiatoms in the central box is
conserved, since for each particle leaving the box on orethiel corresponding image enters
the same box on the opposite side. In order to further rechecaumber of degrees of freedom
and therefore the computer time, other geometries thanubi can be employed, like for
instance the truncated octahedron, which was used in tlgesomprotein folding simulation
published so far [41].
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2.4 Integrators: Verlet, leap-frog, velocity Verlet

Under the influence of a continuous potential energy functibe atoms moving according to
a dynamics simulation give rise to a many-body problem thanot be solved analytically.
Therefore the equations of motion are integrated numéyiaaing a finite difference method.
The basic idea is that the integration is broken down intoyrsamall stages, each separated
in time by a fixed time stept. The total force on each atom in the configuration at time
is calculated as sum of all interactions with other atomsing¢he Newtonian equation the
acceleration is obtained from the force. Then, combiningti the positions and velocities at
timet, the new positions and velocities at the subsequent tinpe stét are computed, forces
are also calculated and the procedure is repeated to getalees\at time + 26t. The force is
assumed to be constant during each time step.

There are different algorithms for integrating the equatiof motion. Some of them assume
that positions and dynamical quantities can be express@dydmr series expansions:

F(t+8t) = F(t) + Btv(t) + %&Zé(t) +... (2.11)
Vi(t + 8t) = Vi(t) 4 Bta(t) + %&ZB(t) +... (2.12)
a(t+ 5t) = &(t) + atb(t) (2.13)

wheref(t), V(t), d(t) andb(t) indicate respectively position, velocity, acceleratior dirst
derivative of the acceleration, all evaluated at timé\cceleration is obtained at all times by
means of the Newton’s equation. In a systeniNahteracting atoms described by the potential
energy functior ({rT\'}) defined as in eq. (2.3), the acceleration of i-th atom withangss

0 o
ma = —5-U({r) (2.14)

The most employed integration algorithm is tierlet integrator[42], which uses positions
and accelerations at tinieas well as positions at the previous stepédt, to calculate the new
positions at + ét. From the Taylor expansion in eq. (2.11) follows for eachiplar.

F(t+t) = F(t) + dtv(t) + %&Zé(t) +...
F(t—8t) = F(t) — dtv(t) + %&Zé(t) —... (2.15)
Adding these two equations gives, approximated to the ficander int:
F(t+8t) = 2r(t) — P(t — &t) + St2a(t) (2.16)

Velocities do not appear explicitly in the integration aitfam. They can be estimated from the
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positions:
V(t) = [F(t+0t) —r(t—ot)]/2dt (2.17)

One drawback of this integrator is that the positions at timét are obtained by adding a small
term, 8t2&(t), to the difference of two much larger quantities, leading toss of precision. In
addition, at the starting step= 0, the positiong’(—4&t) must be estimated using the Taylor
expansion.

The leap-frog algorithm includes explicity the velocities and does najuiee the calculation
of differences of large numbers. It uses the following iel&hips:

P(t+ 8t) = F(t) + Bt(t + %&)
Uit + %a) (- %&) 1 8ta(t) (2.18)

Here the velocities are always calculated at intermediate steps between two subsequent
position calculations. The disadvantage of this methotias positions and velocities are not
synchronized, which for instance makes it impossible toudate the total energy at a given
time step.

Finally, thevelocity Verletalgorithm gives positions, velocities and acceleratianthe same
step, thus with less efficiency but higher precision tharptiegious methods. Following equa-
tions are used:

P(t+3t) = F(t) + 8tV + %a(t)
V(t+8t) = V(t) + %ét[é(t) +E(t+ )] (2.19)

All these algorithms are based on equations derived fronmaltzmian function, so that the
total energy, sum of potential and kinetic part, is in pyaeiconserved and fully determined
by the initial conditions when running a simulation. Thebdlity of the integrator is measured
in terms of deviation of the numerical trajectory from a refece analytical trajectory, where
energy is fully conserved. Therefore, the stability is dilerelated to the ability of conserving
energy and momentum throughout the dynamics. The stahllity depends on the choice of
the time step size: a stable algorithm permits a time step-2ffd for protein simulations,
which provides an efficient sampling of the phase space.

2.5 Setupofa(N,V, E) protein simulation

The standard molecular dynamics simulation is performeatbunonditions of constant energy
E, number of particleN and volumeV. This corresponds to the microcanonical ensemble in
statistical mechanics. The trajectory propagation useddta analysis -so called production
run- follows a series of preliminary operations.
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The choice of the correct initial configuration is crucialdatermining the success of a sim-
ulation. For simulations of systems at equilibrium it isoBunended to choose a starting
conformation that is close to the state which is desirednakite. If an experimentally de-
termined configuration is known, like for instance an X-rayN&/R structure published in the
Protein Data Bank [43], this should be used. In case of aargstucture some modeling is
required, namely the missing hydrogen atoms must be cbrigleiced, using the information
contained in the topology file.

Proteins are usually solvated, and the solvent must be maddét the next chapter the use of
implicit solvent representations will be discussed. Mditeroone chooses an explicit solvent
model, namely a set of water molecules entirely surrounthiegsolute, filling a box and sub-
jected to some boundary conditions, as described in thequesections. Various models of
water molecules are available in CHARMM force field, the THR8del [44] is widely used.
The water molecules also need a starting configuration nedp close to a realistic liquid at
the desired temperature. This is usually obtained by runaipreliminary molecular dynamics
simulation of water alone at the required temperature] aqtiilibrium is reached.

After inserting the protein into the water box and deletitigrvater molecules that happen to
be closer than a hydrogen bond distance, 2.6 A, to the praterinteractions between solute
and solvent must be correctly modeled, in order to obtainca gtarting configuration. This is
achieved by means of amergy minimizatiomccording to the following scheme:

1. solvent molecules are energy minimized first while thetsois kept fixed,;

2. the protein energy is minimized while constraining thivesat, in order to remove hot
spots within the molecule;

3. finally both sets are minimized simultaneously, in ordergach a mutually optimized
configuration.

At this point the dynamic integrator is invoked, time stegess defined, non-bonded interaction
options are given and the dynamics can start. A (N, V, E) sitarh is made of three steps,
each one producing a segment of dynamic trajectory. Afteln egep the dynamics is stopped
and restarted, which means that information on positiomsvatocities of all particles at the
end of one step is stored and used to initialize the subsegtegn The steps are listed here:

heating At time zero velocities are assigned according to a MaxBeltzmann distribution
corresponding to a temperature close to 0 K. After a numbestads, temperature is
increased by 5 or 10 K, by rescaling the velocities (see rextia). After a number of
cycles the desired simulation temperature is reached.

equilibration At the beginning of this phase the system has reached thadmalerature but
it is usually far from equilibrium. During equilibration ergy can flow within the sys-
tem, bonded and non-bonded interactions are relaxed arspbts are removed. Tem-
perature is kept constant at the final value by means of a tisain(see next section)
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which rescales velocities if the temperature change escadtreshold. When the ob-
served quantities like total energy and temperature assub@havior characterized by
small fluctuations and constant average (typically aftas ter hundreds picoseconds)
equilibrium is reached.

production At this point any temperature control is removed, the systeisolated and be-
comes strictly microcanonical. Now energy is conserved|estbmperature is fluctuat-
ing. Various quantities can be monitored during time evotut Velocities and coordi-
nates can be stored for later analysis, when thermodynamaictities are evaluated.

2.6 Temperature control

In (N, V, E) MD simulations it is required to control the tenmpiire, namely during heat-

ing and equilibration. There may also be other situationsr&ttemperature control plays a
fundamental role in MD simulation, like for instance (N,Y,dr constant temperature simula-
tions, related to the canonical ensemble, or (N,p,T) sitrarda, known as constant pressure
simulations.

The temperature of a molecular system is related to the g@édiaetic energy according to the
equipartition theorem:

K _1g V2—3NkBT 2.20
<>NVT—§i;m<i>—§ (2.20)

for a system oN atoms. Given the proportionality between squared vekx#ind temperature,
the simplest way to control the temperature is to scale theities using an appropriate factor
[45]. For instance, if temperature at tirhés Teyrr, and the required temperatureTigg, it is

sufficient to multiply all velocities by:
Tre
A=/ 2.21
TCUI’F ( )

to obtain the required temperature. This procedure is kraswelocity rescaling Other scal-
ing procedures use more complicated time-dependent gdalitors, to obtain an exponential
decay of the molecular system towards the desired temperpt6]. These methods do not
generate canonical averages in general: velocity scaliag antificially delay temperature
equilibration differences between different parts of thetem.

The extended systemethod, introduced to perform constant temperature MD Isitians by
Nosé [47] and Hoover [48] generates a canonical ensembibislapproach a thermal reservoir
is defined as an additional degree of freedom, in the molesyktem. A brief description of
the method, using the canonical representation, is gives he

Given a system of N interacting atoms, defined by the canbuér@bles{d, 5} that evolve
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in timet according to equations of motion derived from the Hamilhoni
H= Zl +U (T, ---On) (2.22)

one defines a transformation into an extended virtual sy$f@mi } dependent on time and
containing an additional degree of freedayhy means of the following relationships:

s- &
o dt

Pi = G (2.23)
m = s
ds

= & (2.24)

A new Hamiltonian for the virtual system, includisgand its virtual massg, is written as:

= Zl—JrU DN)+%+(3N+1)kBTIns (2.25)
S
One can show that this Hamiltonian leads to a canonical digemhe equations of motion of

the virtual system:

dig, ~ OH" dig, ~ OH”

dt ~ dp; dt ~ ds
dpi OH" ds oH"
dt ~ om dr omg

(2.26)

can be written as functions of the real variables and of tinand the coupling with the ther-
mostat is then explicit. Defining

lds
= 2.27
(=<t (2.27)
the equations of motion in terms of the real system become:
dp  dU da¢ 1 N p?
gt~ ag P Gt g |2 om N DkeT
dg p dlns
—a_= - 2.2
it m =C (2.28)

Each state visited by the virtual system during the dynamiesn by equations (2.26) corre-
sponds uniquely to a state of the real system described i(2e28). The virtual mashlg is a
parameter, which controls the energy flow between the reldeular system and the reservoir
s. If Mgis very large the energy flow is slow and in the limit of infinkk no energy exchange
takes place, thus conventional molecular dynamics is megai
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2.7 Stochastic molecular dynamics

The effect of solvent molecules on a solute consists of twdridmtions: on one hand the
solvent molecules randomly interact with solute molecldgsaneans of collisions in which
energy is exchanged. On the other hand, the net effect oé tbeltisions with solvent is
a friction mechanism which slows down dynamics of solute saolgent. At thermodynamic
equilibrium energy between solute and solvent flows sudtbibid parts of the system fluctuate
around the equilibrium temperature.
When performing a molecular dynamics simulation one calaocegthe explicit solvent molecules
with a set of forces accomplishing the two effects descriiealve. This provides an efficient
way of controlling temperature. In fact such a solvent mquays the role of a thermal bath
exchanging energy with the molecular system under coregidec
The above method [49, 50] relies on the stochdstiegevin equationwhich governs the solute
motion including solvent effects and therefore replacesNbwton equation. For a system of
N interacting atoms with interaction given by the potentia¢gy functionU ({rT\'}) as in eq.
(2.3), the Langevin equation for the generic i-th atom state

dor 0

- _Z NV v

dr;

4 TR (2.29)

The first term on the right is the deterministic force derifeain the underlying potential
energy function. To simplify the dynamics by eliminatinginteresting degrees of freedom,
this potential function can be replaced bypatential of mean forgewhose derivatives are
obtained from ensemble averages. The second term redkerftiction force, proportional
to the velocity, which describes the damping effect of salvahe coefficient; represents the
frequency of collisions and is the inverse of the velocithaxation time. This time describes
how long a particle moves before loosing memory of its ihigocity due to collisions. The
intensity of the damping effect depends on the collisiogdiency: the more frequent are the
collisions, the stronger is the damping effect. The thirthten the right side is the stochastic
forceﬁi(t), which describes the force, given by random interactiort® ifistantaneous value
of each component dk(t) is taken from a Gaussian distributior{R, ) with zero mean, that is:

2
R)=0 ; WR)D exp(—@) (2.30)

Friction and random force are related. Friction is dissigatThe average stochastic force van-
ishes, but in second order it increases the kinetic eneigys,Icooling by friction compensates
heating by noise, as governed by thectuation-dissipation theorefs1]:

(RI(O)Rj(t)) = 2kaTV:&; jo(t) (2.31)

where the correlation function of random force, given asearide average of the product
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of two componentsR;(t) at different times, is related to temperatuFeand to the friction
coefficienty;. The delta function in time indicates that random forcesifiérént times are
uncorrelated, as well as different componeligis Boltzmann’s constant. The algorithm used
to solve eq. (2.29) numerically in a MD simulation dependgtmnrelationship between the
size of the time stefit and the collision frequency[49]. In case of mild interactions between
solvent and solute, that is small friction coefficient, orpther words, a propagation velocity
relaxation time much longer that the step used for time:

yAt < 1 (2.32)

the equation is integrated as follows, under the assumgtitrthe force is constant during the
time step:

rt+A4t) = ?(t)+V(t)At+}é(t)6t2

2
VEHAD) = V(t)+at)At
1/ 0 < .
at) = -W)+- (—§,U({rN})+R(t)> (2.33)

For values ofyAt up to about 0.3 the Langevin algorithm implemented in CHARMiMduces
a stable dynamics and the fluctuation-dissipation theosesatisfied.

2.8 The origins of CHARMM

The basis of modern physical research on biomolecules was e 1960s at the Weizmann
Institute in Israel, in the group of Shneior Lifson [52]. Wndhis direction Ariel Warshel as
PhD student and Michael Levitt, as a visiting student in 19@0te together the first computer
program for simulating the properties of a molecular systaam a simple potential energy
function. There was considerable interest in developingigoal potential energy functions
for small molecules. The new idea was to use a functional fbahwas able not only to calcu-
late vibrational spectra, but also to determine the mininemergy structure. This program was
called CFF [53] and provided energy and forces of a moledideitt applied it subsequently to
proteins, eventually obtaining the first energy minimiaatof an entire protein structure [54].
As Martin Karplus joined Lifson’s group at the Weizmann Inge in the late 1960s, Chris
Anfinsen was a regular visitor to the Weizmann, and many d&ouns on protein folding in
solution inspired Karplus’ work on this topic, for instanttee diffusion-collisionmodel for
protein folding [18, 53]. With Szabo's molecular model onrtagylobin cooperativity [55],
new questions arose about the energetics of structuraditican from the unliganded to the
liganded state of hemoglobin. It was time to develop a pmogizat would make it possible
to take a given amino acid sequence (e.g, that of hemogl@alid)a set of coordinates (e.g
those obtained from the x-ray structure of deoxy hemoglolird to use this information to
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calculate the energy of the system and its derivatives agiumof the atomic positions. This
program, developed by Bruce Gelin and Martin Karplus angiied to the work of Michael
Levitt [56, 54], was in fact PreCHARMM, although it did not\ea name. It was successfully
used in a range of applications [57, 58].

Given this program, the next step was to use the forces natlgicomputed for energy min-
imization, to solve Newton’s equation and therefore ca®iithe dynamics. This task was
performed by Andrew Mc Cammon when he joined Karplus’ group.

Molecular dynamics was historically related to two kindpaiblems. One direction concerned
the study of simple chemical reactions, which finally led fwd®arn semiclassical, QM/MM and
guantum methods. The other was devoted to the computatitmeohodynamical quantities
in many particle systems, like the hard spheres liquid [H®, soft Lennard-Jones spheres
representing liquid argon [60] and liquid water [61]. A mmléar dynamics program suited for
proteins had to base on sufficiently accurate potentialtfons, able to represent long enough
(at least 10-100 ps) the features of an inhomogeneous systdresample the neighborhood of
the native state. This was first achieved in 1975 with the kitimn of BPTI [62], a small and
stable protein, for which a relatively accurate x-ray dinue was available. It was simulated
vacuofor 9.2 ps. This was enough to show that proteins are not,rigit flexible structures,
where internal motions can play a functional role. Afteistbbnceptual breakthrough, the
evolution of molecular dynamics has been concerned witterdetailed potentials, longer MD
runs for improved statistics and description of more complestems. The primary limitation
of simulation methods yet remains, and it is that they areamate. Experiment plays
an essential role in validating the simulation methods, thepwords the comparison with
experimental data serves to test the accuracy of the ctddutasults and provides criteria for
improving the methodology.



