Chapter 1

Protein folding and stability

1.1 Theproten folding problem

One of the great challenges in protein science is the foldiodlem, that is the task to predict
the protein native structure solely from the amino acid segae. This has become a major
research field as a consequence of the increasing amounjudrsme data acquired by DNA
analysis and various genome projects.

The acquisition of sequence information is a fast and ditiigvard procedure. On the other
hand the experimental determination of the three dimeasistnucture assumed by a protein
is slow and limited to proteins that can be crystallized irusiable form or are sufficiently
small to be solved by solution or solid state NMR. Therefalgprithms capable to translate
the linear information given by the protein sequence in®gpatial information defining the
structure are required.

Besides structure prediction, the other fundamental ipsmigued by protein science is tbe
novo design of proteins and enzymes with specified activitiess @asign problem is related to
the folding problem. Both tasks are based on finding the mabtesfold of a sequence, natural
or designed. Furthermore, this fold must be kineticallyeasible. If an enzyme is designed,
the active site must possess all features required forfgpéanding, without compromising
stability.

The so called Levinthal paradox [1] is traditionally invoki® explain why the protein folding
problem is so challenging. Considering, according to Amdirs hypothesis [2] (see section
1.3), that the native state of a protein corresponds to aaglobe energy minimum, folding
amounts to find this minimum among a huge number of confoomati One can estimate
that for a protein given by 100 amino acids, if each amino aeid assume for instance three
different conformations, there aré® or 10*’ states available. If the protein should find its
native state by random search, visiting one state eachgood, this search could take longer
than the age of universe. Proteins usually fold in a time egfngm microseconds to seconds.

Theory is still far from solving the protein folding probleim general, because of an intrinsic
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6 Chapter 1. Protein folding and stability

limit beyond computational capability. One could formeldhe Levinthal paradox in terms
of computing power. If the computation of the energy of omegk conformation took one

picosecond, the native state of a protein could not be atledilby random search. However,
there has been a significant progress in protein science #iecpioneering work of the early
70s and the current view of the folding problem suggests @tisal of the Levinthal paradox

[3]. The theoretical approach to protein folding aims atifigdsimplified descriptions of pro-

teins which take into account only the important degreessafdom. On the other hand protein
engineering offers an effective experimental route to diesdactors which govern protein sta-
bility. In this chapter the basic concepts both from the expental and theoretical point of

view will be outlined.

1.2 Native and denatured state

The native state of a globular protein is defined as the smakmble of compact conforma-
tions, reached under folding conditionsvivo or in vitro, in which the protein is stable and
performs its action. This state is characterized by a lowwarof entropy, because all protein
atoms are kept by mutual interaction in a well defined gegmeéttramolecular enthalpy is also
relatively low because many attractive interactions afisfsed. Solvent molecules surround-
ing the folded protein in its native state take instead athgaof a large amount of entropy,
since they are not involved in interactions with the hydmagh protein interior.

By perturbing the folding conditions in some way, like ingséng temperature, changing the
solvent pH or adding a chemical denaturant, the proteinldsfand reaches a much more
complex and heterogeneous ensemble of conformationshwvisicalled the denatured or un-
folded state. It is difficult to characterize the structypedperties of the denatured state, since
it strongly depends on the unfolding conditions. One carriles the ensemble by means of
parameters like the radius of gyration or the hydrodynarolame, which both define the av-
erage compactness. Experimental techniques like infrmdctircular dichroism spectroscopy
provide information on secondary structure elements. Wéhaigh percentage of secondary
structure is lost, which is the case under strong unfoldorglitions, the unfolded state assumes
arandom coil structure.

The denatured state is characterized by a high confornadt&mtropy, because native inter-
actions are lost and residues are free to assume a large aganfiements. Intramolecular
enthalpy may be higher because of loss of native interagtidme solvent molecules get in
contact with hydrophobic parts of the protein chain whichienauried in the native state. This
fact causes water molecules to assume more ordered coni@nsé&n order to minimize the
contact with nonpolar groups, what reduces the entropyettivent relatively to the folded
state. Therefore, one can understand the entropy increasdréaving force for folding [4].
When restoring the folding conditioms vitro, the spontaneous refolding of a denatured protein
is usually initiated. This means that the molecule is ablinbthe native state spontaneously.
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However, this may not be the case for some large multidom@aiteims, which cannot refold
without assistance.

Many proteins show folding intermediates, which are noiiveah structure, but rather com-
pact and partly folded. They are characterized by a reducediat of tertiary interactions, by
a rather large content of secondary structure, and a fluctubydrophobic core. Such states
are termedmolten globule states and are formed rather early during refolding, folaimse in
the dead time (< 1 ms) of a stopped-flow mixing experiment unefelding conditions.

1.3 Thermodynamics of protein folding

In 1973 Anfinsen [2] formulated thtaermodynamic hypothesis for protein folding, stating that
under physiological conditions the native state of a pmatestable since it is a global minimum
of the free energy. Under denaturing conditions of incregastrength, this is not true anymore
and the native state is destabilized. The concentratioratfenprotein decreases until a point
is reached, where the unfolded state dominates and is mprégted and more stable.

Both states, unfolded and folded, can be characterizeduditetym at temperaturd by their
Gibbs free energy (see section 3.6):

G =H—TS+pV (1.1)

wherei can be the native state N or the unfolded state D. The freggnemiven by three
terms: enthalpW, the product of entrop$ and temperatur& and the product of pressure and
volume. The last term is usually constant under experinheotaditions. Therefore, it can be
neglected when calculating differences. Thee energy of folding is defined as difference of
the Gibbs free energies between the denatured and the stitee

AGtoiding(T) = AHp_n(T) — TASSn(T) (1.2)

If this difference is positive, the native state is favoretse the unfolded state is more popu-
lated. One should keep in mind that not only the polypeptitirg but also the surrounding
solvent molecules contribute to the Gibbs free energy (setiom 3.6). For instance the stabi-
lizing entropy contribution due to the solvent is largerhe folded than in the unfolded state,
as already mentioned. Another effect due to water is thee@as® upon unfolding of the spe-
cific heat at constant pressuf®,. To a rough approximation, the value&t, of unfolding is
about 12 cal/K mol per residue [5]. This increase is againtduke interaction between water
molecules and non polar protein residues in the unfolded,stich causes the formation of
ordered water structures like ice. The specific heat ch&@erules the temperature depen-
dence of both enthalpy and entropy of folding. Namely, git¢#p_N(T1) andAS-n(Th),
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changing the temperature to the valigeone can write:

AHD_N(Tz) = AHD_N(T1)+ACp(T2—T1) (13)
T
A N(To) = ASD,N(T1)+Acp|n{ (1.4)

such that the free energy of folding at temperaflirbecomes:

T
AGfoIding(TZ) = AHD,N(T]_) +ACP(T2 — T]_) — Tz AS),N(T]_) +ACpIn ?i (15)

1.3.1 Theunfolding transition

Protein denaturation is a process in which, starting frosjatogical folding conditions, the
environment is progressively altered, for instance bydasing temperature, changing pH or
adding a chemical denaturant like urea to the solution. [Eaids to a transition from the native
state to a denatured state, dependent on the denaturatioedpre. As mentioned above, the
denaturation is usually reversible, that is the proteimsgmeously returns to the original native
structure when the folding conditions are restored. Howeatean be irreversible for large
multidomain proteins.

A first order transition from state A to state B is defined sumat at each point of the transition
both species are present at changing concentrations. Tredanversion from one state to the
other happens cooperatively, that is all parts contribtithhe same time to the reaction. If
concentration of one species is plotted to show the progrefise transition with changing
conditions, the shape of the plot is sigmoidal.

Unfolding and refolding of small proteins are typically figrder transitions, with A and B
being the native and the unfolded state. This statement demader the assumption that
the reaction between native and unfolded state is a simglestate equilibrium, for which no
intermediates are present. A two-state transition can batified in experiments if all spec-
troscopic probes, like circular dichroism, fluorescenca N spectra, change simultaneously
[4] as the equilibrium changes.

Calorimetric measurements can detect intermediates. eTdrer also cases of apparent two-
state transitions, where stable intermediates exist atclomeentration of denaturant and are
not observed by spectroscopic methods [6].

Some typical unfolding techniques are listed and brieflguised here.

Thermal unfolding The free energy of folding in eq. (1.2) is under folding cdiudis posi-
tive, such that the native state is favored. If temperatucesiases, according to eq. (1.5),
the negative part, proportional to entropy, will dominateen T, is sufficiently high,
such thatAG+ding beCOmes negative, leading to unfolding. The melting teatpeeTy,
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is the temperature at which the free energy of folding, e®)(becomes zero:

_ AHp n(Tw)

T = e
AS-N(Tm)

(1.6)

Thermal unfolding can be measured by differential scanoaigrimetry.

Solvent denaturation The effect of denaturants like urea or GdmCl is that theylsthe the
protein chain, backbone and hydrophobic side chains. Fhisi¢ to a double action of
the denaturant. On one hand, it directly interacts with ttetégin groups; on the other
hand, denaturant molecules also perturb the water sokwnth in turn alters the water-
protein interaction [7]. To a first approximation the freergy of transfer of side chains
and polypeptide backbone from water to a denaturating sblgdinear with respect to
the concentration of denaturant [8]:

AGp_n = AGHR, — mp_y[denaturant 1.7)

The denatured state is more exposed to solvent than thes rsadite. Therefore, the for-
mer is stabilized by the presence of denaturant, that igje¢haturant energy coefficient
mMp_p is positive. Each residue of the protein contributes to tdaevofmp_y according
to its fraction of solvent exposure gained by denaturatidmus, the coefficient is an ex-
tensive quantity and is correspondingly larger for largetgins with more residues. A
small value oinp_y indicates that the surface area of the protein is not styaritgdnging
upon denaturation, which means that the protein is not fuifplded.

pH induced denaturation Acidic and basic residues buried in proteins have ofterrexdte
pKa's values, due to the strong interactions with other chairgadow dielectric medium
like the protein interior (see chapter 3). For instance adi@aside chain involved in a
salt bridge with a basic residue might have a,f&& below the standard solution value.
Nevertheless, when the pH of the solution decreases, at poinethe acidic group
becomes protonated, which may favor unfolding. Given alsitigatable group in the
protein, the relationship between its dissociation cariséad the folding equilibrium
can be described by a thermodynamic cycle (see fig. (1.1fhelproton dissociation
constant of the titratable group in the native stati}sand in the denatured stateKs,
and the equilibrium constant for folding in the unprotociagate isKy_p and in the
protonated state in_p-+), then the equilibrium constants are related by:

Knopn+)  KY

=_2 1.8
=13 (1.8)

The thermodynamic cycle must be expanded if more titratgldeps are present. The
contribution to the free energy of folding due to changef@grotonation state of titrat-
able groups can be written as follows, if the mutual intécexcof the titratable residues
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can be ignored :
0AGp_N

opH
whereQ;(pH) is the number of bound protons in the i-th state of the prd&in

= 2.3RT[Qo(pH) — Qn(pH)] (1.9)

Destabilization at low pH also occurs because the proteieases its net positive charge,
which may provide additional repulsive electrostatic iatgions.

KN

N-H+* &=—— N+H'

Knpmy H H Knop

[+ ——— D+H'
D-HY ———

K,

Figure 1.1: Thermodynamic cycle explaining pH induced idifg. From [4].

1.4 Folding kinetics

When no folding intermediates are present, or if they arelatgctable, a protein folds showing
a monoexponential time evolution, typical for a two stateckics. This is usually the case for
small globular proteins with less than 100 amino acids [9, The equilibrium constanKp
for the folding-unfolding reaction:
N
N<D Kp = P (1.10)

is equal to the ratio of the microscopic rate constants fdoldmg (kyp) and for refolding

(kon):

—

[N] _ knp
Kp=1im = —— 1.11
°~ ) ko -
Therefore, protein stability is related to the folding rate
AGunfolding= RT InKp = Knp
unfolding = nKp =RTIn— (1.12)
kon
and the observed rate constant, which is inverse of the deunay, is defined:
1
Kobs = = knp + kon (1.13)

Denaturants affect the rate constants for folding and dirigl The logarithm of the rate
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constant for unfoldindyp is found to change linearly with the concentration of derattiat
[denaturarjt> [denaturang, at concentration higher than 509% :

Inknp = INki2° + mp[denaturarit (1.14)

while for some proteins [4] the rate constant for foldkgg, follows a similar relationship for
low concentratioridenaturant< [denaturart,

Inkon = Inki32° — my[denaturarit (1.15)

These two equations form a V-shaped kinetic curve, caltesiron plot, constructed by com-
bining the two rate constants:

In kobs = IN(knp + kon) = In[KE2P exp( —my[denaturarf + ki2° exp(+mp[denaturariy)
(1.16)

00
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[GdmC] (M)

Figure 1.2: A chevron plot, showing the linear dependencebstrved rate of folding or un-
folding on denaturant concentration. The data refer to shtitk protein CspB frorfiherotoga
maritima in GdmCI. From [11].

1.5 Transition state and ®-value analysis

Given a monoexponential reaction scheme, the reactantsaveicome a barrier to be trans-
formed into the products. All treatments of chemical kiogtbase on the hypothesis that the
reaction rate depends on the height of this free energy byt barrierEa, and on a prob-
ability factor that accounts for the number of accessikd¢estfor the molecule in the ground
state versus the transition state. Since thermal motioegsired to cross the energy barrier,
the reaction rate is proportional to a Boltzmann factor.
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According to thetransition state theory the activated state is a quasi-thermodynamic state,
named transition state, which is in a sort of fast equiliforirith the ground state [12]. The rate
constant is given by the corresponding virtual equilibriconstant, multiplied by the frequency
(v) of the ground state and by the transmission coefficiend{ passing over the energy barrier.

If the activated or transition stad has a free energy which is higher than the ground state by
an amouniAGy_p, the rate constant is given by:

kpn = KV exp(—AGx,D/RT) (117)

Transition state theory was originally developed for riganst of small molecules in the gas
phase, and it has been questioned whether it is well suitedefcribing reactions that occur
in solution and involve the simultaneous formation and kaga of many weak interactions,
as in protein folding [13]. Kramers' theory [14] provides alternative formalism specifically
for reactions in solution. A chemical reaction from a reatfa over the activated state X to
the product N is modeled as a diffusive passage over a harrier

kon = Trx €xp(—AV /RT) (1.18)

The Boltzmann factor in the rate expression in (1.18) depandthe height of the potential
energy barrier and not on the free energy. The prefagtgrdepends on the frequency of the
system in the ground state N and the frequency of escape freradtivated state X, which
reflects the local mobility of the system in X. This mobilitggends on the friction with the
solvent, represented by the macroscopic viscasityTherefore, if a reaction is modeled ac-
cording to Kramers’ theory, the rate depends on solventogisg In the simplest case the
dependence is inversely linear:
k10On (1.19)

It is a matter of debate whether the folding reaction is giffa controlled, that is rate-limited
by the diffusion of the polypeptide parts [12]. In such a dhsefolding rate should depend on
the solvent viscosity. The folding of the bacterial cold chprotein CspB was proposed to be
a diffusional process [13], due to the observed inversertimee of folding rate on viscosity.
On the other hand such a dependence may arise also fronoridtteffects at the transition
state instead of being due to the global chain collapse [15].

The transition state theory provides a direct relationsi@fveen rate constant for folding and
free energy differences between the ground and the aaliwitdée (see eq. 1.17). The main
use of this formalism is related to the comparison of foldiages between wild type proteins
and mutants. When calculating activation free energy obsingpon mutation the prefactor
Kv cancels. If a protein folds with a rate and a mutant with a rat;, then the change in
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activation free energy is given by:

/

AAGx_p = AGx_p — AGy_p =RTIn k—: (1.20)
The method ofb-value analysis, introduced by Fersht [16] and currentiyduig a wide range
of experiments, is based on eq. (1.20). This procedure isgahobtaining the transition state
structure for folding at the level of individual residuey, domparing the activation energies
and the free energies of folding of different mutants of agiro A single mutation of a protein
that reduces its stability leads to a decrease -in absoblteevof the free energy of folding.
Also the folding kinetics of the mutant protein can be maritbto determine the folding and
unfolding rates and to provide activation energies. Anaase of activation energy of folding
upon mutation is related to a destabilization of the tréamsistate. In fact, if the native state
and the transition state are destabilized by the same ea@angynt, one can suppose that the
mutated residue in the wild type protein is involved in natiiteractions which are already
formed at the transition state. This can be confirmed if atgoreighboring residues show
upon mutation a similar behavior. If instead no change inditeon state stability is produced
by a mutation, which affects the stability of the native stdihe native contacts of that residues
are likely to be formed after passing the activation bardering folding. This analysis is
formalized in terms ofp-values [4]. Let us suppose that the mutation destabilizeddlded
structure byAAGn_p, measured relative to the unfolded state. Then, if the freegy of a
transition state, measured relative to the unfolded sthemnges bAAGy_p, @ is defined as:

¢
AAGy_p B RT In é

b = =
FT MGy p  AAGy p

(1.21)

with the expression on the right derived from eq. (1.20).Usesuppose that upon mutation the
energy of native, denatured and transition state changég ifollowing way:

GD—>G|/3:GD+G
Gn — Gy =Gn+B
Gy — G;( =Gx+Y (1.22)

Then one has:
Gb—G&—GDﬂ-Gx .

GB_GN_GD+GN oa—p

o (1.23)

A @ value of 0 means that the energy of the transition state éct&ffl by the mutation by
the same amount as the denatured state {). This situation is described in the left diagram
in fig. (1.3). One can infer that in this case the protein $tmgin the neighborhood of the
mutated residue is unfolded at the transition state. On tifwer d(hand, abr value of 1 means
that the energy of the transition state is affected by theesammount as the native state (Gt 3,
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see right diagram in fig. (1.3)). This means that the strectmade by the mutated residue is
folded at the transition state as much as it is in the natwie st

Fractional®g values, and even values larger than 1 or smaller than 0 mayatur and are
usually more difficult to interpret. Fractiongr values between 0 and 1 can result either
from specific residue interactions that are weaker in theantudt the transition state or from
the presence of a mixture of states, some with the interactiolly formed, others with the
interactions fully broken. A number of point mutations isthrequired in order to discriminate
between these two possibilities.

Another problem is that, in general, there is no linear reteship between &g value and
the extent of structure formation. From a fractiodal value, one can only conclude that the
native structure is basically present, although weakened.

Despite these aspects, the method is in practice very efficigletermining structural proper-
ties of the transition state of folding proteins.

a X
AG X i AAG x-D
AAG x-D
) N' Mutant D
D i MGND D
d=0 N Wild type =1 N Wild type

Figure 1.3:®-value analysis. From [4]. Free energy diagrams showingpwssible scenarios
for the effect of a single mutation on a folding protein. Timemgies of the denatured state for
wild type and mutant are superimposed in the plot, but thesdwt affect the analysis [4]. On
the left the mutation affects the transition state as mucih @$ects the denatured state (this
is shown as no change at the transition state due to the sagittop of energies for wild type
and mutant denatured state). This leads @@-avalue of 0. On the right, the mutation affects
transition and native state by nearly the same amount, wgies ad®g value of 1.
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1.6 Folding mechanisms

The Levinthal paradox suggested that an unbiased seartheforative conformation through
an astronomical number of states would never be succe3s¢fatefore, it was argued that there
must be specific pathways to reduce the large number of piitessbduring folding.

The main problem in folding theories was how to reconcile sheultaneous formation of
stable secondary and tertiary structure. Three mechanigre proposed to explain how the
route to the native state proceeds. All of them simplify tbleesne by decoupling the building
of secondary structure elements from the collapse to tlee ttiimensional structure. They are
presented here:

The nucleation model [17] A group of neighboring residues starts forming native sdaon
structure, which propagates to the whole chain in a stepmiesener. Tertiary structure
arises then as a consequence of secondary structure.

Thediffusion-collision model [18] The secondary structure elements form early during fold-
ing and independently from tertiary structure. These efeméen diffuse until they
collide and successively coalesce to give the tertiarcsira.

The hydrophobic collapse model [19, 20] The first event during folding is the collapse of
the polypeptide chain, driven by the hydrophobic effect.teAfcollapsing, the chain
rearranges locally to form the native secondary structure.

First and second approach are both framework models [2Mhich the formation of the
correct secondary structure drives the subsequent ameergeof the tertiary conformation.
The hydrophobic collapse model is at the other extreme:r&ksoy structure forms as a con-
sequence of the spatial collapse. A synthesis between thveselassical views is provided
by thenucleation-condensation model, which was proposed as folding mechanism for many
small proteins after experiments on chymotrypsin inhib@2. This was the second protein,
after barnase, for which extensive investigation usigalues analysis was done [21, 4]. The
transition state of CI2 turned out to be an expanded stradtuwhich secondary and tertiary
structure are formed in parallel and there are no fully fafreecondary structure elements yet.
Molecular dynamics calculations also confirmed this pef@1].

The nucleation-condensation approach involves a nuclensisting of neighboring residues,
which forms a pre-native structure, subsequently staalizy non-local interactions, i.e. inter-
actions among residues that are far away from each otheqiresee. This nucleus may be not
present in the denatured state and does not need be compitetakd in the transition state.
The residues involved in the nucleus are identified by tiemalues, which are close to 1.
Since proteins largely differ in structure and size, fofdinechanisms are likely to vary among
different protein classes. Nevertheless, many small msitdike for instance SH3 spectrin
domain [12], seem to fold according to the nucleation-cosdéon mechanism. Also in more
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complex multidomain systems secondary and tertiary straanay form in a concerted way
via multiple transition states [22].

1.7 Energy landscape and funnel theory

The new theoretical approach to protein folding, which ¢éwally leads to a solution of the
Levinthal paradox, was developed in analogy to spin glassrthand polymer physics [23, 24,
25].
A folding protein is characterized by the coexistence of ynemmpeting interactions among
amino acids. This leads to a situation calfedstration, because the protein is not able to
satisfy all interactions at the same time. The most stable & then the structure maximizing
the fraction of attractive interactions, which is the mialiy frustrated structure. A useful
concept related to this view is themergy landscape description. Given a set of coordinates
describing the dependence on energy of a conformationrekeshergy of the solvated protein
as function of these coordinates defines a hypersurfacegogyelandscape. A conformational
transition of the protein, like the folding event, is themagi by a specific trajectory or bundle
of trajectories on this energy landscape. A smooth enempskzape allows rapid transitions,
whereas a rugged energy surface has kinetic traps which ddovm folding. Frustration is
associated with a rugged energy landscape.
The picture offered by the Levinthal paradox is, in termsaotdscape, a flat energy surface with
a single narrow absolute minimum representing the natate ssimilarly to a golf course with
a single hole. A random search through the flat surface, witaoy bias, would be successful
in finite time only with an extremely low probability. A diffent extreme is represented by
a rugged landscape with many maxima and minima without eepef conformation: this
would be the case of a random heteropolymer.
The energy landscape of a folding protein is described aggedisurface sloped down from
all directions into a global minimum, representing the vestate (see fig. 1.4). Itis explicitly
assumed that there is a kinetic flow through a series of sta#tsare progressively lower in
energy.
At the top of the funnel the protein exists in a number of randsiates that have relatively
high entropy and high enthalpy. Progress down the funnelvengby collapse and reconfig-
uration. The reconfiguration occurs as a motion throughcadia thus geometrically similar,
conformations, by a Brownian-like motion. The acquisitafmative structure reduces the free
energy and drives the protein towards the bottom of the fumiele enthalpy is progressively
reduced. The driving force is working against entropy, \whiecreases simultaneously with
entropy.
The progress of folding can be described by the parang@iehe fraction of native contacts in
the statd: )

C(i)

Q= 0 (1.24)
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Figure 1.4: The folding funnel, from [23]. The height of thenfiel represents enthalpy, which
decreases going downhill (here referred to as energy, testvd The width of the funnel
represents entropy. On the right the decrease of the fraofimative contact®) is given by
an arrow. The molten globule (see section 1.2) representsmgact denatured state. It is
separated from the native state by an energy gap which geesathe stability of the native

structure.

whereC(n) is the number of contacts formed by residue pairs in the aatate an€(i) is the
number of such contacts conserved in state

The molten globule state is rather compact but still hightyimative. The transition state
is located at a higher value @, thus closer to the native structure. Qfdoes not increase
uniformly, but in few large steps, then the protein foldirggors through nucleation.

After passing through the transition state, there is a sitmd energy state corresponding to
the native conformation. This drives the protein to fold betely, while the absence of other
relevant minima prevents from misfolding.



