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Fluctuation conductivity in disordered superconducting films
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We study the effect of superconducting fluctuations on the longitudinal and the transverse (Hall) conductivity
in homogeneously disordered films. Our calculation is based on the Usadel equation in the real-time formulation.
We adjust this approach to derive analytic expressions for the fluctuation corrections in the entire metallic part of
the temperature-magnetic field phase diagram, including the effects of both classical and quantum fluctuations.
This method allows us to obtain fluctuation corrections in a compact and effective way, establishing a direct
connection between phenomenological and microscopic calculations.
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I. INTRODUCTION

Theoretical studies of fluctuation conductivity in supercon-
ductors found their origin in the discovery of paraconductivity
by Aslamazov and Larkin (AL) in 1968.1 These authors
analyzed the conductivity of superconductors in the metallic
phase above the transition temperature Tc in the framework
of diagrammatic linear response theory. Paraconductivity can
be understood as the direct contribution of fluctuating Cooper
pairs to the electric current. Indeed, the formation of Cooper
pairs opens a new channel for charge transport in the metallic
phase. Above the transition temperature, these Cooper pairs do
not form a condensate yet and their contribution to conductivity
is positive but still bounded due to their finite lifetime. Other
effects of superconducting fluctuations are Andreev scattering
of electrons off the fluctuating order parameter described by the
so-called Maki-Thompson (MT) term2,3 and the suppression of
the quasiparticle density of states (DOS) near the Fermi level.

These classical results were obtained for temperatures
close to Tc and later extended for higher temperatures and
for weak magnetic fields. More recently, the vicinity of the
magnetic-field-tuned quantum phase transition in disordered
superconducting films was studied in a paper by Galitski and
Larkin.4 Those authors have shown that, close to the quantum
transition, contrary to the previously studied regime of weak
magnetic fields, different processes are of equal importance.
This has the remarkable consequence that the sign of the total
correction to conductivity becomes negative for sufficiently
low temperatures near the quantum critical point (QCP),
resulting in a nonmonotonic magnetoresistance in this regime.

In spite of the substantial amount of existing theoretical
work on superconducting fluctuations, summarized in the book
by Larkin and Varlamov,5 the subject continues to be an active
field of research. This activity is stimulated by recent accurate
experimental studies of different superconducting systems,6–11

which call for refined theoretical studies. For example, when
fitting experimental data on disordered superconducting films
by theoretical results, one commonly uses several fitting
parameters, including the critical temperature Tc, the upper
critical field Bc, and the dephasing time τφ . In doing so, it
would be useful to work with theoretical results which are
valid in the entire (B,T ) phase diagram, instead of addressing

different asymptotic regions separately. This is the motivation
for the detailed calculations presented in this paper.

In deriving the results for the fluctuation conductivity,
we deviate from the traditional route that employs the
diagrammatic linear response theory in the imaginary time
technique12 as described in detail, for example, in Ref. 5.
Instead, we develop a formalism based on the Keldysh (real-
time) representation of the Usadel equation. In this approach,
disorder averaging is performed at the earliest stages, thereby
avoiding the use of the impurity-diagram technique. As an
additional advantage, no analytic continuation is required.
The Usadel equation13 is an indispensable tool in the theory
of mesoscopic superconductors and hybrid structures.14,15

This equation describes low-energy (diffusive) physics on
spatial q−1 and temporal ω−1 scales, satisfying (ql,ωτ ) � 1,
where τ is the impurity scattering time and l is the mean
free path. The first calculation of superconducting fluctuation
corrections in this framework was performed by Volkov
et al.,16 who calculated the fluctuation conductivity in hybrid
superconducting-normal structures in the vicinity of Tc in the
absence of a magnetic field.

In this paper, we use the Usadel equation to calculate the
longitudinal and transverse (Hall) conductivity in disordered
superconducting films at arbitrary temperatures and magnetic
fields. Our approach parallels to some extent the nonlinear
σ -model formalism for disordered superconductors introduced
by Feigelman et al.17 and the subsequent work by Kamenev
and Levchenko.18 The latter work includes a calculation of
the fluctuation conductivity close to Tc. The intimate relation
between the σ -model formalism and the Usadel equation
approach is based on the fact that the Usadel equation is the
saddle point equation of the nonlinear σ -model. For the sake of
simplicity, we decided not to use the more technical apparatus
of the nonlinear σ -model, but formulate the derivation in terms
of the Usadel equation. This route leads us to a description in
terms of a coupled set of kinetic equations for quasiparticles
moving on a background of superconducting fluctuations. This
method appears to be a very convenient tool for studying
fluctuation transport.

The classification of the fluctuation corrections obtained
in the discussed method appears to be very different from
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the conventional classification based on the diagrams in the
Matsubara technique. Therefore comparison with the results
obtained by the diagrammatic technique can be performed
only on the level of final results. Let us mention here
the comparison to recent works. It can be seen19 that the
zero-magnetic-field limit of the general formulas derived in
this article [Eqs. (77)–(79)] can be presented in a form that
exactly coincides with the corresponding diagrammatic results
of Lopatin et al. in Refs. 20 and 21. On the other hand,
Glatz et al. more recently presented a diagrammatic analysis
of the longitudinal fluctuation conductivity in the entire
phase diagram.22,23 However, their results are inconsistent
with previous diagrammatic calculations as well as with ours
(we comment on this work at the end of Sec. IV B). For
the Hall effect, our results agree with those of a work24

in which an independent calculation was performed. These
results were successfully applied for the description of a recent
measurement in amorphous tantalum nitride films.25

This paper is organized as follows. In Sec. II we present the
basic formalism. We show how the Usadel equation, initially
formulated for a given order parameter configuration,13 can be
applied to the calculation of fluctuation conductivity. As the
next step, in Sec. III we find a solution of the Usadel equation
which allows us to determine the order parameter correlation
function in the Gaussian approximation. Both ingredients are
required for the calculation of the electric current presented
in Sec. IV A. Next, we derive expressions for the longitudinal
conductivity that are valid in the entire metallic phase outside
the regime of strong fluctuations. Evaluation of the expressions
obtained still requires a summation over the Landau levels
(LLs) as well as an integration over slow (bosonic) frequencies,
which can be performed analytically only in certain limiting
cases. Several such limiting cases are analyzed in detail in
Sec. IV B, including the region close to Tc and the vicinity of
the QCP. By means of a numerical evaluation, we locate the line
of the sign change for magnetoresistance ∂σ/∂B and the line
∂σ/∂T = 0. We also discuss the existence of a crossing point
of the magnetoresistance curves. In Sec. IV C we calculate
Hall conductivity, generalizing previous calculations26–28 to
the case of arbitrary temperatures and magnetic fields above
the transition.

II. BASIC EQUATIONS

In this section we present the equations that form the basis
for our calculation of the fluctuation conductivity. After stating
the microscopic model, we introduce the Usadel equation
that allows us to find the quasiclassical Green’s function
in the dirty limit, i.e., if the condition Tcτ � 1 is fulfilled.
Calculation of the conductivity requires knowledge of both the
quasiclassical Green’s function in the presence of a fluctuating
order parameter field and the correlation function of the order
parameter field. In the fluctuation regime, which we study in
this paper, the order parameter correlation function is governed
by the Ginzburg-Landau (GL) action. Fortunately, the GL
action can be found from the quasiclassical Green’s function
itself, i.e., from the solution of the Usadel equation. This
procedure is also described in this section.

We start with the Keldysh action for electrons with a short-
range BCS-type interaction. After decoupling the interaction

with the help of a Hubbard-Stratonovich transformation, the
resulting action is split into two parts, S[�,�̌] = S1[�,�̌] +
S2[�̌], where

S1[�,�̌] =
∫

dx �†(x)[iτ̂3∂t − Ȟ (x) + μ + �̌(x)]�(x),

(1)

S2[�̌] = −2ν

λ

∫
dx tr[�̌+σ̂1�̌]. (2)

Here, ν is the DOS per one spin projection at the Fermi level
and μ is the chemical potential. The dimensionless coupling
constant in the Cooper channel λ is positive for an attractive
interaction. Hereafter, we use the hat symbol as in τ̂3 to denote
2 × 2 matrices in Keldysh (K; retarded/advanced) or Gor’kov-
Nambu (N ; particle/hole) spaces. By σ̂i and τ̂i we denote the
Pauli matrices in K and N space, correspondingly. The check
symbol as in Ȟ denotes 4 × 4 matrices in the direct product
space K ⊗ N . The trace operation tr in Eq. (2) comprises
both K and N spaces. The short notation x = (r,t) is used,
and the time integration covers the interval (−∞,∞). The
single-particle Hamiltonian Ȟ is defined as

Ȟ = − 1

2m
(∇ − ieA(r)τ̂3)2 + U (r) + eϕ(r), (3)

with a static disorder potential U , scalar ϕ and vector potentials
A, and electron mass m and charge e. In the action, � is a
four-component vector of Grassmann fields with the following
structure:

� =
(

ψ1

ψ2

)
K

, ψi =
(

χi↑
χ∗

i↓

)
N

, (4)

�† = (ψ†
1 ,ψ

†
2)K, ψ

†
i = (χ∗

i↑, − χi↓)N . (5)

All terms in the electronic action S1 are diagonal in K space
except the order parameter field �̌ = �̂0σ̂0 + �̂1σ̂1, where
�̂0 and �̂1 are referred to as classical (cl) and quantum
(q) components of the order parameter. These components
are nondiagonal in N space: �̂i = �iτ̂+ − �∗

i τ̂−, where
τ̂± = 1

2 (τ̂x ± iτ̂y). We arrange the classical and quantum order
parameter fields into the vector 	� = (�cl,�q)T .

The electronic Green’s function for the system reads

Ǧ(x,x ′) = −i

∫
D�D�̌ �(x)�+(x ′)eiS[�,�̌]. (6)

This expression can be cast in the form

Ǧ(x,x ′) =
∫

D�̌ Ǧ�(x,x ′) eiSGL[ 	�], (7)

where the GL action is determined by

SGL[ 	�] = −i ln
∫

D� eiS[�,�̌], (8)

while

Ǧ�(x,x ′) = −i

∫
D� 
(x)�†(x ′) eiS1[�,�̌]∫

D� eiS1[�,�̌]
. (9)

This Green’s function depends on the specific configuration of
the order parameter field �̌.
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Physical quantities can be obtained in terms of the disorder-
averaged 〈Ǧ(x,x ′)〉dis, which can be found as

〈Ǧ(x,x ′)〉dis =
∫

D 	�〈Ǧ�(x,x ′)〉dis ei〈SGL[ 	�]〉dis . (10)

Here, we average the electronic Green’s function separately
from the bosonic action. This is a valid approximation for
films with dimensionless conductance g 
 1; taking into
account cross-correlations between the two terms would give
corrections to the Drude conductivity of the order of 1/g2,
while we are only interested in corrections of the order of 1/g.

The electric current is related to the Keldysh component of
〈Ǧ(x,x ′)〉dis,

j = − e

2m
(∇r − ∇r′ )〈GK (x,x ′)〉dis x→x ′ − ne2

m
A, (11)

where n stays for the density of electrons.
In the following, it is convenient to use the quasiclassical

approximation.29–31 The quasiclassical Green’s function can
be introduced as follows. First, one performs the Wigner
transform of the disorder-averaged Green’s function as

〈Ǧ�(p,r,t1,t2)〉dis =
∫

dρ e−ipρ 〈Ǧ�(x1,x2)〉dis, (12)

where r = 1
2 (r1 + r2), ρ = (r1 − r2). Next, the quasiclassical

Green’s function is obtained by integration over the energy
variable ξ = p2

2m
− μ, which describes the distance from the

Fermi surface:

ǧn(r,t1,t2) = i

π

∫ ∞

−∞
dξ 〈Ǧ�(n(pF + ξ/vF ),r,t1,t2)〉dis.

(13)

In this equation, vF denotes the Fermi velocity.
In the diffusive limit higher angular harmonics are sup-

pressed and a formulation in terms of the angular-averaged
Green’s function is possible:

ǧ(r,t1,t2) =
∫

dn ǧn(r,t1,t2). (14)

The function ǧ satisfies the nonlinear Usadel equation:13,15

D∇̂(ǧ · ∇̂ǧ) − {τ̂3∂t ,ǧ} + i[�̌ − eϕ̌,ǧ] = 0, (15)

where the symbol · is used to denote a convolution in time,
i.e., integration in the intermediate time variable. The spatial
derivative has the following structure: ∇̂ǧ = ∇ǧ − ie[τ̂3A,ǧ].
An important constraint imposed on the quasiclassical Green’s
function is that it has to satisfy the normalization condition

(ǧ · ǧ)(t,t ′) = 1̌δ(t − t ′). (16)

In what follows we are interested in Gaussian fluctuations.
This means that the film is considered to be not too close to the
superconducting transition. The width of the non-Gaussian
region is determined by the Ginzburg number Gi; in the
case of disordered films Gi ∼ g−1. The precise criterion for
the range of validity of this approximation depends on the
quantity in question. Concerning transport phenomena, the
non-Gaussian region is wider than for thermodynamics and
has been estimated to be of the order of

√
Gi for the thermal

phase transition;32 i.e., it covers the temperature regime for
which |T − Tc| �

√
GiTc. To the best of our knowledge, there

is no such calculation for the quantum transition (a study of the
effect of fluctuations on the critical magnetic field exists).33 In
this paper, we assume that we are always outside the region of
non-Gaussian fluctuations.

Let us now turn to the discussion of the GL action. As long
as we are interested in Gaussian fluctuations, we need to know
SGL[ 	�] only up to the second order in 	�. Noting the relation

δ〈SGL[ 	�]〉dis

δ�∗
i (x1)

= itr[σ̂i τ̂−〈Ǧ�(x1,x1)〉dis] − 2ν

λ
(σ̂1 	�(x1))i ,

(17)

we can obtain

〈SGL[ 	�]〉dis =
∫

dx1dx2 	�†(x1)

×
[
− 2ν

λ
σ̂1δx1,x2 + �̂(x1,x2)

]
	�(x2), (18)

where

�̂ij (x1,x2) = i
δtr[σ̂i τ̂−〈Ǧ�(x1,x1)〉dis]

δ�j (x2)

∣∣∣∣ 	�=0

. (19)

Importantly, the Green’s function appearing at coinciding
times and space points is related to the quasiclassical Green’s
function, and we can write

�̂ij (x1,x2) = πν
δtr[σi τ̂−ĝ(r1,t1,t1)]

δ�j (x2)

∣∣∣∣ 	�=0

. (20)

This result shows that knowledge of the quasiclassical Green’s
function, i.e., the solution of the Usadel equation, also allows
finding the GL action. This observation considerably simplifies
the scheme of calculation of the Gaussian corrections. With
the help of the GL action, in turn, one can obtain the
order parameter correlation function, which is needed for the
calculation of the current.

The charge density and electric current are expressed in
terms of the angular-averaged Green’s function ǧ in the
following way:15

ρ(r,t) = −eν

(
2eφ + π

2
tr〈σ̂1ĝ(r,t,t)〉

)
(21)

and

j(r,t) = eπνD

2
tr〈τ̂3σ̂1 ǰ(r,t,t)〉, (22)

with ǰ = ǧ · ∇̂ǧ. The angular brackets in these equations
symbolize averaging with the action SGL. Relation (22) follows
from Eq. (11) in the diffusion approximation. Aiming for the
needed accuracy (the leading-order approximation in g−1),
it is sufficient to determine ǰ up to the second order in the
fluctuating field � before the expansion in the electric field is
performed.

III. SOLUTION OF THE USADEL EQUATION AND THE
ORDER PARAMETER CORRELATION FUNCTION

For practical calculations, one needs to resolve the nor-
malization condition, Eq. (16), for the quasiclassical Green’s
function explicitly. In the framework of a mean-field treatment,
one works with the classical order parameter field �cl only. In
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this case (�q = 0) the Green’s function can be parameterized
as

ǧ =
(

ĝR ĝK

0 ĝA

)
, (23)

with ĝK = ĝR · ĥ − ĥ · ĝA and (ĝR · ĝR)t,t ′ = (ĝA · ĝA)t,t ′ =
1̂δt−t ′ . However, in the presence of the quantum order param-
eter fluctuation (i.e., for finite �q), this structure is broken
and a more general parametrization needs to be considered.
In that case, one can generalize Eq. (23) to take into account
fluctuations up to the second order in �:

ǧ =
(

ĝR − ĥ · ĝZ ĝR · ĥ − ĥ · ĝA − ĥ · ĝZ · ĥ − ĝW

ĝZ ĝA + ĝZ · ĥ

)
.

(24)

In particular, the lower-left corner of this matrix is not equal
to 0.34,35 This parametrization has the following property:

(ĝR)2 = (ĝA)2 = 1̂δt−t ′ + O(�4). (25)

The matrix

ĥ =
(

he 0

0 hh

)
(26)

is called the generalized distribution function.31 Matrices ĝZ,W

are diagonal and appear only in the second order in �. This
holds provided that the distribution function ĥ satisfies the
following normal metal diffusion equation:

D∇2ĥ − [∂t + ieφτ̂3,ĥ] = 0. (27)

For the purpose of our calculation, we may assume that
ĝZ = ĝW = 0. In the case of ĝZ the reason is the following.
For calculation of the current, the Green’s function needs to
be inserted into the corresponding expression, Eq. (22), and
subsequently averaged over order parameter configurations.
There can be two kinds of contributions to the current
originating from ĝZ . First, if it is not combined with any other
term arising due to fluctuations, it should be averaged by itself.
Since the lower-left corner of the averaged Green’s function
must equal 0 in the Keldysh formalism 〈ĝZ〉 = 0, contributions
of this first type vanish automatically. The second kind of
contribution appears when combining ĝZ with other terms
arising due to fluctuations in formula (22). Since ĝZ itself is
already quadratic in �, this procedure generates contributions
to the current which are at least of the fourth order in �. These
terms are beyond the accuracy of our calculation. The same
argument applies to contributions originating from ĝW , only
in this case the average 〈ĝW 〉 does not vanish identically, but is
O(E2), as discussed in Appendix A. Therefore, there is no need
to keep ĝW when studying the linear response in an electric
field. To conclude, for the purpose of our calculation we may
work with the simple parametrization given in Eq. (23).

In what follows, we consider static and homogeneous
electric E and magnetic B fields and find it convenient
to work in a gauge with time-independent electromagnetic
potentials: E = −∇φ and B = curlA with φ = −Er, A =
(0,Bx,0). Under these conditions and in the absence of
superconducting fluctuations, the retarded and advanced sec-
tors of the quasiclassical Green’s function are diagonal in N

space and take a particularly simple form:

ĝR(t1,t2) = −ĝA(t1,t2) = τ̂3δt1−t2 . (28)

For a closed system, i.e., in the absence of a connection to
an external bath, the distribution function ĥ is not yet fixed.
Indeed, Eq. (27) has infinitely many solutions. In the presence
of interactions, it is convenient to work with the distribution
function corresponding to the state of local thermal equilibrium
with a spatially varying chemical potential:

ĥ =
(

he 0

0 hh

)
, he,h = H(ε ∓ eφ (x) ), (29)

where

H(ε) = tanh
ε

2T
. (30)

This particular choice is especially convenient for linear
response studies, because deviations of 〈ĝW 〉 from 0 which
arise due to interactions are pushed to the second order in
the electric field. This considerably simplifies the perturbation
theory. Note that the temperature is still arbitrary and is
determined by the heat balance with a substrate or with
contacts. Meanwhile, by neglecting 〈ĝW 〉 we dismiss the
heating effect of the electric field.

In the presence of superconducting fluctuations, the quasi-
classical Green’s function acquires off-diagonal components
in N space. For analysis of the Gaussian fluctuation regime,
the deviations from the simple form given in Eq. (28) are small
and may be treated as a perturbation. With this in mind, we
resolve the remaining constraints, Eq. (25), as

ĝR =
(

1 − 1
2f · f ∗ f

f ∗ −1 + 1
2f ∗ · f

)
, (31)

ĝA =
(

−1 + 1
2 f̄ · f̄ ∗ −f̄

−f̄ ∗ 1 − 1
2 f̄ ∗ · f̄

)
. (32)

From the solution of the Usadel equation it will follow that f ,
f̄ , etc., are O(�). The functions f and f ∗ as well as f̄ and
f̄ ∗ are considered to be independent: they become complex
conjugates of each other only when �q is neglected.

We introduce parametrization (24) into Eq. (15) and neglect
terms of the third order in �. As a result, we find for f the
equation C−1f = V , where the operator C−1 is given by

C−1 = D∇̂2 − ∂t1 + ∂t2 (33)

and the gauge-invariant derivative is ∇̂f = (∇ − 2ieA)f . As
one may notice, this equation describes the response of the
field f to the order parameter �, which enters this equation in
the following combination:

Vt1,t2 (r) = 2i[�cl(r,t1)δt1−t2 + he(r,t1 − t2)�q(r,t2)]. (34)

Similar equations arise for f ∗, f , and f
∗

with appropriately
modified differential operators and functions V ∗, V , and V

∗
.

Taking into account the explicit form of he,h, one may conclude
that f̄t1,t2 = −ft2,t1 (the same property holds for f ∗). Note that
a static electric potential does not enter the equation for f .
This is one of the advantages of the gauge in which the electric
field is expressed through the scalar potential.
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The equation for f can easily be solved after a Fourier
transformation to the frequency domain according to

f (t1,t2) =
∫

f (ε1,ε2)e−i(ε1t1−ε2t2)(dε1)(dε2). (35)

Here we used the notation (dε) = dε/2π . To proceed further,
we pass to the LL basis with eigenfunctions ψnp(r) of the
kinetic energy operator

−D(∇ − 2ieA)2ψnp(r) = εnψnp(r). (36)

This equation describes a “particle” with a mass equal to
1/2D. We choose to work in the Landau gauge, for which
the eigenfunctions ψnp are numbered by the momentum p and
the LL number n,

ψnp(r) = eipyχn

(
x − pl2

B

)
, (37)

with magnetic length lB = 1/
√

2|e|B (for a particle with
charge 2|e|) and

χn(x) = 1√
lB

e−x2/2l2
B

π1/4
√

2nn!
Hn(x/lB). (38)

Note that a description based on the Usadel equation is valid as
long as we consider the regime of classically weak magnetic
fields, for which ωc = |e|B

m
satisfies ωcτ � 1. This means that

the quantization of the orbital motion of the quasiparticles can
be neglected. In contrast, the LL quantization of the collective
modes and Cooperons εn = �c( 1

2 + n) with �c = 4|e|DB

may still be important in the region of magnetic fields and
temperatures we are interested in.

The solution for f is conveniently written in terms of the
Cooperon propagator, which is diagonal in the chosen basis:
〈n,p|C|m,p〉 = δmnCn(ε1 + ε2), with

Cn(ε) = (
iε − εn − τ−1

φ

)−1
. (39)

Here, we have introduced the dephasing time τφ . The role
of τφ is to provide the long-time decay of the Cooperon,
which is necessary to render corrections due single-particle
interference processes to be finite. These processes include
weak localization and the anomalous MT correction (an
analog of weak antilocalization) that diverge in the absence
of a magnetic field for τ−1

φ = 0. Dephasing can be provided
by magnetic impurities or inelastic processes, i.e., electron-
electron or electron-phonon collisions. For low temperatures,
electron-electron collisions dominate. Outside the region of
strong fluctuations (i.e., in the Gaussian regime), one can
consider the dephasing rate to be energy independent and
equal to the sum of rates due to the Coulomb36 and Cooper
channels.37,38 In our study, we do not specify the dominant
dephasing mechanism relevant for τφ and consider it an
independent parameter.

The solution of the equation C−1f = V for f reads

fnp(ε1,ε2) = Cn(2ε)
∫

Vε1,ε2 (r′)ψ∗
np(r′)dr′, (40)

where

Vε1,ε2 (r) = 2i[�cl(r,ω) + he(r,ε + ω/2)�q(r,ω)], (41)

with shorthand notation ε = (ε1 + ε2)/2 and ω = ε1 − ε2.
Analogous equations hold for f ∗, f̄ , and f̄ ∗.

Having found approximate solutions for ĝR and ĝA, we turn
to the GL action SGL. As follows from Eq. (18) in combination
with Eq. (20), it is sufficient to know ĝR(A) at the first order in
� to determine SGL in the Gaussian approximation. We write
the GL action in the form

SGL[ 	�] =
∫

tr(2ν 	�+(−ω,r)L−1(ω, r, r′) 	�(ω,r′)), (42)

with

L−1 =
(

0 L−1
12

L−1
21 L−1

22

)
. (43)

Arguments (ω, r, r′) of L−1 are omitted in what follows.
A straightforward calculation according to Eq. (18) gives

L−1
21 =

∑
np

ψnp(r)ψ∗
np(r′)

[ ∫ Hε−ω/2+eφ(r)dε

2ε + i
(
εn + τ−1

φ

) − 1

λ

]
.

(44)

The rest of the elements ofL−1 are related to this one according
to L−1

12 = (L−1
21 )+ and

L−1
22 = B(ω − eφ(r) − eφ(r′))

[
L−1

21 − L−1
12

]
, (45)

where the bosonic distribution function is defined as

B(ω) = coth(ω/2T ). (46)

One can see that the components of L−1 are not independent.
Just as the components ofL, they are related by the generalized
fluctuation-dissipation theorem [see Eq. (45)], valid in the
quasiequilibrium state. Thus, only L−1

21 needs to be calculated
explicitly. The evaluation of the ε integral in Eq. (44) is
straightforward and yields

L−1
21 =

∑
np

ψnp(r)ψ∗
np(r′)En(ω − 2eφ(r)), (47)

where

En(ω) = ln
Tc

T
+ ψ

(
1

2

)
− ψR(n,ω) (48)

and

ψR(A)(n,ω) = ψ

(
1

2
+ εn + τ−1

φ ∓ iω

4πT

)
. (49)

We have introduced the BCS transition temperature Tc =
2γωD

π
exp(− 1

λ
), where ωD is the Debye frequency and γ ≈

1.78. The symbol ψ stands for the Digamma function.39

In deriving asymptotic expressions, we use the following
properties of this function: ψ ′(1/2) = π2/2 and ψ(x) ≈ ln x

for x 
 1.
The line of the superconducting transition on the mean-field

level is determined by the equation En=0(ω = 0) = 0. In the
absence of dephasing τφ = ∞ this gives, for the upper critical
field,

Bc(T = 0) = πTc

2γD
. (50)

Let us discuss the effect of dephasing on the transition line.
Since the fluctuation propagator depends on the dephasing rate,
the transition temperature is shifted due to τφ . Furthermore,
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since τφ depends on the magnetic field as well as on the
temperature, the presence of τφ in the fluctuation propagator
changes the shape of the transition line as a whole. Dephasing
also affects the magnetoconductivity. This effect has been
taken into account in the analysis of the experimental data
on magnetoconductivity of thin superconducting InO films.40

As can be seen from the right-hand side of Eq. (47), L−1
21

is not translation invariant. However, by splitting off a gauge-
dependent factor it can be rewritten in the form

L−1
21 (t,r,r′) = e−iSg (t,r,r′)L̄−1

21 (t,r − r′), (51)

where Sg is defined as

Sg(t,r,r′) = e(φ(r) + φ(r′))t − e(A(r) + A(r′))(r − r′),
(52)

and L̄−1
21 is translational and gauge invariant. We nevertheless

prefer to work with the operator L−1 in its original form.
In order to find the order parameter correlation functions,

one has to invert the operator L−1 given by Eq. (43) with the
following result:

L =
(LK LR

LA 0

)
, (53)

where

LR = (
L−1

21

)−1
, LA = (

L−1
12

)−1
, LK = −LRL−1

22 LA.

(54)

The order parameter correlation functions are given by

〈�cl(ω)�∗
c (−ω)〉 = i

2ν
LK, 〈�cl(ω)�∗

q(−ω)〉 = i

2ν
LR,

(55)

〈�q(ω)�∗
cl(−ω)〉 = i

2ν
LA, 〈�q(ω)�∗

q(−ω)〉 = 0.

In equilibrium, LR(A)
E→0(ω) ≡ LR(A)(ω) is diagonal in the LL

basis and reads as follows:

LR
n (ω) = E−1

n (ω). (56)

For the Keldysh propagator this gives, according to Eq. (54),

LK
E→0(ω) = B(ω)(LR(ω) − LA(ω)) ≡ LK (ω). (57)

While we have already neglected the heating induced by the
electric field, we keep other nonlinear effects. For example, one
may consider the decay of fluctuating Cooper pairs due to the
acceleration of the paired electrons caused by the electric field.
It was considered before on the basis of the phenomenological
theory41–44 (with only the AL process included). At T ∼ Tc

this effect becomes essential at electric fields of the order of
E ∼ Tc/eξGL, which can be rather small due to the divergence
of the coherence length ξGL at the transition.

In the following calculations all nonlinear effects are
neglected. In the linear response regime, we need to find
propagators at first order in the electric field. Concerning the
dependence of L on spatial arguments, we consider it as an
operator in the basis of the LLs; the same is assumed regarding
the position operator r. Hence, in the equations below these two
operators do not commute. We linearize L−1

21 , looking for the
first-order correction to its equilibrium value. In the equations
below we do not indicate the frequency dependence of

propagators, having in mind that all functions have the
argument ω. Taking into account first-order corrections in the
electric field, we write

L−1
21 = (1 + 2eEr∂ω)E . (58)

For LR this gives

LR = LR + δLR, (59)

δLR = −2eELRr∂ωELR, (60)

and LA can be found by Hermitian conjugation. Let us turn to
LK . In order to find it, we need L−1

22 given by Eq. (45):

L−1
22 = B

(
L−1

21 − L−1
12

) + eE∂ωB{(E − E∗),r}, (61)

where curly brackets denote an anticommutator. Plugging this
expression into Eq. (54), we obtain

LK = LK + δLK, (62)

δLK = B(δLR − δLA)

− eE∂ωBLR{(E − E∗),r}LA. (63)

Now the order parameter correlation functions given by
Eqs. (55) are fully specified, and we can proceed to the
calculation of the electric current.

To summarize, we have collected the basic elements of
the formalism used for the calculation of the fluctuation
conductivity in this paper. Once the quasiclassical Green’s
function is found as a solution of the Usadel equation,
(15), the current can be obtained from Eq. (22). Since the
quasiclassical Green’s function is a functional of the order
parameter configuration, formula (22) for the current includes
an average with respect to the GL action. This action, in turn,
can be found from the quasiclassical Green’s function via
Eqs. (18) and (20), and thus a closed scheme is established. As
we have already argued, it will be sufficient for our purposes
to work with ĝ given by Eq. (23), where ĝR(A) are defined in
Eqs. (31) and (32), and the distribution function ĥ presented
in Eq. (29).

IV. CALCULATION OF THE ELECTRIC CURRENT

A. Fluctuation corrections: derivation

Before studying the fluctuation corrections, we first show
how to obtain the Drude conductivity from the formalism.
Input are the normal-metal solution of the Usadel equation,
ĝR = −ĝA = τ̂3, and the distribution function in the presence
of the electric field, Eq. (29). This gives, according to Eq. (22),
the electric current:

j(n) = eπνDtrτ̂3∇ĥ = 2νe2DE. (64)

This results in the Drude formula σD = 2νe2D.
Now we turn to the calculation of the fluctuation cor-

rections. Starting with expression (22), we substitute for ĝ

parametrization (23) and obtain the following contributions to
the current:

j = j(n) + j(dos) + j(an) + j(sc). (65)

Here, all terms besides j(n) depend on the realization of the
superconducting order parameter � and have to be averaged
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using the order parameter correlation functions, Eqs. (55).
The fluctuation contributions can be written in the following
form (hereafter the derivative is with respect to the energy
argument):

j(dos) = 2πe2DE
∫

H′(ε)δν(ε)(dε), (66)

j(an) = 2πe2DE
∫

H′(ε)ϑ(ε)(dε), (67)

j(sc) = 2πeD

∫
H(ε)j(s)(ε)(dε). (68)

The quantities which appear in these expressions are defined
as

δν(ε) = −ν

8
〈f · f ∗ + f ∗ · f + (f ↔ f̄ )〉ε,ε, (69)

ϑ(ε) = −ν

4
〈f̄ · f ∗ + f̄ ∗ · f 〉ε,ε, (70)

and

j (s)
α (ε) = ν

8
〈f · ∇̂αf ∗ − ∇̂αf · f ∗

− (f ↔ f̄ ) − (f ↔ f ∗)〉ε,ε . (71)

The rationale behind this decomposition is the following.
(i) The function δν(ε) describes the correction to the electronic
DOS[ see δν(ε) in Eq. (72)]. (ii) The ϑ(ε) term has a peculiar
analytic structure. Indeed, it contains a convolution of f ∗
and f̄ , which, upon averaging, gives rise to a product of
two Cooperons of different analytical structure, CR and CA,
and the imaginary part of the fluctuation propagator, ImLR .
This allows us to identify this term with the anomalous MT
contribution. For an illustration of this point, we refer to Fig. 1.
(iii) The j (s)

α term can be interpreted as the fluctuating super-
current density. This term is the result of the expansion in the
electric field of the fermionic distribution function he entering
either the combination V [see Eq. (34)] or the order parameter
correlation function L [see Eqs. (60) and (63)]. The former
contribution is purely quantum, while the latter comprises both
quantum and classical parts, which are of different importance
in the different regions of the phase diagram.

We note that the decomposition (i)–(iii) is very different
from the conventional classification based on the diagrams
in the Matsubara technique. The difference is related to two
main points: (a) in the traditional technique a response to a

LR(K)j ∇h

CR

CA

FIG. 1. Anomalous Maki-Thompson diagram.

time-dependent vector potential is calculated; and (b) in the
present method there is no need for an analytic continuation.

It is obvious from Eqs. (66) and (67) that j(dos) and
j(an) contribute only to the longitudinal current, while j(sc)

contributes to the transverse current as well. In this context
it should be kept in mind that in the Usadel equation, which
was used as the starting point for our calculation, the Lorentz
force acting on the quasiparticle was neglected.

To proceed further, we substitute the expressions for f , f ∗,
f , and f

∗
in the LL basis [cf. Eq. (40)] into the expressions

above and average them with respect to order parameter
fluctuations. The quantities δν(ε) and ϑ(ε) are equilibrium
properties of the system and are independent of the electric
field, and that is why their calculation is relatively simple. Let
us start with the DOS correction, which can be understood as
a renormalization of the quasiparticle DOS:

δν(ε) = υ
∑

n

Im
∫

(dω) C2
n(2ε − ω)

× [
LK

n (ω) + LR
n (ω)H(ε − ω)

]
. (72)

Here, υ = 1/2πl2
B is the number of states per unit area of a

LL. This factor appears with each summation over LLs. In
the continuous limit, υ

∑
n → ∑

q and the above expression
becomes identical to the one in Eq. (372) in the review by
Kamenev and Levchenko.35 Note that

∫
δν(ε)dε = 0. This

is because the interaction cannot change the total number of
single-particle states, but just redistributes them.

Turning to the anomalous MT correction, we find that it
is due to a real process. Indeed, ϑ(ε) can be presented in the
following form:

ϑ(ε) = υ
∑

n

τ−1
out,n(ε)

εn + τ−1
φ

, (73)

where τ−1
out,n is the partial (n) out-scattering rate for quasiparti-

cles arising due to the decay of superconducting fluctuations:45

τ−1
out,n(ε) = 2

∫
(dω) ReCn(2ε − ω)

× ImLR
n (ω)[B(ω) + H(ε − ω)]. (74)

The discussed correction disappears at zero temperature. This
makes it essentially different from the DOS correction, which
exists down to zero temperature. The sign of the anomalous
MT correction is always positive. It is closely related to weak
antilocalization and can be interpreted as an interference effect
in the singlet Cooper channel, enhanced by coherent scattering
on the fluctuating order parameter.

Next, we turn to the calculation of the supercurrent j(s),
which is more complicated because nonequilibrium terms in
the fluctuation propagators have to be taken into account. The
calculation gives

j (s)
x (ε) = eEx

8
υ

∑
n

∫
(dω)(n + 1){An,n+1(ω,ε)}−, (75)

j (s)
y (ε) = eEx

8
υ

∑
n

∫
(dω)i(n + 1)

×{An,n+1(ω,ε) − An,n(ω,ε)}+. (76)
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In these equations, the notation {X}± = X ± X̃ is introduced,
where X̃ is obtained from X by the substitution n ↔ n + 1.
The functions Amn(ε,ω) are defined in Appendix B.

The next step is to substitute δν(ε),ϑ(ε), and j (s)
α (ε) into

expressions (66)–(68) and to perform the integration in ε. The
results of these integrations can be expressed in terms of En:

δσ
(dos)
‖ = −2e2Dυ

∑
n

∫
(dω)

[
BIm

E ′′
n

En

+ B′ ImEnReE ′
n

|En|2
]
,

(77)

δσ
(an)
‖ = −4e2Dυ

∑
n

∫
(dω)B′ Im

2En

|En|2
1

τ−1
φ + εn

, (78)

δσ
(sc)
i = −2e2D�−1

c υ
∑

n

∫
(dω)(n + 1)(Bui + B′vi),

(79)

where i =‖ , ⊥. For the longitudinal (‖) conductivity,

u‖ = Re
[
KnK

′
nL

R
n LR

n+1

]
, (80)

v‖ = 2ReKnIm[En + En+1]Im
[
LR

n LA
n+1

]
+ ImKnIm

[
LR

n+1 − LR
n

]
(81)

with Kn(ω) = ψR
n+1(ω) − ψR

n (ω). For the transversal (⊥)
conductivity (assuming negatively charged carriers e < 0
for the rest of the paper; otherwise, the sign of the Hall
conductivity should be reversed), we obtain

u⊥ = 2Im
[
KnL

R
n LR

n+1(E ′
n + E ′

n+1)
] − 2�cRe

{(
LR

n

)2E ′
nψ

R′
n

}
+

− Im
[
K ′

n

(
LR

n+1 + LR
n

)] + �cRe
{
ψR′′

n LR
n

}
+, (82)

v⊥ = −2Im
(
ψR

n + ψR
n+1

)
ReKnRe

[
LR

n LA
n+1

]
− 2�c

{
ImψR

n ImψR′
n LR

n LA
n

}
+ − ImKnRe

(
LR

n+1 + LR
n

)
+�cRe

{
LR

n ReψR′
n

}
+. (83)

To conclude, we have derived the fluctuation conductivity
due to electron-electron interactions in the Cooper channel in
the Gaussian approximation. Equations (77)–(79) describe the
contribution of superconducting fluctuations to the conductiv-
ity everywhere in the (B,T ) phase diagram (outside the regime
of strong fluctuations close to the transition). In the rest of the
paper we discuss different limiting cases and elaborate on the
asymptotics of these general formulas.

B. Discussion: Longitudinal conductivity

At the end of the previous section, we provided general
formulas for the fluctuation corrections to conductivity. In
certain asymptotic regions of the phase diagram they are
amenable to an analytic treatment. Following this route, we are
able to compare our results to the previous studies. The derived
formulas can also be subjected to a numerical analysis, which
allows us to find the corrections in the entire normal part of
the phase diagram.

We discuss the following asymptotic regions in the phase
diagram: the vicinities of the classical (I) and quantum (II)
transition points, the region of high temperatures and low
magnetic fields (III), and the region of high magnetic fields
and low temperatures (IV). The corresponding regions are

II: Eq. 94

III: Eqs. 103, 106, 110

I: Eqs. 86, 87

IV: Eq. 113

∂T σ < 0

∂
B σ

<
0

0.5 1 1.5

0.
5

1
1.

5

B/Bc

T
/T

c
FIG. 2. (Color online) Phase diagram for the correction to the

longitudinal conductivity δσxx . The corresponding equations are
given in the text.

indicated in the phase diagram displayed in Fig. 2. By means
of a numerical evaluation, we locate the line which describes
the transition from positive to negative magnetoresistance
(∂Bσ = 0) and the line which characterizes the change in the
temperature dependence of the total correction ∂T σ = 0.

1. GL region (I)

In this region, δσ (sc)
‖ and δσ

(an)
‖ are the most important. Since

the leading contribution comes from low bosonic momenta and
frequencies (ω,Dq2 � T − Tc), in order to extract the result,
one should expand the equilibrium propagator in ω/T and
εn/T , [

LR(A)
n (ω)

]−1 ≈ π

8T

[−τ−1
GL − εn ± iω

]
, (84)

where

τGL = π

8T ln T/Tc

. (85)

In this section we assume that τφ 
 τGL and neglect τφ in
the fluctuation propagator. Substituting the expression for
the propagators LR(A)

n to Eqs. (78) and (79), integrating in
frequency (only the term proportional to B′ contributes), and
performing the summation over the LL index, we obtain

δσ
(an)
‖ = e2

π
T τGL

[
ψ

(
1

2
+ s

)
− ψ

(
1

2
+ s

τGL

τφ

)]
(86)

and

δσ
(sc)
‖ = 2e2

π
(T τGL)s

[
−1 − 2sψ(s) + 2sψ

(
1

2
+ s

)]
,

(87)

with

s = (�cτGL)−1. (88)
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These results are in agreement with existing calculations.
In particular, δσ

(sc)
‖ was obtained phenomenologically by

Abrahams et al.,46 and the MT contribution was discussed
for finite magnetic fields in Ref. 47. Note that the parameter
s divides region I into two parts with distinct behavior. The
zero-field limit is recovered for s 
 1:

δσ
(an)
‖ = e2

π
T τGL ln(τφ/τGL), δσ

(sc)
‖ = e2

2π
T τGL. (89)

In the absence of a magnetic field, the importance of the
anomalous MT correction, δσ

(an)
‖ , in comparison with δσ

(sc)
‖

is determined by the ratio τφ/τGL. Indeed, the MT term
diverges in the absence of dephasing, τφ → ∞, and becomes
comparable to the AL correction when τφ ∼ τGL. As the ratio
decreases further, the relative importance of the MT correction
diminishes.

For completeness, let us discuss the DOS correction in
region I. In the vicinity of the critical temperature, δσ

(dos)
‖

is weakly (only logarithmically) singular. The reason is that
interactions preserve the total DOS, and the integration with
H′ in Eq. (66) is (comparatively) wide: ε � T ≈ Tc. For zero
magnetic field one gets

δσ
(dos)
‖ = −7ζ (3)e2

π4
ln T τGL. (90)

A contribution of the same form originates also from
the anomalous MT correction as a subleading term, with a
numerical coefficient −14 instead of −7. It is instructive to
perform a comparison with the previously known result in
this region. For that, one should sum all terms of the kind
δσ = c

ζ (3)
π4 ln T τGL. In the diagrammatic calculation,48 one

obtains the coefficient c = −14 as the combined contribution
of all diagrams with a horizontal interaction line. These
diagrams taken together are often referred to as the DOS-type
corrections. In addition, regular MT, AL, and anomalous
MT diagrams come with the coefficients c = −7, c = 14,
and c = −14, correspondingly. One can see that only after
summation of all logarithmic terms of this kind do the results
of the two approaches coincide, and one obtains in both cases
a total numerical coefficient ctot = −21.

We would like to stress that, according to Eq. (66), it is
the contribution δσ

(dos)
‖ rather than the sum of all horizontal

diagrams that should be associated with the suppression of the
single-particle DOS.

2. Quantum critical point (II)

In the vicinity of the transition line, for

h = (B − Bc(T ))/Bc � 1, (91)

the most singular contribution comes from the lowest LL,
n = 0. For low temperatures in the vicinity of the QCP, when

t = T/Tc � 1, (92)

we can simplify the inverse fluctuation propagator using the
asymptotic formula for the Digamma function:

En(ω) = −h − ln(2n + 1) − ln

(
1 − iω

εn

)
. (93)

In this region, the role of τφ in the fluctuation propagator is
mostly to shift the critical magnetic field. We assume that
this shift has already been performed. Besides, it is natural
to neglect τφ in the Cooperon, because in the vicinity of the
critical point the Cooperon is not singular and 1/τφ has to
compete with �c. Substituting the expression for En(ω) into
Eqs. (77)–(79) and expanding the propagators in ω/�c, the
contributions of all three terms can be written in the form

δσ
(i)
‖ = e2

π2
[α(i)Iα(t,h) + β(i)Iβ(t,h)], (94)

with the numerical coefficients

α(dos) = −1, α(an) = 0, α(sc) = 1
3 , (95)

β(dos) = −1, β(an) = 2, β(sc) = 5
3 . (96)

Here

Iα =
∫ �c

0

ωB(ω)dω

ω2 + (h�c/2)2
, Iβ = −

∫ ∞

0

ω2B′(ω)dω

ω2 + (h�c/2)2
.

Evaluating these integrals, we obtain

Iα(t,h) = ln
r

h
− 1

2r
− ψ(r), (97)

Iβ(t,h) = rψ ′(r) − 1

2r
− 1, (98)

with

r = 1

2γ

h

t
. (99)

Note that when all the contributions are summed up, we get
α = − 2

3 , β = 8
3 , and our result reproduces the one obtained

by Galitski and Larkin.4

The region of the phase diagram in the vicinity of the
QCP can further be subdivided into classical and quantum
regions, depending on the ratio of the parameters h and t . The
superconducting fluctuations contribute either as classically
populated modes or through virtual transitions. In the quantum
region t � h the occupation number of the lowest LL of the
collective mode is small, and we obtain

δσ‖ = − 2e2

3π2
ln

1

h
(t � h). (100)

In the classical region t 
 h, the occupation number is large
and the correction changes its character. As a result, it becomes
positive:

δσ‖ = 2e2γ

π2

t

h
(t 
 h). (101)

3. High temperatures (III) and high magnetic fields (IV)

In these regions the dominant contributions come from high
LLs, and hence, the summation in the LL index can be replaced
by an integration. At the same time, the full dependence of
the fluctuation propagators on the bosonic frequency should
be kept, because the leading contribution comes from a long
double-logarithmic integration.

Let us first discuss region III. We perform the calculation in
the limit of ln(T/Tc) 
 1. We start with the analysis of δσ

(dos)
‖ .

It has a very slow temperature dependence due to the long

174527-9



TIKHONOV, SCHWIETE, AND FINKEL’STEIN PHYSICAL REVIEW B 85, 174527 (2012)

integration in energy, which has to be cut off at ω,ε ∼ τ−1,

where the diffusive approximation breaks down. In view of
this fact, only the term proportional to B (rather then B′) gives
the leading contribution, and we can write

δσ
(dos)
‖ = e2

4π2

∫
B(ω)Im[LR(ω)ψR′′(ω)]dωdε

= − e2

4π2
Im

∫ B(ω)∂2
ωψ

(
1
2 + ε−iω

4πT

)
dωdε

ln T/Tc + ψ
(

1
2 + ε−iω

4πT

) − ψ
(

1
2

) .

(102)

This integral is logarithmically divergent. As a result, we
obtain

δσ dos
‖ = − e2

2π2
ln

ln 1/Tcτ

ln T/Tc

. (103)

This correction is similar to the Altshuler-Aronov corrections,
but with a scale-dependent coupling constant. This result was
first derived by Altshuler et al.49 At very high temperatures
(ln T/Tc 
 1), this term dominates the total correction. In the
case of a repulsive interaction, it becomes50 e2

2π2 ln ln 1
T τ

.

Let us turn to δσ
(sc)
‖ . The term proportional to B′ is again

small, O(ln−2(T/Tc)). Another term, which is proportional to
B, is more important:

δσ
(sc)
‖ = e2

∫ ∞

0

izdz

256π5

∫ ∞

−∞

dy coth y

2 ψ ′(ε)ψ ′′(ε)

[ln T/Tc + ψ(ε)]2
, (104)

where ε = 1
2 + z−iy

4π
. We first calculate the y integral, neglect-

ing y in the denominator. Since only y � 1 contribute to the
leading term, we can substitute coth y

2 → sign y. This leads to

δσ
(sc)
‖ = e2

64π4

∫ ∞

0

zdz
[
ψ ′( 1

2 + z
4π

)]2

[
ln T/Tc + ψ

(
1
2 + z

4π

)]2 . (105)

The remaining integral comes from 1 � z and can be calcu-
lated to give

δσ
(sc)
‖ = e2

4π2

1

ln T/Tc

. (106)

We note, however, that the same term originates from the
subleading contribution to δσ

(dos)
‖ , but with a different numer-

ical coefficient ln 2−1
2π2 . Thus, different contributions of the kind

O(ln−1 T/Tc) do not cancel each other.
Let us now turn to δσ

(an)
‖ . In the continuous limit, υ

∑
n →∑

q , Eq. (78) reproduces the known result.51 In the limit of
ln T/Tc 
 1, it can be further simplified to

δσ
(an)
‖ = − e2

16π2

1

ln2 T/Tc

∫ ∞

0

M(z)dz

z + 1/(T τφ)
, (107)

with

M(z) =
∫ ∞

−∞

dy
[
ψ

(
1
2 + z−iy

4π

) − ψ
(

1
2 + z+iy

4π

)]2

sinh2(y/2)
. (108)

Although this term is formally O(ln−2 T/Tc), it can still be
essential due to the logarithmic divergence at low momenta,
as can be seen from Eq. (107). With logarithmic accuracy, we

can calculate it as follows:

δσ
(an)
‖ = − e2

16π2

1

ln2 T/Tc

∫ 1

0

M(0)dz

z + 1/(T τφ)
. (109)

As a result, we get

δσ
(an)
‖ = e2

12

ln T τφ

ln2 T/Tc

. (110)

One should keep in mind, however, that τφ itself depends on T .
In this region, the anomalous MT correction was considered
by several authors, who all obtained the same functional form
but with different numerical coefficients.23,45,49 We believe this
discrepancy is due to the different approximations used for the
calculation of M(0).

For high magnetic fields (region IV), the situation is to
some extent analogous to that in region III, with the main
difference that the anomalous MT term does not contribute, as
it is suppressed at low temperatures. The dominant corrections
originate from δσ (sc) and δσ (dos), and the leading contributions
are those which are proportional to B ≈ sign ω. To proceed,
we write the equilibrium propagator in its zero-temperature
form:

LR(A) = ln−1

(
�c/2h

εn ∓ iω

)
(T → 0). (111)

After the frequency integration, we find that δσ
(dos)
‖ takes the

form

δσ
(dos)
‖ = e2

π2
h

∑
n

li

(
1

h(2n + 1)

)
, (112)

with the logarithmic integral function li(z) = ∫ z

0 dt/ ln t . This
sum is logarithmically divergent at the upper limit and has to be
cut off when the diffusion approximation breaks down, that is,
at n ∼ Nmax 
 1 with Nmax = 1

hTcτ
. Under these conditions,

the sum is dominated by large n and can be found to equal

δσ
(dos)
‖ = − e2

2π2
ln

ln 1/τTc

ln B/Bc

. (113)

This concludes our discussion of regions I–IV in the phase
diagram; the corresponding asymptotic expressions are refer-
enced in Fig. 2.

The results we obtained differ from those given in Ref. 23.
This follows from a comparison of the asymptotic behavior
in several regions. The most drastic difference, however,
concerns the temperature dependence of the resistance for
magnetic fields B > Bc. The authors of Ref. 23 claimed that for
low temperatures T � Tc, the resistance first increases with
increasing T and starts to diminish at T/Tc � (B − Bc)/Bc.
As follows from our asymptotic expressions presented in
Eqs. (94) and from the result of the numerical calculation
shown in Figs. 2 and 3, the situation is the opposite. At a fixed
magnetic field, the resistance decreases as the temperature
increases from 0 until the line ∂T σ = 0 is crossed. Then the
resistance starts to grow.

C. Discussion: Hall conductivity

We proceed with the discussion of the results for the trans-
verse conductivity presented in Eq. (79). These expressions
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FIG. 3. (Color online) Resistance as a function of temperature for
magnetic fields B/Bc = 0.9, 1.05, 1.1, and 1.3. Sample parameters
are RD = 5k� and Tcτ = 10−2.

represent only those contributions to δσ⊥ which describe a
deflection of the supercurrent. In principle, other contributions
exist, in which quasiparticles are deflected in the transverse
direction by the Lorentz force. These contributions are not
included in the approximation we apply here. The terms not
accounted for by Eq. (79) include the contribution due to the
anomalous MT process, discussed by Fukuyama et al.,26 and
the contribution δσ

(dos)
⊥ , recently discovered diagrammatically

by Michaeli et al.,24 which is reminiscent of the DOS
suppression. They are related to the corresponding corrections
to the longitudinal conductivity as follows:

δσ
(an)
⊥ = −2ωcτδσ

(an)
‖ , (114)

δσ
(dos)
⊥ = −ωcτ

2
δσ

(dos)
‖ . (115)

Note that δσ
(an)
⊥ and δσ

(an)
‖ cancel each other in the expression

for the Hall resistivity ρxy = −σxy/(σ 2
xx + σ 2

xy) ≈ −σxy/σ
2
xx.

In contrast, the DOS corrections give a finite contribution to
ρxy .

Let us discuss the contribution to Hall conductivity that
arises due to the deflection of the fluctuating supercurrent. In
order to calculate it, it is enough to modify the superconducting
fluctuation propagator according to28

L−1
R(A)(ω) → L−1

R(A)(ω) − ςω. (116)

As a consequence of the additional term, the superconducting
propagators lose their particle/hole symmetry, i.e., the relation
LA(−ω) = LR(ω) no longer holds. In the framework of the
BCS theory, the asymmetry parameter ς can be related
to the energy dependence of the DOS at the Fermi level,
ς = − 1

2λ
d ln ν
dμ

, or, equivalently,28 to the variation of Tc with

the chemical potential, ς = − 1
2

d ln Tc

dμ
. In the simple model of

three-dimensional electrons with a quadratic spectrum, one
has ν(ε) ≈ ν0(1 + ε/2εF ) and ς = −1/(4εF λ). For λ � 1
the contributions arising from δσ

(sc)
⊥ are parametrically larger

than those arising from δσ
(dos)
⊥ and δσ

(an)
⊥ . In our calculation

of the Hall conductivity, we work in the framework of the
quasiclassical approach, using, however, Eq. (118) for the

propagators LR(A). This is a consistent procedure that allows us
to obtain all contributions to the transverse current proportional
to the large parameter 1/λ.

In region I after expansion in �c(n + 1/2)/4πT and
ω/4πT , the correction δσ

(sc)
⊥ takes the form

δσ
(sc)
⊥ = −16e2ς�c(T τGL)2

π2
f (s), (117)

where

f (s) = s2
[
1 + ψ

(
1
2 + s

) − ψ(1 + s) − sψ ′(1 + s)
]
.

In this region, the Hall effect can be considered phenomenolog-
ically: the same expression, Eq. (117), was obtained by Aronov
and Rapoport27 (with a different coefficient, it was later
corrected by Aronov et al.)28 on the basis of the time-dependent
GL theory. For s 
 1, when quantization of the LLs for the
superconducting fluctuations is negligible, expression (117)
becomes26

δσ
(sc)
⊥ = e2ς�c

96

(
T

T − Tc

)2

. (118)

The region of applicability of Eq. (117) is in fact very narrow,
and already for T � 1.01Tc, one should not expand the full
expression for δσ

(sc)
⊥ in �c(n + 1/2)/4πT to get an accurate

result. The corresponding formula was given in Ref. 24:

δσ
(sc)
⊥ = 2e2ςT

π

∑
n

(n + 1)

[
LR

n+1(0) − LR
n (0)

]3[
LR

n+1(0) + LR
n (0)

]2 . (119)

In region II, we can limit ourselves to the lowest LL and
follow the same route as in the calculation of the longitudinal
conductivity. This gives, for the quantum regime,

δσ
(sc)
⊥ = −e2ς�c

3π2
ln

1

h
(120)

and, for the classical regime,

δσ
(sc)
⊥ = 2e2

π

ςT

h
. (121)

Note that in this region δσ
(dos)
⊥ and δσ

(an)
⊥ exhibit the same

singular behavior as δσ
(sc)
⊥ . We do not provide the correspond-

ing expressions, since they follow straightforwardly from
Eqs. (114) and (115), together with Eq. (94).

A more detailed discussion of the corrections to the Hall
conductivity due to superconducting fluctuations is presented
in a separate publication.24

V. CONCLUSION

We have considered homogeneously disordered films above
the superconducting transition T > Tc(B) and calculated cor-
rections to longitudinal as well as transversal conductivities.
Our results are presented by Eqs. (77)–(79). We have analyzed
the asymptotic behavior of these corrections in different
regions of the phase diagram and provided a comparison with
previously published results.

Our results for the Hall effect have recently been used in
the description of experimental data by Breznay et al.25 The
results for the longitudinal conductivity, Eqs. (77)–(79), can
also be useful for the analysis of experiments. They allow for

174527-11



TIKHONOV, SCHWIETE, AND FINKEL’STEIN PHYSICAL REVIEW B 85, 174527 (2012)

1 2 3

3.
5

5
6.

5

B/Bc

R
,

k
Ω

1 1.1

5

3.5

FIG. 4. (Color online) Resistance as a function of magnetic field
for temperatures T/Tc = 0.03, 0.1, and 0.35. Inset: Zoomed region of
the approximate crossing for T/Tc = 0.15–0.3. Sample parameters
are RD = 5k� and Tcτ = 10−2.

a complete numerical evaluation of the fluctuation corrections
to conductivity without any additional approximation, e.g., the
lowest LL approximation. Exemplary results are presented in
Figs. 3 and 4 for the resistivity R = (R−1

D + δσ )−1 as a function
of the magnetic field and temperature. A similar behavior of the
resistance was observed in the experiment of Baturina et al.8

In Ref. 8, the authors presented a fit to the measured data that
was based on the asymptotic expressions, Eqs. (94), derived in
Ref. 4 and reproduced in our work based on a different method.
We note, however, that although these expressions provide a
good approximation in the vicinity of the QCP, their region of
validity does not extend up to the relatively high temperatures
and magnetic fields that were considered in the experiment
(up to 0.35Tc and up to 5Bc, correspondingly). When fitting
these data, the more precise Eqs. (77)–(79) should, therefore,
be used.

According to the results presented in this work, the
resistance curves drawn as a function of the magnetic field
exhibit an approximate crossing point for a finite interval of
temperatures, as demonstrated in Fig. 3. As shown in this
figure, the curves do not literally cross in a single point, but
deviations from this ideal behavior are small. The existence
of this approximate crossing point is a consequence of the
relatively wide minimum in the R(T ) curve for B = 1.05Bc

as shown in Fig. 3. This type of behavior has been observed in
several systems (see, e.g., Fig. 4 in Ref. 52). However, in these
experiments the curves continue to cross even at the lowest
temperatures, while we did not find this kind of behavior from
the Gaussian corrections to conductivity. This could be related
to the fact that for such low temperatures the proximity to the
QCP becomes of crucial importance, and the present theory is
not sufficient because (i) it does not account for the effect of
non-Gaussian fluctuations, and (ii) it does not take into account

the smearing of the transition by disorder,53,54 which is usually
observed in this region (see Fig. 2 in Ref. 55 as an example).

To conclude, we have developed an approach to the
calculation of the fluctuation conductivity based on the Usadel
equation and valid for both the classical and the quantum
fluctuation regime for arbitrary magnetic fields. This approach
is more physically transparent than conventional perturbation
theory based on the Kubo formula and provides a bridge
between the phenomenological theory and microscopics. We
believe that it may find applications in studies of fluctuation
effects out of equilibrium or in hybrid superconductor/normal
metal structures.
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APPENDIX A: COLLISION INTEGRALS

In this Appendix we discuss the quantum components ĝZ,W

of the Green’s function ĝR . We parametrize them as

ĝZ =
(

z1 0

0 z2

)
, ĝW =

(
w1 0

0 w2

)
(A1)

and get the equations

D−1wi = IW
i , D̄−1zi = IZ

i , (A2)

with

D−1 = D∇̂2 − ∂t1 − ∂t2 , D̄−1 = D∇̂2 + ∂t1 + ∂t2 . (A3)

The collision integrals IZ
1,2 are given by

IZ
1 = i(�q · f ∗ − f̄ · �∗

q), IZ
2 = i(�∗

q · f − f̄ ∗ · �q),

(A4)

and the collision integrals IW
i = IW

i,coll − IW
i,neq, by (this sepa-

ration is motivated below)

IW
1,coll = i(f · J1 − J̄1 · f̄ ∗), IW

2,coll = i(f ∗ · J2 − J̄2 · f̄ ),

IW
1,neq = 2je · z1 · je + je · f̄ · f̄ ∗′ + f · jh · f̄ ∗′

+ f ′ · jh · f̄ ∗ + f ′ · f ∗ · je, (A5)

IW
2,neq = 2jh · z2 · jh + jh · f̄ ∗ · f̄ ′ + f ∗ · je · f̄ ′

+ f ∗′ · je · f̄ + f ∗′ · f · jh.

For convenience, we defined (je,h = ±∇he,h):

J1 = �∗
q − �∗

c · he + hh · �∗
c − hh · �∗

q · he,

J̄1 = �q − �c · hh + he · �c − he · �q · hh,
(A6)

J2 = �q − �c · hh + he · �c − he · �q · hh,

J̄2 = �∗
q − �∗

c · he + hh · �∗
c − hh · �∗

q · he.

While 〈IZ〉 = 0 due to causality,35 the collision integral
IW does not vanish identically after averaging. Nevertheless,
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its expansion in the electric field can be shown to start
from E2. First, we note that IW

i,neq should be related to the
production of the heat. Indeed, 〈IW

i,neq〉 is proportional to the
Drude result for the electric current je,h. Next, observe that
the terms in 〈IW

i,neq〉 which are only linear in je,h are further
multiplied by averages which include the spatial gradients
of f and vanish in the absence of an electric field, when
the system is isotropic. Hence, 〈IW

i,neq〉 = O(E2). There is
still another term, IW

i,coll. For E = 0 it corresponds to the
collision integral due to Cooper interactions, which enters
the kinetic equation and was calculated by Reizer.45 Let us
just note that if the only source of nonhomogeneity is a
spatially varying electric potential (as it is in our case), then
the collision integral, written in terms of the gauge-invariant
particle/hole energies, should be independent of the spatial
coordinates. As such, it cannot depend on the electric field
itself, which is a vector, but only on E2. This is summarized by
the equation: IW

1,2,coll = Icoll(E2,ε ∓ eφ(x)). Since for E = 0
it vanishes (provided the electronic distribution function H is
thermal) and depends only on E2, it should be disregarded for
calculations in the linear response.

APPENDIX B: CALCULATION OF THE SUPERCURRENT

Here we present more details of the calculation of j (s)
α (ε).

We start with expression (71). After substituting the solution

for f and averaging in �, we get

j (s)
α (ε) = 1

8
eE

∑
mn

∫
(dω)Iα,mnAmn(ω,ε). (B1)

Here Iα,mn represents the result of integration in the momentum
quantum number:

Iα,mn = 2i

∫
(dp)Im(ψmp(r)∇̂αψ∗

np(r))〈np|x|mp〉 (B2)

and Amn = ∑
k A(k)

mn has several contributions, which arise
from the different ways of expanding propagators or
bosonic/fermionic distribution functions in the electric field.
The next step is to calculate integral (B2): taking into
account 〈n,p|x|m,p〉 = xnm + pl2

Bδnm, where xnm are matrix
elements, calculated with χn(x), we obtain

Ix(m,n) = 2υxnm∂mn, (B3)

Iy(m,n) = 2i

l2
B

υ(xnmxmn − δmn(x2)mn). (B4)

We also take into account

xmn = lB√
2

(
√

n + 1δm,n+1 + √
nδm,n−1), (B5)

∂mn = − 1√
2lB

(
√

n + 1δm,n+1 − √
nδm,n−1) (B6)

and obtain the result, presented in Eqs. (75) and (76).
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B 33, 1691 (1986).
41A. Schmid, Phys. Rev. 180, 527 (1969).
42L. P. Gor’kov, JETP Lett. 11, 32 (1970).
43A. A. Varlamov and L. Reggiani, Phys. Rev. B 45, 1060 (1992).
44T. Mishonov, A. Posazhennikova, and J. Indekeu, Phys. Rev. B 65,

064519 (2002).

45M. Y. Reizer, Phys. Rev. B 45, 12949 (1992).
46E. Abrahams, R. E. Prange, and M. J. Stephen, Physica 55, 230

(1971).
47S. Hikami and A. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
48V. V. Dorin, R. A. Klemm, A. A. Varlamov, A. I. Buzdin, and D. V.

Livanov, Phys. Rev. B 48, 12951 (1993).
49B. L. Altshuler, A. Varlamov, and M. Y. Reizer, Zh. Eksp. Theor.

Fiz 84, 2280 (1983).
50H. Fukuyama, Electron-Electron Interactions in Disordered Sys-

tems (North-Holland, Amsterdam, 1985).
51L. G. Aslamazov and A. A. Varlamov, J. Low Temp. Phys. 38, 223

(1980).
52M. A. Paalanen, A. F. Hebard, and R. R. Ruel, Phys. Rev. Lett. 69,

1604 (1992).
53R. Ikeda, Phys. Rev. Lett. 89, 109703 (2002).
54V. M. Galitski and A. I. Larkin, Phys. Rev. Lett. 89, 109704 (2002).
55A. F. Hebard and M. A. Paalanen, Phys. Rev. B 30, 4063 (1984).

174527-14

http://dx.doi.org/10.1103/PhysRevB.65.020201
http://dx.doi.org/10.1103/PhysRevB.65.020201
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1103/PhysRevB.31.7001
http://dx.doi.org/10.1103/PhysRevB.31.7001
http://dx.doi.org/10.1103/PhysRevB.33.1691
http://dx.doi.org/10.1103/PhysRevB.33.1691
http://dx.doi.org/10.1103/PhysRev.180.527
http://dx.doi.org/10.1103/PhysRevB.45.1060
http://dx.doi.org/10.1103/PhysRevB.65.064519
http://dx.doi.org/10.1103/PhysRevB.65.064519
http://dx.doi.org/10.1103/PhysRevB.45.12949
http://dx.doi.org/10.1016/0031-8914(71)90255-2
http://dx.doi.org/10.1016/0031-8914(71)90255-2
http://dx.doi.org/10.1142/S0217984988000369
http://dx.doi.org/10.1103/PhysRevB.48.12951
http://dx.doi.org/10.1007/BF00115277
http://dx.doi.org/10.1007/BF00115277
http://dx.doi.org/10.1103/PhysRevLett.69.1604
http://dx.doi.org/10.1103/PhysRevLett.69.1604
http://dx.doi.org/10.1103/PhysRevLett.89.109703
http://dx.doi.org/10.1103/PhysRevLett.89.109704
http://dx.doi.org/10.1103/PhysRevB.30.4063

