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Probing LO phonons of graphene under tension via the 2D′ Raman mode
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We use ab initio simulations and perturbation theory to study the 2D′ Raman mode of graphene subject
to biaxial and uniaxial strains up to 2%. We demonstrate that 2D′ Raman measurements, as a function of
polarization and laser energy EL, can probe the LO phonons of graphene with arbitrary radial and angular extent
around �. The 2D′ profile is highly sensitive to uniaxial strain and depends on both polarization and strain
orientation. The Grüneisen parameter γ2D′ ≈ 1.71 has a mild dependency on the laser energy EL, and is found
to be in good agreement with experiments and comparable in value to γG. The shear deformation potential β2D′

depends strongly on the polarization and strain orientation, becoming negative when the polarizer and analyzer
are perpendicular to each other. Finally, we describe a robust method to determine the uniaxial strain by relying
solely on polarized measurements of the 2D′ mode.
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I. INTRODUCTION

Raman spectroscopy has established itself as a workhorse
for characterizing graphitic materials.1,2 With the advent
of graphene,3,4 a flurry of theoretical and experimental
activity involving Raman spectra has illumined numerous
aspects of fundamental and practical interest. A small se-
lection might include the determination of the number of
graphene layers,2 doping,5 phonon dispersion mapping,6,7

phonon anharmonicities,8 and the measurement of strain and
crystalline orientation.9,10 sp2 materials are somewhat unique
since they provide a number of prominent second-order Raman
spectra, for, e.g., the defect-induced D and D′ modes and
the two-phonon 2D mode.1 These second-order features, also
referred to as double-resonant modes after Thomsen et al.,11

involve nonzero phonon wave vectors q and can be described,
to leading order, from fourth-order perturbation theory.11–13

The 2D′ feature1,2 seen in graphene and more generally sp2

carbons is one such second-order Raman mode.14 It arises from
two phonons with nearly opposite wave vectors belonging
to the LO branch of the phonon dispersion surrounding
the � point. It is alternatively known as the G∗ mode and
is present at ∼3200 cm−1 for excitation energies in the
visible range. Characteristic of its double-resonant nature,11

the probed phonon wave vectors q∗ move progressively away
from � as the exciting laser energy is swept,15 resulting in
a dispersion of the observed mode frequency. This behavior
evokes its more prominent foil, the 2D mode, that stems
instead from the TO phonons around K .7,11 Theoretically
too, the description of the 2D′ feature mirrors that of the
2D mode, with the relevant Feynman diagrams7,13,16,17 in both
cases being identical save for the phonon branch considered

(2D′:LO vs 2D:TO). Unlike the 2D mode, however, the 2D′
mode has not been subject to extensive experimental scrutiny.
While a few reports have emerged regarding the investigation
of its Grüneisen parameter,9,18,19 its analyses under uniaxial
strain, whether experimental or theoretical, particularly with
regards to its polarization behavior are absent.

In this paper, we will show that polarization and laser
energy EL dependent measurements of the 2D′ Raman mode
of graphene provide access to the entire LO phonon dispersion
of arbitrary radial and angular extent. This is in contrast to
the oft-studied first-order Raman mode, the G mode, that is
confined to q ≈ � independent of EL.20 We also provide the
dominant phonon wave vectors q∗ and the implied phonon-
assisted electronic transitions associated with the 2D′ mode, as
a function of polarization. The LO phonon dispersion and the
2D′ spectra are described under uniaxial and biaxial tension up
to 2%. We study the behavior of the Grüneisen parameter γ2D′

and the shear deformation potential β2D′ . While γ2D′ is ∼5%
less than γG, it also depends subtly on EL. β2D′ , in contrast
to βG, exhibits a strong dependence on the polarizer:analyzer
combination and the orientation ψ of uniaxial strain. Finally,
relying only on the 2D′ mode we suggest a robust technique to
measure the level of uniaxial strain by rotating the plane of the
polarizer and analyzer that are kept in a parallel configuration.

II. CALCULATION DETAILS

We model the 2D′ Raman mode via a transition matrix
Tfi[q]7 (the mode intensity I2D′ ∝ |Tfi[q]|2) limited to fourth-
order perturbation theory,21 within the free-particle paradigm.
It reads,

Tfi[q] =
∑

k

〈v,k − q|He−R |c,k − q〉〈v,k − q|He−ph|v,k〉†〈c,k − q|He−ph|c,k〉〈c,k|He−R |v,k〉
{EL − (Ec[k − q] − Ev[k − q]) − 2ωLO[q] + ı�[EL]}{EL − (Ec[k − q] − Ev[k]) − ωLO[q] + ı�[EL]}{EL − (Ec[k] − Ev[k]) + ı�[EL]}

+ 〈v,k − q|He−R |c,k − q〉〈c,k − q|He−ph|c,k〉〈v,k − q|He−ph|v,k〉†〈c,k|He−R |v,k〉
{EL − (Ec[k − q] − Ev[k − q]) − 2ωLO[q] + ı�[EL]}{EL − (Ec[k] − Ev[k − q]) − ωLO[q] + ı�[EL]}{EL − (Ec[k] − Ev[k]) + ı�[EL]}

+ 〈v,k|He−R |c,k〉〈c,k|He−ph|c,k − q〉〈c,k − q|He−ph|c,k〉〈c,k|He−R |v,k〉
{EL − (Ec[k] − Ev[k]) − 2ωLO[q] + ı�[EL]}{EL − (Ec[k − q] − Ev[k]) − ωLO[q] + ı�[EL]}{EL − (Ec[k] − Ev[k]) + ı�[EL]}

+ 〈c,k|He−R |v,k〉†〈v,k|He−ph|v,k − q〉†〈v,k − q|He−ph|v,k〉†〈v,k|He−R |c,k〉†
{EL − (Ec[k] − Ev[k]) − 2ωLO[q] + ı�[EL]}{EL − (Ec[k] − Ev[k − q]) − ωLO[q] + ı�[EL]}{EL − (Ec[k] − Ev[k]) + ı�[EL]} ,
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FIG. 1. (Color online) The angles corresponding to the polarizer
θ , analyzer φ, and uniaxial strain orientation ψ with respect to the
graphene lattice (purple circles). The axes are set along the zigzag
and armchair orientations of graphene.

where He−R is the Hamiltonian corresponding to light-
matter interaction and He−ph is the Hamiltonian representing
electron-phonon coupling. The electronic eigenstates (for, e.g.,
|c,k〉) are labeled by their branch index (c: conduction band,
v: valence band) and wave vector k. The band energies, as a
function of the electronic wave vector k, are denoted by Ev[k]
and Ec[k] for the valence and conduction bands of graphene,

respectively, while the phonon dispersion, as a function of
the phonon wave vector q, is ωLO[q]. EL is the incident
laser energy and �[EL] is the energy broadening term. This
perturbational approach has been used previously to study the
2D mode7,13,22 to favorable correspondence with experiment.

The ingredient electronic and phonon bands and the
associated optical and electron-phonon matrix elements were
explicitly obtained over the entire two-dimensional Brillouin
zone (BZ) of graphene via ab initio simulations. The electronic
eigenfunctions were calculated in a plane-wave basis using
density-functional theory (DFT)23,24 within the local-density
approximation (LDA),25, as implemented in the QUANTUM

ESPRESSO (QE)26 distribution. We followed the established
recipe of Ref. 8 in choosing the simulation parameters for
the ground state wave functions of graphene, while suitably
altering the lattice parameter for the biaxial strain case. For the
uniaxial strain calculations, we proceeded by first finding the
energy minima corresponding to the component of the lattice
parameter perpendicular to the strain orientation in order to
find the correct Poisson ratio ν. This was followed by the
relaxation of the basis atoms to yield the eventual ground state.
The optical matrix elements were computed while correcting
for the nonlocality of the pseudopotentials used to generate
the Kohn-Sham wave functions.27 The electron-phonon matrix
elements for the LO phonon branch were calculated using
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FIG. 2. (Color online) The phonon-assisted electronic transitions (red double-sided arrows) for (a) θ = 0◦,φ = 0◦, (b) θ = 0◦,φ = 90◦, and
(c) θ = 90◦,φ = 90◦. They join the excitation energy contours EL − ωLO(q∗) and EL − 2ωLO(q∗), where the optical matrix elements product
(underlying red-orange contours) is maximum. These transitions are implied by the dominant phonon wave vectors q∗ (blue-green regions)
probed by the 2D′ Raman mode for the (d) pristine, (e) 1% uniaxially strained along the zigzag, and (e) 1% uniaxially strained along the
armchair orientation cases. The underlying orange-hued contours of (d)–(f) depict the LO phonon dispersion around �. The red stars represent
the phonon wave vector with maximum intensity q∗

max.
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the LDA wave functions by applying density-functional
perturbation theory (DFPT).28 Contrary to the optical laser
energies (∼1.8 eV to 2.5 eV) commonly employed in Raman
experiments, the laser energies EL investigated were 1.3 eV to
1.9 eV, in order to confine ourselves to the domain of electronic
wave vectors k probed by visible range irradiation. This is due
to LDA’s well-known underestimation of the slopes of both
the electronic29 and phonon bands30 of graphene. A laser-
dependent energy broadening �[EL] was used, as given by Eq.
14 of Ref. 22. Tfi[q] was calculated by carefully resampling
the fully two-dimensional bands and matrix elements on a grid
with a density exceeding 1000 × 1000 per BZ31 for both the
electronic k and phonon wave vectors q, ensuring converged
results. Finally, the 2D′ features were generated by modeling
the spectrometric response by a Lorentzian profile with an
FWHM of 1.5 cm−1.

III. DOMINANT PHONONS q∗ AND ELECTRONIC
TRANSITIONS

Our calculations demonstrate that the dominant phonons
q∗ probed by the 2D′ Raman mode are not confined to the
high-symmetry directions, in general.32 Instead, their location
depends sensitively on light polarization as determined by the
polarizer:analyzer condition (θ :φ) (see Fig. 1 for the definition
of θ and φ). Their structure is very similar to q∗ for the 2D

mode obtained by us in Ref. 7. In Figs. 2(d)–2(f) we show
q∗ for representative polarizer:analyzer (θ :φ) combinations,
where the polarization angle of 0◦ (90◦) corresponds to the
zigzag (armchair) orientation of the graphene lattice. Via
the relation expressing quasimomentum conservation of the
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FIG. 3. (Color online) The differential strain response of the
LO phonon branch of graphene around � under (a) biaxial strain
γLO = − 1

2ω0
LO

∂ωLO
∂εb

and uniaxial strain − 1
ω0

LO

∂ωLO
∂εu

along the (b) zigzag

orientation (ψ = 0◦) and (c) armchair orientations (ψ = 90◦).

electron during phonon-assisted scattering, k∗
i = k∗

f + q∗ and

max(|Tfi[k∗
i q∗]|2), k∗

f and q∗ determine the dominant phonon-
assisted transitions as shown by the red, double-sided arrows
in Figs. 2(a)–2(c). These transitions connect regions where
the product of the optical matrix elements are maximized,
as set by (θ :φ). Given the resonant nature of the scattering
process, one may intuit that the transitions simply connect
the equiexcitation energy contours of the electronic dispersion
(Ec[k] − Ev[k] = EL), whereas on closer inspection we find
that the strongest contributions come from the transitions
connecting the equiexcitation energy contours with EL −
ωLO(q∗) and EL − 2ωLO(q∗) as shown in Figs. 2(a)–2(c).

IV. STRAIN RESPONSE OF THE LO PHONON
DISPERSION

Biaxial strain does not alter the D6v (or D6 when graphene
is atop a substrate) point group symmetry of pristine graphene.
The BZ remains hexagonal and the electron and phonon bands

−1

2D

ε =

FIG. 4. (Color online) 2D′ Raman spectra at EL = 1.5 eV as
function of (a) biaxial εb, (b) uniaxial strain εu along the zigzag
(ψ = 0◦), and (c) armchair (ψ = 90◦) orientations of graphene for
strains up to 2%.
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of graphene under biaxial tension simply renormalize;33 they
both redshift. The differential response of the LO phonons
under biaxial strain, − 1

2ω0
LO

∂ωLO
∂εb

[see Fig. 3(a)], tantamount to

the Grüneisen parameter γLO, shows a weak, nearly isotropic
decline with q relative to �. Our finding is in good agreement
with Ref. 33 that evaluated γLO along the high-symmetry
directions �-K-M .

Uniaxial strains require the distortion of the hexagonal BZ
of graphene.7,34 The point group symmetry is reduced to C2,
while the mirror m symmetry is retained under uniaxial strain
along the zigzag and armchair orientations. The equiexcitation
energy contours [see Figs. 2(b) and 2(c) for uniaxial tensile
strains of 1% along the zigzag and armchair orientations,
respectively] shift35 [see also Figs. 6(a) and 6(b)] and are subtly
altered from their unstrained, trigonal shape; the BZ edges
K and the minima of the Kohn anomalies no longer remain
coincident.7,36 The LO phonon dispersion around �, on the
other hand, distorts markedly in a manner characteristic of the
strain orientation and magnitude. This is shown in Figs. 2(e)
and 2(f) that display the LO phonon dispersion around � under

uniaxial tensile strain of 1% along the zigzag and armchair
orientations, respectively. The differential response of the LO
phonons under uniaxial strain − 1

ω0
LO

∂ωLO
∂εu

is highly anisotropic

as is evident from Figs. 3(b) and 3(c). These findings regarding
the polarization dependence of q∗ and the strain magnitude
and direction dependent distortion of the probed LO phonons
around � anticipate the richness of the 2D′ Raman mode under
uniaxial strain.

V. POLARIZED 2D′ SPECTRA UNDER TENSION

The 2D′ Raman mode maintains its shape but shifts to lower
frequencies under biaxial tension εb, as shown in Fig. 4(a), for
strains up to 2% for EL = 1.5 eV. Expectedly, the line shape
and position of the 2D′ feature are indifferent to polarization,
a consequence of the unbroken D6v symmetry. Instead, under
uniaxial strain and given polarization, the 2D′ peak shows a
characteristic broadening as the strain magnitude is increased.
A further increase eventually leads to splitting with a complex
line shape that cannot, in general, be satisfactorily fit to merely
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FIG. 5. (Color online) Top panels: The equienergy contours (in red) corresponding to the laser energy 1.5 eV for uniaxial strain εu = 2.0%
along the (a) zigzag (ψ = 0◦) and (b) armchair (ψ = 90◦) orientations of the graphene lattice. They are contrasted with the contours (in gray)
for unstrained graphene. Bottom panel: The 2D′ Raman spectra (see the inset of Fig. 4 for the legend) derived from the individual BZ edges
K i, where i : 1–6. Given ψ , the 2D′ spectra deriving from each Ki are identical.
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FIG. 6. (Color online) Variation of the intensity-weighted 2D′

peak difference �2D′
with uniaxial strain εu along the (a) zigzag

(ψ = 0◦) and (b) armchair (ψ = 90◦) orientations of the graphene
lattice. The difference reaches a maximum �2D′

‖,⊥ when θ ,φ are ‖ and

⊥ to ψ . �2D′
‖,⊥ provides a measure for εu.

two Lorentzians. The line shape and peak positions are highly
polarization (θ :φ) dependent, as exemplified by Figs. 4(b) and
4(c) for uniaxial strains along the (b) zigzag (ψ = 0◦) and
(c) armchair (ψ = 90◦) orientations of the graphene lattice.
It should be emphasized that the careful consideration of the
polarizer:analyzer condition is not only of academic concern.
Owing to the strong polarization dependence of standard
spectrometer optics, paradoxically, a truly “unpolarized” ex-
periment would rather be challenging to realize with crystalline
specimens. The unreckoned polarization is probably at the
heart of the higher scatter in the reported peak positions of
the second-order but nevertheless prominent Raman features

εb [ ]

G
−

1

2D
−

1

EL = 1.3 eV
EL = 1.5 eV
EL = 1.7 eV
EL = 1.9 eV

FIG. 7. (Color online) The intensity-weighted phonon frequency
of the 2D′ mode as a function of biaxial strain εb for various laser
energies EL. These are contrasted with the frequency of the G mode
(blue line).

such as the 2D mode under strain.18 The red (blue) peaks
in Figs. 4(b) and 4(c) indicate a ‖ (⊥) orientation of the
polarizer and analyzer along the zigzag (armchair) orientation
of graphene. Both the ‖ and ⊥ polarization conditions show a
symmetry under exchange between ψ = 0◦ and ψ = 90◦ for
small strains (∼1%), that is somewhat lost at higher strain lev-
els [compare Figs. 4(b) and 4(c) for εu = 2.0%]. Generally, un-
der uniaxial tension the peak with both θ and φ ‖ (⊥) ψ devel-
ops a redshifted (blueshifted) shoulder, mirroring the behavior
of the 2D mode seen experimentally37,38 and in simulations.7

The observed line shape is primarily a consequence of the
degree of parallelism between the polarization-dependent q∗

TABLE I. Collected experimental and ab initio values for the Grüneisen parameter γ and shear deformation potential β of the G and 2D′

modes of graphene.

ab initio experimental ab initio

this work Ref. 9 Ref. 18 Ref. 19 Ref. 39 Ref. 10 Ref. 9 Ref. 40 Ref. 41

EL 1.3 eV 1.5 eV 1.7 eV 1.9 eV 2.43 eV 2.35 eV 2.43 eV 1.97 eV 2.34 eV

γG 1.80 1.99 1.80 1.80 2.4 ± 0.2 0.69 ± 0.14 1.87 1.86 2.00
γ2D′ 1.72 1.71 1.70 1.69 1.74 1.73 1.66 ± 5%
βG 0.99 0.38 ± 0.08 0.92 0.96 0.66
βG− [ψ]
0◦ 0.98 NA NA
90◦ 0.90 NA NA
βG+ [ψ]
0◦ 0.96 NA NA
90◦ 0.91 NA NA
β2D′ [ψ,θ.φ]
0◦ 0◦ 0◦ 0.85 0.82 0.80 0.80
0◦ 0◦ 90◦ 0.45 0.35 0.24 0.50
0◦ 90◦ 90◦ −0.25 −0.40 −0.49 −0.53 NA NA
90◦ 0◦ 0◦ −0.32 −0.47 −0.57 −0.59
90◦ 0◦ 90◦ 0.34 0.27 0.23 0.19
90◦ 90◦ 90◦ 0.77 0.74 0.71 0.70
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FIG. 8. (Color online) The intensity-weighted phonon frequency of the 2D′ Raman mode as a function of uniaxial strain εu along the zigzag
(ψ = 0◦) [(a)–(c)] and armchair (ψ = 90◦) orientations [(d)–(f)] for laser energies 1.3 eV (yellow line), 1.5 eV (orange line), 1.7 eV (red line),
and 1.9 eV (black line). These are contrasted with the frequencies of the G− and G+ Raman modes (blue lines). The light polarization conditions
are (a), (d) θ = 0◦,φ = 0◦, (b), (e) θ = 0◦,φ = 90◦, and (c), (f) θ = 90◦,φ = 90◦, where 0◦ corresponds to the zigzag orientation of graphene.

and the highly distorted LO phonon contours under uniaxial
strain [see Figs. 2(e) and 2(f)]. In the limiting case of pristine
(or biaxially strained) graphene, q∗ are highly concordant
with the LO phonon contours [see Fig. 2(d)] resulting thus
in a narrow 2D′ feature. The peak decomposition has little
to do with the different relative motion of the individual BZ
edges with respect to �. Indeed, under uniaxial strain along the
zigzag and armchair directions, the electron valleys located at
each of the six K points all yield identical 2D′ line shapes
(see Fig. 5).

The polarized 2D′ spectra exhibit a maximum in the
difference �2D′

between their peak positions (defined as the
intensity-weighted spectral average of the 2D′ Raman mode∑

q ω2D′ [q]×I2D′ [q]∑
q I2D′ [q] ), when θ , φ ‖ ψ and θ , φ ⊥ ψ as displayed in

Figs. 6(a) and 6(b). This maximal difference �2D′
‖,⊥ serves as a

measure of the magnitude of uniaxial tensile strain, once the
laser energy EL is kept constant. This is demonstrated by the
position of maxima �2D′

‖,⊥ as a function of uniaxial strain εu in
Fig. 6. Experimentally, we can exploit this fact to estimate the
level of uniaxial strain by rotating the polarizer:analyzer, that
are kept parallel to each other, through a 90◦ sweep to assess
�2D′

‖,⊥. Indeed, Fig. 6 shows that for modest strains (εu ∼ 1%),
∂�2D′

‖,⊥
∂εu

≈ 21 cm−1/%, regardless of ψ or EL. As this method
relies on the lowered symmetry of the graphene lattice under
strain, it is therefore robust against the confounding effects

of doping and/or the underlying substrate on the LO mode of
graphene.

VI. GRÜNEISEN PARAMETER γ2D′ AND SHEAR
DEFORMATION POTENTIAL β2D′

With the application of uniaxial strain the G Raman mode
of graphene splits into the G− and the higher frequency
G+ component.9,10 Since both the G+ and 2D′ Raman
features stem from the LO branch of the phonon dispersion
of graphene,9 we can reasonably expect a similar response
to strain. We thus set the relation between the 2D′ mode
frequency ω2D′ and strain in correspondence with the G+ mode
as9

ω2D′ = ω0
2D′ − γ2D′ω0

2D′εh + 1
2β2D′ω0

2D′εs, (1)

where εh and εs denote the hydrostatic and shear components,
respectively, of the strain tensor. The 2D′ mode Grüneisen
parameter is γ2D′ while the shear deformation potential is β2D′ .
For the case of biaxial strain εb we obtain

ω2D′ = ω0
2D′ − γ2D′ω0

2D′(2εb), (2)

whereas for a uniaxial strain εu we have

ω2D′ = ω0
2D′ − γ2D′ω0

2D′εu(1 − ν) + 1
2β2D′ω0

2D′εu(1 + ν),

(3)
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where ν is the Poisson ratio. γ2D′ and β2D′ are obtained from a
linear regression following Eqs. (2) and (3), respectively, using
the intensity-weighted phonon frequencies ω2D′ up to a strain
level of 2% for both uniaxial and biaxial tension. A single
Poisson ratio ν = 0.15 is employed, which is the mean value
from our calculations, in good accord with Ref. 10 and 40 and
matches the one used in Ref. 9.

We find that (see Fig. 7) the Grüneisen parameter for the 2D′
mode γ 1.5 eV

2D′ = 1.71, which is ∼ 5% less than that of the G

mode with γG = 1.80, the latter being in good agreement with
experimental and ab initio values as given in Table I. While
comparing strain-response parameters between publications,
one must be cognizant of the strain range considered. For
instance, at higher strain the frequency-response of the G

mode deviates from strict linearity, thus accounting, ceteris
paribus, for the minor variation between reported values. The
grossly discrepant γG value from Ref. 10, however, suggests a
miscalibration of strain by a factor of three.9,38 γ2D′ , in contrast
to γG, shows a mild inverse dependence on the laser energy
as can be observed from Fig. 7 and Table I. This reflects the
double-resonant character of the 2D′ mode, whereas the G

mode is confined to q ≈ � where γLO[�] = 1.8, regardless of
the excitation energy [see Fig. 3(a)].

The response of the 2D′ mode is considerably more
nuanced when uniaxial tension is applied instead. It is strongly
influenced by the polarization:analyzer condition (θ :φ) and ψ .
(θ :φ) determines q∗ for the LO phonons whose differential
strain response [see Figs. 3(b) and 3(c)] is inherently highly
anisotropic and ψ dependent. A weaker dependence on the
laser energy EL is also observed accounting for the fact
that the double-resonant condition results in progressively
larger q∗ (than �) being accessed as the excitation energy is
swept upward. We present the intensity-weighted frequencies
of the calculated 2D′, G−, and G+ modes in Fig. 8 as a
function of εu up to 2% along ψ = 0◦, 90◦ with both θ , φ

‖ ψ and θ , φ ⊥ ψ . Over a 2% uniaxial strain range, the
obtained βG+ and βG− are not identical and depend weakly
on ψ as also discussed in Ref. 40. The nominal βG is
nevertheless in overall agreement with the literature values
as tabulated in Table I. While the underestimated βG from
Ref. 10 can be attributed to the issue of strain calibration
mentioned earlier, the origin of the discrepant value from
Ref. 41 is suspected to be the lower strain level considered
in that work. Using γ2D′ from Eq. (2) in Eq. (3) we find that
the inferred shear deformation potential β2D′ is extremely
sensitive to the (ψ , θ , φ) triad, and even changes sign,
particularly when θ,φ ⊥ ψ [see Figs. 8(b) and 8(d)]. A weak
dependence on EL, for reasons given above, is also seen.
Of note too is the reciprocity between the strain response
of the 2D′ mode between the cases: θ ‖ φ ‖ ψ [compare
Figs. 8(a) and 8(f)], θ ‖ φ ⊥ ψ [compare Figs. 8(c) and 8(d)]

and the θ ⊥ φ ‖ (or ⊥) ψ [compare Figs. 8(b) and 8(e)] for
ψ = 0◦,90◦.

VII. CONCLUSIONS AND SUMMARY

We have shown that using a combination of polarization
conditions (θ :φ) and laser energies EL, the 2D′ mode provides
access to q∗ of arbitrary radial22 and even arbitrary angular
locations relative to � [see Figs. 2(d)–2(f)]. It thus overcomes
the restriction of the G mode (and the uniaxial strain induced
G+ mode) in being limited to probing the q ≈ � phonons of
the LO branch. Whereas one might argue that the D′ mode at
∼1620 cm−1 can perform the same task, it is usually difficult
to study since it tends to get overshadowed by the G mode.
The D′ mode also suffers from the fact that it requires defects
for its activation1,22 and is therefore not guaranteed to have
sufficient intensity. In this context, the 2D′ mode becomes
particularly valuable since it is located at ∼ 3200 cm−1, well
insulated from any interference.

Under biaxial tension the LO phonons redshift in a nearly
isotropic manner about � [see Fig. 3(a)]. This is reflected
in the Grüneisen parameter for the 2D′ mode γ2D′ ≈ 1.70,
that is slightly laser dependent and roughly ∼ 5% less than
γG. The 2D′ profile relocates to lower frequencies but shows
no polarization dependence due to the unaltered symmetry
of pristine graphene. Under uniaxial strain, the LO phonons
distort markedly depending on the direction ψ along which
the strain is applied and the magnitude of strain [see Figs. 3(b)
and 3(c) for strains along the zigzag (ψ = 0◦) and armchair
(φ = 90◦) directions]. As a consequence, the 2D′ profile is
strongly polarization dependent as exemplified in Figs. 4(b)
and 4(c). The shear deformation potential implied by the 2D′
mode β2D′ inherits the strong polarization dependence and
even turns negative when θ ⊥ φ.

The intensity-averaged peak positions of the 2D mode
show a maximum in the splitting �2D′ when the polarizer
and analyzer, kept parallel to one other, are parallel and
perpendicular, respectively, to the direction ψ along which
the strain is applied. The maxima �2D′

‖,⊥ serve as a robust
measure of uniaxial strain. For uniaxial strains up to 1%

we find
∂�2D′

‖,⊥
∂εu

≈ 21 cm−1/%, regardless of ψ or EL. Ex-
perimentally, this maxima can be assessed by rotating the
(θ ‖ φ) pair through 90◦ and providing a measure of uniaxial
strain complementary to the splitting of the G− and G+
modes.9,10
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