4 Ergebnisse

4.1 Konstruktion und Analyse von cDNA-Banken aus heilendem Knochen des Schafs (*Ovis aries*)

Im Rahmen dieser Arbeit wurden zwei cDNA-Banken aus 7 und 10 Tage nach der Fraktur entnommenem Kallusgewebe des Schafs, sowie eine cDNA-Bank aus Gewebe mehrerer Stadien (14, 21 und 31 Tage nach der Fraktur) hergestellt und analysiert. Zunächst wurden umfangreiche Optimierungen des Protokolls zur Konstruktion der cDNA-Banken vorgenommen. Es stellte sich heraus, daß der CloneMiner Kit von Invitrogen mit einigen Modifikationen des Herstellerprotokolls in Bezug auf Klonzahlen und Länge der Inserts die besten Ergebnisse lieferte.

4.1.1 Generierung der ESTs, Erzeugung der Contigs und einer Schaf-Sequenzdatenbank

Von den cDNA-Banken wurden in Zusammenarbeit mit der Arbeitsgruppe von Dr. Richard Reinhardt am Max-Planck-Institut für molekulare Genetik 47209 EST-Sequenzen generiert. In Tabelle 4.1 sind die Banken mit den verwendeten Gewebestadien, den Klonzahlen und Insertgrößen, sowie der Anzahl der sequenzierten ESTs angegeben.

Anzahl der jewe	eils sequenzierten Klo	ne und Anzahl dei	Contigs, die ESTs au	s der jeweiligen	Bank enthalten.
cDNA-	Stadium (Tage	Anzahl	Durchschnittliche	Anzahl der	Anzahl der

Anzahl der unabhängigen Klone und durchschnittliche Insertgröße der erzeugten cDNA-Banken, sowie die

Tab. 4.1: Überblick der generierten cDNA-Banken.

cDNA-	Stadium (Tage	Anzahl	Durchschnittliche	Anzahl der	Anzahl der
Bank	nach der	unabhängiger	Insertgröße	ESTs	Contigs
	Fraktur, PF)	Klone			
Sh1	14, 21, 31	ca. $4,5*10^{6}$	1,4 kb	15177	5421
Sh2	7	ca. $3,6*10^5$	1,6 kb	14884	5859
Sh3	10	ca. 3, $4*10^5$	1,4 kb	17148	6217

Alle Sequenzen wurden bei der NCBI GenBank hinterlegt und sind dort unter den Accessionnummern DY475559-DY505707 und DY505714-DY522957 zugänglich. Die Länge der Sequenzen reichte von 40 bis 928 bp mit einer durchschnittlichen Länge von 555 Basen. Die Größenverteilung der Sequenzen zeigt Abb. 4.1a. Ab 750 bp wurden alle Basen

für die weitere Analyse maskiert, um Fehler auf Grund abnehmender Sequenzqualität zu minimieren.

344 Sequenzen wurden verworfen, da sie nach der Qualitätskontrolle und Maskierung der repetitiven Bereiche eine Länge von weniger als 40 bp hatten.

Mit Hilfe der GeneNest-Software (Haas et al., 2000; Krause et al., 2002) wurde in Kooperation mit Dr. Stefan Haas (Abt. Vingron, MPI für molekulare Genetik) ein Clustering der Sequenzen durchgeführt. Zusätzlich zu den neu sequenzierten ESTs wurden 10497 Schaf-ESTs und 2391 Schaf-mRNA-Sequenzen aus der EMBL-Datenbank (release 82, September 2005) extrahiert und ebenfalls für das Clustering verwendet. Hierbei ergaben sich 19087 Contigs mit einer durchschnittlichen Länge von 603 Basen (Abb 4.1b). 397 Contigs waren kürzer als 100 Basen und wurden von der weiteren Analyse ausgeschlossen. Durchschnittlich bestand jeder Contig aus 3,1 ESTs aus allen verwendeten cDNA-Banken mit einer Schwankungsbreite von 0 bis 2392 ESTs pro Contig. Einige Contigs bestanden nur aus bekannten mRNAs und enthielten keine ESTs. Betrachtet man nur die in dieser Arbeit sequenzierten ESTs, so bestand jeder Contig aus 2,5 ESTs (0 bis 2387 pro Contig). Die Contigs, die die meisten ESTs enthielten, wurden als *Kollagen Ial* (2387 ESTs), *Kollagen Ia*2 (1094 ESTs) und *Osteonectin* (1086 ESTs) identifiziert. Insgesamt enthielten 8965 Contigs nur je einen EST.

Abb. 4.1: Verteilung der Sequenzlängen und EST-Zahlen pro Contig. Verteilung der Sequenzlängen nach der Qualitätskontrolle (a) und die Verteilung der Längen der Contigs (b).

Die Ergebnisse des Clusterings können durch das GeneNest Programm graphisch auf einer benutzerfreundlichen Internetseite dargestellt werden (<u>http://genenest.molgen.mpg.de/cgi-bin/search_db?db=Oa</u>). Abbildung 4.2 zeigt ein Bildschirmfoto eines *Ovis aries*-Contigs und gibt einen Überblick über die Hauptfunktionen der Software.

Abb. 4.2: GeneNest Ovis aries-Genindex-Datenbank.

In diesem Beispiel ist ein Contig des Clusters von Integrin binding sialoprotein (IBSP) gezeigt. Der Cluster besteht aus drei Contigs, die separat darstellbar sind. Die EST-Sequenzen aus denen der Contig besteht sind mit ihrer Position in der Konsensussequenz, die von jedem Contig heruntergeladen werden kann, aufgeführt. Optional sind offene Leseraster und andere Daten darstellbar (Haas et al., 2000). Die Datenbank ist unter (http://genenest.molgen.mpg.de/cgi-bin/search_db?db=Oa) öffentlich zugänglich.

4.1.2 BLAST-Analyse der *Ovis aries*-Contigs zur Zuordnung wahrscheinlicher Identitäten

Um den Contigs der Schaf-ESTs wahrscheinliche Genidentitäten zuzuweisen, wurden BLAST-Suchen gegen die NCBI RefSeq Proteindatenbank durchgeführt. Dabei ergaben 13149 Contigs einen als signifikant gewerteten Treffer mit einem E-Wert von 0,01 oder besser. Die Verteilung der Treffer gegen die RefSeq Proteindatenbank ist in Abbildung 4.3a dargestellt. Abbildung 4.3b zeigt die Verteilung der BLAST-Ergebnisse gegen Maus-mRNAs. BLAST-Ergebnisse mit einem E-Wert von weniger als 10⁻²⁵ wurden als signifikante Homologie gewertet und erlaubten eine wahrscheinliche Zuordnung eines Contigs. Mit diesem Grenzwert zeigten insgesamt 10387 Contigs signifikante Homologie zu mindestens einem anderen Protein in der RefSeq Proteindatenbank. Diesen Contigs konnte somit eine wahrscheinliche Identität zugewiesen werden. Insgesamt wurden Treffer für 8789 unterschiedliche Proteine gefunden.

292 Contigs entsprachen einer *Ovis aries* RefSeq und insgesamt 2863 Contigs (15%) ergaben E-Werte von weniger als 10⁻¹⁰⁰ und stellen daher höchstwahrscheinlich echte orthologe Gene dar.

Abb. 4.3: Verteilung der E-Werte verschiedener BLAST-Analysen. Verteilung der E-Werte für *Ovis aries*-Contigs bei BLAST-Analyse gegen die RefSeq-Proteindatenbank (a) oder die nicht-redundante mRNA-Datenbank beschränkt auf Maus-mRNA-Sequenzen (b).

4.1.3 Gene Ontology (GO)-Analyse der Schafkallus-cDNA-Banken

Die GO-Analyse ermöglichte einen Überblick über funktionelle Klassen der während der Frakturheilung exprimierten Gene. Hierfür wurden den Schaf-Contigs die MGI GO-Annotationen der homologen Gene der Maus (BLAST E-Wert <10⁻²⁵) zugewiesen. Homologe wurden für 5637 unterschiedliche Schaf-Gene gefunden (siehe Abb. 4.3b). Einige dieser Gene sind durch mehrere Contigs repräsentiert. Für 4600 der 5637 Gene waren MGI Annotationen verfügbar. Die Ergebnisse der GO-Analyse sind in Abb. 4.4 zusammengefaßt. Viele der häufigsten GO-Annotationen in der Subontologie "biological process", z.B. "development", "signal transduction", "transcription", "biosynthesis" und "phosphate metabolism", geben Prozesse wieder, die eine bekannte Rolle in der Knochenentwicklung und Frakturheilung spielen. Die Verteilung der Annotationen in der Subontologie "cellular component" zeigt, daß die Genprodukte, die den in dieser Arbeit identifizierten ESTs entsprechen, an vielen verschiedenen intra- und extrazellulären Stellen aktiv sind.

Abb. 4.4: Ergebnisse der GO-Analyse.

Die Histogramme zeigen die Anzahl der Gene, die ausgewählten GO-Kategorien aus den Subontologien "biological process" (a) und "cellular component (b) zugeordnet sind. Für die Analyse wurden die etwa 4600 Schafgene verwendet, für die entsprechende Annotationen der homologen Mausgene verfügbar waren. Dargestellt sind die Kategorien mit den meisten Annotationen, sowie Kategorien, die für die Frakturheilung besonders bedeutend sind.

4.1.4 Vergleich der neuen cDNA-Banken mit cDNA-Banken aus intaktem humanem Knochen

Während Entwicklungsprozessen und verwandten Vorgängen, wie der Knochenheilung, zeigen viele Gene komplexe zeit- und ortsabhängige Expressionsmuster. Daher ist die Identifizierung von Genen, die zwischen heilendem und gesundem Knochen differentiell exprimiert werden, ein Indiz für eine Funktion im Heilungsprozeß.

Die EST-Zahlen für ein bestimmtes Gen in einer nicht normalisierten cDNA-Bank entsprechen seiner Expressionsstärke. Daher sind stark exprimierte Gene durch viele ESTs repräsentiert und von schwach exprimierten Genen findet man nur wenige Klone. Um Gene zu identifizieren, die bei der Initiation der Kallusbildung beteiligt sein könnten, wurden die EST-Verteilungen der Sh2- und Sh3-cDNA-Banken aus frühen Kallusstadien (7 bzw. 10 Tage nach der Fraktur) miteinander, sowie mit der EST-Verteilung von cDNA-Banken aus gesundem humanen Knochen verglichen.

Der Vergleich der Sh2- und Sh3-Banken untereinander zeigte nur für drei Gene signifikante Unterschiede der EST-Zahlen: *Tartrate resistant acid phosphatase* (*ACP5*) war im 10-Tage-Stadium (Sh3) verglichen mit dem 7-Tage Stadium (Sh2) um den Faktor 10.6 hochreguliert (von 5 auf 53 ESTs), *Cytochrome c oxidase subunit I* (*COX1*) war in Sh3 um das 2,1-fache überrepräsentiert (von 87 auf 178 ESTs) und *Perlecan* wurde im 10-Tage-Stadium um den Faktor 3,9 niedriger exprimiert (von 31 auf 8 ESTs) als im 7-Tage-Stadium. Ein Vergleich mit der Sh1-cDNA-Bank erfolgte nicht, da diese zum einen aus einem Gemisch mehrerer Kallusstadien hergestellt wurde und zum anderen für die Sequenzierungen PCR-amplifizierte Inserts und keine Plasmidpräparationen wie bei Sh2 und Sh3 verwendet wurden.

Da eine cDNA-Bank aus gesundem Schafsknochen nicht zur Verfügung stand, wurde stattdessen die EST-Verteilungen in den Kallus-cDNA-Banken mit cDNA-Banken aus normalem humanem Knochen verglichen. Insgesamt wurden hierbei 39 Gene mit Benjamini-Hochberg-korrigierten p-Werten von weniger als 0,05 als möglicherweise differentiell exprimiert gefunden. Diese Gene sind in Tabelle 4.2 zusammen mit den ermittelten Daten aufgeführt.

Es ist auffällig, daß 24 der 39 Gene (62 %) bekanntermaßen in Entwicklungsprozesse involviert sind. Für elf dieser 24 Gene wurde bereits eine Funktion in der Knochenentwicklung oder Frakturheilung beschrieben.

Tab. 4.2: Im frühen Kallusgewebe signifikant überrepräsentierte Gene.

Gensymbol und **UniGene** geben das Symbol und die UniGene Cluster Id des jeweiligen humanen orthologen Gens an (Abkürzungen siehe Kasten ¹ auf der nächsten Seite). Die Gene wurden nach Benjamini-Hochberg (BH)korrigierten p-Werten geordnet. **EST-Verhältnis** gibt die EST-Zahlen der PF7 und PF10-Banken vs. die Zahlen der Banken aus gesundem humanem Knochen an. Der für die Gesamt-EST-Zahl korrigierte Wert ist in Klammern angegeben, gefolgt von den BH-korrigierten p-Werten. Das korrigierte EST-Verhältnis wurde mit der Formel *ad/bc* bestimmt, wobei *a* die Summe der ESTs für ein Gen in den PF7- und PF10-Banken ist, *b* die Gesamtzahl der ESTs in den beiden Banken, *c* die Anzahl ESTs für das jeweilige Gen in den humanen cDNA-Banken und *d* die Gesamtzahl der ESTs in den humanen cDNA-Banken. Dadurch wird die Information zur relativen Häufigkeit eines Gens unter den ESTs erhalten. **RT-PCR** faßt die Ergebnisse der statistischen Analyse der quantitativen PCRs zusammen. Der erste Eintrag gibt den Vergleich der ersten beiden Zeitpunkte wider (PF7 und PF10), der Zweite den Vergleich von PF7, PF10 und PF14 und der Dritte den Vergleich über alle vier Zeitpunkte (PF7, PF10, PF14 und PF42). "-" bedeutet nicht signifikant, "*" bedeutet einen korrigierten p-Wert von 0,05>p>10⁻⁴ und "**" bedeutet einen korrigierten p-Wert kleiner als 10⁻⁴. "**n.d.**" = nicht durchgeführt. **Knochen/Entwicklung** zeigt, ob für das fragliche Gen schon eine Funktion in der Knochenheilung oder -entwicklung (erster Eintrag) oder generell in der Entwicklung (zweiter Eintrag) beschrieben wurde.

§ für Fth1 waren für den 14-Tage-Zeitpunkt keine Werte verfügbar.

Tab. 4.2:				
Gensymbol	UniGene	EST-Verhältnis	RT-PCR	Knochen/Entwicklung
Eef1a1	Hs.522463	664:32 (4.3; p = 5.7 × 10–21)	-/*/**	+/+ (Wang et al., 2004)
Cox1	Hs.550345	265:0 (-; p = 4.0 × 10–19)	n.d.	-/+ (Paraoanu et al., 2005)
Rplp0	Hs.448226	278:1 (57; p = 1.3 × 10–18)	-/**/**	-/-
Col1a1	Hs.172928	1987:249(1.6; $p = 5.3 \times 10^{-13}$)	*/**/**	+/+ (Bland et al., 1999)
Sparc	Hs.111779	588:39(3.1; p = 2.9 × 10–12)	-/*/**	+/+ (Sato et al., 1998b)
Rps2	Hs.506997	268:7 (7.9; p = 8.6 × 10–12)	*/**/**	-/-
Fth1 §	Hs.558804	332:14 (4.9; p = 3.7 × 10–11)	-/-/**	+/+ (Wang et al., 2004)
Rpl3	Hs.119598	179:1 (37; $p = 4.4 \times 10^{-11}$)	-/*/**	-/+ (Ou et al., 1987)
Lamr1	Hs.558354	221:4 (11; $p = 4.9 \times 10^{-11}$)	-/**/**	+/+ (Hadjiargyrou et al., 2002)
Ubc	Hs.520348	190:3 (13; $p = 8.5 \times 10 - 10$)	*/**/**	-/-
Itm2c	Hs.111577	114:0 (-; p = 1.4 × 10–7)	-/**/**	+/+ (Deleersnijder et al., 1996)
Col3a1	Hs.443625	444:42 (2.2; p = 1.8 × 10–5)	-/**/**	-/+ (Liu et al., 1997)
Eef2	Hs.515070	85:0 (-; p = 2.9 × 10–5)	-/**/**	-/+ (Brown et al., 1994)
Col4a1	Hs.17441	$105:2 (11; p = 9.5 \times 10-5)$	-/*/*	-/+ (Gersdorff et al., 2005)
Rpl7a	Hs.558380	78:0 (-; p = 9.6 × 10–5)	-/*/**	-/+ (Armes et al., 1995)
K-alpha-1	Hs.334017	89:1 (18; p = 0.00016)	*/**/**	-/-
Acta1	Hs.1288	72:0 (-; p = 0.00021)	*/**/**	-/-
Slc25a6	Hs.350927	71:0 (-; p = 0.00032)	-/**/**	-/+ (Portman et al., 1999)
Eif4a1	Hs.129673	82:1 (17; p = 0.00047)	n.d.	-/-
Hmox1	Hs.517581	66:0 (-; p = 0.00066)	*/**/**	-/+ (Watanabe et al., 2004)
Ftl	Hs.433670	63:0 (-; p = 0.00096)	_/*/**	-/+ (Hwang et al., 2004)
Rpl7	Hs.421257	63:0 (-; p = 0.00096)	_/**/**	-/-
Acp5	Hs.1211	58:0 (-; p = 0.0019)	*/**/**	+/+ (Hayman et al., 1996)
Serpinh1	Hs.241579	154:10 (3.2; p = 0.0038)	*/**/**	+/+ (Shroff et al., 1993)
Gnai2	Hs.77269	52:0 (-; p = 0.0072)	-/**/*	-/+ (Rudolph et al., 1995)
Rps5	Hs.378103	62:1 (18; p = 0.0080)	n.d.	-/-
Eif5a	Hs.534314	73:2 (7.5; p = 0.0083)	n.d.	-/-
Rps3	Hs.546286	50:0 (-; p = 0.0089)	-/**/**	-/-
Mmp14	Hs.2399	47:0 (-; p = 0.013)	**/**/**	+/+ (Apte et al., 1997)
Apoe	Hs.515465	47:0 (-; p = 0.013)	-/-/*	-/-
Eno1	Hs.517145	146:11 (2.7; p = 0.017)	n.d.	+/+ (Wang et al., 2004)
Hla-a	Hs.181244	88:4 (4.5; p = 0.018)	n.d.	-/-
Kars	Hs.3100	44:0 (-; p = 0.019)	_/*/*	-/-
Bsg	Hs.501293	45:0 (-; p = 0.019)	-/*/**	-/+ (Gabison et al., 2005)
CD74	Hs.436568	56:1 (11; p = 0.024)	n.d.	-/+ (Ishii et al., 2005)
Rpl10	Hs.401929	43:0 (-; p = 0.025)	_/**/**	+/+ (Zhao et al., 2005)
Pgk1	Hs.78771	54:1 (11; p = 0.026)	n.d.	-/-
Fcgrt	Hs.111903	40:0 (-; p = 0.031)	_/*/**	_/_
Nsep1	Hs.512451	50:1 (10; p = 0.036)	n.d.	-/+ (Lu et al., 2005)

¹ Namen der 39 im frühen Kallus signifikant überrepräsentierten und der mit qRT-PCR analysierten Gene

Acp5 = Acid phosphatase 5, tartrate resistant; $Acta1 = Actin, \alpha1$; Anxa2 = Annexin A2; Apoe = ApolipoproteinE; Bmp1 = Bone morphogenetic protein 1; Bsg = Basigin; CD74 = CD74 antigen; Col = Collagen (Col1a1, Col1a2, Col3a1, Col4a1, Col4a2, Col6a1, Col6a2); Cox1 = Cytochrome c oxidase subunit l; Csrp1 = Cysteine and Glycine-Rich Protein 1; Cst3 = Cystatin C; Cts = Cathepsin (Ctsd, Ctsk, Ctss); Eef = Eukaryotic translation elongation factor (Eef1a1, Eef2); Eif = Eukaryotic translation initiation factor (Eif4a1, Eif5a); Eng = Endoglin; Eno1 = Enolase 1; Fcgrt = Fc fragment of IgG, receptor, transporter, α ; Fth1 = Ferritin, heavy polypeptide 1; Ft = Ferritin, light polypeptide; Gapdh = glyceraldehyde-3-phosphate dehydrogenase; Gnai2 = G protein, α inhibiting activity polypeptide 2; Gpx = Glutathione peroxidase (Gpx1, Gpx3, Gpx4, Gpx7); Hdgf = Hepatomaderived growth factor, HIa-a = Major histocompatibility complex, class I, A; Hmox1 = Heme oxygenase (decycling) 1; Hspq2 = heparan sulfate proteoglycan 2 (perlecan); Ibsp = Integrin-binding sialoprotein; Id = DNA-binding protein inhibitor (Id1, Id3); Itga5 = Integrin, alpha 5; Itgb1 = Integrin, beta 1; Itm2c = Integral membrane protein 2C; Junb = Jun-B oncogene; K-alpha-1 = α Tubulin, ubiquitous; Kars = Lysyl-tRNA synthetase: Kdelr = KDEL (Lvs-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor (Kdelr2, Kdelr3): Lamr1 = Ribosomal protein SA; Lrp = LDL receptor-related protein (Lrp1, Lrp10); Lum = Lumican; Morf4I1 = Mortality factor 4 like 1; Mmp = Matrix metalloproteinase (Mmp2, Mmp9, Mmp13, Mmp14, Mmp19); Nsep1 = Nuclease-sensitive element-binding protein 1; Pak1 = phosphoglycerate kinase 1; Ppib = Peptidylprolylisomerase B (cyclophilin B); Rara = Retinoic acid receptor, alpha; Rpl = Ribosomal protein L (Rpl3, Rpl6, Rpl7, RpI7a, RpI9, RpI10, RpI10a, RpI17, RpI29, RpI41, RpIp0); Rps = Ribosomal protein S (Rps2, Rps3, Rps4x, Rps5); S100a4 = S100 calcium binding protein A4; Serpinh1 = Serpin peptidase inhibitor, clade H, member 1; Slc25a6 = Solute carrier family 25 member 6; Sparc = secreted protein, acidic, cysteine-rich (osteonectin); Tagln2 = Transgelin 2; Tcf4 = Transcription factor 4; Tpm2 = α -Tropomyosin 2; Ubc = Ubiquitin C

4.1.5 Expressionsanalysen von Kandidatengenen mit differentieller Expression im Heilungsverlauf

Neben der differentiellen Expression eines Gens zwischen Schafkallus und gesundem Knochen kann die differentielle Expression im zeitlichen Verlauf der Heilung im Kallus selbst ein weiterer Indikator für dessen Bedeutung bei der Regeneration von Knochen sein.

Mögliche Kandidaten wurden durch real-time PCR auf deren differentielle Expression im Verlauf der Heilung untersucht. Es standen Proben aus Kallusgewebe von 7, 10, 14 und 42 Tagen nach der Fraktur zur Verfügung. Die Proben der 7- und 10-Tage-Stadien waren identisch mit dem Ausgangsmaterial der Sh2- und Sh3-cDNA-Banken. Proben des 14-Tage-Stadiums, sowie von anderen Zeitpunkten wurden für die Sh1-cDNA-Bank verwendet. Die RNA aus dem 42-Tage-Kallus wurde für keine der drei cDNA-Banken verwendet.

Für die 30 Gene aus Tabelle 4.2, die in der Analyse der EST-Zahlen statistisch signifikante Unterschiede im Vergleich zum gesunden humanen Knochen zeigten, sowie für 48 weitere Gene (Tabelle 4.3) wurden quantitative PCRs durchgeführt. Die Auswahl der Gene aus Tabelle 4.3 für die weitere Analyse erfolgte auf Grund ihrer biologischen Funktion oder einer Tendenz zur Überexpression.

Bei der Auswertung der PCRs zeigten fast alle Gene einen deutlichen Rückgang der Expression im Stadium 42 Tage nach der Fraktur. 77 der 78 Gene (99 %), die mittels ANOVA über alle 4 Zeitpunkte getestet wurden, zeigten signifikant differentielle Expression.

Dieser Anteil fiel auf 96 % bei Betrachtung der ersten drei Zeitpunkte und auf 31 % bei der Analyse nur der ersten beiden Zeitpunkte.

Abbildung 4.6 zeigt eine graphische Darstellung der Ergebnisse der quantitativen PCR nach einem hierarchischen Clustering. Die Zahl der Cluster wurde mittels der gap-stat-Methode (Tibshirani et al., 2001) ermittelt. Die geschätzte Anzahl der Cluster liegt bei zwei, allerdings steigt die gap-Funktion nach drei und fünf Clustern weiter (siehe Abb. 4.5). Dies deutet auf weniger gut definierte Gruppen von vier und sechs Clustern in den Daten hin. Für die Diskussion der Daten und die Darstellung in Abbildung 4.6 wurde die Aufteilung in sechs Cluster gewählt. Die Cluster A, B und E zeigten einen hohen Anteil von Genen aus spezifischen funktionellen Klassen. In Cluster A befinden sich sechs von acht Genen mit Funktionen in der Angiogenese (*Csrp1, Col4a1, Col4a2, Hspg2, Hdgf, Eng*), in Cluster B ist der überwiegende Teil der ribosomalen Proteine eingruppiert, und in Cluster E sind überwiegend Gene zu finden, die von Osteoklasten exprimiert werden (*Acp5, Ctsk, Mmp9*).

Gensymbol	UniGene	EST-Verhältnis	RT-PCR	Knochen/Entwicklung
Col1a2	Hs.489142	522:210 (0.51; $p = 1.2 \times 10^{-12}$)	*/**/**	+/+ (Wang et al., 2004)
Itgb1	Hs.429052	8:21 (0.078; $p = 1.5 \times 10^{-8}$)	_/**/**	+/+ (Globus et al., 2005)
Col6a2	Hs.420269	111:56 (0.41; $p = 2.8 \times 10^{-5}$)	_/**/**	+/+ (Keene et al., 1991)
Tagln2	Hs.517168	110:8 (2.8; p = 0.054)	_/**/**	-/-
Ctss	Hs.181301	34:0 (-; p = 0.069)	-/**/**	-/+ (Shi et al. 2003)
Morf4l1	Hs.374503	34:0 (-; p = 0.069)	-/*/**	-/-
Gpx3	Hs.386793	36:0 (-; p = 0.073)	-/**/**	+/+ (Li et al., 2005)
Eng	Hs.76753	32:0 (-; p = 0.087)	-/*/**	-/+ (Jonker et al., 2002)
Rpl9	Hs.412370	32:0 (-; p = 0.087)	-/**/**	-/+ (Angelastro et al., 2002)
Csrp1	Hs.108080	95:7 (2.8; p = 0.089)	-/**/**	-/+ (Chang et al., 2003)
Rps4x	Hs.446628	31:0 (-; p = 0.11)	-/*/**	-/-
Rpl10a	Hs.546269	30:0 (-; p = 0.11)	-/**/**	-/-
Rpl6	Hs.546283	30:0 (-; p = 0.11)	-/**/**	-/-
Ppib	Hs.434937	31:0 (-; p = 0.11)	-/**/**	+/+ (Wang et al., 2004)
Anxa2	Hs.511605	158:17 (1.9; p = 0.14)	*/**/**	+/+ (Menaa et al., 1999)
Junb	Hs.25292	27:0 (-; p = 0.15)	-/**/**	+/+ (Wagner, EF, 2002)
Rpl17	Hs.374588	27:0 (-; p = 0.15)	-/**/**	-/-
Tpm2	Hs.300772	28:0 (-; p = 0.16)	-/**/**	-/-
Lum	Hs.406475	114:12 (1.9; p = 0.21)	*/**/**	+/+ (Raouf et al., 2002)
Mmp2	Hs.513617	53:20 (0.54; p = 0.21)	*/**/**	+/+ (Hatori et al., 2004)
Hspg2	Hs.555874	45:2 (4.6; p = 0.21)	*/**/**	+/+ (Gustafsson et al., 2003)
Rpl41	Hs.381172	0:2 (-; p = 0.21)	*/**/**	-/-
Gpx1	Hs.76686	20:0 (-; p = 0.26)	*/**/**	-/-
Mmp13	Hs.2936	7:5 (0.29; p = 0.27)	**/**/**	+/+ (Inada et al., 2004)
Gapdh	Hs.544577	137:17 (1.7; p = 0.36)	-/*/**	-/-
Rara	Hs.535499	9:0 (-; p = 0.37)	-/*/*	+/+ (Weston et al., 2003)
Itga5	Hs.505654	16:0 (-; p = 0.51)	*/**/**	+/+ (Bennet et al., 2001)
Bmp1	Hs.1274	16:0 (-; p = 0.51)	-/**/**	+/+ (Takahara et al., 1994)
Gpx7	Hs.43728	16:0 (-; p = 0.51)	_/**/**	-/-

Tab. 4.3: Zusätzliche, durch quantitative PCR untersuchte Gene. Erläuterungen sind in der Legende zu Tab. 4.2 auf S. 41 zu finden. Die Gennamen finden sich in Kasten 1 auf S. 42.

Gensymbol	UniGene	EST-Verhältnis	RT-PCR	Knochen/Entwicklung
Lrp1	Hs.162757	16:7 (0.47; p = 0.53)	-/**/**	-/-
Col4a2	Hs.508716	73:8 (1.9; p = 0.56)	*/**/**	-/-
Gpx4	Hs.433951	13:0 (-; p = 0.59)	-/**/**	-/-
Ibsp	Hs.518726	8:4 (0.41; p = 0.59)	**/**/**	+/+ (Hadjiargyrou et al., 2002)
Rpl29	Hs.425125	0:1 (-; p = 0.59)	*/**/**	-/-
S100a4	Hs.81256	13:0 (-; p = 0.59)	-/**/**	+/+ (Duarte et al., 2003)
Id1	Hs.504609	7:0 (-; p = 0.61)	-/*/*	+/+ (Maeda et al., 2004)
Kdelr2	Hs.520210	10:0 (-; p = 0.76)	-/**/**	-/-
Mmp9	Hs.297413	11:0 (-; p = 0.76)	**/*/**	+/+ (Filanti et al., 2000)
Lrp10	Hs.525232	9:4 (0.46; p = 0.83)	-/*/*	-/-
Hdgf	Hs.506748	14:5 (0.57; p = 1.0)	-/*/*	-/+ (Everett et al., 2004)
Col6a1	Hs.474053	159:29 (1.1; p = 1.0)	-/-/*	+/+ (Keene et al., 1991)
Ctsd	Hs.546248	87:13 (1.4; p = 1.0)	**/**/**	-/-
Ctsk	Hs.523594	27:4 (1.4; p = 1.0)	*/**/**	+/+ (Helseth et al., 1984)
Id3	Hs.76884	13:2 (1.3; p = 1.0)	-/*/*	+/+ (Maeda et al., 2004)
Kdelr3	Hs.554798	1:0 (-; p = 1.0)	-/**/**	-/-
Mmp19	Hs.154057	16:3 (1.1; p = 1.0)	-/**/**	-/-
Tcf4	Hs.200285	5:0 (-; p = 1.0)	*/*/**	+/+ (Cho et al., 1998)
Cst3	Hs.304682	12:2 (1.2; p = 1.0)	-/**/**	+/+ (Brage et al., 2005)

Abb. 4.5: Abschätzung der optimalen Clusterzahl mittels gap-stat-Analyse. Der weitere Anstieg der Funktion nach drei und fünf Clustern deutet auf weniger gut definierte Gruppen von vier und sechs Clustern hin.

Abb 4.6 (Legende): Die Expressionswerte der 78 untersuchten Gene bei 10, 14 und 42 Tagen wurden auf die Expression bei 7 Tagen normalisiert und hierarchisch geclustert (* : die Werte von Ibsp wurden mit den Werten von Tag 10 normalisiert, da bei Tag 7 keine Expression detektierbar war. Die Anzahl der Cluster wurde mit der Gap-Statistik abgeschätzt. Es sind sechs Cluster (A-F) dargestellt. Rot bedeutet eine starke Expression, grün eine schwache Expression.

Abb. 4.6: Dendrogramm der durch qRT-PCR bestimmten Expressionsprofile. (Legende siehe Seite 45).

4.2 Genexpressionsanalyse im *Runx2*-Mausmodell

Vermutlich sind sowohl bei der Frakturheilung, als auch bei der Knochenentwicklung ähnliche Mechanismen beteiligt (Vortkamp et al., 1998). Daher sollten als zweite wichtige Säule dieser Arbeit, neben den Daten aus der Analyse der Schaf-cDNA-Banken, Expressionsprofile von Knochen aus Runx2-Wildtyp- und Knockout-Mäusen gewonnen werden. Ziel war es auch hier, Gene zu identifizieren, die eine Funktion in der Skeletogenese und damit potentiell auch in der Frakturheilung besitzen.

4.2.1 Hybridisierung von Affymetrix GeneChips und Bestätigung durch quantitative RT-PCR

Es wurden die RNA-Expressionsprofile von embryonalen Oberarmknochen (Humeri) des Stadiums E14,5 von *Runx2*-Wildtyp- und Knockout-Mäusen durch Hybridisierung auf Affymetrix GeneChips bestimmt. Durch den Vergleich dieser Profile konnten in einer ersten Hybridisierung 118 differentiell exprimierte Transkripte identifiziert werden, deren Expression im Vergleich von Wildtyp zu Knockout mindestens um den Faktor 1,87 (2^{0,9}) unterschiedlich war. Zur Bestätigung dieser Ergebnisse wurden quantitative RT-PCRs durchgeführt, bei denen ein mindestens zweifacher Unterschied als Bestätigung gewertet wurde. Von den 118 Kandidaten aus der GeneChip-Hybridisierung konnten durch die qRT-PCRs 85 Transkripte (72%) als differentiell exprimiert bestätigt werden. Für 15 Transkripte war der Expressionsunterschied in der qRT-PCR kleiner als der gewählte Grenzwert und für 16 Transkripte ergab die PCR keine auswertbaren Ergebnisse. Für zwei Transkripte konnte die qRT-PCR nicht durchgeführt werden, da keine geeigneten Primer gefunden wurden.

In einem zweiten Experiment zeigten 82 der 85 bestätigten Kandidaten aus dem ersten Experiment (96,5%) erneut einen mehr als 2^{0,9}-fachen Expressionsunterschied bei dem Vergleich der GeneChips oder einen mehr als zweifachen Unterschied in der quantitativen PCR. Nur zwei Transkripte konnten weder durch die zweite Hybridisierung, noch durch eine erneute quantitative RT-PCR bestätigt werden. Die Expressionsunterschiede, die für die Kandidaten ermittelt wurden, sind in Tabelle 4.4 zu finden. Die Rohdaten der Microarray-Analysen sind unter der Accessionnummer GSE4911 in der NCBI GEO-Datenbank hinterlegt.

Um die Korrelation der zwei Microarray-Datensätze zueinander sowie mit den Ergebnissen der qRT-PCR zu bestimmen, wurde die Pearson-Korrelation für die Expressionsunterschiede

berechnet (siehe Tabelle 4.5). Für MG U74Av2 gibt es eine klare Korrelation, sowohl zwischen den Chiphybridisierungen untereinander, als auch im Vergleich mit den qRT-PCRs. Die Korrelation zwischen den Chipdatensätzen ist für MG U74Bv2 ebenfalls gegeben, jedoch korrelieren diese Ergebnisse nicht mehr mit den PCR-Ergebnissen. Für MG U74Cv2 konnte weder zwischen den Chipdatensätzen noch zu den PCR-Ergebnissen eine Korrelation gefunden werden.

Tab. 4.4: Expressionsunterschiede der Kandidatengene in Chip-Hybridisierungen bzw. qRT-PCR. Es sind nur Gene aufgeführt, die in mindestens drei unabhängigen Experimenten bestätigt werden konnten. Die Tabellen 4.4a-c führen die Kandidaten der Affymetrix GeneChips U74v2 A - C auf. **Chip 1**: Chip-Hybridisierung mit der ersten Humerus-RNA-Präparation; **RT1**: qRT-PCR mit der ersten Humerus-RNA-Präparation; **Stabw**: Standardabweichung; **Chip 2**: Chip-Hybridisierung mit der zweiten Humerus-RNA-Präparation; **RT2**: qRT-PCR mit der zweiten Humerus-RNA-Präparation; **RT2**: qRT-PCR mit der zweiten Humerus-RNA-Präparation; **RT4**: qRT4

Acc-Nr.	Gensymbol	Chip 1	RT 1	RT 1	Chip 2	RT 2	RT 2
1 20222		1.60.00	2426.67	Stabw	227.70	 , 	Stabw
L20232	Ibsp 12	168,90	2436,67	211,50	337,79	n.d.	n.d.
X664/3	Mmp13	137,19	250,35	29,82	90,51	n.d.	n.d.
X72795	Mmp9	64,00	245,62	102,59	119,43	n.d.	n.d.
X13986	Spp1	45,25	192,19	65,53	68,59	n.d.	n.d.
AJ242625	Dmp1	17,15	116,69	15,01	11,31	n.d.	n.d.
M29009	Cfh	14,93	19,24	1,70	16,00	n.d.	n.d.
AJ009862	Tgfb1	14,93	3,93	0,39	3,03	n.d.	n.d.
AF030433	Dkk1	13,00	54,66	5,04	21,11	n.d.	n.d.
M12379	Thy1	12,13	5,89	0,39	6,06	n.d.	n.d.
J02980	Akp2	11,31	169,52	9,23	19,69	n.d.	n.d.
AI019193	Tcf7	8,57	21,41	1,85	6,96	n.d.	n.d.
M99054	Acp5	6,96	2,12	0,36	6,96	n.d.	n.d.
AW061016	Vdr	6,06	14,16	1,66	12,13	n.d.	n.d.
M12660	Cfh	5,28	12,70	2,42	8,00	n.d.	n.d.
U49513	Ccl9	4,00	7,80	0,56	9,85	n.d.	n.d.
U28960	Pltp	4,00	30,81	1,95	6,06	n.d.	n.d.
AA675604	-	3,73	7,14	2,40	2,30	n.d.	n.d.
U67840	Dlx5	3,48	17,58	2,08	2,83	n.d.	n.d.
AA260005	Pawr	3,48	2,89	0,34	3,25	n.d.	n.d.
J03023	Hck	3,48	6,23	0,45	5,66	n.d.	n.d.
X78936	Pthr1	3,25	5,61	0,63	4,00	n.d.	n.d.
AJ006474	Car3	3,25	2,02	0,67	36,76	n.d.	n.d.
X61385	Tcf7	3,03	14,66	0,62	1,41	4,93	0,40
M29010	Cfh	2,83	12,42	1,96	6,50	n.d.	n.d.
AI849305	Ptprz1	2,64	4,06	0,26	10,56	n.d.	n.d.
AJ006033	CtsK	2,64	4,10	1,47	2,46	n.d.	n.d.
U44389	Hpdg	2,46	3,71	0,11	2,46	n.d.	n.d.
J04953	Gsn	2,46	3,27	0,19	4,59	n.d.	n.d.
AI746846	Snx10	2,46	6,29	0,30	2,64	n.d.	n.d.
U13705	Gpx3	2,46	3,77	0,13	4,29	n.d.	n.d.
Z19543	Cnn2	2,30	2,74	0,21	2,46	n.d.	n.d.
AI153412	Gnai	2,30	2,48	0,31	2,46	n.d.	n.d.
U38501	Gnai	2,30	2,26	0,22	5,28	n.d.	n.d.
M69260	Anxa1	2,14	2,01	0,20	2,00	n.d.	n.d.
M21285	Scd1	2.14	2,19	0.14	2,14	n.d.	n.d.
X14961	Fabp3	2,14	3.02	0.31	3.48	n.d.	n.d.
AI854020	Cdo1	2.14	2.26	0.15	2.30	n.d.	n.d.
AB023957	Eig 180	2,14	4,13	0,25	2,14	n.d.	n.d.

Tab. 4.4a:

Acc-Nr.	Gensymbol	Chip 1	RT 1	RT 1	Chip 2	RT 2	RT 2
				Stabw			Stabw
D83966	Ptpn13	2,14	4,42	0,35	2,64	n.d.	n.d.
Y15001	Irx3	2,14	3,66	0,62	1,41	2,82	0,26
M68513	Epha3	2,14	4,85	0,67	1,41	2,26	0,07
X54511	Capg	2,14	3,32	0,39	2,00	n.d.	n.d.
AA184423	-	2,14	3,62	0,94	2,83	n.d.	n.d.
U20238	Rasa3	2,00	2,82	0,20	2,30	n.d.	n.d.
AI852765	Gpc1	2,00	5,43	0,50	2,30	n.d.	n.d.
M36579	S100A4	2,00	2,72	0,50	3,03	n.d.	n.d.
M31131	Cdh2	1,87	2,58	0,09	3,25	n.d.	n.d.
L13171	Mef2c	1,87	2,69	0,26	2,64	n.d.	n.d.
AA592182	Npnt	1,87	2,55	0,25	3,03	n.d.	n.d.
X76291	Ihh	1,87	16,48	0,91	3,25	n.d.	n.d.
AI848841	Ptch1	1,87	2,84	0,12	2,00	n.d.	n.d.
M89798	Wnt5a	1,87	2,58	0,09	2,30	n.d.	n.d.
D10837	Lox	1,87	4,34	0,74	2,64	n.d.	n.d.
AF067806	Pde8a	1,87	3,80	1,27	1,87	n.d.	n.d.

Tab. 4.4b:

Acc-Nr.	Gensymbol	Chip 1	RT 1	RT 1	Chip 2	RT 2	RT 2
				Stabw			Stabw
AA839289	-	12,13	9,37	4,08	17,15	n.d.	n.d.
AW124651	Satb2	12,13	33,80	8,88	55,72	n.d.	n.d.
AI615325	Slc13a5	4,59	295,01	23,63	2,83	n.d.	n.d.
AW046112	Nrp2	3,48	3,20	0,05	3,48	n.d.	n.d.
AI854299	-	3,25	32,17	1,95	3,48	n.d.	n.d.
AW124306	-	2,83	2,32	0,18	3,48	n.d.	n.d.
AW122703	Unc5b	2,64	3,85	0,39	2,00	n.d.	n.d.
AA770975	Stk17b	2,46	3,51	0,55	1,87	n.d.	n.d.
AI646305	Satb2	2,46	173,72	20,92	1,87	n.d.	n.d.
AI121797	-	2,30	2,81	0,51	2,30	n.d.	n.d.
AW045201	Cgref1	2,30	3,29	0,50	2,30	n.d.	n.d.
AA734866	Pace4	2,30	3,67	0,27	2,83	n.d.	n.d.
AW125896	Chst1	2,30	4,56	0,62	1,41	3,28	0,39
AI606622	-	2,30	2,54	0,46	1,87	n.d.	n.d.
AI851600	-	2,14	3,49	0,36	2,64	n.d.	n.d.
AA647405	Ddit41	2,14	2,03	0,31	2,83	n.d.	n.d.

Tab. 4.4c:

Acc-Nr.	Gensymbol	Chip 1	RT 1	RT 1	Chip 2	RT 2	RT 2
				Stabw			Stabw
AI594430	Smpd3	17,15	4,27	0,87	7,46	n.d.	n.d.
AI747200	Smpd3	6,50	29,04	1,52	4,29	n.d.	n.d.
AV248056	Atp6v0d2	4,92	46,53	4,69	2,83	n.d.	n.d.
AI481510	Phex	3,25	3,43	0,62	8,00	n.d.	n.d.
AI480578	Satb2	2,64	2,31	0,56	26,00	n.d.	n.d.
AW120652	Ptprz1	2,64	4,53	0,71	5,28	n.d.	n.d.
AA288297	Wnt5a	2,46	2,28	0,14	2,30	n.d.	n.d.
AA793588	Prkg2	2,30	2,85	0,40	3,03	n.d.	n.d.
AW049511	-	2,30	3,58	0,39	2,30	n.d.	n.d.
AI449625	-	2,00	3,09	0,21	2,83	n.d.	n.d.
AW045478	Wnt5a	2,00	2,14	0,15	3,25	n.d.	n.d.
AI481262	-	1,87	2,48	0,24	2,30	n.d.	n.d.

Tab. 4.5: Pearson-Korrelationskoeffizienten für die Ergebnisse der Chiphybridisierungen und der quantitativen PCRs (siehe Tabelle 4.4a-c). Ein Wert nahe 1 zeigt eine starke Korrelation an, wohingegen ein Wert um 0 keine Korrelation bedeutet. ChipH1 und H2: Hybridisierung der Affymetrix GeneChips mit RNA der ersten bzw. der zweiten Humerus-RNA-Präparation; RT1: qRT-PCR mit RNA aus der ersten Humerus-RNA-Präparation.

Verwendeter Chip	Chip H1/H2	Chip H1/RT1	Chip H2/RT1
MG U74Av2	0,91	0,82	0,95
MG U74Bv2	0,84	0,07	-0,03
MG U74Cv2	0,07	0,17	-0,17

Für einige Kandidatengene waren auf den verwendeten GeneChips redundante Probensätze mit verschiedenen Accessionnummern vorhanden. Die entsprechenden Gene und die zugehörigen Probensätze sind in Tab 4.6 aufgeführt.

Somit ergaben sich aus den 82 bestätigten Transkripten 71 nicht-redundante Kandidatengene, für die in mindestens drei verschiedenen Experimenten zwischen *Runx2*-Wildtyp- und -Knockout-Oberarmen der Maus eine differentielle Expression gefunden wurde.

Tab. 4.6: Auflistung der Gene mit rudundanten Probensätzen auf den GeneChips. Die Sequenzen mit den grau unterlegten Accessionnummern wurden zur Herstellung von Sonden für die *in situ*-Hybridisierung verwendet.

Gensymbol	Accessionnummern der Probensätze
Cfh	M12660, M29010, M29009
Gnai	AI153412, U38501
Ptprz1	AI849305, AW120652
RIKEN cDNA 4933405A16	AA839289, AI854299
Satb2	AI480578, AW124651, AI646305
Smpd3	AI594430, AI747200
Tcf7	AI019193, X61385
Wnt5a	AA288297, AW045478, M89798

4.2.2 Funktionelle Einordnung der Kandidatengene

Für die funktionelle Einordnung der 71 differentiell exprimierten Gene und ESTs wurden Literaturrecherchen durchgeführt. Die Ergebnisse dieser Recherchen sind in Tabelle 4.7 zusammengefaßt. Etwas die Hälfte der Gene (50,7%) wurde bereits mit einer Funktion im Skelett in Verbindung gebracht. Für einen großen Teil der Gene (49,3%) wurde jedoch bisher nur eine Funktion in anderen Organen (36,6%; 26 von 71) oder überhaupt keine Funktion (12,7%; 9 von 71) beschrieben. Eine Auswertung der Literatur zu vorhandenen Mausmodellen für die Kandidatengene ergab, daß diese bisher für 37 der identifizierten 71 Gene konstruiert wurden. Hiervon zeigten 20 Mauslinien einen Phänotyp im Skelett und 20 einen Phänotyp, der primär nicht mit dem Skelett in Verbindung steht. Tabelle 4.8 führt die Mausmodelle mit dem jeweiligen Phänotyp und der entsprechenden Referenz auf.

Tab. 4.7: Überblick über die funktionelle Einordnung der Kandidatengene. Anhand der Literatur wurden die Kandidatengene in funktionelle Gruppen eingeteilt. Neben der Accessionnummer, dem Gensymbol und dem vollständigen Gennamen ist die Referenz für die Einteilung in die jeweilige Gruppe angegeben.

Acc-Nr.	Symbol	Genname	Referenz
Bekannte Funl	ktion in Ost	teoblasten und Chondrozyten	
AI848841	Ptch1	Patched 1	(de Crombrugghe et al., 2001)
AJ009862	Tgfß1	Transforming growth factor beta 1	(Miyazono et al., 2004)
J02980	Akp2	Alkaline phosphatase 2	(Wennberg et al., 2000)
L20232	Ibsp	Bone sialoprotein 2	(Qin et al., 2004)
M31131	Cdh2	Cadherin 2	(Marie, 2002)
U67840	Dlx5	Distal-less homeobox protein 5	(Bendall et al., 2003)
X66473	Mmp13	Matrix metalloproteinase 13	(Stickens et al., 2004)
X76291	Ihh	Indian hedgehog	(de Crombrugghe et al., 2001)
X78936	Pthr1	Parathyroid hormone receptor 1	(de Crombrugghe et al., 2001)
Bekannte Funl	ktion in Ost	teoblasten und Osteoklasten	5
AW061016	Vdr	Vitamin D receptor	(Gurlek et al., 2002)
X13986	Spp-1	Bone sialoprotein; osteopontin	(Gravallese, 2003)
Bekannte Funl	ktion in Ost	teoblasten	
AF030433	Dkk1	Dickkopf 1	(Wu et al., 2000)
AT491510	Dhov	Phosphate regulating gene with homologies to	(Ouerlas, 2002)
AI401310	РПел	endopeptidases on the x-chromosome	(Quaries, 2003)
AJ242625	Dmp1	Dentin matrix acidic phosphoprotein 1	(Kalajzic et al., 2004)
AW124651	Satb2	Special AT-rich sequence binding protein 2	(Dobreva et al., 2006)
M36579	S100A4	S100 calcium binding protein A4	(Duarte et al., 2003)
D10837	Lox	Lipooxygenase, C Lysyl Oxydase	(Hong et al., 2004)
X61385	Tcf7	Transcription factor 7, T-cell specific 7	(de Jong et al., 2004)
Z19543	Cnn2	Calponin 2	(Kitching et al., 2002)
Bekannte Funl	ktion in Ch	ondrozyten	
AA793588	Prkg2	Protein kinase, cGMP-dependent, type II	(Miyazawa et al., 2002)
M89798	Wnt5a	Wingless-related MMTV integration site 5A	(Yang et al., 2003)
Bekannte Funl	ktion in Ost	teoklasten	
AJ006033 J	Ctsk	Cathepsin k	(Delaisse et al., 2003)
AV248056	Atn6v0d2	ATPase, H+-transporting, V0 subunit D,	(Smith at al. 2002)
A v 246030	Alpovouz	isoform 2	(Sintil et al., 2002)
J04953	Gsn	Gelsolin	(Wang et al., 2003)
M99054	Trap	Tartrate resistant acid phosphatase	(Liu et al., 2003)
U49513	Mrp2/ Ccl9	Makrophage inflammatory protein-related protein-2	(Okamatsu et al., 2004)
U44389	Hpgd	15-Hdroxyprostaglandin dehydrogenase	(Pichaud et al., 1997)
X72795	Mmp9	Matrix metalloproteinase 9	(Delaisse et al., 2003)
Bekannte Funl	ktion in der	Skelettentwicklung	
AI747200	Smpd3	Sphingomyelin phosphodiesterase 3, neutral	(Aubin et al., 2005)
AA734866	Pace4	Paired basic amino acid cleaving system 4	(Constam and Robertson, 2000)

Acc-Nr.	Symbol	Genname	Referenz
Bekannte Fu	nktion, verm	utliche Rolle in der Skelettentwicklung	
AI481262	Pcolce2	Procollagen C-endopeptidase enhancer 2	(Steiglitz et al., 2002)
AW125896	Chst1	Carbohydrate keratan sulfate Gal-6 sulfotransferase 1	(Thiele et al., 2004)
M68513	Epha3	Ephrin receptor A3	(Miller et al., 2003)
U38501	Gnai1	Guanine nucleotide binding protein, alpha inhibiting 1	(May and Gay, 1997)
U13705	Gpx3	Gluthathione peroxidase 3	(Jakob et al., 2002)
Y15001	Irx3	Iroquois related homeobox 3	(Peters et al., 2002)
Bekannte Fu	nktion, bishe	er keine bekannte Rolle in der Skelettentwick	lung
AA260005	Pawr	PRKC, apoptosis, WT1, regulator	(Garcia-Cao et al., 2003)
AA770975	Stk17b	Serine/threonine kinase 17b	(Mao et al., 2006)
AA592182	Npnt	Nephronectin	(Brandenberger et al., 2001)
AA647405	Ddit41	DNA-damage-inducible transcript 4-like	(Corradetti et al., 2005)
AB023957	Apcdd1	Adenomatosis polyposis coli down-regulated	(Jukkola et al., 2004)
AF067806	Pde8a	Phosphodiesterase 8a	(Dong et al., 2006)
AI615325	Slc13a5	Sodium-dependent citrate transporter	(Inoue et al., 2004)
AI746846	Snx10	Sorting nexin 10	(Zeng et al., 2002)
AI851600	Serinc5	Serine incorporator 5	(Fukazawa et al., 2006)
AI852765	Gpc1	Glypican 1	(Fransson, 2003)
AI854020	Cdo1	Cysteine Dioxygenase 1	(Stipanuk, 2004)
AI849305	Ptprz1	Protein-tyrosine-phosphatase, receptor-type, zeta-1	(Fujikawa et al., 2003)
AJ006474	Car3	Carbonic anhvdrase 3	(Kim et al., 2004)
AW046112	Nrp2	Neuropilin 2	(Takashima et al., 2002)
AW122703	Unc5b	unc-5 homolog B (C. elegans)	(Lu et al., 2004)
D83966	Ptpn13	Protein tyrosine phosphatase, non receptor type 13	(Ying et al., 2006)
J03023	Hck	Hemopoetic cell kinase	(Parsons und Parsons, 2004)
L13171	Mef2c	Myocyte enhancer factor 2c	(Liu et al., 2004)
M12379	Thy1	Thymus cell antigen 1, theta	(Hagood et al., 2005)
M12660	Cfh	Complement component factor H	(Pickering et al., 2006)
M21285	Scd1	Stearoyl CoA desaturase 1	(Chu et al., 2006)
M69260	Anxa1	Annexin a1	(Rescher und Gerke, 2004)
U20238	Rasa3	RAS p21 protein activator 3	(Lockyer et al., 1999)
U28960	Pltp	Phospholipid transfer protein	(Jiang et al., 2005)
X14961	Fabp3	Fatty acid binding protein 3	(Shearer et al., 2005)
X54511	Capg	Capping protein, gelsolin-like	(Witke et al., 2001)
Unbekannte	Gene		
AA184423		Image:633483	
AA675604		RIKEN cDNA 4930517K11 gene	
AA839289		RIKEN cDNA 4933405A16	
AI121797	Tmem16a	Transmembrane protein 16a	
AI449625		RIKEN cDNA 2600010E01	
AI606622	Specc1	Spectrin domain with coiled-coils 1	
AW045201	Cgref1	cell growth regulator with EF hand domain 1	
AW049511		EST UI-M-BH1-anf-b-07-0-UI.s1	
AW124306	Tmem119	Transmembrane protein 119	

Tabelle 4.7 (Fortsetzung)

Tab. 4.8: Übersicht über die verfügbaren Mausmodelle für die 71 Kandidatengene. Neben der Accessionnummer sind das Gensymbol, die Art des Mausmodells (KO: Knockout; Tg dom. neg.: Transgen mit dominant negativem Konstrukt; Spon. Mut.: Spontane Mutation), der beschriebene Phänotyp innerhalb des Skeletts bzw. anderen Organsystemen sowie die zugehörige Referenz angegeben.

Acc-Nr.	Gensymbol	Modell	Skelettphänotyp	Phänotyp	Literatur
				- andere Organsysteme -	
M99054	Acp5	KO	Wachstumsdefekt, Osteopetrose	-	(Hayman et al., 1996)
J02980	Akp2	КО	Mineralisierungs- defekt	Spasmen	(Wennberg et al., 2000)
X54511	Capg	ко	Reduzierte Knochenresorption	-	(Witke et al., 2001)
AJ006474	Car3	KO	/ -		(Kim et al., 2004)
M31131	Cdh2	Tg dom. neg.	Verzögertes Knochen- dichtemaximum	-	(Marie, 2002)
M12660	Cfh	КО	-	Glomerulonephritis	(Rodriguez de Cordoba et al., 2004)
AJ006033	Ctsk	KO	Osteopetrose		(Delaisse et al., 2003)
AF030433	Dkk1	КО	Schädel- u. Extremi- tätenfehlbildungen	-	(Mukhopadhyay et al., 2001)
U67840	Dlx5	ко	Schädel- u. Extremi- tätenfehlbildungen	-	(Acampora et al., 1999)
AJ242625	Dmp1	KO	-	Zahnfehlbildungen	(Ye et al., 2004)
M68513	Epha3	KO	-	-	(Vaidya et al., 2003)
AI153412	Gnai1	KO	-	LTP Defekt	(Pineda et al., 2004)
J04953	Gsn	KO	Reduzierte Knochenresorption	-	(Chellaiah et al., 2000)
J03023	Hck	КО	-	Macrophagen- dysfunktion	(Parsons and Parsons, 2004; Schwartzberg et al., 1997; Lowell et al., 1994)
U44389	Hpdg	KO	-	Offener Ductus arteriosus	(Coggins et al., 2002)
D10837	Lox	KO	-	Letale Gefäßdefekte	(Hong et al., 2004)
L13171	Mef2c	KO	-	Im frühen Stadium letal	(Lin et al., 1998)
X66473	MMP13	KO	Verzögerte Gefäßinvasion	-	(Stickens et al., 2004)
X72795	Mmp9	ко	Verzögerte Gefäßinvasion	-	(Engsig et al., 2000)
AW046112	Nrp2	ко	-	Disorganisierte Nervenfasern	(Giger et al., 2000)
X13986	Opn	ко	Reduzierte Knochenresorption	-	(Yoshitake et al., 1999)
AA734866	Pace4	КО	Craniofaciale Fehlbildungen	Situs ambiguus	(Constam and Robertson, 2000)
AI481510	Phex	Spon. Mut.	Rachitis	-	(Quarles, 2003)
U28960	Pltp	KO		Hypercholesterinämie	(Jiang et al., 1999)
AA793588	Prkg2	ко	Verzögerte Ossifikation	-	(Miyazawa et al., 2002)
AI848841	Ptch1	KO	Polydactylie	Im frühen Stadium letal	(Cohen, Jr., 2003)
X78936	Pthr1	ко	Dysregulation der Chondrozyten	-	(Qin et al., 2004b)
AW120652	Ptprz1	KO		Autoimmunenzephalitis	(Harroch et al., 2002)
M36579	S100a4	KO	-	Tumorbildung	(El Namaan et al., 2004)
AW124651	Satb2	КО	Craniofaciale Fehlbildungen, Defekt in Osteoblasten- differenzierung und - funktion	-	(Dobreva et al., 2006)

Acc-Nr.	Gensymbol	Modell	l Skelettphänotyp Phänotyp Literatur		Literatur
				 andere Organsysteme - 	
M21285	Scd1	KO	-	Geringerer	(Ntambi et al., 2002)
				Körperfettanteil	
AI747200	Smpd3	KO	Wachstumsdefekt	Dysfunktion des	(Stoffel et al., 2005; Aubin et al.,
				Hypothalamus	2005)
AI019193	Tcf7	KO	-	Tumorbildung	(Roose et al., 1999)
AJ009862	Tgfb1	KO	-	Chronische Entzündung	(Miyazono et al., 2004)
M12379	Thy1	KO	-	LTP Defekt	(Nosten-Bertrand et al., 1996)
AW061016	Vdr	KO	Beeinträchtigte	Alopezie	(Yoshizawa et al., 1997)
			Knochenbildung	-	
M89798	Wnt5a	KO	Schwerer	-	(Yamaguchi et al., 1999)
			Musterbildungsdefekt		
	Total	37	20	20	

4.2.3 Gene Ontology (GO)-Analyse der Kandidatengene

Es wurde eine GO-Analyse der differentiell exprimierten Gene durchgeführt, um einen Überblick hinsichtlich der Eigenschaften der Kandidatengene zu gewinnen und zu ermitteln, ob bestimmte GO-Annotationen überrepräsentiert sind. Tabelle 4.9 zeigt die Ergebnisse einer statistischen Analyse, die in Zusammenarbeit mit Dr. Peter Robinson vom Institut für Medizinische Genetik der Charité durchgeführt wurde. Sie ergab, daß 17 GO-Annotationen mit einem Bonferroni-korrigierten p-Wert von weniger als 0.05 signifikant überrepräsentiert waren. Die meisten dieser Annotationen standen in Zusammenhang mit Knochenentwicklung und extrazellulärer Lokalisation. Auch Gene mit Annotationen zu Zellkommunikation und Signaltransduktion waren deutlich überrepräsentiert.

Tab. 4.9: Unter den 71 Kandidatengenen signifikant überrepräsentierte GO-Annotationen.

Es wurde ein Fehlerquotient von 0,05 gewählt. Dies entspricht einem nominellen p-Wert von 1,48*10⁻⁵ nach der Bonferroni-Korrektur des Tests auf Überrepräsentierung von 3389 GO-Annotationen. Bis auf "extracellular space" und "extracellular region", die zur Subontologie "cellular component" gehören, stammen alle Annotationen aus der Subontologie "biological process".

Bezeichnung	Häufigkeit unter Kandidatengenen	Häufigkeit in der Gesamtpopulation	<i>p</i> -Wert
"cell communication" (GO:0007154)	26 (36.1 %)	12.9 %	4.62 x 10 ⁻⁷
"signal transduction" (GO:0007165)	21 (29.2 %)	10.2 %	5.98 x 10 ⁻⁶
"development" (GO:0007275)	20 (27.8 %)	9.6 %	9.4 x 10 ⁻⁶
"morphogenesis" (GO:0009653)	17 (23.6 %)	6.1 %	1.01 x 10 ⁻⁶
"organ development" (GO:0048513)	15 (20.8 %)	5.7 %	1.05 x 10 ⁻⁵
"organogenesis" (GO:0009887)	15 (20.8 %)	5.1 %	2.82 x 10 ⁻⁶
"skeletal development" (GO:0001501)	9 (12.5 %)	0.6 %	2.33 x 10 ⁻¹⁰
"biomineral formation" (GO:0031214)	7 (9.7 %)	0.3 %	1.56 x 10 ⁻⁹

Bezeichnung	Häufigkeit unter Kandidatengenen	Häufigkeit in der Gesamtpopulation	<i>p</i> -Wert
"bone remodeling" (GO:0046849)	7 (9.7 %)	0.3 %	4.09 x 10 ⁻⁹
"histogenesis" (GO:0009888)	7 (9.7 %)	0.8 %	1.16 x 10 ⁻⁶
"ossification" (GO:0001503)	7 (9.7 %)	0.3 %	1.56 x 10 ⁻⁹
"appendage morphogenesis" (GO:0035107)	4 (5.6 %)	0.2 %	8.17 x 10 ⁻⁶
"limb morphogenesis" (GO:0035108)	4 (5.6 %)	0.2 %	8.17 x 10 ⁻⁶
"embryonic limb morphogenesis" (GO:0030326)	4 (5.6 %)	0.2 %	6.72 x 10-6
"embryonic appendage morphogenesis" (GO:0035113)	4 (5.6 %)	0.2 %	6.72 x 10 ⁻⁶
"extracellular region" (GO:0005576)	26 (36.1 %)	14.5 %	4.08 x 10 ⁻⁶
"extracellular space" (GO:0005615)	26 (36.1 %)	13.3 %	7.62 x 10-7

4.2.4 Bestimmung des Expressionsmusters der Kandidatengene

Für die 71 Kandidatengene wurden Sonden für die in situ-Hybridisierung hergestellt, um das Expressionsmuster zu bestimmen. Die Hybridisierungen wurden auf Gewebeschnitten von embryonalen Oberarmknochen (Humeri) des Stadiums E15,5 durchgeführt, da diese mehr ossifizierte Anteile besitzen als E14,5 Humeri und somit die Expression von Kandidatengenen in Osteoblasten besser zu detektieren ist. Die Auswertung ergab für 54 Gene eine eindeutige Expression im Humerus. Davon waren 44 Gene zumindest teilweise mit *Runx2* koexprimiert, für 10 Gene war keine Koexpression mit *Runx2* im Humerus feststellbar. Die restlichen 17 Gene ergaben kein Signal oder waren nicht im Skelett exprimiert.

Eine exemplarische Auswahl typischer Expressionsmuster mit bzw. ohne Koexpression mit *Runx2* ist in den Abbildungen 4.7 und 4.8 dargestellt. Abbildung 4.9 zeigt eine radioaktive in situ-Hybridisierung für *Dkk1* auf Gewebeschnitten von Vorderbeinen des Stadiums E14.5 von Runx2-Wildtyp- und -Knockout-Mäusen. In der Wildtyp-Maus ist eine deutliche Expression im Periost und den Osteoblasten zu erkennen, die in der Knockout-Maus nicht feststellbar ist. Die Expression von *Dkk1* in der Haut ist sowohl im Wildtyp, als auch im Knockout nachweisbar.

Die überwiegende Mehrheit der Kandidatengene (43 von 54) ergab ein Signal auch im trabekulären Knochen. Eine Übersicht der Expressionsmuster aller Kandidatengene findet sich zusammengefaßt in Abbildung 4.10 und ist für die einzelnen Gene separat aufgeführt in Tabelle 4.10. Die Bilder der Hybridisierungsergebnisse aller Kandidatengene sind zusammen mit weiteren Informationen, wie z.B. der verwendeten Sonde und den GO-Angaben, im Internet unter www.molgen.mpg.de/research/mundlos/bone-express zugänglich.

Abb. 4.7: Beispiele für Expressionsmuster von Genen mit zumindest partieller Koexpression mit *Runx2* in E15,5 Wildtyp-Humeri der Maus.

Die nicht radioaktive *in situ*-Hybridisierung erfolgte auf Schnitten des Vorderbeins von E15,5 *Runx2*-wt-Embryonen. A: Expression von *Ihh* in prähypertrophen und hypertrophen Chondrozyten; B: *Tmem119*-Expression im trabekulären Knochen und Stratum osteogenicum; Expression von C: *Hck* und D: *Apcdd1* im Stratum osteogenicum; E: *Smpd3*-Expression in prähypertrophen Chondrozyten und im Stratum osteogenicum; F: *Scd1*-Expression in prähypertrophen Chondrozyten, im Stratum osteogenicum und trabekulären Knochen.

Abb. 4.8: Beispiele für Gene ohne Koexpression mit *Runx*2 in E15,5 Wildtyp-Humeri.

A: *Acp5*- und B: *Ccl9*-Expression in Osteoklasten; C: *Thy1*-Expression im Stratum fibrosum und in Osteoklasten; D: *Epha3*-Expression im Perichondrium und Stratum fibrosum.

Abb. 4.9: Radioaktive *in situ* Hybridisierung für *Dkk1* auf Schnitten von E14.5 *Runx2* +/+ und -/- Vorderbeinen. Hellfeldbilder (A: +/+; B:-/-) mit den zugehörigen Dunkelfeldbildern (A': +/+; B': -/-), auf denen das Signal hell erscheint. Das im Wildtyp vorhandene Signal im Periost und den Osteoblasten fehlt im Knockout. In der Haut ist auch in der Knockout-Maus ein Signal für Dkk1 zu finden.

Abb. 4.10: Zusammenfassung der Ergebnisse der in situ Hybridisierung.

Die 54 Gene mit einer Expression im Humerus von Mausembryonen des Stadiums E15,5 wurden entsprechend ihrem Expressionsmuster in Gruppen eingeteilt (**trab. Knochen**: trabekulärer Knochen). Die Anzahl der Gene und der Prozentsatz an der Gesamtzahl sind jeweils in Klammern genannt.

Tab. 4.10a und b: Tabellarische Zusammenfassung des Expressionsmusters der Kandidatengene.

In Tabelle 4.10a sind die Gene mit zumindest partieller *Runx2*-Koexpression, in Tabelle 4.10b die Gene ohne *Runx2*-Koexpression aufgeführt. In der ersten Zeile von Tab. 4.10a ist zum Vergleich die Expression von *Runx2* aufgeführt. **Abkürzungen: Chon:** Chondrozyten, **ph:** prähypertroph, **ht**:hypertroph, **Pch:** Perichondrium, **TrK:** trabekulärer Knochen, **Pos:** Periost, **os:** Stratum osteogenicum, **fi:** Stratum fibrosum **Ok:** Osteoklasten.

Tab4.10a	-						
Acc-Nr.	Symbol	Ch	on	Pch	TrK	P)S
		ph	ht			os	fi
Runx2		•	•		•	•	
AA184423		Τ			•	•	
AA592182	Npnt	1				•	
AA675604					٠	•	
AA734866	Pace4	1			٠	٠	
AA839289		Ι			٠	٠	
AB023957						٠	
AF030433	Dkk1	1			٠	٠	
AF067806	Pde8a				٠	٠	
AI121797		1				٠	
AI449625		1			٠	٠	
AI481262					٠	٠	
AI615325	Slc13a5				٠	٠	
AI747200	Smpd3	•				٠	
AI849305	Ptprz1	1			٠	٠	
AI852765	Gpc1		•		٠	٠	
AI854020	Cdo1	1			٠	•	
AJ009862	Tgfß1	1			٠	٠	
AJ242625	Dmp-1				٠	٠	
AW045201	Cgref1	1			٠	٠	
AW046112	Nrp2				٠	٠	
AW061016	Vdr	•	٠		٠	٠	
AW122703	Unc5b	1			•	٠	
AW124306				٠	٠	٠	
AW124651	Satb2	1			•	٠	
AW125896	Chst1	•		٠	•	٠	
D10837	Lox				•	٠	
J02980	Akp2	1			•	٠	
J03023	Hck					٠	
J04953	Gsn				٠	٠	

Acc-Nr.	Symbol	Symbol Chon		Pch	TrK	P	os
		ph	ht			0S	fi
L13171	Mef2c	•	•			٠	
L20232	Ibsp	1	•		•	٠	
M21285	Scd1	٠			•	٠	
M31131	Cdh2				٠	٠	
M89798	Wnt5a	•			•	٠	٠
U13705	Gpx3		•		•		
U20238	Rasa3	1			•	•	
U67840	Dlx5	٠	•		•	٠	
X13986	Spp1	1	٠		٠	٠	
X14961	Fabp3	1			٠	٠	
X61385	Tcf7				•	٠	
X66473	Mmp13	1	•		•	٠	
X76291	Ihh	•	٠				
X78936	Pthr1	•			•	٠	
Z19543	Cnn2				•	٠	

Tab 4.10b					
ACC. Nr.	Symbol	Pch	P	Pos	
			OS	fi	
AI746846	Snx10				٠
AJ006033	Ctsk			٠	•
M12379	Thy1			٠	٠
M36579	S100a4		[٠
M68513	Epha3	•		٠	
M99054	Acp5				٠
U38501	Gnai1				٠
U49513	Ccl9				٠
X54511	Capg				٠
X72795	Mmp9				٠

4.2.5 Untersuchung der Promotorregionen der Kandidatengene

Direkte Zielgene von Runx2 besitzen mit hoher Wahrscheinlichkeit Runx2-Bindungsstellen in ihren Promotoren. Als mögliches Indiz für eine Regulation durch Runx2 ist das Vorhandensein von Bindungsstellen in zwischen mehreren Spezies konservierten Promotorbereichen besonders vielversprechend.

In Zusammenarbeit mit Dr. Christoph Dieterich aus der Abteilung Vingron am MPI für molekulare Genetik konnten 15 kb des Bereichs stromaufwärts des Translationsstarts der Kandidatengene auf konservierte Runx2-Bindungsstellen mit der Konsensussequenz "TGTGGT" durchsucht werden.

Runx-Bindungsstellen, die in mindestens drei Spezies konserviert sind, wurden in den Promotorbereichen von 15 der 71 differentiell exprimierten Gene gefunden. Die konservierten Bindungsstellen sind in Tabelle 4.7 aufgeführt. Fünf dieser Gene sind bekannte Zielgene von Runx2 (*Dmp1*, *Ibsp*, *Ihh*, *Mmp13*, *Spp1*) fünf weitere (*Fabp3*, *Pthr1*, *Ptprz1*, *Vdr*, *Wnt5a*) stellen potentielle neue Zielgene dar. Bei zwei der restlichen Gene (*Ctsk*, *Mmp9*) ist eine Regulation durch Runx2 unwahrscheinlich, da keine Koexpression mit Runx2 im Knochen vorlag (siehe Tabelle 4.10). Für die drei restlichen Gene (*Car3*, *Ddit4l*, *Hpdg*) konnte kein schlüssiges Expressionsmuster bestimmt werden. In anfänglichen Untersuchungen mit älteren Sequenzdaten wurden zusätzlich *Dkk1* und *Tcf7* als mögliche direkte Zielgene identifiziert, bei späteren Vergleichen mit aktualisierten Sequenzdaten konnten jedoch keine Bindungsstellen in konservierten Promotorregionen mehr gefunden werden.

Tab. 4.11: Gene mit konservierten Runx-Bindungsstellen. Zusätzlich zum Gensymbol und Gennamen, sowie der Accessionnummer des jeweiligen Kandidatengens, ist die Position der Bindungsstelle angegeben. Für die Position ist das betreffende Chromosom der Maus angegeben und nach einem Unterstrich folgt das erste Basenpaar der Bindungsstelle (basierend auf den Sequenzdaten von ENSEMBL 22). **Abkürzungen: Gg:** *Gallus gallus*; **Hs:** *Homo sapiens*; **Pt:** *Pan troglodytes*; **Rn**: *Rattus norvegicus*

Gensymbol	Genname	Accessionnr.	Bindungsstelle	Konserviert bei Vergleich Maus zu
Ibsp	Integrin binding sialoprotein	L20232	5_103467429	Hs, Pt
Mmp13	Matrix metalloproteinase 13	X66473	9_7275583	Hs, Pt, Rn
Ihh	Indian hedgehog	X76291	1_76547202	Hs, Rn
Pthr1	Parathyroid hormone receptor 1	X78936	9_113351827	Gg, Hs, Pt, Rn
Vdr	Vitamin D receptor	AW061016	3_67101594 3_67094345 3_67100499	Hs, Pt, Rn Hs, Pt Hs, Pt, Rn
Spp1	Bone sialoprotein; osteopontin	X13986	5_103674970	Hs, Pt
Dmp1	Dentin matrix acidic phosphoprotein 1	AJ242625	5_103363843	Hs, Pt, Rn
Wnt5a	Wingless-related MMTV integration site 5A	M89798	14_23031112	Hs, Pt, Rn

Gensymbol	Genname	Accessionnr.	Bindungsstelle	Konserviert bei Vergleich Maus zu
Ctsk	Cathepsin K	AJ006033	3_98198337	Hs, Pt, Rn
Hpdg	15-Hdroxyprostaglandin dehydrogenase	U44389	8_55995707	Hs, Pt
Mmp9	Matrix metalloproteinase 9	X72795	2_165556809 2_165556771	Hs, Pt, Rn Hs, Pt
Ptprz1	Protein-tyrosine-phosphatase, receptortype, zeta-1	AI849305	6_22743054	Gg, Rn
Car3	Carbonic anhydrase 3	AJ006474	3_15073351	Hs, Pt, Rn
Fabp3	Fatty acid binding protein 3	X14961	4_129218343	Hs, Pt, Rn
Ddit4l	DNA-damage-inducible transcript 4-like	AA647405	3_141538083	Hs, Pt

4.2.6 Untersuchung der Regulation möglicher direkter Zielgene durch Runx2

Um zu testen, ob die neuen potentiellen direkten Zielgene tatsächlich von Runx2 reguliert werden, wurde zunächst die Expression der Kandidaten in Hühnchen-Micromasskulturen verschiedenen Kulturdauern untersucht, welche die *in vitro*-Analyse aller Stadien der Knorpeldifferenzierung erlauben.

Bei Infektion der Micromasskulturen mit einem *Runx2*-exprimierenden Retrovirus konnte nach 10 bzw. 14 Tagen Kulturdauer, wie in Abbildung 4.11 dargestellt, in der quantitativen PCR eine deutliche Hochregulation von *Dkk1*, *Tcf7*, *Pthr1* und dem bekannten Runx2-Zielgen *Ihh* im Vergleich zu *Gfp*-infizierten Kulturen als Kontrolle gezeigt werden. *Vdr* und *Wnt5a* wurden leicht hochreguliert, wohingegen die Expression des bekannten *Runx2*-Zielgens *MMP13* in *Runx2*-infizierten Kulturen deutlich niedriger war als in *Gfp*-infizierten Kontrollen. Die Expression von *Fabp3* wurde durch *Runx2* in der Micromasskultur nicht beeinflußt. Die Expression von *Ptprz1* konnte in dem System nicht untersucht werden, da die Sequenz eines homologen Gens nicht verfügbar war.

Die Ergebnisse eines vergleichbaren Experiments zeigt Abbildung 4.12. Dieses wurde mit Osteoblastenvorläuferzellen aus dem Knochenmark der Tibiae von 18 Tage alten Hühnerembryonen durchgeführt. Nach Infektion der Zellen mit den *Runx2* bzw. *Gfp*exprimierenden RCASBP-Viren und Erreichen der Konfluenz wurde dem Medium ß-Glycerophosphat und Vitamin C zur Stimulation der Osteoblastendifferenzierung zugesetzt. Hier wurde sowohl bei unstimulierten, als auch bei 54 Stunden stimulierten Kulturen eine leichte Hochregulation von *Pthr1* und *Vdr* durch *Runx2* gefunden. Die Expression von *Fabp3* und *Wnt5a* war dagegen kaum verändert.

Weiterhin wurde die Expression der potentiellen Runx2-Zielgene in der RNA aus Tibiae adulter transgener Mäuse überprüft, die Runx2 unter der Kontrolle eines Kollagen 1-

Promotors überexprimieren. Hier war *Tcf7* im Vergleich zur Wildtyp-Maus deutlich, *Wnt5a* und *Vdr* etwas stärker exprimiert. *Ptprz1* war in der transgenen Maus leicht und *Fabp3* deutlich schwächer exprimiert als im Wildtyp. Die Expression von *Pthr1* war durch das Transgen nicht verändert (Abb. 4.13).

Abb. 4.11: Regulation einiger bekannter oder potentieller *Runx2*-Zielgene in *Runx2*-infizierten Hühnchen-Micromasskulturen. Dargestellt ist die Expression der Kandidatengene im Verhältnis zu *Gfp*-infizierten Kontrollkulturen nach 10 bzw. 14 Tagen Kulturdauer. Starke positive Regulation von *Dkk1*, *Tcf7* und *Ihh*, schwächere positive Regulation von *Pthr1*, *Wnt5a* und *Vdr*. Die Expression von *Fabp3* wurde nicht beeinflusst und *MMP13* negativ reguliert.

Abb. 4.12: Regulation möglicher *Runx2*-Zielgene in Kulturen von Hühnerosteoblasten aus dem Knochenmark. Die Zellen wurden mit einem *Runx2*-exprimierendem, Kontrollzellen mit einem *Gfp*-exprimierendem RCASBP-Virus infiziert. Die *Runx2*-Überexpression ergab eine leicht erhöhte Expression von *Pthr1* und *Vdr*, die Expression von *Fabp3* und *Wnt5a* blieb jedoch nahezu unverändert.

Abb. 4.13: Regulation möglicher *Runx2*-Zielgene in Tibiae einer *Runx2*überexprimierenden transgenen Maus. *Fabp3* ist in der transgenen Maus deutlich, *Ptprz1* etwas schwächer exprimiert als im Wildtyp. Die Expression von *Pthr1* ist nahezu unverändert. *Tcf7*, *Vdr* und *Wnt5a* werden in der transgenen Maus leicht überexprimiert.

4.3 Untersuchungen zur Evolution der Runt-Genfamilie

Um die Evolution der *Runt*-Genfamilie besser nachvollziehen zu können, ist eine möglichst vollständige Phylogenie notwendig. Daher sollten zunächst die Sequenzen der *Runt*-homologen Gene aus einem Vertreter der Knorpelfische (Chondrichtyes) bestimmt werden.

4.3.1 Klonierung der *Runt*-homologen Gene des Kleingefleckten Katzenhais *Scyliorhinus canicula*

Anfangs konnten über nested-PCRs Fragmente von *ScRunt1* und *ScRunt3* mit Hilfe von degenerierten Primern erhalten werden. Die Amplifikation eines Fragments eines *Runx2*-homologen Gens gelang anfangs nicht. Nachdem eine Teilsequenz des *Runx2*-homologen Gens des Rochens *Raja eglanteria* öffentlich zugänglich wurde (Anderson et al., 2004), konnten neue degenerierte Primer generiert werden, mit denen auch eine Teilsequenz von *ScRunt2* amplifiziert werden konnte. Die Amplifikation der unbekannten 5'- und 3'-Bereiche der Gene wurde mittels RACE-PCR (<u>Rapid Amplification of cDNA Ends</u>) durchgeführt. Abschließend konnte für alle drei *Runt*-homologen Gene des kleingefleckten Katzenhais die gesamte kodierende Sequenz in voller Länge amplifiziert und kloniert werden. Es wurden von allen drei Genen jeweils zwei Transkriptvarianten mit alternativem Transkriptionsstart identifiziert, die den beispielsweise aus Mensch, Maus und auch Branchiostoma bekannten Exon 1- und Exon 2-Varianten entsprechen. Diese Genvarianten werden von zwei separaten Promotoren transkribiert, einem proximalen Promotor für Exon 2 und einem distalen Promotor für Exon 1. Die Translation der Exon 1-Variante beginnt mit MASNS oder einer

ähnlichen Sequenz, die Translation der Exon 2-Variante fängt mit MRIPV bzw. einer ähnlichen Sequenz an. In Abbildung 4.14 verdeutlicht ein Alignment der Runt-Proteinsequenzen von Mensch, Katzenhai und Lanzettfischen die hohe Konservierung der Runt-Genfamilie innerhalb der Chordata.

Die ermittelten Sequenzen sind unter den folgenden Accessionnummern in den NCBI-Nucleotiddatenbanken zugänglich: DQ990010 (ScRunx1, MRIPV-Variante), DQ990011 (ScRunx1, MASNS-Variante), DQ990012 (ScRunx2, MRIPV-Variante), DQ990013 (ScRunx2, MASNS-Variante), DQ990014 (ScRunx3, MRIPV-Variante) und DQ990015 (ScRunx3, MASNS-Variante).

4.3.2 Phylogenie der Runt-homologen Gene der Chordata

Abbildung 4.15 zeigt eine detaillierte Phylogenie der *Runt*-Genfamilie innerhalb der Chordata, die mit Hilfe der Runt-Gensequenzen des Katzenhais erstellt werden konnte.

Nach dieser phylogenetischen Analyse sind *ScRunx1*, -2 und -3 ortholog zu *Runx1*, -2 und -3 der Mammalia. Das *RunxA*-Gen des Schleimaals ist das orthologe Gen zum Vorläufergen der drei Mammalia-*Runt*-Gene, wohingegen das *RunxB*-Gen des Schleimaals und das *Runt* des Lanzettfischchens ursprünglichere Eigenschaften aufweisen.

Abb. 4.15: Phylogenie der Runt-homologen Gene der Chordata. Die Runt-Gene des Katzenhais sind ortholog zu Runx1-3 der Amniota. Das RunxA-Gen des Schleimaals ist ortholog zum Vorläufergen von Runx1-3. Wohingegen das Schleimaal-RunxB-Gen ursprünglichere Merkmale aufweist. Abk.: Bl: Branchiostoma lanceolatum Ci: Ciona intestinalis; Gg: Gallus gallus; Hs: Homo sapiens; Mg: Myxine glutinosa; Mm: Mus musculus; Od: Oikopleura dioica; Sc: Scyliorhinus canicula; Sp: Strongylocentrotus purpuratus

4.3.3 Vergleich der Exon/Intron-Struktur einiger *Runt*-Gene

Wie in Abbildung 4.16 dargestellt, besitzen die Tunicata-*Runt*-Gene verglichen mit den Mammalia-*Runt*-Genen in der Runt-Domäne ein Intron an der gleichen Stelle. Die homologen Gene von Fadenwürmern, Lanzettfischchen und Seeigel haben dagegen kein Intron an dieser Position. Genomic Walking-Experimente ergaben, daß das konservierte Intron der Tunicata und Mammalia im Schleimaal sowohl bei *MgRunxA*, als auch bei *MgRunxB* ebenfalls vorhanden ist.

Abb. 4.16: Alignment der Exon/Intron-Struktur der Runt-Domäne. Die Exon-Grenzen sind rot markiert. Ein konserviertes Intron findet sich in *C. intestinalis* (C.i), O. dioica (O.d), *M. glutinosa RunxA* und *RunxB* (My.a-b), *M. musculus Runx1-3* (Mu.1-3) und *H. sapiens Runx1-3* (H.1-3). Es fehlt an dieser Stelle bei *C. elegans* (C.e), *S. purpuratus* (S.p) und *B. floridae* (B.f). Das neue Intron ist eine Apomorphie, die eine Tunicata/Vertebrata-Schwestergruppenbeziehung unterstützt.

4.3.4 Bestimmung des Expressionsmusters der *Runt*-Gene von *S. canicula*

Die Bestimmung des Expressionsmusters von *ScRunx1*, *ScRunx2* und *ScRunx3* erfolgte mit radioaktiver *in situ*-Hybridisierung auf Paraffinschnitten von Haiembryonen. Wie Abbildung 4.17 zeigt, wurde für alle drei *Runt*-Gene eine Expression in den sich entwickelnden Placoidschuppen (Hautzähne) gefunden. *ScRunx1* und *-3* sind hier in den basalen Epidermiszellen des Stratum germinativum, die die Schmelzkappe bilden, exprimiert. *ScRunx2* hingegen zeigt eine Expression im Bereich der späteren Basalplatte der Placoidschuppe. Abbildung 4.18 gibt eine Übersicht über die Expression von *ScRunx2* in weiteren Geweben. Sie ist auch in sich entwickelnden Knorpelelementen, im Wolffschen

Gang und in den sich entwickelnden Kiemen zu erkennen. Wie in Abbildung 4.19 dargestellt ist *ScRunx3* ebenfalls im Wolffschen Gang, sowie im Bereich der Kiemen im Thymus exprimiert.

Für *ScRunx1* konnte durch die *in situ*-Hybridisierung außer der Expression in den Placoidschuppen keine weitere Expression in anderen Organen der Katzenhaiembryonen gefunden werden.

Abb. 4.17: Expression von ScRunx1 (A), ScRunx2 (B) und ScRunx3 (C) in den Placoidschuppen des Katzenhais. Zusätzlich zu den Dunkelfeldaufnahmen (A',B',C'), auf denen die Signale hell erscheinen, sind Interferenzkontrastbilder (A,B,C) zur besseren Darstellung der Strukturen gezeigt. ScRunx1 und -3 werden im Stratum germinativum exprimiert, ScRunx2 dagegen im Bereich der späteren Basalnlatte

Abb. 4.18: Expression von *ScRunx2* in Katzenhaiembryonen von ca. 3,5 cm (A-C) bzw. ca. 2,5 cm Länge (D-H). Eine Expression findet sich in den sich entwickelnden Skelettelementen der Brustflosse (B, F), im Wolffschen Gang (E) sowie in den sich in der Entwicklung befindenden Kiemenbereichen (C, G, H). Das Signal zeigt sich in den Dunkelfeldaufnahmen (B', C', E-H) als helle Stellen. Die Kästchen in den Übersichtsaufnahmen zeigen die Ausschnitte der Vergrößerungen.

Abb. 4.19: Expression von *ScRunx3* in einem ca. 2,5 cm langen Embryo von *S. canicula* (A-C) sowie im Thymus eines ca. 9,5 cm langen Embryos (D,E). Eine Expression ist bei dem kleineren Embryo im Wolffschen Gang (B) und im Bereich der sich entwickelnden Kiemen (C) zu erkennen. Die Kästchen in den Übersichtsaufnahmen (A,D) geben die Ausschnitte der Vergrößerungen an. In den Dunkelfeldaufnahmen ist das Signal als helle Stellen zu erkennen.

4.3.5 Quantitative Bestimmung der *Runt*-Expressionsstärke in verschiedenen Geweben des Katzenhais

Da die *in situ*-Hybridisierung für *ScRunx1-3* nicht für alle drei Gene hinreichende Ergebnisse erbrachte, wurden qRT-PCRs mit cDNA aus verschiedenen Geweben eines adulten Katzenhais durchgeführt, um die Informationen über das Expressionsmuster zu erweitern. Weiterhin konnten hierdurch quantitative Aussagen über die Expressionsstärke erhalten werden.

Die Ergebnisse dieser Analysen zeigt Abbildung 4.20. Alle drei Gene sind in der Haut am stärksten exprimiert. Der Knorpel des Kiemenbogens zeigt ebenfalls eine deutliche Expression aller drei Gene. Für *ScRunx3* ist zudem eine starkes Signal in der Milz und für *ScRunx1* im Hoden zu erkennen. Im Spiralmagen sind vor allem *ScRunx1* und -*3* nachweisbar. Wobei ScRunx1 am Anfang des Magens stärker exprimiert ist, und ScRunx3 sowohl am Anfang als auch in der Mitte eine deutliche Expression zeigt.

Abb. 4.20: Quantifizierung der Expressionsstärke von *ScRunx1-3* in verschiedenen Geweben eines adulten Katzenhais bezogen auf die Anzahl der 18S rRNA-Moleküle. Die stärkste Expression aller drei Gene ist in der Haut zu finden, aber auch im Knorpel des Kiemenbogens sind *ScRunx1-3* recht stark exprimiert. *ScRunx3* zeigt zudem sehr starke Expression in der Milz und *ScRunx1* im Hoden.

Abkürzungen: G: Gehirn; Ha: Haut; He: Herz; Ho: Hoden; Kn: Knorpel aus dem Kiemenbogen; Le: Leber; Ma, A: Anfang des Magens; Ma, M: Mittlerer Teil des Magens; Mi: Milz; Mu: Muskel; Ne: Nebenhoden; Ni: Niere; Oe: Oesophagus; Wo: Wolffscher Gang; Ws: Wirbelsäule

4.3.6 Bestimmung der Expressionstärke der *Runt*-Gene des Schleimaals und von *Runt* und *Sox9* des Lanzettfischchens

Zur Beantwortung der Frage, zu welchem evolutionärem Zeitpunkt das für die Knorpelentwicklung notwendige molekulare Netzwerk entstand, wurden quantitative RT-PCRs mit cDNA aus verschiedenen Geweben adulter Schleimaale (*Myxine glutinosa*) und Lanzettfischchen (*Branchiostoma lanceolatum*) durchgeführt. Wie in Abbildung 4.21 dargestellt, wurde für das *RunxB*-Gen des Schleimaals in allen Geweben durchgängig nur eine relativ schwache Expression gefunden. *MgRunxA* war dagegen vor allem in den festen Anteilen des Knorpels sehr stark exprimiert. Auch in den Kiemen konnte eine starke Expression gefunden werden. Am schwächsten waren beide *Runt*-Gene im Muskel exprimiert, und auch im Darm wurden nur geringe Mengen von *MgRunxA* und *MgRunxB* gefunden.

Die Expression des *Runt*-Gens von *Branchiostoma lanceolatum* zeigt Abbildung 4.22. Hier ist die stärkste Expression im Kiemendarm und Darm zu finden; die Expression in anderen Geweben ist deutlich schwächer und in den Ovarien am schwächsten.

Die Expressionsanalyse des bei den Mammalia für die Knorpelentwicklung ebenfalls sehr wichtigen *Sox9* ist in Abbildung 4.23 dargestellt. Sie ergab eine starke Expression vor allem im Kiemendarm und Neuralrohr. Am schwächsten war dieses Gen im Leberblindsack und in den Hoden exprimiert.

Abb. 4.21: Quantifizierung der Expression von *MgRunxA* und -*B* in verschiedenen Geweben adulter Schleimaale bezogen auf die Menge der 18S rRNA-Moleküle. Während *RunxB* durchgängig nur eine schwache Expression zeigt, ist *RunxA* vor allem im harten Anteil des Knorpels und in den Kiemen stark exprimiert. Abkürzungen: Ch: Chorda; D,H: Hinterer Teil des Darms; D,M: Mittlerer Teil des Darms; D,V: Vorderer Teil des Darms; G: Gehirn; Ga: Gallenblase; Ha: Haut; He: Herz; K: Kiemen; Kn,h: Harter Knorpel; Kn,w: Weicher Knorpel; M: Muskel; L: Leber.

Abb. 4.22: Quantifizierung der Expressionsstärke von *BlRunt* in verschiedenen Geweben adulter Lanzettfischchen bezogen auf die Anzahl der 18S rRNA-Moleküle. Die stärkste Expression findet sich im Kiemendarm und Darm. Besonders schwach ist die Expression in den Ovarien. Abkürzungen:
C: Chorda; D: Darm; Ha: Haut; Ho: Hoden; K: Kiemendarm; L: Leberblindsack; M: Muskel; N: Neuralrohr; O: Ovarien.

Expression von BISox9 in versch. Geweben

Abb. 4.23: Quantifizierung der Expressionsstärke von *B/Sox9* in verschiedenen Geweben adulter Lanzettfischchen bezogen auf die Anzahl der 18S rRNA-Moleküle. Die höchste Expression wurde im Kiemendarm gefunden, gefolgt von der Expression im Neuralrohr. Im Leberblidsack und in den Hoden wird es kaum exprimiert. Abkürzungen: C: Chorda; D: Darm; Ha: Haut; Ho: Hoden; K: Kiemendarm; L: Leberblindsack; M: Muskel; N: Neuralrohr; O: Ovarien.