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Abstract
Gene expression time-course experiments allow to study the dynamics of transcriptomic

changes in cells exposed to different stimuli. However, most approaches for the reconstruc-

tion of gene association networks (GANs) do not propose prior-selection approaches tai-

lored to time-course transcriptome data. Here, we present a workflow for the identification of

GANs from time-course data using prior selection of genes differentially expressed over

time identified by natural cubic spline regression modeling (NCSRM). The workflow com-

prises three major steps: 1) the identification of differentially expressed genes from time-

course expression data by employing NCSRM, 2) the use of regularized dynamic partial

correlation as implemented in GeneNet to infer GANs from differentially expressed genes

and 3) the identification and functional characterization of the key nodes in the recon-

structed networks. The approach was applied on a time-resolved transcriptome data set of

radiation-perturbed cell culture models of non-tumor cells with normal and increased radia-

tion sensitivity. NCSRM detected significantly more genes than another commonly used

method for time-course transcriptome analysis (BETR). While most genes detected with

BETR were also detected with NCSRM the false-detection rate of NCSRM was low (3%).

The GANs reconstructed from genes detected with NCSRM showed a better overlap with

the interactome network Reactome compared to GANs derived from BETR detected genes.

After exposure to 1 Gy the normal sensitive cells showed only sparse response compared

to cells with increased sensitivity, which exhibited a strong response mainly of genes related

to the senescence pathway. After exposure to 10 Gy the response of the normal sensitive
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cells was mainly associated with senescence and that of cells with increased sensitivity

with apoptosis. We discuss these results in a clinical context and underline the impact of

senescence-associated pathways in acute radiation response of normal cells. The workflow

of this novel approach is implemented in the open-source Bioconductor R-package

splineTimeR.

Introduction
In general terms, the expression of genes can be studied from a static or temporal point of view.
Static microarray experiments allow measuring gene expression responses only at one single
time point. Therefore, data obtained from those experiments can be considered as more or less
randomly taken snapshots of the molecular phenotype of a cell. However, biological processes
are dynamic and thus, the expression of a gene is a function of time [1]. To be able to under-
stand and model the dynamic behavior and association of genes, it is important to study gene
expression patterns over time.

However, compared to static microarray data, the analysis of time-course data introduces a
number of new challenges. First, the experimental costs for the generation of data as well as the
computational cost increases with the increase in the number of introduced time points. Sec-
ond, hidden correlation caused by co-expression of genes makes the data linearly dependent
[2]. Finally, one has to be aware of additional correlations existing between neighboring time
points clearly revealed in published gene expression profiles [3].

Several different algorithms have been suggested to analyze gene time-course microarray
data with regard to differential expression in two or more biological groups (e.g. exposed to
radiation vs. non-exposed) [4–7]. Nevertheless solitary identification of differentially expressed
genes does not help to determine the molecular mechanisms in the investigated biological
groups. Therefore, it is not only important to know differentially expressed genes per se, but
also how those genes interact and regulate each other in order to determine specifically deregu-
lated molecular networks.

Currently, many different algorithms including cluster analysis [8–13] and supervised clas-
sification [14–16] are used to identify relationships between genes. However, both of these
methods suffer from serious limitations. First, the timing information of the measurements is
not incorporated and, therefore, the intrinsic temporal structure of the time-course data is
neglected. Second, the available standard clustering and classification methods are not designed
to measure statistical significance of the results based on a statistical hypothesis test. By nature
of these methods, clusters or classes of genes with similar expression patterns will always be
identified but they do not provide a measure of how reliable this information is. For this reason,
we preferred usage of a dynamic network modeling approach that allows delineation of rela-
tionships between genes along with providing statistical significance for these relationships.

The aim of the present study was to identify and compare signaling pathways involved in the
radiation responses of normal cells differing in their radiation sensitivity that could be used to mod-
ulate cell sensitivity to ionizing radiation. For this, we propose an approach that combines the detec-
tion of genes differentially expressed over time based on statistics determined by natural cubic spline
regression (NCSRM) [17] followed by dynamic gene association network (GAN) reconstruction
based on a regularized dynamic partial correlation as implemented in the GeneNet R-package [18].

Most exploratory gene expression studies focus only on the identification of differentially
expressed genes by treating them as independent events and do not seek to study the interplay
of identified genes. This makes it difficult to tell which genes are part of the interaction network
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causal of the studied phenotype and which are the most “important” with regard to the context
of the investigation. The herein present approach combines the identification of differentially
expressed genes and reconstruction of possible associations between them. Further analysis of
identified GANs then allows hypothesizing which genes may play a crucial role in the investi-
gated processes. This should markedly increase the likelihood to find meaningful results from
an initial observation and help to understand the underlying molecular mechanisms. We
applied our workflow on time-course transcriptome data of two normal and well-characterized
lymphoblastoid cell lines with normal (20037–200) and increased radiation sensitivity (4060–
200), in order to identify molecular mechanisms and potential key players responsible for dif-
ferent radiation responses [19, 20]. Our exploratory approach provides novel and informative
insights in the biology of radiation sensitivity of non-tumor cells after exposure to ionizing
radiation with regard to the identified signaling pathways and their key drivers. Moreover, we
could demonstrate that spline regression in differential gene expression analysis for the pur-
pose of prior selection in gene-association network reconstruction outperforms another com-
monly used existing approach for time-course gene expression analysis.

Results
The schematic workflow of the presented novel approach for time-course gene expression data
analysis is presented in Fig 1.

Identification of ionizing radiation-responsive genes using NCSRM
method
A fraction of the probes was removed due to low expression levels, with not detectable signal
intensities as described in [21]. Table 1 shows the number of probes remained after quality filter-
ing from the total number of 25220 unique probes representing HGNC annotated genes. Differ-
ential analysis was performed relative to the corresponding sham irradiated cells as a reference.
In general, more genes were detected as differentially expressed in the cells with increased radia-
tion sensitivity compared to cells with normal radiation sensitivity after each dose of gamma irra-
diation (Table 1). The most prominent difference was observed when comparing the responses
after 1 Gy irradiation. In the cells with increased radiation sensitivity 2335 genes showed differen-
tial expression compared to only seven genes in cells with normal radiation sensitivity. We
observed the same trend after irradiation with 10 Gy where the cells with increased sensitivity
showed 6019 and the normal sensitive cells 3892 differentially expressed genes.

Pathway enrichment analysis of NCSRM identified genes
Pathway enrichment analysis was performed on differentially expressed genes to identify over-
represented biological pathways. The analysis on genes identified with NCSRM revealed 634
and 964 significantly enriched pathways for the cells with increased radiation sensitivity after 1
Gy and 10 Gy irradiation dose, respectively and 758 pathways for the normal sensitive cell line
after 10 Gy irradiation. For the seven differentially expressed genes (i.e. FDXR, BBC3, VWCE,
PHLDA3, SCARF2, HIST1H4C, PCNA) of the cell line with normal radiation sensitivity after
1 Gy dose of irradiation we did not find any significantly enriched pathways. A summary of the
pathway enrichment results can be found in S2 Table.

Gene association network reconstruction
None of the edge probabilities calculated for the seven differentially expressed genes in the cell
line with normal radiation sensitivity after 1 Gy irradiation exceeded the considered
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significance threshold and hence no network was obtained. For the remaining conditions we
were able to obtain association networks as presented in Table 2. Obtained networks are pro-
vided as igraph R-objects in the supplementary data (S1 File). The graph densities for all result-
ing networks were in the same range as the density of the Reactome interaction network
(Table 2).

Identification and functional characterization of the most important
genes in the reconstructed association networks
The combined topological centrality measure was used to characterize the biological impor-
tance of nodes (genes) in the reconstructed association networks. The 5% of the highest ranked
genes listed in supplementary S3 Table were mapped to Reactome pathways in order to further
evaluate their biological roles. The top 10 most relevant pathways according to the FDR values
are shown in Table 3. For the cell line with increased radiation sensitivity after irradiation with
1 Gy and for the normal sensitive cell line after 10 Gy the induction of pathways associated
with senescence response was detected. For the cell line with increased radiation sensitivity
after 10 Gy of irradiation we mostly observed pathways associated with apoptosis. All pathways
are listed in supplementary S4 Table.

False detected differentially expressed genes between technical replicates
In order to assess the false positive rate, the spline regression based differential analyses between
technical replicates of each treatment conditions and cell lines were performed. Here, we can
state that the null-hypothesis of no differential expression is true for all genes. Then the q�-level
of 0.05 for Benjamini-Hochberg method controls also the FWER at alpha-level equal to 0.05
(type I error) [22]. For all compared technical replicates not more than 3% rejections of null
hypothesis were detected, which is in good accordance to the expected or nominal type I error.

Evaluation of spline regression model in comparison to BETRmethod
Table 1 compares the numbers of differentially expressed genes obtained from both methods
applied on the same gene expression data set and FDR thresholds. For almost all treatment
conditions the BETRmethod detected less differentially expressed genes in comparison to

Fig 1. Schematic workflow of the analysis of gene expression time-course data. Samples were collected 0.25, 0.5, 1, 2, 4, 8 and 24 hours after
sham or actual irradiation. Transcriptional profiling was performed using Agilent gene expression microarrays and comprises three major steps: the
identification of differentially expressed genes from time-course expression data by employing a natural cubic spline regression model; the use of
regularized dynamic partial correlation method to infer gene associations networks from differentially expressed genes and the topological identification
and functional characterization of the key nodes in the reconstructed networks.

doi:10.1371/journal.pone.0160791.g001

Table 1. Number of detected and differentially expressed genes for each dose and cell lines for NCSRM and BETRmethods.

cell line and applied radiation dose increased sensitivity (1
Gy vs 0 Gy)

Normal sensitivity (1
Gy vs 0 Gy)

increased sensitivity (10
Gy vs 0 Gy)

Normal sensitivity (10
Gy vs 0 Gy)

total number of detected probes after
preprocessing

10388 11311 10330 11446

differentially expressed genes detected with
NCSRM

2335 7 6019 3892

differentially expressed genes detected with
BETR

923 12 3889 1256

intersection of differentially expressed genes
resulting from both methods

855 4 3875 1233

doi:10.1371/journal.pone.0160791.t001
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NCSRM. Only for the normal cell line after irradiation with 1 Gy BETR identified 12 genes
whereas NCSRM identified only 7 genes. As a consequence of the lower numbers of detected dif-
ferentially expressed genes with BETR, the obtained networks are smaller than those obtained
after spline regression. The detailed comparison results including numbers of detected differen-
tially expressed genes and the sizes of reconstructed association networks are presented in the
Table 2. The lists of differentially expressed genes obtained with the two methods are shown in
supplementary S1 Table. The top 10 pathways to which the 5% of the most important genes in
the reconstructed association networks where mapped to are shown in Table 3. With NCSRM
we were not only able to detect almost all genes that were detected also by BETR (Table 1), but
also an additional set of genes resulting in almost twice the number of genes compared to BETR.
Nevertheless, the top 5% hub genes of the networks derived from the differentially expressed
genes defined by BETR were associated with similar biological processes as those from the spline
differential expression analysis derived networks. The numbers and names of overlapping hub
genes in the GANs are presented in Table 4 and in supplementary S3 Table, respectively.

Evaluation of reconstructed networks
The evaluation of the two networks derived after 1 Gy irradiation of the cell line with increased
sensitivity showed that the network reconstructed with the differentially expressed genes deter-
mined using BETR did not contain significantly more common edges than random networks
(p = 0.529), whereas the network reconstructed with the differentially expressed genes deter-
mined by NCSRM did (p = 0.048). The networks derived after 10 Gy irradiation of the cell line
with increased sensitivity and 10 Gy irradiation of the normal sensitive cell line contained sig-
nificantly more edges that were common with the Reactome network compared to random
networks for both methods.

Discussion
The success of tumor radiation therapy predominantly depends on the total applied radiation
dose, but also on the tolerance of the tumor surrounding normal tissues to radiation. Toxicity

Table 2. Number of genes subjected to GAN reconstruction and properties of resulted GANs.

method NCSRM BETR

cell line and
applied radiation

dose

Increased
sensitivity (1

Gy)

normal
sensitivity (1

Gy)

Increased
sensitivity (10

Gy)

normal
sensitivity (10

Gy)

Increased
sensitivity (1

Gy)

normal
sensitivity (1

Gy)

Increased
sensitivity (10

Gy)

normal
sensitivity (10

Gy)

number of genes
taken for network
reconstruction

2335 7 6019 3892 923 12 3889 1256

number of nodes
remained in the

network

1140 - 3483 2735 336 - 2299 773

number of edges in
the network

12198 - 114629 84695 3268 - 126378 16862

network density 0.00939 - 0.00945 0.01133 0.02903 - 0.02392 0.02826

density of the
Reactome

interaction network

0.00536

Gene association network reconstructions were performed using the GeneNet method [18]. Association between two genes was considered as significant if

posterior edge probability was equal or greater than 0.95. Densities of the reconstructed networks were compared with the density of the Reactome

interaction network in order to assess their complexity.

doi:10.1371/journal.pone.0160791.t002
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towards radiation, which greatly varies on an individual level due to inherited susceptibility, is
one of the most important limiting factors for dose escalation in radiooncology treatment [23,
24]. To account for radiation sensitivity of normal tissue in personalized treatment approaches
the underlying molecular mechanisms need to be thoroughly understood in order to identify

Table 3. Comparison of NCSRM and BETRmethodswith respect to the top 10 pathways after mapping of 5% highest ranked genes from the recon-
structed gene association networks.

with NCSRMmethod with BETRmethod

increased sensitivity
(1 Gy)

increased sensitivity (10
Gy)

normal sensitivity (10
Gy)

increased sensitivity (1
Gy)

increased sensitivity (10
Gy)

normal sensitivity
(10 Gy)

Signal Transduction Signal Transduction Generic Transcription
Pathway

DNA Damage/Telomere
Stress Induced
Senescencea

Activation of BH3-only
proteinsb

DNA Damage/
Telomere Stress
Induced
Senescencea

Cellular Senescencea Activation of BH3-only
proteinsb

DNA Damage/
Telomere Stress
Induced Senescencea

Senescence-Associated
Secretory Phenotype
(SASP)a

Activation of PUMA and
translocation to
mitochondriab

Generic
Transcription
Pathway

DNA Damage/
Telomere Stress
Induced Senescencea

Activation of PUMA and
translocation to
mitochondriab

Immune System Signal Transduction Cytokine Signaling in
Immune system

Cellular
Senescencea

Formation of
Senescence-
Associated
Heterochromatin Foci
(SAHF)a

Fatty acid, triacylglycerol,
and ketone body
metabolism

Gene Expression Activated PKN1
stimulates transcription
of AR (androgen
receptor) regulated
genes KLK2 and KLK3

Immune System Gene Expression

Cellular responses to
stress

Metabolism Inositol phosphate
metabolism

Cell Cycle Checkpoints Intrinsic Pathway for
Apoptosisb

Meiotic
recombination

RAF-independent
MAPK1/3 activation

Metabolism of proteins IRF3-mediated
induction of type I IFN

Cellular Senescencea Signal Transduction Signal Transduction

Signaling by ERBB4 PPARA activates gene
expression

Cellular Senescencea DNAmethylation Gene Expression Cell Cycle

DAP12 interactions Regulation of lipid
metabolism by
Peroxisome proliferator-
activated receptor alpha
(PPARalpha)

Formation of
Senescence-
Associated
Heterochromatin Foci
(SAHF)a

Packaging Of Telomere
Ends

BH3-only proteins
associate with and
inactivate anti-apoptotic
BCL-2 membersb

Transcriptional
activation of cell
cycle inhibitor p21

PRC2 methylates
histones and DNA

Activation of gene
expression by SREBF
(SREBP)

STING mediated
induction of host
immune responses

RNA Polymerase I
Promoter Opening

Activation of the mRNA
upon binding of the cap-
binding complex and
eIFs, and subsequent
binding to 43S

Transcriptional
activation of p53
responsive genes

Apoptotic execution
phaseb

BH3-only proteins
associate with and
inactivate anti-apoptotic
BCL-2 membersb

Metabolism SIRT1 negatively
regulates rRNA
Expression

Endosomal/Vacuolar
pathway

Senescence-
Associated
Secretory
Phenotype (SASP)a

aPathways associated with senescence responses.
bPathways associated with apoptotic processes.

doi:10.1371/journal.pone.0160791.t003

Table 4. Comparison of hub genes in networks resulting from different methods.

cell line and applied radiation dose increased sensitivity (1 Gy) increased sensitivity (10 Gy) Normal sensitivity (10 Gy)

5% hub genes in the NCSRM resulting network in numbers 57 174 137

5% hub genes in the BETR resulting network in numbers 17 115 39

number of common hub genes resulting from both methods 9 111 31

doi:10.1371/journal.pone.0160791.t004
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molecular targets for the modulation of radiation sensitivity and molecular markers for the
stratification of patients with different intrinsic radiation sensitivity. In the present study we
identified significantly differentially expressed genes over time between the radiation-treated
group and the control group to be used as prior genes for GAN reconstruction. Two doses of
gamma irradiation were used to characterize the differences in radiation response of the two
lymphoblastoid cell lines with known differences in radiation sensitivity. The dose of 10 Gy
was selected following the fact that the same dose has been applied in a previous research proj-
ect examining the radiation sensitivity of the same lymphoblastoid cell lines analyzed in the
study at hand [20]. The dose of 1 Gy reflects the dose that is delivered as part of the so called
“low-dose bath” to the tumor-surrounding tissue during the radiotherapy of the tumors [25].

Here, we conducted time-resolved transcriptome analysis of radiation-perturbed cell culture
models of non-tumor cells with normal and with increased radiation sensitivity in order to
work out the molecular phenotype of radiation sensitivity in normal cells. Moreover, we pres-
ent an innovative approach for the identification of GANs from time-course perturbation tran-
scriptome data. The approach comprises three major steps: 1) the identification of
differentially expressed genes from time-course gene expression data by employing a natural
cubic spline regression model (NCSRM); 2) the use of a regularized dynamic partial correlation
method to infer gene associations network from differentially expressed genes; 3) the identifi-
cation and functional characterization of the key nodes (hubs) in the reconstructed gene
dependency network (Fig 1).

Our proposed method for the detection of differentially expressed genes over time is based
on NCSRM with a small number of basis functions. A relatively low number of basis functions
generally results in a good fit of data and, at the same time, reduces the complexity of the fitted
models. Treating time in the model as a continuous variable, a non-linear behavior of gene
expressions was approximated by spline curves fitted to the experimental time-course data.
Considering temporal changes in gene expression as continuous curves and not as single time
points greatly decreases the dimensionality of the data and thereby decreases computational
cost. In addition, the proposed NCRSM does not require identical sampling time points for the
compared treatment conditions. Furthermore, no biological replicates are needed. Therefore,
the method is applicable to data generated according to a tailored time-course differential
expression study design and to data that were not specifically generated for time-course differ-
ential expression analysis, e.g. existing/previously generated data from clinical samples. Thus,
the adaption of the method to differential expression analysis comprises the potential to reana-
lyze existing data, address new questions in silico and thereby potentially add new or additional
value to existing data. Incomplete time-course data, e.g. due to the exclusion of samples for
technical reasons, that often create major problems for the estimation of the model, are also
suitable for fitting the spline regression model as long as enough data points remain in the data
set. This is especially valuable when data on certain time points, derived from a very limited
sample source, have been excluded from a time-course data set and cannot be repeatedly
generated.

Since gene expression is not only dynamic in the treatment group but also in the control
group, the inclusion of the time-course control data greatly improves the ability to detect truly
differentially expressed genes, as the gene expression values are not referred to a single time
point with static gene expression levels only. Comparing a treatment group to time point zero
does not provide a proper control over the entire time-course, although it is widely practiced
[26–28]. The proposed workflow is implemented in an open-source R-package splineTimeR
and is available through Bioconductor (https://www.bioconductor.org).

Amongst a panel, the two lymphoblastoid cell lines that were different with regard to radia-
tion sensitivity after irradiation with 10 Gy [20], also responded differently with regard to the
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quantity of differentially expressed genes. Interestingly, cells with normal radiation sensitivity
barely responded to 1 Gy irradiation at the transcriptome level. Only seven genes (FDXR,
BBC3, VWCE, PHLDA3, SCARF2, HIST1H4C, PCNA) were identified as differentially
expressed, whereas for the cell line with increased sensitivity 2335 differentially expressed
genes were detected after exposure to the same dose. A similar behavior was observed for those
two cell lines after irradiation with 10 Gy. We detected 6019 and 3892 genes as differentially
expressed in the sensitive and normal cell lines, respectively (Table 2). Those results are in a
good agreement with the previous proteomic study where more differentially expressed pro-
teins were detected for the same sensitive cell line compare to the cell line with normal radia-
tion sensitivity 24 hours after irradiation with 10 Gy [29]. Thus, for both applied doses, the
radiation sensitive cells exhibited much more pronounced transcriptional response compared
to the cells with normal radiation sensitivity and thereby underlines the expected radiation
response of those two cell lines.

Concerning qualitative differences in the transcriptomic response of normal sensitive cells
and cells with increased sensitivity after treatment with 1 Gy and 10 Gy pathway enrichment
analysis was performed. Differentially expressed genes identified for all considered treatment
conditions except for the normal sensitive cells after exposure to 1 Gy radiation showed statisti-
cally significant enrichment of pathways. Most of which were in agreement with known radia-
tion responses such as DNA repair, cell cycle regulation, oxidative stress response or pathways
related to apoptosis (S2 Table) [30–32]. Therefore, the pathway enrichment analysis results
suggest plausibility of generated data and, more importantly, underline the meaningfulness of
our suggested approach based on cubic spline regression for differential gene expression analy-
sis of time-course data. However, differential expression analysis alone followed by pathway
enrichment analysis does not provide any mechanistic insights. For this reason we performed
GAN reconstruction using identified differentially expressed genes. Based on the assumption
that the expression levels of functionally related genes are highly correlated, partial correlation
was used for GAN reconstruction. In simple correlation, the strength of the linear relationship
between two genes is measured, without taking into account that those genes may be actually
influenced by other genes. Partial correlation eliminates the influence of other genes when one
particular relationship between pair of genes is considered. Network reconstruction was per-
formed separately for the cell line with increased radiation sensitivity after 1 Gy and 10 Gy and
for the cell line with normal radiation sensitivity after 10 Gy of radiation dose. Due to the
sparseness of the set of genes differentially expressed after irradiation of the normal-sensitive
cell line with 1 Gy, no GAN was obtained.

Subsequently, we identified the network hubs (i.e. most important genes) of the GANs by
combining three network centrality measures: degree, closeness and shortest path betweenness
[33]. Combining different centrality measures is a widely used approach to identify nodes that
are likely to control the network [34]. Also, this approach allows identification of nodes that
are connected to the central nodes at the same time which can be informative for the interpre-
tation of the whole GAN or single modules making up the network [33, 34].

Identification of key pathways associated with radiation sensitivity
In order to get functional insights into the reconstructed GANs the 5% top important nodes
were identified after a ranking with the combined centrality measure and mapped to the path-
ways from the interactome database Reactome [35]. The obtained results revealed different
pathways considered as the most important in cells with different radiation sensitivity after dif-
ferent doses of ionizing radiation. For the radiation sensitive cell line 4060–200 and 1 Gy irradi-
ation, we mainly detected pathways associated with senescence (Table 3).
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A different outcome was observed after irradiation with 10 Gy. For the radiation sensitive
cells three out of the ten top pathways were linked to apoptotic processes with the genes BBC3,
BCL2, TP53 as key players, whereas for the normal sensitive cell line we mainly observed the
induction of senescence related pathways. This indicates that different doses are necessary to
induce a similar response in the two cell lines. The activation of senescence genes is a damage
response mechanism, which stably arrests proliferating cells and protects them from apoptotic
cell death [36]. Together with the senescence pathway we observed increased levels of chemo-
kine, cytokine and interleukin genes that are known to activate an immune response and signal
transduction pathways in response to irradiation.

Although the senescence-associated pathways were not seen as the most important ones for
the treatment condition 10 Gy/increased sensitivity, they were significantly enriched in the
GANs of the three conditions 1 Gy/increased sensitivity, 10 Gy/ increased sensitivity and 10
Gy/normal sensitivity. All differentially expressed genes that related to senescence-associated
pathways are shown in supplementary S5 Table. The observation that cells with increased radi-
ation sensitivity compared to cells with normal sensitivity, become senescent after exposure to
doses in the range of 1 Gy, rises the question whether this has a positive or negative influence on
the tumor therapy. On the one hand side, senescent cell may secret the so-called SASP (“senes-
cence-associated secretory phenotype“) factors, including growth factors, chemokines and cyto-
kines, which participate in intercellular signaling leading to the attraction of immune cells to the
tumor location that, in turn, eliminate the tumor cells and, thereby, positively contribute to the
tumor therapy [37, 38]. On the other hand side, senescent cells and the SASP are reported to pro-
mote proliferation, survival, invasion and migration of neighboring cells by the release of pro-
inflammatory cytokines leading to sustained inflammation [36]. In this way senescence cells can
damage their local environment and stimulate angiogenesis and tumor progression [39, 40].
Besides, there are some evidences that the induction of senescence in surrounding normal tissue
may lead to an increased radio-tolerance or even radioresistance of the tumor and is, therefore,
not desirable and negatively influences the tumor radiotherapy [41]. Thus, it might be beneficial
to block senescence in order to prevent the radio-hyposensibilization of tumor cells. Therefore,
we suggest a detailed investigation of the consequences of senescent non-tumor cells with the
aim to improve the radiotherapy of tumors in radiosensitive patients.

Identification of senescence associated genes involved in cell radiation
responses
CDKN1A gene was identified as one of the most important key players linked to the identified
senescence associated pathways for both 1 Gy/sensitive and 10 Gy/normal treatment condi-
tions. For both conditions the expression of the CDKN1A was up-regulated for all considered
time points. CDKN1A is a well-known damage response gene for which aberrant transcrip-
tional response has been associated with abnormal sensitivity to ionizing radiation [42, 43].
The study by Badie et al. (2008) has shown that a subgroup of breast cancer patients, who
developed severe reactions to radiation therapy, could be identified by aberrant overexpression
of CDKN1 in peripheral blood lymphocytes [43].

LMNB1 is another genes we identified as a response hub gene after irradiation of sensitive
cell line with 1 Gy radiation dose that is associated with senescence. Although the LMNB1 gene
was not identified as hub gene in the GAN of the 10 Gy/normal treatment condition, it was still
differentially expressed. For both treatment conditions we observed significant downregulation
of this gene 24 hours after irradiation. Shah et al (2013) has suggested that downregulation of
LMNB1 in senescence is a key trigger of chromatin changes affecting gene expression [44]. In
fact also in our data we observed strong downregulation of a group of histone genes associated
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with senescence (S5 Table) for the treatment conditions 1 Gy/increased sensitivity and 10 Gy/
normal sensitivity. Furthermore, Lee et al. (2012) has shown that histone protein modification
may have an impact on the radiation sensitivity of a tissue [45]. Moreover, evidence has been
provided that mutation of LMNA can cause increased sensitivity to ionizing radiation [46],
however, to our knowledge there are no data showing the role of LMNB gene in the context of
radiation sensitivity.

Another potential therapeutic candidate associated with senescence that was identified for
the 10 Gy/normal sensitivity treatment condition was MRE11A for which cell culture data sug-
gest that treatment of cells with Mre11 siRNA increases radiation sensitivity and reduces heat-
induced radiosensitization [47, 48]. However, the clinical applicability of MRE11, has not been
confirmed [49].

Assessment of the false positive rate and validation of the NCSRM
method
The spline regression based differential analyses between technical replicates were performed
in order to estimate the extent of random fluctuations of gene expression values. The detected
3% rejections of the overall null hypothesis of no differential gene expression are in accordance
with the alpha-level of 5% of the familywise error rate (FWER) and can be considered as false
positives. On the other hand, it shows that type I error, due to technical variation, is covered by
the model and test assumptions (moderated F-test, [50]) so that it was not necessary to include
an extra parameter for technical replicates into the model.

In order to validate the previously mentioned biological results using NCSRM, we per-
formed the differential expression analysis with another established method for time-course
data analysis called BETR (Bayesian Estimation of Temporal Regulation) [6]. The number of
genes detected by BETR was considerably lower compared to NCRSM (Table 1), however the
majority of which were also detected with NCSRM (S1 Table). This is in line with the calcula-
tions on the false positive rates that have been conducted on the simulated data presented in
the BETR study. In an analysis of the simulated data set, 65% of truly differentially expressed
genes have been identified after accepting a false positive rate of 5% [6]. This means that a sub-
stantial proportion of differentially expressed genes remained undetected, which is likely to be
also the case for the herein analyzed data with BETR. Although the numbers of differentially
expressed genes and genes remained in the reconstructed networks greatly differ (Table 1), the
qualitative results are well comparable (Table 3). For all treatment conditions where for which
we were able to reconstruct GANs, we observed a great overlap of pathways where the 5% of
hub genes were mapped to (Table 3). The detection of a higher number of differentially
expressed genes with NCSRM resulted in larger GANs with additional information compared
to the smaller GANs that were reconstructed on the basis of genes detected with BETR. This is
underlined by the results of the conducted evaluation of GANs. Except one network based on
the differentially expressed genes using BETR, all investigated networks consist significantly
more common edges with the Reactome reference network compared to random networks
with identical network topology and genes. This shows that the additionally detected genes
with NCSRM add additional information rather than adding false positives or noise to the set
of differentially expressed genes. Moreover the spline regression method is much more flexible
and allows for more freedom during the data collection process. As already mentioned,
NCSRM does not require the same sampling time for treated and control groups and can easily
deal with incomplete data, whereas BETR method is not able to overcome or bypass those limi-
tations. Thus, NCSRM is very robust against the frequently occurring shortcomings in study
design and subsequent data generation occurring in life sciences.
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Conclusion
Prospectively, we suggest and plan a detailed in silico and in vitro analysis of the interactions in
the proposed gene association networks in order to add meaningful knowledge to the mecha-
nism of radiosensitivity at the experimental level. This novel knowledge has the potential to
improve cancer radiation therapy by preventing or lowering the acute responses of normal
cells resulting from radiation therapy. The results add novel information to the understanding
of mechanisms that are involved in the radiation response of human cells, with the potential to
improve tumor radiotherapy. Besides, the presented workflow is not limited to presented study
only, but may be applied in other special fields with different biological questions to be
addressed.

The software is provided as R-package “splineTimeR” and freely available via the Biocon-
ductor project at http://www.bioconductor.org.

Material and Methods

Cell culture
Experiments were conducted with two monoclonal lymphoblastoid Epstein-Barr virus-immor-
talized cell lines (LCL) obtained from young lung cancer patients of the LUCY study (LUng
Cancer in Young) that differ in radiosensitivity, as tested with Trypan Blue and WST-1 assays
[19, 20]. The non-cancer cell lines LCL 4060–200 with increased radiation sensitivity and LCL
20037–200 with normal radiation sensitivity were cultured at 37°C/5% CO2 in RPMI 1640
medium (Biochrom) supplemented with 10% fetal calf serum (FCS; PAA). Mycoplasma con-
tamination was routinely tested using luminescence-based assays (MycoAlert, Lonza).

Irradiation and sample preparation
The cells were seeded in 75 cm2 flasks at a concentration of 0.5 x 106 cells/ml in a total volume
of 60 ml. Exponentially growing cells were irradiated with sham, 1 Gy and 10 Gy of gamma-
irradiation (137Cs-source HWM-D 2000, Markdorf, Germany) at a dose rate of 0.49 Gy/min.
Samples were collected 0.25, 0.5, 1, 2, 4, 8 and 24 hours after sham or actual irradiation.
Between the time of collection cells were kept in the incubator. Collected cells were washed
with PBS and frozen at -80°C. Total RNA was isolated from frozen cell pellets obtained from
two independent experiments using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen)
including an DNase digestion step, according to the manufacturer's protocol. The concentra-
tion of RNA was quantified with a Qubit 2.0 Fluorometer (Life Technologies), and integrity
was determined using a Bioanalyzer 2100 (Agilent Technologies). RNA samples with a RNA
integrity number (RIN) greater than 7 indicated sufficient quality to be used in subsequent
RNA microarray analysis.

Gene expression profiling
Transcriptional profiling was performed using SurePrint G3 Human Gene Expression 8x60k
V2 microarrays (Agilent Technologies, AMADID 39494) according to the manufacturer’s pro-
tocol. 75 ng of total RNA was used in labeling using the Low Input Quick Amp Labeling Kit
(one-color, Agilent Technologies). Raw gene expression data were extracted as text files with
the Feature Extraction software 11.0.1.1 (Agilent Technologies). The expression microarray
data were uploaded to ArrayExpress (www.ebi.ac.uk/arrayexpress/) and the data set is available
under the accession number E-MTAB-4829. All data analysis was conducted using the R statis-
tical platform (version 3.2.2, www.r-project.org) [51]. Data quality assessment, filtering, pre-
processing, normalization, batch correction based on nucleic acid labeling batches and data
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analyses were carried out with the Bioconductor R-packages limma, Agi4x44PreProcess and the
ComBat function of the sva R-package [4, 21, 52]. All quality control, filtering, preprocessing and
normalization thresholds were set to the same values as suggested in Agi4x44PreProcess R-pack-
age user guide [21]. Only HGNC annotated genes were used in the analysis. For multiple micro-
array probes representing the same gene the optimal probe was selected according to the
Megablast score of probe sequences against the human reference sequence (http://www.ncbi.
nlm.nih.gov/refseq/) [53]. If the resulted score was equal for two or more probes, the probe with
the lowest differential gene expression FDR value was kept for further analyses since only one
expression value per gene was allowed in subsequent GAN reconstruction analysis.

Spline regression model for two-way experimental design
A natural cubic spline regression model (NCSRM) with three degrees of freedom for an experi-
mental two-way design with one treatment factor and time as a continuous variable was fitted
to the experimental time-course data. The mathematical model is defined by the following eq
(1):

y ¼ yðt; xÞ
¼ b0 þ b1B1ðt � t0Þ þ b2B2ðt � t0Þ þ . . .þ bmBmðt � t0Þ þ xðd0 þ d1B1ðt � t0Þ þ d2B2ðt

� t0Þ þ . . .þ dmBmðt � t0ÞÞ

where b0, b1, . . ., bm are the spline coefficients in the control group and d0, d1, . . ., dm are differ-
ential spline coefficients between the control and the irradiated group. B1(t-t0), B2(t-t0), . . .,
Bm(t-t0) are the spline base functions and t0 is the time of the first measurement. For x = 0,
y = ycontrol and for x = 1, y = yirradiated. For three degrees of freedom (df = 3), m = 3.

Depending on the number of degrees of freedom, two boundary knots and df-1 interior knots
are specified. The interior knots were chosen at values corresponding to equally sized quantiles of
the sampling time from both compared groups. For example, for df = 3 interior knots correspond
to the 0.33- and 0.66-quantiles. The spline function is cubic on each defined by knots intervals,
continuous at each knot and has continuous derivatives of first and second orders.

Time-course differential gene expression analysis
The time-course differential gene expression analyses were conducted between irradiated and
control cells (sham-irradiated). Analyses were performed on the normalized gene expression
data using NCSRMwith three degrees of freedom. The splines were fitted to the real time-course
expression data for each gene separately according to eq (1). The example of spline regression
model fitted to the measured time-course data for one selected gene is shown on the Fig 2.

Time dependent differential expression of a gene between the irradiated and corresponding
control cells was determined by the application of empirical Bayes moderated F-statistics [50]
on the differential coefficients values in eq (1). In order to account for the multiple-testing
error, corresponding p-values were adjusted by the Benjamini-Hochberg method for false dis-
covery [22]. Genes with an adjusted p-value (FDR, false discovery rate) lower than 0.05 were
considered as differentially expressed and associated with radiation response.

Assessment of the false positive rate of the NCSRM
Additionally, in order to assess the false positive rate (statistical type I error, also called familywise
error rate or FWER) we applied differential gene expression analysis using NCSRM between two
technical replicates for all treatment groups. Because only two technical replicates were generated
for each time point and treatment, we could not use the same approach to assess the technical vari-
ability for the BETRmethod, as it requires at least two replicates in each compared groups.
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Gene association network reconstruction from prior selected
differentially expressed genes
Differentially expressed genes were subjected to gene association network reconstruction from
time-course data using a regularized dynamic partial correlation method [54]. Pairwise rela-
tionships between genes over time were inferred based on a dynamic Bayesian network model
with shrinkage estimation of covariance matrices as implemented in the GeneNet R-package
available from CRAN [18]. Analyses were conducted with a posterior probability of 0.95 for
each potential edge. Edge directions were not considered. In order to assess the complexity of
the resulting networks, the density of each network was compared to the density of the Reac-
tome functional interaction network [35, 55].

Identification of important nodes in the network
Graph topological analyses based on centrality measures were applied in order to determine
the importance of each node in the reconstructed association networks [56]. Three most

Fig 2. Example of fitted spline regression models. The plot shows spline regression models fitted to the
measured time-course expression data of an arbitrary chosen gene (BBC3). The blue line represents the fitted
model for the control (0 Gy) and read line that for the irradiated group (1 Gy). Blue and red dots represent the
measured expression levels of the biological replicates. Vertical lines represent the endpoints and interior knots
correspond to the 0.33- and 0.66-quantiles.

doi:10.1371/journal.pone.0160791.g002
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commonly used centrality measures: degree, shortest path betweenness and closeness were
combined into one cumulative centrality measure [34]. For each gene the three centrality val-
ues where ranked. The consensus centrality measure for each node was defined as the mean of
the three independent centrality ranks. Combining centrality measures supports the identifica-
tion of the nodes that are central themselves and also connected to direct central nodes, which
demonstrates strategic positions for controlling the network.

Pathway enrichment analysis
The Reactome pathway database was used to conduct the pathway enrichment analysis in
order to further investigate the functions of the selected sets of differentially expressed genes
[35]. Statistical significance of enriched pathways was determined by one-sided Fisher's exact
test. The resulting p-values were adjusted for FDR using the Benjamini-Hochberg method.
Pathways with FDR<0.05 were considered statistically significant and pathways were ranked
according to ascending FDRs.

Evaluation of NCSRM approach
Since we decided to use the set of genes that appeared to be differentially expressed we assessed
the performance of the herein used NCSRM approach in comparison to the BETR approach
implemented in the R/Bioconductor package betr [6]. BETR is a well-established algorithm
that has been previously compared to limma, MB-statistic and EDGE methods and showed the
best performance [6]. The results of spline and BETR methods were compared using the same
initial microarray gene expression data set. The probabilities of each gene to be differentially
expressed obtained with BETR method, were transformed to p-values as described in the origi-
nal paper. Genes were considered significantly differentially expressed if the Benjamini-Hoch-
berg adjusted p-value was lower than 0.05 (FDR<0.05). This transformation allowed us to
compare the outcomes of both methods based on the FDR values for differential expression.
The resulting differentially expressed genes using BETR were analyzed and subjected to net-
work reconstruction as described above for the differentially expressed genes obtained using
NCSRM. Outcomes of both obtained association networks were compared to each other and to
the a priori known biological network provided by the Reactome database [35].

Evaluation of reconstructed gene association networks
In order to assess the quality of the de novo reconstructed gene association networks (GANs),
we developed a novel method that compares the interactions in the reconstructed network to
the experimentally validated interactions present in the Reactome interaction network. For this
purpose we used the Reactome reference network, consisting of protein-protein interaction
pairs stored in the Reactome database (http://www.reactome.org/pages/download-data/). For
the comparison, sub-networks of reconstructed networks consisting only of genes overlapping
with the Reactome network were built. The number of common edges between these two sub-
networks was determined and referred to the total number of edges in the reconstructed net-
work (percentage of common edges in the reconstructed network). Further, a permutation test
was performed to assess whether the number of common edges in the reconstructed network
was significantly higher than in randomized networks with the same genes. Random networks
were generated by permutation of the node names in the network, while preserving the recon-
structed sub-network topology. After each permutation (n = 1000) the number of common
edges with the reference Reactome sub-network was determined. The reconstructed network
was considered significantly better than random, if more than 90% of the random sub-net-
works contained lower numbers of edges common with the Reactome network than the
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reconstructed sub-network (p-value< 0.1). All networks reconstructed with the genes deter-
mined as differentially expressed from the herein presented spline regression method and the
BETR method were evaluated.

Supporting Information
S1 File. Reconstructed gene association networks. All obtained gene association networks are
provided as R-objects of type igraph.
(RDATA)

S1 Table. Lists of differentially expressed genes. Table includes differentially expressed genes
identified by spline regression and BETR methods. Additionally, a list of overlapping differen-
tially expressed genes between both methods is included.
(XLSX)

S2 Table. Lists of significantly enriched pathways using differentially expressed genes iden-
tified by spline regression method. Four lists of significantly enriched pathways correspond
to each used treatment condition. Lists include total numbers of known genes in the pathways,
numbers of differentially expressed genes that belong to a single pathway (matches), percent-
ages of differentially expressed genes in comparison to the total number of know genes in the
pathway (% match), p-values, FDRs and names of pathways related differentially expressed
genes.
(XLSX)

S3 Table. Lists of 5% of most important genes identified by centrality measures. Lists of 5%
highest ranked genes from the reconstructed gene association networks using spline regression
and BETR methods. Overlap represents common most important genes identified in networks
from compared methods.
(XLSX)

S4 Table. Lists of pathways after mapping of 5% highest ranked genes from the recon-
structed gene association networks. Lists include names of pathways together with names of
mapped most important genes.
(XLSX)

S5 Table. Significantly enriched senescence associated pathways with corresponding differ-
entially expressed genes. Table presents the names of significantly enriched (FDR<0.05)
senescence associated pathways with corresponding differentially expressed genes for all treat-
ment conditions.
(XLSX)
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