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Abstract

Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane
proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of
ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We
previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated
by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA
translation. The 59UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the
predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein
G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of
reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of
erythroblasts. The 59UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame
in close proximity of the translation start site. Similar to mouse Use1, also the human 59UTR contains G-repeats in front of
the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S
ribosomal subunit and associated translation factors in front of the translation start site.
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Introduction

Erythropoiesis, the daily generation of large numbers of

erythrocytes, requires tight control of expansion and differentia-

tion of the progenitor compartment. This depends on the

cooperation of erythropoietin (Epo) with stem cell factor (SCF)

and glucocorticoids. [4,12,22,55]. SCF does not exclusively act on

erythroblasts, it is also important to maintain other progenitor

compartments [13], and aberrant SCF signaling is observed in

cancer [7,31,38,57].

SCF-induced expansion of the erythroblast compartment

requires activation of mTOR (mammalian target of rapamycin)

and subsequent release of eIF4E (eukaryote translation initiation

factor 4E) [10,24]. The availability of eIF4E regulates the rate of

mRNA translation in general, but transcripts with a long and

structured 59UTR are hypersensitive to eIF4E levels, whereas

transcripts with a short and simple 59UTR are only mildly affected

by eIF4E levels [26,33]. We previously identified transcripts that

are hypersensitive to eIF4E levels for their translation [24]. They

included Use1 (unusual SNARE in the ER-1), the mammalian

homologue of the yeast SNARE (Soluble N-ethylmaleimide-

sensitive factor attachment protein (SNAP) receptor) Use1p
[24,54].

Mammalian Use1 is also known as mEd2, as MAPK-activating

protein PM26 [39], as p31 [50], and as Q-SNARE D12 [42]. Use1

is involved in retrograde transport of CopI coatomer coated

vesicles and forms a complex with t-SNARE proteins syntaxin18

(Ufe1p) and Bnip1 (Sec20p) in the ER. This t-SNARE complex

fuses with v-SNARE protein Sec22b (Sec22p) present on vesicles

transporting ER proteins from the Ergic (ER-Golgi intermediate

compartment) and cis-Golgi back to the ER [8,16,21]. Mice

lacking Use1 die during embryogenesis before E8.5, and deletion

of Use1 in MEFs (mouse embryo fibroblasts) causes a lethal

disruption of ER structures [50].

Retrograde transport by CopI vesicles shuttles chaperones and

other ER-resident proteins back from the Golgi to the ER, which

is a requirement for anterograde transport of lipids and proteins to

the Golgi by CopII vesicles [11,34]. Anterograde ER to Golgi

transport depends, among others, on Sar1, member of the Arf

family of GTPases, and on Sec23 as the Sar1-GAP protein [9].

Interestingly, mutations in Sec23B were identified as the genetic
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cause of congenital dyserythropoietic anemia type II (CDA-II) [25]

and its specific erythroid phenotype is caused by cell type specific

differential regulation of SEC family protein expression [48].

Obviously, the rate of anterograde transport to the Golgi has to

increase in proliferating cells. SCF-induced, PI3K-dependent

translation of Use1 is a novel mechanism rendering the Golgi-

coupled secretary pathway dependent on mitogenic signaling [24].

RNA-binding proteins can coordinate the translation of

mRNAs encoding proteins that function in a specific pathway or

in the developmental stage of a particular tissue. Misregulation of

translation can cause severe diseases as exemplified by deregula-

tion of Fragile X proteins [36]. Recently, a mitochondrial isoform

of G-Rich Sequence binding Factor 1 (Grsf1) was shown to be

important for the coordinated expression of mitochondrial

proteins [2,29]. Grsf1 was initially shown to bind G-rich elements

present in the 59UTRs of influenza virus and glutathione
peroxidase 4 (Gpx4) to enhance translation of these transcripts

[30,43,51]. In mitochondria, Grsf1 cooperates with RNaseP to

stabilize and translate target transcripts [29]. Proteomic analysis

indicated that Grsf1 is predominantly present as a monomeric

protein [2].

To investigate the mechanisms by which mRNA translation

contributes to adjust expression levels of Use1, we identified the

full 59UTR and potential regulatory elements. A G-rich sequence

located just upstream of the AUG start site is the docking site for

Grsf1. Similar G-rich stretches are present just in front of the AUG

start codon in human Use1. Modulation of Grsf1 expression

directly correlated with Use1 protein expression, and both Use1

and Grsf1 appeared to be required to inhibit differentiation and

sustain renewal divisions of erythroblasts.

Materials and Methods

Cell culture
HEK-293T and NIH3T3 cells were cultured in DMEM

(Invitrogen, Breda, The Netherlands) supplemented with 10%

FCS, 100 IU/ml penicillin and 100 mg/ml streptomycin. Mouse

liver was isolated from a C57/B6 mouse 8 weeks of age. The I/11

erythroblast line was cultured in StemPro-34 medium (Life

Technologies) as described previously [55]. For expansion, the

medium was supplemented with 0.5 U/ml Epo (Ortho-Biotech,

Tilburg, The Netherlands), 100 ng/ml SCF (supernatant of CHO

producer cells), and 1026 M dexamethasone (Dex; Sigma-

Aldrich). Differentiation was induced in medium containing

2 U/ml Epo, 0.5 mg/ml holo-transferrin. Cell numbers and cell

size distribution were determined using an electronic cell counter

(CASY-1; Roche). Cell morphology was analyzed in cytospines

stained with histological dyes and neutral benzidine [28], using an

OlympusBX40 microscope and OlympusDp50 CCD camera, and

Viewfinder Lite 1.0 acquisition software.

Polyribosomal analysis
Polyribosomes were generated as described before [20,28] with

minor modifications. 406106 of I/11 cells were incubated with

0.1 mg/ml cycloheximide (Sigma Aldrich) for 10 min at 37uC,

washed with cold PBS containing 0.1 mg/ml cycloheximide and

lysed in buffer containing 10 mM Tris-HCl, 12 mM MgCl2,

140 mM NaCl, 0.5% Nonidet-P40, 500 U/ml RNAsin (Pro-

mega), 0.1 mg/ml cycloheximide, 20 mM dithiothreitol and

SigmaFast protease inhibitor (Sigma Aldrich). After removal of

nuclei (30006g; 3 min) heparin was added to 3.75 mg/ml and

lysates were centrifuged at 130006g for 13 min. Supernatants

were loaded on 10.5 ml 7–46% linear sucrose gradients containing

10 mM Tris-HCl, 12 mM MgCl2, 140 mM NaCl and centrifuged

at 190,0006g for 3 hours. Measurement of absorbance at 254 nm,

visualization and fractionation were done by Econo system

(Biorad).

RNA isolation, cDNA synthesis, RT-PCR and RACE
Total RNA from transiently transfected cells or from shRNA

transduced I/11 cells was isolated using the Trizol reagent (Life

Technologies) as recommended in the manufactures protocol.

RNA from fractionated polyribosomes was isolated by proteinase

K digestion, phenol-chloroform extraction and LiCl precipitation

as described [20]. All RNA samples were treated with DNAse

prior to cDNA synthesis according to manufacturer instructions.

cDNA for real-time PCR (RT-PCR) was generated as described

[28]. RT-PCR involved TaqMan technology (PE Applied

Biosystems Model 7700 sequence detector), using the double

stranded DNA-specific fluorescence dye SYBR green I to detect

PCR product as previously described [32]. The amplification

program consisted of 1 cycle of 50uC with 2 min hold (AmpErase

UNG incubation), 1 cycle of 95uC with 10 min hold (AmpliTaq

Gold Activation), 40 cycles of denaturation at 95uC for 15 s,

annealing at 60uC for 30 s and extension at 72uC for 30 s. Gene

specific primers were used (all primers are described in Table S1).

For RACE experiment, 60 ng of purified poly(A)+ mRNA and

GSP1 primer was used to synthesize cDNA at 60uC in accordance

to manufacturer’s protocol, using Transcriptor Reverse Tran-

scriptase (Roche 03531317001) supplied together with the mRNA

capture kit (Roche 117878960). First strand cDNA was purified

using High pure purification columns (Roche 11732668001) and

dA-tailed. The first PCR was performed using the GSP2 primer

and the dT-linker forward primer supplied by the kit. Nested PCR

was performed with the GSP3 primer and the forward primer

supplied in the kit. Final products were cloned directly into

pCR2.1 (Invitrogen) according to the instructions of the manu-

facturer. Nucleotide sequencing was carried out using a binding

domain sequencing kit according to instructions from the provider

(PE Biosystems). Sequencing was carried out on an ABI 310

automatic sequencer (PE Biosystems) using the M13 forward

primer.

Constructs
The mouse and human Use1 UTR was amplified using the

Expand High Fidelity PCR System (Roche), a forward primer

harboring an XhoI site and T7 promoter, and a reverse primer

containing a NcoI site. PCR products were ligated in pCR2.1

(Invitrogen) and pGL2-basic. The plasmids DSS, DGGGG and

DAGGGCGGA were generated with the QuickChange Site-

Direct Mutagenesis Kit (Stratagene). In the DSS the AAGAUGG

sequence around the start codon was changed into a NcoI site:

ACCAUGG. All modified vectors were confirmed by DNA

sequencing. The constructs DIn, and ‘b-globin intron’ were

generated by PCR cloning. The DIn was cloned as the spliced

construct from mouse cDNA. The b- globin plasmid was

constructed by replacing the Use1 intron of WT with the 80 bp

b-globin intron sequence from bIVS II (kind gift from S. Philipsen,

Erasmus MC). To obtain the b-globin plasmid three separate PCR

reactions were performed with overlapping primers containing

Use1 and b-globin intron sequence. PCR1 amplified Use1 59

flanking sequence, PCR2 the mini b-globin intron, and PCR3 the

39flanking sequence to the AUG start codon. The three PCR

products were purified on agarose gel. PCR1 was fused to PCR2

product using forward primer PCR1 and reverse primer from

PCR2, and PCR3 was fused using forward primer from PCR1 and

reverse primer PCR3. The Grsf1 plasmid was cloned to

pcDNA3.1(-) [52]. All indicated primers are shown in Table S1.

Grsf1 Controls Translation of Use1
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In vitro transcription and translation
Reporter plasmids (pGL2-basic) were linearized downstream of

the luciferase coding sequence (Sal1). In vitro transcription was

done with the Riboprobe in vitro Transcription Systems

(Promega). In vitro translation assay were carried out with the

Rabbit Reticulocyte Lysate System (Promega), according to the

manufacture’s protocol. After the reaction 5 ml was taken for the

luciferase assay. Luciferase activity was measured using the

Steady-Glo system (Promega).

Transfection, Western Blotting and Reporter Assay
For reporter assays, 107 Ba/F3 cells were electroporated

(0.28 kV, capacitance 960 mFD) with maximum 20 mg of DNA.

The HEK-293T cells were transfected using the transfection kit

Mirus MT-1 (Mirus Bio Coorporation) in 24-well plates according

to manufacture’s protocol. Reporter plasmids (WT,

DAGGGCGGA) and Grsf1 expression vector were co-transfected

in NIH3T3 cells using the transfection kit Lipofectamine 2000

(Invitrogen) in 24-well plates. The reporter harboring the human

Use1 59UTR, and the Grsf1 expression vector were co-transfected

in 56105 HEK-293T cells/well seeded in 12-well dishes using

calcium chloride. To exclude transcriptional effects due to

different promoter doses, the total plasmid concentration was

kept constant by adding appropriate amounts of empty expression

vector pcDNA3.1(-). Transfected cells were harvested 24 hr post-

transfection, or at the time indicated. Luciferase activity was

measured in cell lysates using the Steady-Glo system (Promega).

Transfection efficiency was determined by co-transfecting lacZ

and analyzing b-galactosidase activity using the B-Gal kit

(Promega). I/11 cells transduced with shRNA were harvested

after the indicated time point by the addition of ice-cold PBS. Cell

lysates, SDS-PAGE and Western blotting were performed as

described previously [53]. To analyze Use1 and actin protein level,

equal amounts of protein were loaded on a 12.5% polyacrylamide

gel. The antibodies used: anti-p31 rabbit polyclonal antibody

(Synaptic Systems) and anti-actin goat (Santa Cruz, CA),

secondary antibody: Goat-anti-Rabbit 800 and Donkey-anti-Goat

800 (LI-COR Biosciences). Proteins were visualized using the

Odyssey Infrared Imaging Machine (LI-COR Biosciences)

Virus production, cells transduction
The pLKO.1-puro lentiviral construct containing shRNA

sequences against Use1, Grsf1 and control sequence were

obtained from Sigma’s MISSION TRC-Mm 1.0 (Mouse) shRNA

library (Table S2). HEK-293T cells were transfected with 2.5 mg

of pMD2.G DNA, 7.5 mg psPAX.2 DNA and 10 mg of lentiviral

viral vector as described above. Medium was harvested 24 and

48 hours following transfection, and concentrated by ultracentri-

fugation at 60,000 g for 2 hours. The pellet was resuspended in

150 ml of 1% BSA/PBS and incubated for 2 hours at 4uC.

Lentiviruses were then used directly for titration, snap-frozen and

stored at 280uC. For titration, HEK-293T cells were seeded at

105 per well in 6-well plates and dilutions from 1024 to 1028 of

lentivirus supernatant were used for transduction in presence of

8 mg/ml polybrene (Sigma Aldrich). Cells were selected for 8 days

with puromycine, washed with PBS, fixed with 70% ethanol and

stained with crystal violet for 1 hour. Colonies were counted by

microscope at a 106magnification. Concentrated lentiviruses with

titers around 5006106 TU/ml were used to transduce 46106 of I/

11 cells in presence of 8 mg/ml polybrene. Cells were selected by

adding puromycine 24 hours post transduction.

RNA mobility shift assays
RNA probes were generated in the presence or absence of small

amounts of Digoxigenin-11-UTP (Roche), using the T7 Mega-

shortscript Kit (Ambion) and the primers listed in Table S1. As a

template, WT or mutated DGGGG T7 promoter driven DNA

constructs were used. In vitro transcription products were purified

using the MEGAclear kit from Ambion. For RNA/protein-

binding studies, different amounts of protein (400 ng if not stated

otherwise) were incubated with 0.5–1 pmol of digoxigenin-labeled

RNA probe for 20 min at 30uC in binding buffer (10 mM

HEPES-NaOH at pH 7.9, 25 mM KCl, 1.5 mM EDTA, 4%

glycerol, 0.25 mM DTT, 7.5 mg/mL heparin, 25 ng/mL yeast

tRNA) in a reaction volume of 15 mL. Afterwards the samples

were analyzed on native 5% polyacrylamide gel electrophoresis.

Protein/RNA complexes were transferred to a nylon membrane,

and blots were visualized using the DIG Luminescent Detection

Kit (Roche). The RNA binding affinity Kd was estimated as

shown previously [35,46]. Briefly, following visualization bands

(free RNA versus shifted RNA) were quantified using Biorad

quantification software. Then logarithmic values of the ratio of

shifted (complexed) versus free RNA were plotted as function of

logarithmic values of the molar amount of protein present in the

reaction. This revealed a linear correlation (y = mx+n), where m, n

and r2 were be determined in excel software. The logarithmic

value of the Kd could be quantified from deducing the molar

amount of protein when log (complexed RNA/free RNA) equals

zero.

Circular dichroism (CD) spectroscopy
CD spectroscopy experiments were performed as described

previously with some minor alterations [6]. A 40 nt nucleotide

probe of the Use1 59UTR wt sequence (59-GUA-GCA-GGG-

CGG-ACC-UCG-GAG-GGG-AAG-GAC-CUC-ACU-CAG-G-

39) was used. Briefly, RNA stocks at 20 mM in Tris-HCl, pH 7.5,

in the presence or absence of 100 mM of KCl or NaCl were

heated to 70uC for 5 minutes and then slowly cooled down to

10uC at a rate of 0.01 K/s. RNAs were then diluted to 5 mM and

CD spectra were monitored at a Jasco J720 spectropolarimeter at

10uC using a 200 ml quartz cuvette with a path length of 1 mm

using a measurement range of 320 - 220 nm, a response of 2 sec,

data pitch of 0.1 nm, bandwidth of 1 nm and a scanning speed of

100 nm/min. Data were accumulated from ten scans. Presented

data are representative for 3 independent experiments.

Hemoglobinisation and flow cytometry
Hemoglobin was measured as described before [3]. Propidium

Iodide positive cells were measured by flow cytometry using the

LSR II (Becton-Dickinson, San Jose, CA).

Results

Identification of the 59UTR of Use1
To investigate polysome recruitment of Use1 we first identified

the complete 59UTR of Use1. The reference cDNA

NM_025917.4, representing Use1 version 1, contains only a short

and probably incomplete 59UTR of 19 nt, possibly due to

secondary structures in the 59UTR that prematurely stopped the

reverse transcriptase. A longer Use1 isoform is encoded by

reference cDNA NM_001145780.1 that includes an upstream

exon with an alternative translation start site. For RACE (rapid

amplification of cDNA ends) we used a recombinant RT-enzyme

active at 60uC. Nested PCR was used in combination with primers

located just downstream of the AUG start codon (figure 1A),

which yielded two distinct RACE fragments, 420 and 230 nt long

Grsf1 Controls Translation of Use1
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(figure 1B). The 420 nt fragment overlapped with EST BY097923

and represents a 59UTR of 387 nt. The shorter fragment extends

as far upstream as the long fragment, but represents a transcript in

which an intron of 156 nucleotides has been spliced out exactly as

represented by NM_001145780.1 (figure 1A). The alternative

intron is situated just in front of the Use1 AUG start codon.

Efficient Use 1 expression requires intronic sequences
Alternative splicing of the 59UTR may encode proteins with

alternative start codons. In addition, splicing of the 59UTR may

affect gene expression when regulatory sequences that determine

transcript stability, localization, or translation are present in the

alternatively spliced intron [15,58].

We isolated subpolysomal and polysome bound mRNA from

erythroblasts and determined the presence of spliced and unspliced

Use1 mRNA by RT-PCR in each fraction (figure 2A,B). We

found 65% of the unspliced form, and only 25% of the spliced

form of Use1 transcript present in the actively translated fraction

of polyribosomes, which suggested that the presence of the intron

stimulated translation initiation (figure 2A,B). Although the spliced

Use1 transcript was far more abundant than the unspliced Use1
transcript in the 59RACE experiment (figure 1B), RT-PCR

indicated near equal expression in total RNA (data not shown).

Next we examined protein expression. A start codon 44 nt

upstream of the splice donor site gives rise to a short upstream

ORF (uORF) in the unspliced transcript, and to a Use1 protein

with a 14 amino acid extension at the N-terminus encoded by the

spliced transcript (figure 2C). On Western blot we compared Use1

expression in erythroblasts, with Use1 expression in liver, an organ

with high transcript expression. Only the p31 isoform of Use1,

translated from the unspliced transcript, is detected in erythro-

blasts (figure 2D). A small amount of the longer isform is

detectable in liver cells.

The role of the alternative intron in Use1 translation was further

analyzed by reporter assays in which the expression of luciferase

coupled to a wild type 59UTR (WT) was compared with constructs

lacking the intron (DIn), or containing a mutated 39 splice site

(DSS). First, identical molar amounts of in vitro synthesized

mRNA were translated in reticulocyte lysate. The luciferase

activity increased 3.5 fold when transcripts lacked the intron,

which suggested that the intron contains sequences that inhibit in
vitro translation (figure 3A). Deletion of the 39 splice site did not

affect in vitro translation (figure 3A). Next, the same reporter

constructs cloned into an expression vector (pGL2 basic) were

expressed in HEK-293T cells. Quantitative PCR indicated that

transcript expression was similar in all experiments (figure 3B). In

contrast to translation in reticulocyte lysate, luciferase activity of

the transcript lacking the intron was 4-fold decreased in these cells

(figure 3C). Mutation of the 39 splice site did not drastically alter

luciferase activity. The splice site overlaps the Kozak sequence

around the start codon. The small reduction of luciferase activity

in the DSS mutant may be due to the alteration of the luciferase

start codon from AAGAUGG to ACCAUGG (figure 2C). We also

tested a construct in which the intron was replaced by the minimal

Figure 1. Identification of the Use1 59UTR. (A) NM025917.4 represents the Use1 cDNA sequence in Genbank. The Use1 ORF is 831 nt long, the
39UTR is only 43 nt long. Nested primers (GSP1-3) located downstream of the AUG start codon were used for 59RACE which revealed a 387 nt 59UTR
with a 156 nt alternatively spliced intron just upstream of the AUG start codon (see also figure 5A). (B) The GSP2 primer in the 59RACE yielded two
products of 260 and 420 nt (RT-: cDNA reaction without reverse transcriptase). Fragments size is indicated in nucleotides.
doi:10.1371/journal.pone.0104631.g001
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intron of the b-globin gene. Luciferase expression of this reporter

construct was reduced to levels similar to those of the reporter in

which the intron was deleted (figure 3D). In conclusion, the

presence of the Use1 intronic sequence enhanced translation of the

endogenous transcript in erythroblasts (figure 2) and of reporter

constructs transfected in HEK-293T cells (figure 3). This suggest-

ed the presence of a regulatory element in the alternatively spliced

intron. Most likely, this element associates with a protein complex

that is not present in reticulocyte lysate, and the secondary

structure of the element may hinder in vitro translation resulting in

reduced in vitro translation of transcripts that retain the intron.

Grsf1 binds to Use1 59UTR and controls Use1 translation
Analysis of the alternative intron of Use1 revealed an A(G)4A

element similar to the Grsf1-binding element found in the 59UTR

of influenza virus and glutathione peroxidase 4 (Gpx4) that

enhances translation of these transcripts (figure 4A) [30,43,51].

The binding of Grsf1 to the G-rich elements in the 59UTR of

Use1 was analyzed by RNA mobility shift assay. Increasing

amounts of in vitro synthesized Grsf1 were incubated with a

digoxigenin-labeled 40 nt probes containing the G-rich elements

(figure 4B), or with a deletion of the A(G)4A motif (data not

shown). The affinity of Grsf1 to both probes was calculated by

plotting the quantified band shift signals against the Grsf1

concentration (figure 4C). This algorithm revealed a linear

correlation and the intercept with the X-axis indicated a Kd

Figure 2. The unspliced transcript is preferentially translated. (A) Polysome profile of I/ll cells. Cell lysate was centrifuged on a 7–46% sucrose
gradient and the distribution of RNA was measured by absorption at 254 nm. The free mRNA, ribosomal subunits and polysomes are indicated. (B)
Real time, reverse transcriptase PCR on polysome bound (pb) and subpolysomal (sub) mRNA using a reverse primer downstream the Use1 AUG start
codon and forward primers upstream of, and within the intron to amplify the spliced (black bars) and unspliced (white bars) RNA, respectively. The
percentage polysome recruitment was calculated for both transcripts. (C) The spliced mRNA variant encodes a longer protein variant. The top
nucleotide sequence represents the unspliced transcript. At 2154 and +3 the AG nucleotides that are part of the splice sites are shown in capitals.
The lower nucleotide sequence represents the spliced transcript. A start codon at nucleotide 2108, compliant with the Kazak consensus, appears to
be in frame with the main ORF in the spliced transcript, whereas it is followed by stop codon in the intron in the unspliced transcript. Predicted
protein sequences are shown above the nucleotide sequences. Slashes indicate gaps in the sequence as only important parts of the sequence are
shown. (D) Protein expression in cultured I/11 erythroblasts and in primary liver cells (C57/B6). Western blot probed with anti-Use1, and with anti-
Stat3 as loading control. Use 1 isoforms are indicated.
doi:10.1371/journal.pone.0104631.g002
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value of 527 nM for the wild-type probe, and 4.4 mM for the

probe with the mutated A(G)4A motif, indicating a 8.3-fold

difference of affinity dependent on the presence of the A(G)4A

motif (figure 4C). The Kd for the wt probe is higher than the Kd

for Grsf1 binding to the Gpx4 motif (40 nM), but lower than the

Kd of Grsf1 for the Influenza motif A(G)3A (1.4 mM) [17,52].

To test whether the G-rich motives are involved in Use1
translation regulation, reporter constructs containing the 59UTR

of Use1 fused to the ORF of the luciferase gene were transfected

into Ba/F3 cells. Luciferase activity and luciferase mRNA level

were analyzed 24 h post transfection. Deletion of the A(G)4A motif

reduced luciferase activity to 75%. Comparison of the Gpx4 and

Use1 59UTR indicated that the A(G)4A is present in an area with

multiple G-repeats, which may form to a secondary structure. This

putative structure, as well as the A(G)4A sequence may contribute

to control of mRNA translation. Therefore, we also deleted the

adjacent G-rich element AGGGCGGA, which reduced the

luciferase activity to 50% of wt levels (controlled for equal mRNA

expression, figure 4D). Thus, G-rich repeats may bind Grsf1 to

control mRNA translation of Use1 reporter constructs. Both a

A(G)4A and an adjacent A(G)3C element may be involved in

control of mRNA translation. The activity of the A(G)3C motif

may explain why the Kd of Grsf1 dropped from 527 nM to

4.4 mM upon deletion of the A(G)4A motif, but not to insignificant

binding.

Grsf1 stimulates Use1 translation
Next we examined whether expression of Grsf1 directly controls

Use1 protein expression using over- and underexpression of Grsf1.

We first expressed increasing amounts of Grsf1 together with

luciferase reporter constructs harboring the WT 59UTR of Use1
or a 59UTR lacking the A(G)3CGGA motif (DAGGGCGGA) in

NIH3T3 cells. Increasing levels of the Grsf1 expression plasmid,

incremented expression of luciferase from the WT construct 2-

fold. Luciferase activity from a reporter construct lacking the

A(G)3CGGA element was 2-fold reduced compared to the WT

construct, and remained unaffected by increasing Grsf1 expression

(figure 5A).

Conversely, we also reduced Grsf1 expression using vectors

expressing shRNA complementary to Grsf1, or a control shRNA.

The mouse I/11 erythroblasts were transduced with the lentiviral

constructs and harvested 48 h after puromycin selection. The

efficiency of Grsf1 knock down was measured by quantitative RT-

PCR and showed that 2 out of 5 shRNA vectors present in the

TRC library [41] resulted in at least 65% knock down (figure 5B).

Protein lysates isolated from the mouse erythroblasts were

examined by Western blot. Grsf1 knock down clearly repressed

expression of Use1 protein (figure 5C). In summary, increased

Grsf1 levels induced expression of a reporter for Use1 translation,

and Grsf1 knock down reduced Use1 expression in erythroblasts.

Homology between species
The splice-donor and -acceptor sites in mouse represent perfect

consensus sites. Comparison between species, however, indicated

that splicing is not conserved (figure 6A). The splice acceptor site is

absent in humans, the splice donor site is absent in rat. Also the

branch point A-residue that is present in a perfect consensus in the

alternative mouse intron is lacking in humans and rat (figure 6A).

Together with the absence of spliced isoforms in EST databases of

other species, this strongly suggested that the alternatively spliced

intron of mouse could be regarded a bona fide part of the Use1
transcript. Surprisingly, the 59UTR of primates, man included,

shows another unusual feature. The AUG start site of mouse Use1
is conserved, followed by a stop codon at the 8th triplet, and the

AUG start site of the main open reading frame of USE1 12 nt

downstream of this stop codon (figure 6B). When we analyzed the

presence of G-rich motifs in man and mouse, we found similar G-

repeats. These repeats obtain scores of 19 (mouse) and 20 (human)

as putative G-quadruplex structures using the QGRS-mapper

(http://bioinformatics.ramapo.edu/QGRS/index.php; fig-

ure 6B). Interestingly, the predicted G-quadruplexes were not

present in sequences conserved between man and mouse, but their

position relative to the start codon of the Use1 ORF was similar.

To confirm the presence of G-quadruplexes in the Use1
59UTR, we monitored circular dichroism spectra of the 40 nt

RNA construct that binds to Grsf1 (figure 6C). The spectra are

characterized by a positive peak at 265 nm and a negative peak at

240 nm, which is characteristic for a parallel quadruplex topology

[6]. Spectra were assessed in the presence of KCl, NaCl or without

salts. The presence of KCl coincided with the strongest (265 nm,

240 nm) peak intensities. CD spectra obtained in the presence of

NaCl or without salts exhibited significant changes of the peak

intensities. Thus, our data support the in silico data that indicate

the presence of a G-quadruplex structure within the Use1 59UTR,

and this structure is stabilized by the monovalent K+ cation.

The 59UTR of human USE1 was cloned in front of a luciferase

reporter gene to test whether translation of human USE1 is also

Figure 3. The Use1 59 UTR controls translation of a luciferase
reporter construct. (A) Luciferase activity (fc: fold change compared
to WT) produced in reticulocyte lysate from equimolar amounts
reporter RNA of reporter transcripts lacking the intron (DIn), or the 39
splice site (DSS). (B, C) Luciferase mRNA expression (B) and luciferase
activity (C) (fc: fold change compared to WT) in HEK-293T cell lysate
following transfection of the reporter constructs used in (A). (D)
Luciferase activity (fc: fold change compared to WT) of a reporter in
which the intron is replaced by a ß-globin mini-intron. Luciferase levels
are corrected for transcript expression. All bars show the average of 3
experiments, error bars indicate standard deviation.
doi:10.1371/journal.pone.0104631.g003
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responsive to Grsf1 expression levels. Transfection of the USE1-

luciferase reporter in HEK-293T cells with an increasing

concentration of Grsf1 expression plasmid enhanced luciferase

activity (figure 6D). Thus, the presence of a G-rich motif and

responsiveness to Grsf1 is conserved between man and mouse

despite a different translation start site.

Grsf1 and Use1 are required for transient amplification of
erythroblasts

Use1 is expressed under conditions that favor amplification of

the erythroblast compartment. Upon induction of differentiation

to mature erythrocytes, Use1 is rapidly down regulated [24]. If

Use1 is required for expansion of the erythroblast compartment,

its knock down and the knock down of its regulator Grsf1 are

expected to abrogate amplification and to induce differentiation.

Two lentiviral shRNA vectors able to repress Grsf1 expression

(figure 5B), and two lentiviral shRNA vectors resulting in a 60%

knock down of Use1 expression (figure 7A) were transduced to I/

11 mouse erythroblasts. Cytospins were made 4 days following

transduction, and revealed a marked increase in small hemoglo-

binised cells and in pycnotic cells (figure 7B). Cells were calculated

and cumulative cell numbers were calculated. Cultures transduc-

tion with shRNA Grsf1-a and –b, or Use1-a continued to

proliferate, although at reduced rate compared to cells transduced

with control shRNA. Cell cultures transduced with shRNA Use1-b
decreased in cell number and had to be excluded for further

analysis of differentiation (figure 7C). Upon induction of differen-

tiation, control cells increased their hemoglobin content, but not

upon knockdown of Use1 or Grsf1 (figure 7D). Instead cells with

suppressed expression of Use1 or Grsf1 accumulate dead cells that

stain positive for propidium Iodide (PI) (figure 7E). The data

shown represent one of four experiments.

Discussion

Cell proliferation requires increased synthesis of glycosylated

lipids and proteins which is dependent on ER-Golgi protein

transport by CopII-coated vesicles. Retrograde Golgi to ER

transport of chaperones, transport proteins, and other ER resident

proteins in CopI vesicles is crucial to maintain ER integrity and

allow for anterograde transport to continue. We identified the

CopI specific SNARE protein Use1 as a gene under tight

translational control in erythroblasts. Translation of Use1

Figure 4. Grsf1 binds to G-rich elements upstream the start codon of the unspliced transcript. (A) The A(G)4A element of the NP Influenza
strain, mouse Gpx4 and mouse Use1. (B) A digoxigenin labeled RNA fragment of the Use1 59UTR encompassing the A(G)4A was incubated with
increasing amounts of purified Grsf1-GST as indicated. Northern blots of complexes were stained for digoxigenin to visualize the RNA band-shift
signal (1 arrow: free probe; 2 arrows Grsf1-bound probe). (C) Quantification of Grsf1-GST binding to the WT RNA probe, or the probe in which the 4
guanidines of the A(G)4A element were deleted (Use1 DG4). The ratio of signal intensities of the shifted complex/free probe was plotted against the
Grsf1-GST concentration. The intercept with the X-axis represents the Kd (logarithmic-scale). r2(Use1) = 90,5, r2(Use1 DG4) = 85,4. (D) Luciferase activity
(fc:fold-change compared to WT) in cell lysates of BaF3 cells, transfected with reporter constructs containing the WT Use1 59UTR, with or without
deletions in the G-rich repeats (DGGGG or DAGGGCGGA). Luciferase activity is corrected for mRNA expression. Error bars indicate standard deviation
of 3 experiments.
doi:10.1371/journal.pone.0104631.g004
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appeared to be dependent on binding of Grsf1 to a G-repeat

present just upstream of the AUG start codon of the open reading

frame of Use1 mRNA. Downregulation of either Grsf1 or Use1

decreased proliferation of erythroblasts.

Alternative splicing of the mouse Use1 59 UTR
The 59RACE experiments indicated that a sequence of 155 nt

immediately upstream of the AUG start codon is spliced out in

Use1 transcripts. Reporter assays and polysome analysis indicated

that the unspliced transcript is translated preferentially. Alternative

splicing of the 59UTR as a mechanism to expose or remove

translational control elements is increasingly recognized as a

mechanism that controls protein expression [44,45]. However, the

splice donor or acceptor site are lacking in all other species that

were analyzed, suggesting different regulatory mechanisms in

these species. In primates the sequence corresponding to the

mouse AUG start codon and its surrounding Kozak consensus

sequence is identical to the mouse transcript, but after 8 codons it

is followed by a stop codon. The start codon of human USE1 is

located 12 nt downstream of this stop codon (a CUG triplet in

mouse). This suggests that translation in primates is not dependent

on leaky splicing, but on leaky scanning.

Secondary structures in the 59UTR of Use1
Several studies identified transcripts that are hypersensitive to

mTOR signaling and free eIF4E levels for their translation

[24,26,33,49]. These transcripts mostly harbor a complex RNA

structure in their 59UTR [23] and unfolding of such structures is

thought to require a higher density of scanning complex loading,

together with optimal activity of the eIF4A/B helicase complex.

Comparison of luciferase reporter constructs that contain the

spliced or unspliced 59UTR showed that intron sequences inhibit

translation in reticulocyte lysate, but enhanced translation in cells.

This indicates that secondary structure does not always inhibit

translation in cells. In intact cells, secondary structures may have a

positive role in translation, and they are most likely recognition

sites for RNA binding proteins. The structural element in the

alternatively spliced sequence appeared to bind Grsf1. Stable

secondary structures with a positive effect on mRNA translation

were also found in other transcripts identified as being transla-

tionally regulated in erythroblasts [24]. For instance, deletion of

the secondary structures in Nme2 or Igbp1 enhanced translation in

reticulocyte lysate, but impaired translation of reporter constructs

in cells [Nieradka et al. unpublished data]. The regulatory

domains in the 59UTR of Nme2 and Igbp1, however, did not

bind Grsf1.

Grsf1 binds a secondary structure upstream the Use1
start codon

The Grsf1 binding site in Influenza and in Gpx4 was

determined to be an A(G)3U or A(G)4A element respectively

whereas a larger structure was suggested to be involved in Grfs1

binding in Gpx4 [30,51,52]. Analysis of the G-rich sequences with

the QGRS-mapper that predicts G-quadruplex structures suggests

that the A(G)4A element is part of such a G-quadruplex structure

both in Use1 and in Gpx4, and this prediction was supported by

Figure 5. Grsf1 controls translation of Use1. (A) Luciferase
reporter constructs harboring the Use1 wt 59UTR (WT, black bars), or a
59UTR lacking the AGGGCGGA repeat (open bars), were transfected in
NIH3T3 cells together with increasing amounts of a Grsf1 expression
plasmid. The total amount of transfected DNA was kept constant by
adding additional backbone plasmid DNA (EV, pcDNA3.1). Luciferase
activity is corrected for mRNA expression and given as fold-change (fc)
compared to WT reporter in absence of Grsf1 overexpression. Error bars
indicate standard deviation of 3 experiments. (B) I/11cells were
transduced with the lentiviral constructs containing two different

shRNAs matching Grsf1 (indicated a and b) or control shRNA (Scr). The
efficiency of Grsf1 transcript knock down was determined using RT-PCR.
The expression of Grsf1 in parental cells is set to 1. Error bars indicate
standard deviation of 3 experiments. (C) The protein lysates from
transduced I/11 cells (representative experiment from B) were tested in
WB with anti-actin (42 kDa) and anti-Use1 (30.5 kDa) antibody.
doi:10.1371/journal.pone.0104631.g005
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our in vitro data obtained by CD spectroscopy. The entire

structure was present in the RNA gel shift probes, used to detect

specific Grsf1 binding with a Kd intermediate between Gpx4 and

the influenza NP 59UTR. Binding of Grsf1 to the larger structure,

that may be a G-quadruplex, explains why deletion of the nearby

A(G)3CGGA element affected translation of the reporter even

more than deletion of the A(G)4A. Grsf1 potentially binds such

structures similar to other hnRNP F/H proteins [51]. Detailed

Figure 6. Conservation of the Use1 59UTR between species. (A) Top: a cartoon representing consensus splice sites. Bottom: Alignment of the
59UTR of Mus musculus Use1 with Rattus norvegicus and Homo sapiens. Splice donor and –acceptor sites, and the branching point (A) are indicated by
capitals and underlined. (B) Top: alignment of the G-rich sequence preceding the AUG start codon of Use1. The stopcodon in the human sequence is
underlined, asterixes indicate identical nucleotides. Bottom: G-quadruplex structures predicted in the sequences shown in (A) by the QGSRS mapper,
including the score and length. (C) CD spectroscopy experiments were performed using a 40 nt nucleotide probe of the Use1 59UTR wt sequence (59-
GUA-GCA-GGG-CGG-ACC-UCG-GAG-GGG-AAG-GAC-CUC-ACU-CAG-G-39), in the presence of 100 mM of KCl (black line), 100 mM NaCl (dark grey line)
or in the absence of salts (light grey line). Data were accumulated from ten scans. Presented data are representative for 3 independent experiments.
(D) The human 59UTR of USE1 was cloned in front of the luciferase reporter, and transfected to HEK-293T cells with increasing amounts of Grsf1
expression vector. Luciferase activity is corrected for b-gal expression and given as fold-change (fc) compared to WT reporter in absence of Grsf1
overexpression (n = 3, error bars indicate SD, *p,0.01, **p,0.005).
doi:10.1371/journal.pone.0104631.g006
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structural data of Grsf1/RNA interactions and the role of G-

quadruplex structures are not yet available and more research is

needed to obtain such information in future studies.

G-quadruplexes are increasingly recognized as elements that

control translation [5,14]. Interestingly, also transcripts for TGFb2
and CyclinD3 contain G-quadruplex structure [1,56]. TGFb2 is a

Epo-induced gene upregulated during erythroid differentiation

[32]. When erythroblasts shift from a renewal cell cycle with size

control, to differentiation-specific cell cycle control, they shift from

CyclinD1 to CyclinD3 expression [40]. It needs to be investigated

whether these G-quadruplexes also recruit Grsf1 for the transla-

tion of the corresponding mRNA, and whether reduced expression

of TGFb2 and CyclinD3 contributes to impaired differentiation

following Grsf1 knockdown.

Figure 7. Reduced expression of Use1 or Grsf1 abrogates expansion of erythroblasts. Erythroblasts (I/11 cell line) were transduced with
lentiviral shRNA vectors repressing expression of Use1 (2 distinct sequences, indicated a and b) or Grsf1 (2 distinct sequences, indicated a and b).
Panels show representative data from 1 of 4 replicates. (A) Use1 RNA expression was controlled by RT-PCR 4 days following transfection. For Grsf1
knockdown see figure 4B) (B) Cytospins of the cultured cells made 4 days post transduction showed mainly blasts when expressing control shRNA
(Scr). Expression of shRNAs matching Use1 or Grsf1 increased the number of more mature hemoglobinised cells (Dark staining, white arrows) and
pycnotic cells (grey arrows). A quantification of cell types, based on counting .300 cells, is shown above the cytospin as pie-diagram (black, blasts;
white, maturing red cells; grey, pycnotic cells). (C) shRNA treated cells were counted daily, kept at 26106/ml and cumulative cell numbers were
calculated. (D) At the start and 96 hours following induction of differentiation the hemoglobin concentration was measured and calculated as Hb/cell
volume in arbitrary units (A.U.). (E) At 96 hours the ratio of life/dead cells was determined by staining with propidium iodide (PI). Cells positive for PI
were measured by flowcytometry (LSRII, BD).
doi:10.1371/journal.pone.0104631.g007
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Grsf1 is involved in retrograde transport of ER resident
proteins

When we reported mEd2 to be translationally regulated [24] it

was not yet known to be the human homologue of S. cerevisiae
Use1p and part of the syntaxin 18 SNARE complex [54]. The

essential role of Use1 in control of retrograde transport raises the

question whether other regulatory proteins involved in ER-Golgi

transport are tightly regulated by Grsf1. SCF controls translation

of the ER export receptor Cnih1 (Cornichon) involved in transport

of transmembrane proteins and EGF-like ligands (Gurken in

Drosophila) [18,19,24]. The transcripts that required SCF-

induced signal transduction to be translated also included the

chaperone proteins Hspe1 (hsp10), hspcb (hsp90B) and hspa8

(hsp70 protein a8) [24]. Analysis of their 59UTR revealed putative

secondary structures containing G-rich repeats that fulfill the

criteria set for Grsf1 binding sites [30,51]. Thus, Grsf1 may be

involved in translational control of critical ER-resident proteins

that may be critical to cope with increased protein and lipid

production in proliferating cells.

Grsf1 expression is transcriptionally and translationally
controlled

Grsf1 is itself translationally regulated. Activation of mTOR

results in translation of the RNA binding protein Dazl (Deleted in

azoospermia-like), and Dazl subsequently binds the 39UTR of

Grsf1 to enhance translation [27,47]. In addition, Grsf1
transcription is a downstream target of the Wnt/b-catenin

pathway. Knock down of Grsf1 impairs embryonic development

and recapitulates Wnt signaling defects [37]. Preliminary data

indicate that the Wnt pathway sustains amplification of erythro-

blasts and induces Grsf1 expression in primary fetal liver derived

erythroblast culture [Nieradka et al. unpublished data].
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