
Simulation & Gaming
42(2) 212 –224

© 2011 SAGE Publications
Reprints and permission: http://www. 
sagepub.com/journalsPermissions.nav

DOI: 10.1177/1046878110375671
http://sg.sagepub.com

Generation of Evidence 
in Simulation Runs: 
Interlinking With 
Models for Predicting 
Weather and Climate 
Change

Gabriele Gramelsberger1

Abstract

Meteorology has employed automatic computing machines since the early days of 
electronic computers. From the 1950s on, a large body of models used for “in silico” 
experiments (numerical simulation) has been built up, together with an international 
infrastructure of measuring, modeling, and testing. These outstanding developments—
unique in science—led not only to an increasing standardization in developing 
and applying models but also to deepening the interlinking between modeling and 
generating evidence. The article explores needs and strategies for evaluating scientific 
results based on mass data output devices.
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The computations of meteorological problems were among the very first computer-
based simulated problems using large-scale computing machines (see Goldstine & 
von Neumann, 1946/1963). In 1948, the meteorologist Jules Charney had conceived 
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a numerical weather prediction model together with a group of meteorologists at Princ-
eton University and “[Carl-Gustav] Rossby, Vladimir Zworykin of RCA, and Weather 
Bureau Chief Francis Reichelderfer, had succeeded in convincing von Neumann that 
weather prediction was a good candidate for his computer” (Phillips, 2000, p. 15). Two 
years later, the first simulation runs were performed on the Electronic Numerical Inte-
grator and Calculator (ENIAC) and later on the Naval Ordnance Research Calculator 
(NORC). In 1954, John von Neumann euphorically stated,

We know today, mainly due to the work of J. Charney, that we can predict by 
calculation the weather over an area like that of the United States for a duration 
like 24 hours in a manner which, from the hydrodynamicist’s point of view, may 
be quite primitive because one need for this purpose only consider one level in 
the atmosphere, i.e. the mean motion of the atmosphere. We know that this gives 
results which are, by and large, as good as what an experienced “subjective” 
forecaster can achieve, and this is very respectable. This kind of calculation, 
from start to finish, would take about a half minute with NORC. (von Neumann, 
1954/1963, p. 241)

This statement of John von Neumann is remarkable in the face of an earlier statement 
made by a meteorologist in 1939.

“Meteorology is a branch of physics and physics makes use of two powerful 
tools: experiment and mathematics. The first of these tools is denied to the mete-
orologist and the second does not prove of much use to him in climatological 
problems.” So many interrelated factors affected climate, he explained, that you 
couldn’t write it all down mathematically without making so many implying 
assumptions that the result would never match reality. It wasn’t even possible to 
calculate from first principles the average temperature of a place, let alone how 
the temperature might change in future years. And “without numerical values our 
deductions are only opinions.” (Weart, 2006)

Within one decade, weather prediction has become a computational science pro-
ducing numerical values to increasingly replace the opinions of experienced subjec-
tive forecasters and, later, to evaluate climatological prognoses. The way of producing 
these numerical values was based on a revolution in meteorology fully introduced in 
1904 by the physicist Vilhem Bjerknes (see Bjerknes, 1904).

Bjerknes (1904) articulated a new method of describing weather as a pure mechani-
cal and physical problem. Inspired by electromagnetic phenomena, which he had stud-
ied together with Heinrich Hertz at the University of Bonn in 1890, he developed a 
general circulation theorem for atmospheric phenomena. Conceiving the atmosphere 
as a problem of fluid dynamics, he described weather in a Newtonian way or as he had 
entitled his lectures in 1903 at the Stockholm Physics Society as “A Rational Method 
for Weather Prediction.” Bjerknes made use of the 19th-century Navier–Stokes 
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equations that describe the motion of fluids by applying Newton’s laws of motion to 
fluid substances. Instructed by this mechanistic view, he defined the state of the atmo-
sphere by seven atmospheric variables: humidity, temperature, pressure, wind velocity 
(three scalar quantities), and density. Changes in the atmosphere were defined as the 
sum of forces acting inside the infinitesimal volumes of the fluid. Using seven equa-
tions to predict tomorrow’s weather was an elegant way of articulating meteorological 
problems based on first principles, but these equations were too complex to be solved 
analytically. Therefore, Bjerknes developed a graphic method to calculate future 
atmospheric developments based on the current state of the atmosphere measured by, 
at that time, sparsely installed measurement devices (see Friedman, 1989).

Shift to Computational Methods
In the early 1940s, John von Neumann and Herman H. Goldstine claimed:

Our present analytical methods seem unsuitable for the solution of the important 
problems arising in connection with non-linear partial differential equations 
and, in fact, with virtually all types of non-linear problems in pure mathematics. 
The truth of this statement is particularly striking in the field of fluid dynamics. 
Only the most elementary problems have been solved analytically in this field. 
[. . .] In pure mathematics we need only look at the theories of partial differential 
and integral equations, while in applied mathematics we may refer to acoustics, 
electro-dynamics, and quantum-mechanics. The advance of analysis is, at the 
moment, stagnant along the entire front of non-linear problems. (Goldstine & 
von Neumann, 1946/1963, p. 2)

Bjerknes’s (1904) elegant method has laid down the foundation for modern meteo-
rology, but, at the same time, his method has introduced “modern” problems of compu-
tational sciences into meteorology. Replacing unknown analytical solutions of complex 
equation systems by computation—usually called “numerical simulation”—impose a 
variety of new practices dealing with computational forms of knowledge production. 
These practices require huge amounts of measurement data and computations to 
improve resolution. They face new mathematical constraints. They need new methods 
of evaluation to achieve evidence beyond the traditional ways of ensuring evidence, 
for example, by observation. Nevertheless, numerical simulations are the only way to 
deal with complex systems. Yet at the beginning of the 20th-century, computer 
power—as well as gathering enough measurement data—was extremely limited, and 
this, in turn, limited science in general.

Large-scale computing machines were the answer to these limitations, and it is not 
by chance that John von Neumann was a computer pioneer as well as one of the first 
experts in numerical solutions of partial differential equations (PDEs). He had 
become a PDE expert during his stay at Los Alamos before he moved to Princeton 
University to join the ENIAC team. At Los Alamos, von Neumann had learned that
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the solution of hyperbolic equations with more than two independent vari-
ables would afford a great advance to fluid dynamics science. Most problems 
there involve two or three spatial variables and time, i.e. three or four inde-
pendent variables. In fact the possibility of handling hyperbolic systems in 
four independent variables would very nearly constitute the final step in 
mastering the computational problems of hydrodynamics. (Goldstine & von 
Neumann, 1946/1963, p. 12)

Therefore, the realization of automatic computing machines exposed computing speed 
as an important aspect. Vannevar Bush’s analogue Differential Analyzer, the only anal-
ogy machine von Neumann rated as an acceptable all-purpose device, had to operate 
750 multiplications for the calculation of one trajectory. It required 10 to 20 minutes 
for these calculations for which a human computer would need 7 man-hours. ENIAC 
needed 2.25 seconds for the same calculations, but its performance was slowed down 
by storage problems.

Brute force was called for if methods of fast numerical computations were needed. 
Stanislav M. Ulam (1980) noted at Los Alamos in the mid-1940s, when he teamed up 
with von Neumann and others: “Proceeding by ‘brute force’ is considered by some to be 
more lowbrow” (p. 94). Applied mathematics lacked the elegance and accuracy of math-
ematical analysis and was called ugly or dull by pure mathematicians. Nevertheless, von 
Neumann expected the speed of computation would open up new fields of mathematical 
applications, raising hopes of overcoming hindering stagnation in mathematics and 
science. For numerical simulations computing speed was and still is decisive.

Today’s climate models require several quadrillion operations per simulated year. 
Current supercomputers calculate 3.5 simulated years per day, but climate models usu-
ally cover several hundreds and sometimes thousands of years. Increasing computing 
power implies more model details, better parametrizations, and finer resolutions of 
time and space, but it also requires high-resolution measurement data to adequately 
initialize simulation runs and to evaluate simulation results. Generally speaking, the 
shift to computational methods—enabled by the mathematization of science, by the 
increasing use of numerical simulations to overcome the limitations of analytical meth-
ods, and the advances in computing performance—has introduced a new way of knowl-
edge production into science with its own practices and epistemic challenges. The 
development of these practices is still on its way and the epistemic challenges have just 
appeared on the scientific agenda. One of the most important discussions assesses the 
evidence that simulation results provide (Thorngate, Tavakoli 2009; Grüne-Yanoff, 
Weirich 2010).

New Challenges for Generating Evidence
Since Jules Charney’s first numerical weather prediction model in 1950, computer-
based simulation has become an everyday scientific method of knowledge production. 
Beside theoretical and experimental departments, computational ones have been 
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established in every scientific research field. Numerical simulations of PDEs as well 
as statistical and stochastic simulations are increasingly used in physics, engineering, 
chemistry, and other areas. This ongoing transformation of science into computa-
tional sciences poses the question of how simulation-based results can be adequately 
evaluated or, put differently: Is computational science good science?

Hitherto, evidence has been created empirically by measurement, observation, and 
experimentation for testing explanations and prognoses and mathematically by proof, 
deduction, and extrapolation. All these scientific evidence strategies are interlinked 
with each other and have been refined during the past 400 years. Since the 17th century, 
empirical and mathematical strategies complete each other and the mathematization of 
science has dramatically increased. When, in 1848, the French astronomer Urban Le 
Verrier discovered the planet Neptune, “his discovery was an event of ‘pure calcula-
tion,’ ‘the grand triumph of celestial mechanics as founded on Newton’s law of gravity’” 
(Grier, 2005, p. 59). He had numerically analyzed variations in the planets’ trajectories 
by hypothesizing the impact of an undetected planet in orbit around the sun. His prog-
nosis was confirmed by the observatory at Berlin with a single night of observing. The 
observers wrote to Le Verrier, “‘Monsieur, the planet of which you indicated the posi-
tion, really exists’” (Grier, 2005, p. 60). Forecasting events by calculation is the dream 
of computational science capable of billions of operations per second today, but evalu-
ating these predictions is not as easy as it was in 1848. Le Verrier had forecasted the 
impact of the trajectory of a single object based on a relatively simple, that is, highly 
abstract system—celestial mechanics—dynamically describable and applicable on an 
observable context, obviously behaving as its mathematical counterpart had forecasted. 
Nevertheless Le Verrier’s discovery was an outstanding result for his time and its 
by-hand calculations. It has confirmed scientists’ trust in the structural isomorphism of 
mathematical and natural systems. This development has changed the practices of 
measuring, observing, and experimenting over centuries. They have been increasingly 
mathematisized and automatisized, producing a proliferating body of data. Justifying a 
hypothesis by an experiment has turned from a binary yes or no answer into a set of 
measurement data more or less fitting the mathematically forecasted trajectories of the 
behavior of a system.

Weather and climate systems as complex systems are based on these new require-
ments for ensuring evidence. The dynamics of a weather or climate system is defined 
by seven independent variables, and the space of parameters consists of hundreds of 
mathematical terms. No meteorologist or mathematician could calculate by hand or 
oversee by bare imagination the interdependencies of the trajectories that build up a 
computational weather or climate system. The help of computers as well as algorithms 
are indispensably needed if meteorologists want to set up a computational experiment. 
The brute force of computing, if lowbrow or not, creates its own epistemological rules 
for simulation-based research. The mere quantity of mass data, being used as measure-
ment data for simulation input or produced as simulation output, distinguishes current 
scientific evaluation practices from 18th- or 19th-century ones. Today’s evaluation 
strategies have to deal with mass data and averaged values. Therefore new strategies 
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have to be developed. Computational meteorology—weather prediction, but in particu-
lar climate modeling—provides some interesting ideas for mass data evaluation strate-
gies. Not only is computational meteorology among the oldest computational research 
fields, because of the social-political requirements, it has become the leading compu-
tational science establishing international infrastructures and standards of simulation 
model development, intercomparison, and evaluation.

In Silico Experiments: Simulation 
Models and Simulation Runs
Before discussing current evaluation strategies, in silico experimental systems will be 
explored in detail. Studying the simulation practices of climate modeling unveils the 
complexity of General Circulation Models (GCMs). Since Jules Charney’s simple atmo-
sphere model, meteorology has set up entire earth systems with atmosphere, ocean, land 
and sea ice, vegetation, and other components. The “engine” of an earth system is still 
the dynamic core of Bjerknes’s (1904) seven equations, a 40-year old piece of code 
handed down from model to model. The growth of a model is based on the increasing 
integration of new parametrizations within each component and the coupling of new 
components.

Parametrizations are typically based in part on simplified physical models of the 
unresolved processes (e.g., entraining plume models in some convection 
schemes). The parametrizations also involve numerical parameters that must be 
specified as input. Some of these parameters can be measured, at least in prin-
ciple, while others cannot. It is therefore common to adjust parameter values 
(possibly chosen from some prior distribution) in order to optimise model simu-
lation of particular variables or to improve global heat balance. This process is 
often known as ‘tuning.’ It is justifiable to the extent that two conditions are met:

1. Observationally based constraints on parameter ranges are not exceeded. 
Note that in some cases this may not provide a tight constraint on parameter 
values [. . .].

2. The number of degrees of freedom in the tuneable parameters is less than the 
number of degrees of freedom in the observational constraints used in model 
evaluation.

This is believed to be true for most GCMs (Intergovernmental Panel on Cli-
mate Change–Working Group 1 [IPCC-WG1], 2007, p. 596).

Meteorological simulation models are growing organisms, which age over the years, 
change, expand, and evolve. These organisms are the result of the collaborative work of 
two generations of climate modelers. The metaphor organism characterizes these large-
scale entities much better than using terms such as machinery because they are software 
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entities, not hardware ones such as measurement devices. As software entities, they are 
extremely flexible, variable, and changeable. Each new mathematical term modifies 
the whole model and has to be tested. Experiment and experimental setting are tightly 
interwoven with each other, and both are solely realized by figures. This ontology 
specifies in silico experiments carried out on simulation models. An experiment based 
on a simulation model is the performance of the model within specified initial and 
boundary conditions (simulation run). Depending on the underlying research ques-
tions, the same model can be used for various experiments. Differing experiments 
include modifications of initial data, simulation period, resolution, parameter setting, 
reference data sets based on measurement for initializing the simulation run (initial 
data), and the results of interest with respect to research questions, for example, the 
development of global temperature until 2100 (output data) according to CO2 input 
data (hypothesis, e.g., CO2 doubling in 2020).

A climatological in silico experiment has to define the spatial and temporal resolu-
tion of both simulation run and simulation period. Simulation runs are usually based on 
16 and more vertical layers and a T42 (distance of grid points projected on Earth scale 
[equator]: 250 km) or T63 (180 km) resolution of each layer. A T42 resolution creates 
a global grid of more than 10,000 grid points for each layer and needs a temporal reso-
lution of 20 minutes. Simulation runs and test runs alternate during the experiment. Test 
runs are based on a higher spatial and temporal resolution and prove the stability of 
results; for example, T106 (110 km) resolution based on more than 50,000 grid points 
for each layer and 12 minutes time resolution. Stability is given when a higher resolu-
tion improves results within an expected range of values. The simulation period depends 
on the experiment and the available measurement and reanalysis data. Meteorology has 
collected reference data sets for various time periods and variables, for example, 
NCEP-NCAR Reanalysis Temperature Change Plots for 1948-2002, released in August 
2003. “The NCEP/NCAR Reanalysis Project is an effort to reanalyze historical data 
using state-of-the-art models” (National Centre for Atmospheric Research [NCAR], 
2008). These data sets are used to initialize simulation runs and to evaluate results 
under standardized conditions.

All the information of an experimental setting is given as a preset of the simulation 
run (initialize model, data channels, and parameters; initialize space/time dimension, 
and memory). After the preset has been completed, the iteration for the first time step 
starts by initializing the flow of computation, file by file. An atmosphere model consists 
of hundred of files describing the computation of the model’s dynamic and parameter-
ization (diabatic tendencies: cloud cover, radiation fields, vertical turbulence exchange, 
radiation heating, gravity wave drag, cumulus convection, large scale condensation, 
land surface processes, lake physics, and update lake/sea temperature, etc.). For each 
time step (iteration), the simulation run receives data from the ocean model, computes 
advection and adiabatic tendencies, stores these results as input data for computing the 
physical parameters (diabatic tendencies), and, after this, goes on computing the hori-
zontal diffusion. Finally, the results are delivered to the ocean model and stored for 
initializing the next iteration. This procedure has to be performed for each grid point 
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and each time step, for example, for 16 layers × 51,000 grid points (T106) = 816,000 
grid points each 12 minutes. A simulated day consists of 120 and a simulated year of 
43,800 iterations. It is obvious that the output of such an in silico experiment is a data 
set of billions of figures based on more than 5 million values of the seven variables—
humidity, temperature, pressure, wind velocity (three scalar quantities), and density—
describing the state of the atmosphere for each time step at each grid point.

Infrastructure of Model Development, 
Evaluation, and Intercomparison
Resolving processes grid point by grid point and dealing with billions of figures 
require new methods of evaluation. Computational meteorology has developed vari-
ous strategies to ensure evidence for simulation results. These strategies are based on 
an international infrastructure and standardization for measuring, modeling, and test-
ing. The best way to explore this international infrastructure is the reading of the 2007 
published Fourth Assessment Report (AR4) of the Working Group 1 on The Physical 
Science Basis of Climate Change of the Intergovernmental Panel on Climate Change 
(see IPCC-WG1, 2007). Chapter 8 of the AR4 addresses “Climate Models and Their 
Evaluation” and distinguishes between system level and component level evaluation:

A climate model is a very complex system, with many components. The model 
must of course be tested at the system level, that is, by running the full model and 
comparing the results with observations. Such tests can reveal problems, but their 
source is often hidden by the model’s complexity. For this reason, it is also 
important to test the model at the component level, that is, by isolating particular 
components and testing them independently of the complete model. Component-
level evaluation of climate models is common. Numerical methods are tested in 
standardised tests, organised through activities such as the quasi-biennial Work-
shops on Partial Differential Equations on the Sphere. Physical parametrizations 
used in climate models are being tested through numerous case studies (some 
based on observations and some idealised), organised through programs such 
as the Atmospheric Radiation Measurement (ARM) program, EUROpean Cloud 
Systems (EUROCS) and the Global Energy and Water cycle Experiment 
(GEWEX) Cloud System Study (GCSS). These activities have been ongoing for 
a decade or more, and a large body of results has been published (e.g., Randall 
et al., 2003). (IPCC-WG1, 2007, p. 594)

A typical standard test on the system level requires the proper prognosis of today’s 
climate by using paleo data for initializing the simulation run. Models that fail this test 
have to be considered as “false.” They have to be improved and tested again. Testing 
models against past (paleo data) and present climate (instrumental data) is the most 
important part of model evaluation. The evaluation of model data requires fine and 
homogeneously gridded sets of measurement data for long observation periods but 
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such sets do not exist. Paleo data for climate variables consist of single time series 
gathered from ice and soil analysis. This source of information is limited in its reso-
lution and its uncertainties are greater than uncertainties of instrumental data. Instru-
mental data also lack information for wide areas, for example, oceans, and have 
to be interpolated (data assimilation), but interpolation introduces and distributes 
uncertainties.

Although the instrumental period goes back to the 18th and 19th century, the distri-
bution of measurement devices has slowly increased. Mass data were not available 
until satellites were in use. Therefore computational meteorology tries to acquire ref-
erence data sets of a fine spatial and temporal resolution for crucial parameters such as 
temperature or pressure by using methods of reanalysis. Reanalysis is based on a com-
bination of measurement and model data. While simulation models are performed on 
a homogeneous grid requiring a homogeneous set of data—for initializing as well as 
evaluation simulation results—measurement is always inhomogeneously distributed. 
Therefore measurement data sets are incomplete and have to be interpolated by 
advanced algorithms. These interpolations are based on model data. These reanalysis 
data sets are internationally used for standardizing experiments (e.g., NCAR, 2008).

Since the late 1980s, two new evaluation strategies have been developed: Model 
intercomparison and ensemble prognosis.

The Coupled Model Intercomparison Project (CMIP) is the analogue of AMIP 
for global coupled ocean-atmosphere GCMs. CMIP began in 1995 under the 
auspices of the Working Group on Coupled Modelling (WGCM). The PCMDI 
supports CMIP by helping WGCM to determine the scope of the project, by 
maintaining the project’s data base, and by participating in data analysis. CMIP 
has received model output from the pre-industrial climate simulations (“control 
runs”) and 1% per year increasing-CO2 simulations of about 30 coupled GCMs. 
More recent phases of the project include more realistic scenarios of climate 
forcing. (CLIVAR 2008)

Thirty-five models are involved in the CIMP project. A set of experiments and 
standardized benchmark calculations has to be performed by each of the participating 
models. The results are stored by the PCMDI Program for Climate Model Diagnosis 
and Intercomparison.

This archive, referred to here [AR4] as “The Multi-Model Data set (MMD) 
at PCMDI,” has allowed hundreds of researchers from outside the modelling 
groups to scrutinise the models from a variety of perspectives. [. . .] Overall, the 
vigorous, ongoing intercomparison activities have increased communication 
among modelling groups, allowed rapid identification and correction of model-
ling errors and encouraged the creation of standardised benchmark calculations, 
as well as a more complete and systematic record of modelling progress. 
(IPCC-WG1, 2007, p. 594)
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Ensemble prognoses pay credit to the fact that the average result of a number of 
simulation runs under slightly changed initial conditions lead in average to better 
results than the output of each single simulation run. During the last years, metrics 
have been developed to weight the reliability of model data, but the development is at 
an early stage. One reason is that ensemble runs require enormous resources of com-
puting power, but computing power is still limited, even though today’s supercomput-
ers perform billions of operations per second.

There is currently no consensus on the optimal way to divide computer resources 
among: finer numerical grids, which allow for better simulations; greater numbers 
of ensemble members, which allow for better statistical estimates of uncertainty; 
and inclusion of a more complete set of processes (e.g., carbon feedbacks, atmo-
spheric chemistry interactions). (IPCC-WG1, 2007, p. 592)

Model intercomparison is a unique evaluation method deployed solely in meteorol-
ogy. It requires a variety of models as well as an infrastructure of model development, 
reference data sets, internationally coordinated evaluation projects, and, in general, the 
international synchronization of main research goals and efforts. Meteorology has built 
up such an infrastructure during the last century because of the sociopolitical require-
ments of weather prediction and climate change. Meteorology has also built up a 
variety of models sharing similar concepts such as the dynamic core but differing in 
aspects such as parametrization and coupling.

The future climate change results assessed . . . are based on a hierarchy of models, 
ranging from Atmosphere-Ocean General Circulation Models (AOGCMs) and 
Earth System Models of Intermediate Complexity (EMICs) to Simple Climate 
Models (SCMs). (IPCC-WG1, 2007, p. 749)

No other science discipline exists with such a large body of comparable models 
and such a coordinated infrastructure for measuring, modeling, and testing. Therefore, 
computational meteorology is the leading science in domesticating simulation as a 
reliable scientific method of knowledge production.

Generating Evidence as a Conjoint Endeavor
Testing and evaluating models as well as simulation results has become a conjoint 
endeavor. For two decades, the international infrastructure of model development, eval-
uation, and intercomparison has been proliferating: Numerous international working 
groups, networks, and conjoint projects have been established, interlinking the scientific 
community of computational meteorology—modelers, model users, and data users. 
They increasingly build up and publish on community platforms a large body of experi-
ence and knowledge, new evaluation methods and practices, and metrics and benchmark 
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calculations, which allow improving reliability of model and model data. This conjoint 
endeavor is the key in epistemically managing mass data devices such as satellites and 
simulation models. Its main goal is to analyze the interlinking between modeling and 
model data but also model data and measurement data by performing simulation runs. 
Put differently, the main goal is to study model behavior from all perspectives, perma-
nently improving not only simulation models within an international collaboration but 
also competition. Because of this ongoing endeavor, simulation models have become 
increasingly reliable for experimentation as well as prognosis. They have become 
more reliable because the growth of models increasingly involves more realistic 
aspects of a system. For instance Charney’s first weather model was a highly idealized 
barotropic model where wind develops parallel to isobars. The constraints of his 
experiments were too strong to perform reliable experimental results, not to speak 
about prognosis. The first models were conceptual models performed on computers 
rather than in silico experimental systems as they are today.

The IPCC Assessment Reports give insight into the growth of models and the 
strategies of dealing with mass data, in particular with in silico results. From this 
perspective, the reports uniquely document the establishing of an in silico based sci-
ence, although this process is at an early stage. The IPCC Assessment Reports also 
show how evidence is generated within the computational meteorology community. 
Unlike the possibility of failure of real experiments, which falsify the underlying 
hypothesis because of the ontological difference between theory and experiment, 
the failure of in silico experiments can have different meanings. It can point to errors 
of coding, mathematical problems, round-off errors, and other problems, but it does 
not directly indicate that the hypothesis tested by an in silico experiment is false. 
The hypothesis of anthropogenic climate change is a good example of this problem. 
Provided that a well evaluated climate model is used to compute the future global 
warming based on man-made CO2 doubling during the next 10 years, the results of 
increasing mean temperature can indicate correlation with the hypothesis (man-
made CO2 doubling) but does not necessarily indicate the hypothesis’ truth. The 
interrelation between input (hypothesis) and output (results) is a weak one because 
of the complex interlinking of hundreds of “if, else” conditions of a climate model. 
No researcher is able to oversee the interdependencies of the trajectories unfolded 
by the computed model. Evidence is solely generated by the community’s conjoint 
endeavor as an assemblage of knowledge gathered by more than 40 years of practice 
in climate modeling and simulation. Each simulation run—displayed on community 
platforms—is deepening the interlinking between the model, its results, and the evi-
dence because each simulation run adds a bit more understanding of complex model 
behavior and therefore evaluation of the results. Generating evidence is not a simple 
“yes” or “no” decision or “false” or “right.” Generating evidence for in silico based 
results—in particular for prognoses—is a complex procedure of tests, comparisons, 
and analysis of the model’s behavior—in general (system level) and in detail (com-
ponent level, parameter level).
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