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Semiclassical approach to the physics of smooth superlattice potentials in graphene

Jürgen Dietel1 and Hagen Kleinert1,2

1Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
2ICRANeT, Piazzale della Repubblica 1, 10-65122, Pescara, Italy

(Received 24 January 2013; published 17 June 2013)

Due to the chiral nature of the Dirac equation, governing the dynamics of electrons in graphene, overlying of
an electrical superlattice (SL) can open new Dirac points on the Fermi surface of the energy spectrum. These
lead to novel low-excitation physical phenomena. A typical example for such a system is neutral graphene with
a symmetrical unidirectional SL. We show here that in smooth SLs, a semiclassical approximation provides a
good mathematical description for particles. Due to the one-dimensional nature of the unidirectional potential,
a wave-function description leads to a generalized Bohr-Sommerfeld quantization condition for the energy
eigenvalues. In order to pave the way for the application of semiclassical methods to two-dimensional SLs in
general, we compare these energy eigenvalues with those obtained from numerical calculations and with the
results from a semiclassical Gutzwiller trace formula via the beam-splitting technique. Finally, we calculate
ballistic conductivities in general point-symmetric unidirectional SLs with one electron and one hole region in
the fundamental cell showing only Klein scattering of the semiclassical wave functions.
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I. INTRODUCTION

Suspended graphene samples exhibit high electron mobil-
ities, where ballistic transport is seen for samples up to the
micrometer length.1–3 Within the tight-binding approximation,
the graphene system shows two inequivalent momentum
energy knots in the Brillouin zone at low energies, located
at momenta K and K′. An effective low-energy description
around these points is given by a massless Dirac equation.
Electrons close to these points are related to each other
by time-inversion symmetry.4 The effective quasirelativistic
Hamiltonian is then given by

H = h̄vF

(
1

i
σx∂x + 1

i
σy∂y

)
+ V (r) (1)

for electrons near the K point. Here, vF is the electron velocity
in graphene and V (r) denotes an external potential.

In the energy spectrum of the associated Schrödinger
equation, minigaps are opened by the application of an
overlying superlattice potential. New bands arise and two of
them may touch each other at certain momenta, showing up
in new Dirac points. These points are classified by their local
similarity of the energy spectrum with the spectrum of the
massless Dirac equation. Besides this, they show locally a
chiral behavior in the pseudospin expectation value (〈σx〉,〈σy〉)
as a function of the Bloch momentum.5

This was first claimed theoretically by Park et al.,6,7 and
in fact, new Dirac points were found experimentally quite
recently for graphene on a hexagonal boron nitride substrate.8

New Dirac points are found at momenta Gm/2, where Gm is a
reciprocal lattice wave vector of the superlattice (SL). Their en-
ergies are ED = ±h̄vF |Gm|/2.6 Due to their nonzero energies,
these new Dirac points cannot be observed experimentally in
low-energy excitation experiments on neutral graphene.

Later on, additional new Dirac points were found in the-
oretical analyses, all located at zero energy. The calculations
were done for graphene with a superimposed unidirectional
electrical superlattice potential.5,9 Actually, these new Dirac
points had already appeared earlier in the literature within

the framework of an unidirectional SL on a nanotube.10

For the most simple representation of a unidirectional SL
step potential V (x) = V χ (x), where χ (x) = sg[sin(2πx/d)],
and sg(x) denotes the sign of x, the lowest energy band is
shown in Fig. 1. The quantity d denotes the wavelength of
the SL. The curves were obtained from a precise numerical
diagonalization. The full energy spectrum of the lowest band
energy shows a mirror symmetry at the px and py axes.

The energy spectrum close to the Dirac points is given
by11,12

εs = svF α̃2
0

√
p2

x + |�̂|2p2
y , (2)

with α0 = [(V/vF )2 − p2
y]1/2d/2h̄, �̂ = sin(α0)eiα0/α0, α̃0 =

α0/Ṽ , where Ṽ = V d/2h̄vF . The Bloch momenta in x

direction lie in the Brillouin zone −π/d � px/h̄ � π/d. The
parameter s distinguishes the conduction band (s = 1) from
the valence band (s = −1). From this, we deduce that the
Fermi velocity v = h̄∂εs/∂p is in general anisotropic at the
central valley Dirac point.13 The new Dirac points are located
at momenta px = 0 and pyd/2h̄ = ±(Ṽ 2 − (πn)2)1/2 with
integer n ∈ N, where py takes real values. Furthermore, for
momenta beyond the new Dirac points, we obtain |py | �
V/vF and energy εs ∼ svF |py |.12

These new zero-energy Dirac points differ from the above
mentioned points of Park et al.,6 since they are not located at
momenta with certain fractions of the reciprocal lattice. It is
well known that these momenta are part of the region where
SL minibands are formed. The Dirac points are then touching
points of two minibands. In the case of the zero-energy Dirac
points, due to the unidirectional SLs, the pristine Dirac cones
are deformed strongly due to the electrical potential such that
the electron and valence bands touch.

These new Dirac points are located at zero energy, and for
that reason they possess a number of new interesting transport
properties.5,12,14–17 By an application of an additional magnetic
field, new quantum Hall plateaus are found.9 In disordered SLs,
there may also exist interesting localization phenomena.18
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FIG. 1. (Color online) Lowest energy band εd/2h̄vF for the Bloch
momentum px = 0 and several SL potentials V (x) = V χ (x) as a
function of the dimensionless transversal momentum pyd/2h̄.

A general understanding of the energy spectrum, and
especially the location of new Dirac points, for general
two-dimensional nonunidirectional potentials is still missing.
Most interesting is the low-energy sector of the energy
spectrum in neutral graphene. By taking into account that the
zero-energy Dirac points show up only at large SL potentials,
semiclassical methods may be used to determine the lowest
energy bands for general smooth SLs. To justify this claim,
we demand that for unidirectional potentials the semiclassical
condition

h̄vF

|(E − V )(V ′)|
[
√

(E − V )2 − (vF py)2]3
� 1 (3)

should be fulfilled, except at a few penetration points where√
[E − V (xp)]2 − (vF py)2 = 0. (4)

Here, V ′(x) is the derivate of the potential V with respect to
x. In classical mechanics, these points correspond to turning
points. Due to the chiral nature of Eq. (1), however, this is
no longer true. For example, at the transverse momentum
py = 0, the transmission probability at the penetration points
is unity. Here, the electron transforms from a particle state
(electron-like) to a hole state (positron-like) or vice versa. This
is the analog of Klein’s paradox19–21 in relativistic quantum
mechanics. In this context, it was shown later by Sauter22

that the transmission probability is decreasing for nonzero
momenta py , and approaching zero for vF p2

y/h̄V ′(xp) � 1.
In order to prepare the semiclassical approach for smooth

SLs, in Sec. II, we shall first discuss the semiclassical
wave functions of the problem. Then we derive transmission
and reflection coefficients for electrons or holes, carrying
out Klein’s scattering analysis through classically forbidden
regions between two penetration points. We apply our results
to the simplest unidirectional SL with one electron and one
hole region in the fundamental cell, showing only Klein
scattering. Our semiclassic results for the lowest energy bands
compare well with those obtained numerically. Furthermore,
we address the question whether one can construct SLs within
the semiclassical approximation that show the ability to focus
electron beams. In order to see in which way a semiclassical
approach could work also beyond the unidirectional SL case, in

Sec. III, we consider the generalization of the Gutzwiller trace
formula that includes also the beam splitting phenomenon in
the calculation of the semiclassical density of states. When
calculated from small-length orbits, the density of states will
permit us to reconstruct the lowest energy band. Finally, in
Sec. IV, we shall calculate semiclassical conductivity formulas
for smooth unidirectional SLs and compare our results with
existing calculations in the literature. We restrict ourselves
thereby to ballistic transport. Sections V and VI contain a
summary of the results.

II. THE SEMICLASSICAL ENERGY SPECTRUM
OF THE LOWEST-BAND

In the following, we formulate the semiclassical approach
to the quasirelativistic Dirac equation of electrons in a
unidirectional SL (1). The energy spectrum will show mirror
symmetry with respect to the transversal momentum py

at the py = 0 axis. In the first section, the semiclassical
solution of the eigenvalue problem will be obtained via the
Bohr-Sommerfeld quantization condition for nonrelativistic
electrons. We obtain very good agreement for the energy
spectrum of the lowest band with numerical results for the SL-
deformed sinus potential. In the second section, we consider an
interesting counterexample where the semiclassical approach
fails.

A. Generalized Bohr-Sommerfeld formalism

A starting point is the solution for the semiclassical wave
function for the Hamiltonian (1). This was previously done in
the case of the relativistic Dirac equation in Refs. 23 and 24.
We use the semiclassical Ansatz �s(x) = ∑

n h̄n�ne
iS(x)/h̄ in

which �n, S(x) are independent of h̄. Up to the order h̄0, we
obtain

�s(x) = |E − V (x)|
vF

√|px |
(

s
px−ipy√

p2
x+p2

y

1

)
eiS(x)/h̄+iφ(x)eipyy/h̄ (5)

with

px(x) = ±
√

[E − V (x)]2

v2
F

− p2
y , (6)

S(x) =
∫ x

xp

dx ′px(x ′) , (7)

φ(x) = −py

2

∫ x

xp

dx ′ 1

px(x ′)
∂x ′ [E − V (x ′)]

[E − V (x ′)]
. (8)

Here, s = sg[E − V (x)] and S(x) is the classical eikonal
action of the particle. For neutral graphene, the states with
s = 1 are particle-like and those with s = −1 are holelike.
The symbols px and py denote the momenta of the particle or
hole in x and y directions, respectively. Note that for φ = 0
and neglecting the vector part [s(px − ipy)/

√
p2

x + p2
y ,1]T in

Eq. (5), the wave function �s(x) is the semiclassical solution
of the massless quasirelativistic Klein-Gordon wave equation.
This means that φ(x) is a phase correction factor due to
the chiral nature of the quasirelativistic Dirac equation (1).
This phase factor has, of course, direct consequences on the
semiclassical Bohr-Sommerfeld quantization condition.24,25

Without proof we note that by taking into account also a
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homogeneous magnetic field this factor exactly cancels the
Maslov index26 of the turning points such that the Landau
level energy ladder starts at zero energy.27

We consider in this paper the simplest case of small energies
|E| � max[|V (x)|] where the scattering in a smooth SL
is mainly based on the so-called Klein tunneling for p2

y �
max[|V (x)|]/vF . We shall discuss the situation in general also
for larger py at the end of Sec. II A.

We assume in the following that in the scattering process,
incident particles are coming from the left side of the tunnel
region with a positive velocity and energy E − V (x) > 0.
The energy E is conserved during the scattering processes
considered in this paper. The particle then tunnels from the
left penetration point xpL [see Eq. (4)] into a classically
forbidden region between the penetration points xpL and xpR ,
where

√
[E − V (x)]2 − (vF py)2 is imaginary. Beyond the

penetration point xpR on the right-hand side of the tunnel
region, it will reach the classically allowed hole region,
where

√
[E − V (x)]2 − (vF py)2 is again real but now we have

E − V (x) < 0. In general, in a Klein tunnel process, a particle
(hole) tunnels through a classical forbidden region into a hole
(particle) region.

Besides Klein tunneling, there are also conventional
tunneling processes, for example, a particle (hole) tunnel-
ing through the full hole (particle) region at imaginary√

[E − V (x)]2 − (vF py)2, i.e., where the particle (hole) does
not change its signature s. We note that Klein tunneling is also
referred to as interband scattering in the literature whereas
conventional scattering is an inner band scattering event. One
can find further discussions on the nature of scattering in
graphene, e.g., in Refs. 28–30.

By comparing Eqs. (5)–(8) with the definition of the
penetration points (4), we identify a singular behavior of the
semiclassical wave function at these points. This means that
there is still the freedom to linearly combine the basis of
semiclassical wave-function solutions in Eq. (5) consisting
of left- and right-moving particles or holes with some
yet undetermined numerical prefactors in every nonsingular
potential sector. This freedom has to be fixed by further
physical arguments. As in the quasi-non-relativistic case, we
achieve this by matching the wave function (5) to the x → ±∞
asymptotics of the exact solution of Eq. (1) for the linear
potential V (x) = P (x − xp), where P ≈ ∂xp

V (xp) ≡ V ′(xp)
with xp ≡ (xpR + xpL)/2. In the following, we assume that
the SL is smooth in the classically forbidden region, meaning
that V ′(x) = P changes little between the left and right
penetration points xpL and xpR where P > 0. In order to
solve this linear potential scattering problem, we first use the
ansatz �(x) = h̄vF [ 1

i
σx∂x + σypy/h̄ − Px](1,1)T ϕ(x). This

leads to a Klein-Gordon-like differential equation for the wave
function ϕ(x) in Eq. (1), in rescaled coordinates reading[

∂2
x ′ + 1

4
x ′2 −

(
i

2
+ p̃2

y

)]
ϕ(x ′) = 0, (9)

where the dimensionless transversal momentum square p̃2
y is

given by

p̃2
y = vF p2

y

2h̄|P | (10)
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FIG. 2. (Color online) Transmission function |T |, reflection
function |R|, and 3π/4 + ϑ as a function of p̃2

y .

and x ′ ≡ (2P/h̄vF )1/2x. It can be solved with the help of
special functions.31 By comparing the asymptotics of this so-
lution for x → ±∞ with the semiclassical wave function (5),
we obtain the transmission and reflection coefficients (11)
and (12) of the scattering of an electron incident from the
left at the potential V (x) = P (x − xp). After a lengthy but
straightforward calculation, the reflection

−→
Reh and transmis-

sion
−→
Teh coefficients are found as

−→
Teh = e−iπsg(py )/2e−πp̃2

y , (11)

−→
Reh = eiϑ(p̃2

y )
√

1 − e−2πp̃2
y , (12)

with

ϑ
(
p̃2

y

) = −π/4 + arg
[
�
(
ip̃2

y

)]+ p̃2
y − p̃2

y ln
(
p̃2

y

)
. (13)

Here, � is the Gamma-function. In the reflection and transmis-
sion coefficients, the arrows on top of the coefficients denote
the direction of scattering, i.e., from left to right or vice versa.
The suffixes “eh” (“he”) denotes the case where on the left-
(right-)hand side of the scattering region the electron is
particle-like and on the right- (left-)hand side holelike.

Note that a similar calculation for smooth graphene np

and npn junctions was carried out in Refs. 32–34. In Fig. 2,
we show the functions |T | ≡ |−→Teh(p̃2

y)|, |R| ≡ |−→Reh(p̃2
y)|, and

3π/4 + ϑ(p̃2
y), where ϑ is an increasing function of p̃2

y with
limiting values ϑ(0) = −3π/4 and limp̃2

y→∞ ϑ(p̃2
y) = −π/2.

The transmission and reflection coefficient for a hole
incident from the right, but again V ′(xp) > 0, can then be
determined from Eqs. (11) and (12), using the invariance of
Eq. (1) under the transformation �(x) → σz�

∗(x) for fixed
py . This leads to

←−
Teh = −→

Teh and
←−
Reh = −→

R
∗
eh. The transmission

and reflection coefficients for a potential with V ′(xp) � 0
can be read off from the above coefficients by using the
substitution py → −py in the corresponding expressions.
This leads to

−→
The(py) = ←−

Teh(−py),
←−
The(py) = −→

Teh(−py) and−→
Rhe(py) = ←−

Teh(−py),
←−
Rhe(py) = −→

Reh(−py).
For h̄ → 0 or py → ∞, finally, we obtain from Eqs. (11)–

(13) that
−→
Teh → 0 and

−→
Reh = e−iπ/2. Thus, in this limit, we

obtain the same reflection and transmission coefficients as for
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the reflection of a nonrelativistic particle at a smooth potential
barrier.35

The matching procedure used above for the determination
of the reflection and transmission coefficients requires that the
potential changes little between the penetration points in the
classically forbidden region. This has to be fulfilled even in
the vicinity of the penetration points. We find from Eq. (3) that
V (x) should be almost constant where

|x − xp| � xpR − xpL

2
+
√

h̄vF

P
min

(
1,

1

p̃
1/3
y

)
. (14)

It is clear that a steplike SL does not fulfill this condition.
Note that in the subsequent numerical calculations, we shall
use P ≈ |V (xpR) − V (xpL)|/(xpR − xpL) for fixing p̃2

y .
Next, we calculate the energy spectrum for an unidirectional

superlattice potential with two penetration points in the
fundamental cell. This configuration is shown in Fig. 3. In
order to calculate the eigenvalue spectrum, we have used a
transfer matrix method. Note, for example, that the transfer

matrix across the ith penetration point is

Mi =

⎛
⎜⎝

−→
Ti −

←−
Ri

−→
Ri←−

T i

←−
Ri←−
T i

−
−→
Ri←−
T i

1←−
T i

⎞
⎟⎠ . (15)

With the definitions

Si(x) = (−1)i+1
∫ x

xpi1

dx ′
√

[E − V (x ′)]2

v2
F

− p2
y (16)

and

Ni(x) =
(

ei
Si
h̄

(x) 0

0 e−i
Si
h̄

(x)

)
, (17)

the energy spectrum is given by det(A − eipxd/h̄E) = 0 where
A = M2N2(xp22)M1N1(xp12), and E denotes the unit matrix.
The various intersection points xpij

are illustrated for a sinus
potential and E = 0 in Fig. 3. From Eq. (8), we obtain that the
phase factors φ(x) in the transfer matrix Ni are canceled. By
using once more the arguments following (13), we obtain

cos

(
S1 + S2

h̄

)
− |R1||R2| cos

[
S1 − S2

h̄
+ arg(

−→
R1) − arg(

−→
R2)

]
= |T1||T2| cos

(
pxd

h̄

)
, (18)

where Si ≡ Si(xpi2). In order to obtain a particle-hole sym-
metry in the spectrum, which is the requirement to find new
Dirac points for E = 0, we demand point symmetry of the
SL-potential, i.e., S1 = −S2 for E = 0. By using the fact that
(1 − |R1||R2|)/|T1||T2| > 1 for |R1| �= |R2|, we obtain that
Eq. (18) can not be fulfilled for E = 0 in the case of a potential
which has no additional mirror symmetry with respect to an
axis parallel to the y-axis. This means that semiclassically we
do not find any additional Dirac-point except the one for pris-
tine graphene at px = py = 0 for asymmetric potentials where−→
R1 �= −−→

R2. Numerically, this is seen using the deformed
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FIG. 3. (Color online) We show the deformed sinus poten-
tial (19) for potenial strength V = 4 and deformation parameters
a = 0,0.1,0.5,100. The various penetration points are shown for
the nondeformed sinus potential a = 0 in the case that E = 0 and
pyvF /V = 1.

sinus-potential

V (x) = V sin

{
2π (x − d/2)

d

[1 + a(x − d/2)2]

1 + a(d/2)2

}
, (19)

defined for 0 � x � d, for calculating the lowest energy band
by a numerical diagonalization and comparing the results
with the semiclassical ones, see Eq. (18). Figure 3 shows this
potential for various deformation parameters a.

In the left panel of Fig. 4, we show the lowest energy band
for px = 0, using the exact numerical diagonalization method
for the various sinus potentials (19), whereas in the right
panel the corresponding semiclassical result (18) is shown. The
same is shown in Fig. 5 for various deformed sinus potentials.
The plots are characterized by Ṽ (x) ≡ V (x)d/2h̄vF since the
energy spectrum (up to a simple rescaling of momentum and
energy) as well as the conductivities depend mainly on this
dimensionless potential. In both figures, we obtain an almost
perfect agreement between numerical diagonalization results
and the semiclassical lowest energy band.
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FIG. 4. (Color online) Lowest energy band at px = 0 for the
nondeformed sinus potential (19), with a = 0 and Ṽ = 0,2π,4π,6π .
Numerical (left) and the semiclassical (right) results (18).
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FIG. 5. (Color online) Lowest energy band at px = 0 for the
deformed sinus potential (19) with Ṽ = 4π and a = 0.1,0.5,100.
Numerical (left) and the semiclassical (right) results (18).

As was already discussed following Eq. (8), the Klein-
scattering process dominantes over other scattering processes
for small energies E and momenta py for smooth SLs. Let
us elaborate this point further. First, we can show using
semiclassical methods similar to those applied to the steplike
case in Sec. I, that |εs | � vF |py | at large momenta where
|pyvF | � max(|V (x)|). On the other hand, for small momenta
where |pyvF | is smaller than the absolute value of possible
local minima (maxima) of V (x) in the case of particles
(holes), we obtain that mainly Klein scattering processes
are active for small energies, |E| � |pyvF |. For momenta
py between these two extrema, also conventional scattering
processes are relevant. To avoid them at low energies, we must
take into account Eq. (14) and demand that the SL potential
V (x) does not have any local minima (maxima) for particles
(holes) and that the local minima and maxima are of similar
absolute potential value. Furthermore, we must demand that
V ′(x) ≈ const between the local minima and maxima. The
smooth forms of the symmetric two-step potential belong to a
class of potentials fulfilling these requirements.

We point out that these requirements are not necessary
but sufficient to determine the whole low-energy region of
the lowest energy band for a given SL potential within the
semiclassical method discussed in this paper. The reason that
these requirements are not necessary lies in the fact that the
type of scattering depends strongly on the energy of the particle
or hole. The above requirements hold under the assumption
that |E| � |pyvF |, and this does not have to be fulfilled for
certain momentum values py .

B. Constructing SLs for focusing electron beams

In the following, we restrict ourselves to unidirectional SLs
with a mirror symmetry and an additional point symmetry at
the origin similar, to the sinus potential discussed above. As
was shown in the last section, this requirement is necessary
to find new Dirac points on the E = 0 axis. For E = 0, we
obtain from Eq. (18), S ≡ S1 = −S2 and arg(

−→
R ) ≡ arg(

−→
R1) =

−arg(
−→
R2), that the momentum py = pn

y of the new Dirac points
is determined by

S

h̄
+ arg(

−→
R ) = π (n − 1) , (20)

where n ∈ N. The number of new Dirac points is then given
by {

1 + 1

π

[
S

h̄
+ arg(

−→
R )

]}
= nmax , (21)

where we have to set py = 0 in S and
−→
R entering Eq. (21). We

have used the abbreviation (x) as the largest integer number
smaller than x.

As mentioned above and can be deduced from Eq. (2) for the
unidirectional steplike SL, electrons with a momentum near
the central Dirac point are focused strongly in the direction
of the SL wave vector, i.e., vx � vy , especially at potentials
where a new Dirac point emerges. It was mentioned in Ref. 13
that this phenomenon could have technical applications for
strong focusing of electron beams in graphene. Of course, true
focusing of an electron beam has the additional requirement
that vy = 0 in the vicinity of a specific momentum, and not
only exactly for that momentum. Such energy dispersions were
in fact found in photonic crystals.36,37 Within the semiclassical
approximation, by solving Eq. (20) in a nontrivial momentum
region, we are now able to construct potentials showing exactly
such a behavior. For doing this, we restrict ourselves to SL
potentials in the large V regime of the form V sin[2π (x −
d/2 − δd)/d] for d/2 � x1 � x � 3d/4. Note that due to
its symmetry only the discussion of the positive branch of
the potential, i.e., for x values where d/2 � x � 3d/4, is
sufficient. The value x1 is given by the condition that Eq. (20)
is fulfilled for the momentum p1

y = V (x1)/vF where we only
consider, in the following, n = 1.

We now determine the potential Vf (x) for d/2 � x � x1

by solving Eq. (20) iteratively. Here, we determine δd and V

such that Vf (d/2) ≈ 0 and further that the momentum value
at the first Dirac point p1

y is maximal. With these requirement,
we obtain 2πδd/d = 0.437 and Ṽ = 4.58.

Within the semiclassical approximation, this leads to the
fact that the first side-valley Dirac point p1

y and the central
Dirac point are connected by a flat energy dispersion curve
with zero energy. We show in the inset in Fig. 6, with a black
solid curve, the potential Vf (x) obtained in this way. The (red)
dotted and the (blue) dashed potential curves are variations
of Vf being different at x < x1 values. The black solid curve
denoted with sc in the main panel in Fig. 6 shows then the
semiclassically calculated lowest energy spectrum by using

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pyd/2

2
v F
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0.2 0.4 0.6 0.8 1.0

4

2

2

4

x
d

Ṽ (x)

FIG. 6. (Color online) The (black) solid curve (sc) is the semi-
classically calculated energy spectrum for the potential Vf at px = 0,
which is shown as the black solid curve in the inset. The other curves
(ex) in the main panel are the lowest energy spectra calculated by an
exact numerical diagonalization calculation for the potential Vf and
its variations shown in the inset.
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Eq. (18). Indeed, we obtain a flat energy curve around the
central Dirac point. The other energy curves shown in the figure
are calculated by using the exact numerical diagonalization
method. The various exact diagonalization curves in Fig. 6
correspond to the potential variations shown in the inset. From
the (black) solid energy curve, it can be seen that the flatness
of the semiclassical approximation in fact vanishes within
the numerical diagonalization calculation. Note that this even
holds when going to a high basis number in the exact numerical
diagonalization calculation. This shows that the semiclassical
approximation fails here for the constructed potential Vf , at
least to the extend of having a flat energy spectrum close to
the central Dirac point. The reason for this failure presumably
comes from the fact that at the penetration point xp21 = x1

the condition (14) is no longer fulfilled. Note that Vf even
gets more shallow when choosing larger x1p

1
y values where

now the energy plateau seen in the semiclassical construction
cannot be extended to pyd = 0.

From Fig. 6, we even obtain that the energy curves of the
potential variations of Vf , shown in the inset, do not vary much
around the central Dirac point. We consider this as a hint that
presumably the whole attempt of finding an SL potential with
a flat region in the energy spectrum, with one electron and
one hole region in the fundamental cell, seems doomed to fail.
Note also that we carried out further numerical calculations
with variations of the SL potential which turned out to be un-
successful as well. It was shown in Ref. 17 that such a scheme
can be successful when considering more complicated SLs. In
that paper, it was shown that an SL with one electron and one
hole region and an additional small modulation of the potential
strengths over many fundamental cells of the SL can lead to
energy spectra with a flat behavior around the Dirac points.

III. SEMICLASSICAL DENSITY OF STATES

The generalization of the above results to general two-
dimensional SLs via a semiclassical wave-function solution of
Eq. (1) is not possible. In the case of nonrelativistic quantum
mechanical systems this can be carried out only for integrable
systems.38 This result is modified in relativistic systems mainly
due to the existence of the additional phase factor φ(x) in
Eq. (5).24,25 One way out of this dilemma is by calculating the
density of states semiclassically with a formalism developed
by Gutzwiller.39 The eigenvalue spectrum is then determined
from the calculated density of states.

For the unidirectional SL with one electron and one hole
region per fundamental cell, we obtain for the density of
states27,40 ρ(E) = ρ(E) + �ρ(E). Here, ρ is the average
density of states, given by

ρ(E) ≈ 1

πh̄

∫ d

0
dxRe

⎧⎨
⎩ |E − V (x)|

v2
F

√
[E−V (x)]2

v2
F

− p2
y

⎫⎬
⎭ . (22)

The fluctuating part is given within a semiclassical approxi-
mation by

�ρ(E) = 1

πh̄
Re

{∑
p

Tp

∞∑
ν=1

[T τ (p)Rσ (p)]νe−iνγ (p) px d

h̄ eiν
Sp

h̄

}
.

(23)

The sum p in Eq. (23) runs over the primitive periodic
orbits of particles E − V (x) > 0 or holes E − V (x) < 0,
respectively. Particles and holes are transformed into each
other at the penetration points. The configuration space of the
orbits is given by the fundamental cell of the SL with periodic
(circular) boundary conditions. Tp is the required time for
the particle or hole to pass the primitive orbit. T τ (p) stands

for T τ (p) = ←−
T
←−τ 1(p)

1
−→
T
−→τ 1(p)

1
←−
T
←−τ 2(p)

2
−→
T
−→τ 2(p)

2 . Here, −→τi(p)[←−τi(p)] is
the number of transmissions from left (right) to right (left)
through the potential barrier i in the primitive orbit. Rσ (p)

is the corresponding total reflection coefficient. Sp is the
eikonal of the primitive orbit, i.e., Sp = n1S1 + n2S2, where
n1 and n2 are the numbers of transitions of the particle
regions E − V (x) > 0 and hole regions E − V (x) < 0. γ (p)
is the winding number of the primitive orbit on the circle
representing the fundamental cell.

In order to derive Eq. (23), we used the ray splitting
generalization of Gutzwiller’s trace formula first discussed
in Ref. 41. There it was shown that a ray splitting boundary
in an integrable system can cause an additional sign of chaos
in the energy spectrum. One of the simplest systems with
ray splitting is that of a nonrelativistic electron in an infinite
one-dimensional square well with a discontinuous step inside
the well.42–44 This system and also our system represented by
the density of states (23) can be discussed using the formalism
of quantum graphs.45 With the help of the methods used in this
reference, one can directly show the connection between the
density of states (23) and the corresponding energy spectrum
represented by Eq. (18).

By using that the absolute value of the particle velocity
is given by vf

√
[E − V (x)]2 − p2

yv
2
F /|E − V (x)|, one can

easily determine Tp for every primitive orbit by integrating
the inverse velocity over the orbit. It is well known38 that
a renumbering of the summands in Eq. (23) can lead to
divergent subseries. A well-behaved approximation should be
achieved by sorting the terms in Eq. (23) with respect to their
maximal orbit length lmax. This means that for lmax = 2md

with m ∈ N, we have to take into account in Eq. (23) all
orbits with lengths less than or equal to 2md. In the upper
row in Fig. 7, we show �ρ for lmax = 2d, 4d, and 8d for
the sinus potential (19) with Ṽ = 2π , a = 0, and px = 0.
These panels are calculated for pyd/h̄ values where the lowest
energy band (cf. Fig. 4) has its two Dirac points (left and right
panels) and further where the band has its local maximum
(mid panel). By comparing the curves with the corresponding
energy spectrum in Fig. 4 we obtain that the energy values
of the lowest energy band correspond to the smallest energy
maximum in �ρ. This happens even when we take into account
only small lmax orbit lengths. We note that the higher energy
maxima of �ρ in Fig. 7 correspond to higher energy bands.
Next, we try to reproduce the lowest energy band for various
(deformed) sinus potentials and lmax = 2d, 4d, and 8d from
the lowest energy maximum in �ρ. We compare our result
in Fig. 7 with the semiclassically calculated lowest energy
band by using Eq. (18) [(black) straight curves]. We obtain
from the figure that the new Dirac points even show up for
small lmax in form of a plateau at zero energy where its
extension is rapidly decreasing for higher lmax values. Note
that the maximum criterion used here for determining the
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FIG. 7. (Color online) Upper panels show the dimensionless density of states 2�h̄vF ρ/d as a function of the dimensionless energy Ed/2h̄vF

for various maximal orbit lengths lmax at px = 0. The SL potential is given by the nondeformed sinus potential (19) with Ṽ = 2π and a = 0.
The density of states is calculated for the central valley where pyd/2h̄ = 0 (left), at transversal momentum value pyd/2h̄ = 2.58 where we
found the maximum of the lowest energy band (middle), and at the new side valley Dirac-point momentum pyd/2h̄ = 4.39 (right). Lower
panels show the energy of the lowest maximum value of the density of states �ρ for various orbit lengths lmax. We compare these values with
the semiclassical spectrum calculated by Eq. (18) (black curve). We show this for the sinus potential (19) with Ṽ = 2π , a = 0 (left); Ṽ = 4π ,
a = 0 (middle); and Ṽ = 4π , a = 100 (right).

spectrum from �ρ is different from the common approaches
used for determining the full energy spectrum for systems in
the field of quantum chaos. There, commonly, the condition
that the integration of the full density of states between two
nondegenerate energy levels should give the value one is used.
Since we are only interested in the lowest energy level and
furthermore the lowest energy band and the first excited energy
band are well separated, such an approach is not necessary
here.

IV. CONDUCTIVITIES

Next, we calculate the conductivities parallel and orthogo-
nal to the SL wave vector by using the semiclassical wave
function (5) and energy dispersion (18) for SLs with a
point symmetry at zero energy for half-filling. We thereby
restrict ourselves to the ballistic transport regime. Note that
ballistic transport was seen for graphene samples without
an SL up to the micrometer length.1–3 Taking into account
also the small interlattice spacing of 1.4 Å in graphene
makes the ballistic transport regime relevant even for large
superlattices.

There are various techniques in the literature for calculating
ballistic conductivities in graphene. Below, we will use a
formalism firstly introduced in Ref. 46 for graphene without an
SL. In this approach, the linear ballistic transport is calculated
as a response to an electric field given by a temporal gauge field
of the form A = −cEt�(t), where E is the external electric
field and � is the Theta-function.

There are also Kubo-like formalisms in the literature using
gauge fields of the spatial form. These have the disadvantage

that the calculated conductivities in these formalisms are only
well defined up to a numerical prefactor, which depends on
the order of taking the zero-temperature, zero-frequency, and
zero-damping limit.47,48 The simplest versions of both of
these formalisms above work for nondoped leads. For heavily
doped leads, a Landauer-like transfer matrix formalism49,50

can be found in the literature for SL-free pristine graphene.
Here, evanescent modes give the dominant contribution to
the conductivity. These modes do not longer fulfill the Bloch
condition, which makes it complicated to find analytical
conductivity results for general smooth SLs. A further com-
plication comes from the fact that in using the semiclassical
approach, one has to demand that the leads are coupled to
the graphene system in a smooth way introducing a new
parameter to the system. Finally, we note the important fact
that the Landauer formalism for heavily doped leads and the
temporal gauge formalism for nondoped leads, which we will
use below, result in numerical similar conductivity values for
pristine graphene.

The lowest band eigenvalue spectrum is given by Eq. (18),
which was effectively calculated from the eigenvalues of
the matrix A. By using Eq. (18), we obtain the follow-
ing energy dispersion around the Dirac points, i.e., for
|εs |dI (−1,0)/2vF S � 1,

εs = s
2h̄vF

d

1

I (−1,0)

{
|T |2 sin2

(
pxd

2h̄

)

+ |R|2 sin2

[
S + arg(

−→
R )

h̄

]
+ 1

2
(1 − |R|2 − |T |2)

}1/2

,

(24)
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where s = 1 for the conduction band and s = −1 for the valence band. Here, we use the abbreviation

arg(
−→
R ) ≡ [arg(

−→
R1) − arg(

−→
R2)]/2 and |R| ≡

√
|−→R1||−→R2|, |T | ≡

√
|−→T1||−→T2| and denote

−→
R ≡ |R|eiarg(

−→
R ) for energies

E = 0. The function I (n1,n2) is defined by

I (n1,n2) = 2

d

∫ xpi2

xpi1

dx

{[
V (x)
vF

]2 − p2
y

} n1
2 pn2

y

|V (x)/vF |n1+n2
. (25)

In the following, we will use the eigenfunctions of the matrix A, which was defined following Eq. (18). These are given in the
vicinity of the Dirac points, i.e., for |εs |dI (−1,0)/2vF S � 1, by

EV ≈ i

(
sin

[
Ed

h̄vF

I (−1,0)

]
− sin

[
2
S

h̄
+ 2arg(

−→
R )

]
|R|2 + pxd

h̄
|T |2 − ei S

h̄

[|R1|ei S
h̄
+arg(

−→
R1) − |R2|e−i S

h̄
+arg(

−→
R2)]). (26)

The lowest-band eigenfunctions for electrons in the SL are then given for 0 � x � d by

us(x) ≈ [M1N1(x)�(x − xp11)�(xp12 − x) + N2(x)M1N1(xp12)�(x − xp21)�(xp22 − x)]EV/N. (27)

Here, N is a normalization constant. Note that we omitted here
once more the semiclassical phase factors (8) as previously in
Eq. (18). We show below that they will in fact not contribute
to the conductivity within the semiclassical approximation.
Furthermore, we idealized in Eq. (27) the whole wave function
by setting it to zero in the classical forbidden region. We will
also justify this assumption below.

Next we calculate the dc response in the SL system. This is
done in the gauge A = −cEt�(t). The conductivity in the ith
direction in the lowest energy level approximation valid for
t → ∞ is then given by12,46

σ̃ii = −4evF

(2π )2

∫
BZ

d2p

h̄2 Re
[
e− i

h̄
�εt 〈u−1|σi |u+1〉ξ+(t)

]
, (28)

with

ξ+(t) = −i
evF

h̄

∫ t

t ′=0
dt ′
∫ t ′

t ′′=−∞
dt ′′T (t ′′), (29)

and the transition matrix element T = e
i
h̄
�εt 〈u1|σi |u−1〉. The

value �ε is given by the energy gap �ε = ε1 − ε−1 for an
electron with momentum py . The integral in Eq. (28) is carried
out over the full Brillouin zone.

In the following, we separately calculate the contribution of
every energy valley to the momentum integral in Eq. (28), i.e.,

σ̃ii =
∑
n=0

σ̃ n
ii(2 − δn,0). (30)

For large times, one can restrict the py integrals of Eq. (28)
to the vicinity of the valley center pn

y in T where pn
y is

determined by Eq. (20) for n > 0 and p0
y = 0 for the central

valley. The factor two in Eq. (30) takes into account the mirror
symmetry of the energy spectrum with respect to py , such
that we may consider only pn

y � 0 in Eq. (30).
For calculating the conductivity σ̃ n

ii , we first have to
determine the matrix element 〈u1|σi |u−1〉. We apply the
semiclassical approximation by assuming h̄ being small
enough to neglect integrals of the form

∫
dxei2

∫ x
dx ′Si (x ′)/h̄

in comparison to the integrals
∫

dxei0
∫ x

dx ′Si (x ′)/h̄. On similar
grounds, we may also neglect the matrix contributions in the
classically forbidden regions. From this argument, it becomes
evident that the semiclassical phases φ(x), Eq. (8), will not

contribute to 〈u1|σi |u−1〉 since the integrand in Eq. (8) is
inverse proportional to 1/px(x ′).

By using Eqs. (27)–(29), we obtain the following conduc-
tivities:

σ̃ n
ii = 1

2

e2

h

Oi

|vxvy |/v2
F

(31)

with vx and vy being the electron velocities at the Dirac point.
By using Eq. (24), we obtain

|vx | = |T | vF

I (−1,0)
, (32)

|vy |= 2vFh̄

I (−1,0)d

× ∂py

√
|R|2 sin2

[
S

h̄
+ arg(

−→
R )

]
+ 1

2
(1 − |R|2 − |T |2).

(33)

The absolute squares of the transition matrix elements are
given by

Ox =
∫ 2π

0
dϑ

(
Nd

x F 1
−
)2

|NdF 2+ + NndF 3+||NdF 2− + NndF 3−| ,
(34)

Oy =
∫ 2π

0
dϑ

(
Nd

y F 1
+ + Nnd

y F 4
)2

|NdF 2+ + NndF 3+||NdF 2− + NndF 3−|
with

Nd = 2

T 2

{(
5

2
+ 2|R|2

)
I (−1,0) + Re(

−→
R )[I (−1,2)

− I (−1,0)] + 2Im(
−→
R )I (0,1)

}
,

Nnd = 4

|T |2 |R|I (−1,0) , Nd
x = 4I (0,0) ,

Nd
y = 4

|T |2 [Re(
−→
R )[I (−1,1) + Im(

−→
R )I (0,0)],

Nnd
y = 4

|T |2 |R|I (−1,1), (35)
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and

F 1
± = H+(ϑ)H−(ϑ) ± cos2(ϑ) , F 2

± = H 2
±(ϑ) + cos2(ϑ),

F 3
± = 2 cos(ϑ)H±(ϑ) , F 4 = −2 cos(ϑ)[H±(ϑ) ∓ 1],

(36)

where

H±(ϑ) = ±1 − |R| cos(ϑ) + |T | sin(ϑ). (37)

In the following, we further specify the parameters in
Eq. (31). For the side valleys n > 0, the value py in the
expressions Eqs. (31)–(36) is given by the side-valley Dirac
point momentum determined by Eq. (20). In this case, we
obtain for vy of Eq. (32),

|vy | = 2vF

I (−1,0)

[
−1

2
I (−1,1) + h̄

d
∂py

arg(
−→
R )

]
|R|, (38)

with

h̄

d
∂py

arg(
−→
R ) = 1

4

{
Re
[
�
(
ip̃2

y

)]− ln(p̃2
y)

}{(
xp21 − xp12

d

)

+ pyvF

d

[
1

V ′(xp21)
+ 1

V ′(xp12)

]}
, (39)

where � is the digamma function.
For the central valley n = 0, we have

h̄

d
∂py

|Ri | =
√

πh̄vF

d2V ′(xpi)
. (40)

Here, xpi is the ith intersection point of the SL potential and
the x axis, i.e., xp1 = d/2 and xp2 = 0. The py momentum
value in the expressions (31)–(39) is then given by py = 0.
The electron velocity in y direction is for n = 0 given by

|vy | = 2h̄vF

dI (−1,0)

[
sin2

(
S

h̄
− 3π

4

)(
∂py

|R1|
)(

∂py
|R2|

)

+ 1

4
(∂py

|R1| − ∂py
|R2|)2

]1/2

. (41)

The only nonzero values in Eq. (35) for py = 0 are given by
Nd = 5 and Nd

x = 4. This leads to Oy = 0 and Ox = 16π/25.
For a steplike SL potential V (x) = V χ (x), the dc conduc-

tivities are given by12,15

σ̃ n
xx = e2

h

π

2
α̃2

0
1

|�n| and σ̃ n
yy = e2

h

π

2

1

α̃2
0

|�n| (42)

with α̃0 = πn/Ṽ , �n = [Ṽ 2 − (πn)2]/Ṽ 2, and Ṽ = V d/

h̄vF 2. The index n denotes the valleys n = 1, . . . ,

[Ṽ /π ], where [x] is the largest integer value smaller than
x. Here, n = 1 denotes the outermost valley, and n = [Ṽ /π ]
the first valley next to the central one. For the central valley,
we have �0 = sin(Ṽ )/Ṽ and α̃0 = 1.

We show in Fig. 8 the conductivities σ̃ n
xx (σ̃ n

yy) in the left
(right) panel as a function of the potential strength Ṽ for the
nondeformed sinus potential (19) with a = 0. We deduce from
the figure that for σ̃xx the central valley contribution σ̃ 0

xx to the
conductivity is most relevant whereas for σ̃yy the outermost
valley σ̃ 1

yy contributes the most. This is in accordance with
the case of the steplike potential V (x) = V χ (x), see Eq. (42).
We can even infer from the figure that in practice one can
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FIG. 8. (Color online) (Left) Valley contribution σ̃ n
xx to the

conductivity in parallel direction to the SL wave vector calculated
within the semiclassical approximation (31) as a function of the
potential strength. Here, we used the nondeformed sinus potential (19)
for a = 0 as the SL. (Right) σ̃ n

yy for the same potentials.

neglect the nondominant valleys in expression (30). This
is in contrast to the steplike case where the nondominant
valley contributions are much larger. The reason lies in the
fact that for smooth potentials V (x), σ̃ n

ii of Eq. (31) contain
exponential damping terms as a function of py via their
dependence on the transmission coefficient |T |. We obtain
from Eq. (31), σ̃ n

xx ∼ |T |3, σ̃ n
yy ∼ 1/|T |. The exponentially

vanishing behavior of the transmission coefficient |T | for large
p̃2

y in smooth potentials is caused by the exponential damping
of the wave function in the classically forbidden region. In
contrast to this, the transmission coefficient |T | for a steplike
potential V (x) is decreasing algebraically as a function of p̃2

y .
One can understand the |T | behavior of Eq. (31) also in

the following heuristic way. The finite quantum conductivity
in pristine graphene is heuristically conceived by taking
into account Einstein’s law for classical diffusive scattering.
There, the conductivity is proportional to the density of
states multiplied by the diffusion constant. As in every
two-dimensional system for infinite small scattering the
effective diffusion constant is infinite. At the same time,
in contrast to two-dimensional metals where the density
of states is constant, it vanishes in graphene at the Dirac
point, leaving the total conductivity as a constant. By the
application of an SL in x direction, the diffusion in y direction
is in first approximation the same as in pristine graphene,
but the density of states scales with 1/|T |, see Eq. (24),
leading to σ̃yy ∼ 1/|T |. In contrast to this, the scattering in
the x direction for graphene with a superimposed SL is for
|T | � 1 mainly diffusive, with a diffusion constant ∼|T |2.
The density of states still scales with 1/|T |. Since the density
of states vanishes at the Dirac point, we obtain an extra
|T |2 term in σ̃xx , leading to σ̃xx ∼ |T |3. More precisely, this
extra |T |2 term follows from the averaging of the density of
states over the inverse coherence time of the wave functions
∼|T |2 in Einstein’s law. From this argument, it is even easier
to understand the finite conductivity of the SL-free pristine
graphene system in the limit of infinite small scattering.

From Eq. (31), we deduce that even for small SLs where
only the central Dirac point is present, σ̃ 0

yy is zero. This is
not true for the orthogonal conductivity σ̃ 0

yy of the steplike
SL system (42). In Ref. 5, the conductivity σ̃xx for the
nondeformed finite length sinus SL potential (19) as a function
of Ṽ was calculated by using a transfer matrix method for
heavily doped graphene leads.49,50 In the left panel of Fig. 8,
we see a good quantitative accordance of our result with their
curves. We consider this as a justification of the semiclassical
approximation method considered in this paper.
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FIG. 9. (Color online) Conductivity σ̃xx for a deformed sinus
potential of the form (19) as a function of the deformation parameter
a for various potential strengths Ṽ .

Finally in Fig. 9, we show σ̃xx for the deformed sinus
potentials (19) as a function of the deformation parameter a for
various potential strengths Ṽ . We argued in Sec. II that in this
case, only the central Dirac point exists leading to the fact that
σ̃yy = 0 within the semiclassical approximation. From Fig. 9,
we obtain local maxima in σ̃xx at certain deformation values a.
As can be seen from Eq. (31) with Eq. (41), these deformation
parameters are in a regime where Eq. (20) is fulfilled for values
of n ∈ N and py = 0 with arg(

−→
R ) = −3π/4.

V. SUCCESS, FAILURES, AND POSSIBLE APPLICATIONS
OF THE SEMICLASSICAL APPROACH

Just recently, an extensive analysis of the semiclassical
transmission coefficients of np and npn junctions with a
comparison to a numerical multistep calculation was carried
out.34. Up to small deviations for small incident angles of
the particles, the authors find quite good agreement of the
semiclassical results with their numerics. This is in accordance
to the good results we found for the energy spectrum of
the (deformed) sinus SL potentials in Sec. II. By taking
into account also the good conductivity behavior of the
semiclassical approximation described in the last section, we
could conceive the following application.

As already argued in the Introduction, due to their spectral
and conductive properties, electrons in graphene with an
overlying SL are interesting systems promising many appli-
cations, which could open new routes to building electronic
devices. The ability to construct SL potentials, which show
this behavior for an energy band with desired conduction
properties, can be very useful. We have shown that this is, in
principle, possible within the semiclassical approximation in
our example in Sec. II B. There we reached the goal to construct
SL potentials showing a plateau in the energy spectrum as a
function of the transversal momentum using the semiclassical
approximation. Unfortunately, this behavior did not survive
when calculating the energy spectrum of the constructed SL
potential with an exact numerical diagonalization method. The
reason lies in the fact that the required smooth behavior of the
constructed potential, which is necessary for the validity of the
semiclassical approximation was not given. The lesson to be
learned from this example is that semiclassically constructed

potentials should be further crosschecked by additional means
as, e.g., using numerical methods, in order to be trusted.

VI. SUMMARY

We have analyzed the behavior of electrons in electrical
superlattice potentials within a semiclassical approximation.
We found this description to work well for smooth superlattice
potentials. We started in Sec. II A by introducing the semi-
classical wave-function representation of the quasirelativistic
Dirac equation of electrons in graphene superimposed by an
SL. We have derived transmission and reflection coefficients
for Klein tunneling through a classical forbidden region, in
which a particle state is converted to a hole state or vice versa.
Within a generalized Bohr-Sommerfeld formalism, we have
derived the eigenvalue equations for the lowest energy band of
a SL with one electron and one hole region in the fundamental
cell, showing only Klein scattering. For electrons in an SL of
a (deformed) sinus shape, we obtain very good accordance of
the semiclassical energy spectrum with the spectrum obtained
by exact numerical diagonalization. Then we tried to construct
in Sec. II B potentials having an energy plateau at zero energy,
and uncovered its failure when comparing the semiclassical
energy spectrum of the potential with the exact diagonalization
method as already described in the last section. In order to pave
the path to take into account SLs, which are not unidirectional,
we calculated in Sec. III the semiclassical density of states
within the generalized Gutzwiller trace formula by taking into
account the beam-splitting extension. Even by considering
only small length orbits, we could reconstruct the energy
spectrum of the lowest band from the density of states maxima.
This was carried out explicitly for the (deformed) sinus
potential SLs.

Finally, we have calculated in Sec. IV longitudinal bal-
listic conductivities along and transverse to the SL wave
vector within the semiclassical approximation. Here, we have
restricted ourselves again to the simplest point symmetric SLs
with one electron and one hole region in the fundamental cell
where only Klein scattering is important. We obtain a good
quantitative accordance with conductivity curves found in the
literature for sinus potentials as a function of the potential
strength. In these calculations, a transfer matrix method was
used in order to calculate the conductivity parallel to the
SL wave vector. Furthermore, we obtain, as was formerly
shown also for steplike SLs, that the conductivity along the
wave vector of the SL is mainly governed by electrons in
the central valley whereas the orthogonal conductivity is
determined mostly by the conductivity contribution of the
outermost valley. The contribution of electrons in the central
valley is zero in the latter case. In contrast to the steplike SLs,
the neglect of the other nondominant valleys is exponentially
damped in both cases. This is connected to the fact that
the transmission coefficients for Klein tunneling in smooth
potentials, in contrast to steplike SLs, are exponentially small
as a function of the length of the classically forbidden region
and transversal momentum.
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