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Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor
output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this
behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems
or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise,
we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered
Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural
mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external
cues. The fly’s behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from
equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include
biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological
brains or out-compete other agents.
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INTRODUCTION
According to Laplace, randomness is only a measure of our

‘‘ignorance of the different causes involved in the production of

events.’’ [1] Probably the most fundamental feature of modern

scientific inquiry is the ability to find these causes and predict

future events [1,2]. Reflecting this view, animals are thought to

operate according to laws firmly tying behavioral ‘responses’ to

environmental variables: ‘‘[N]euroscience, over the last 30 years,

[…] each year brings a greater understanding of the mechanical

way with which we perceive, we remember, we speak, we feel.’’ [3]

Once these laws are known, the behavior of any animal at any

time can be predicted from the current environmental situation

[4]: ‘‘We cannot prove […] that human behavior […] is fully

determined, but the position becomes more plausible as facts

accumulate.’’ [5] This does not necessarily imply that the same

stimulus always elicits the same behavior, but that each behavior is

a response to a stimulus: ‘‘Indeed, so pervasive is the basic

assumption of this model that it is common to refer to any

behaviour as a ‘response’ and thus by implication […] assume that

there must be an eliciting stimulus.’’ [6] This basic tenet not only

guides basic neurobiological and psychological research but has

been the foundation for a great many robotics applications [7–9]

as well as for speculations on the future societal impact of

neuroscience [3,10,11]. Basically, the brain is seen an input/

output device: ‘‘brain function is ultimately best understood in

terms of input/output transformations and how they are pro-

duced’’ [12]. Contending that less complex brains would be more

amenable to this research, the study of invertebrate and in

particular fly behavior developed into a prominent focus of

attention [7,8,13,14].

However, even the best-understood behavioral systems display

a residual of variability, which has so far prevented exact

predictability of individual behavior. There are a number of

systems from single neurons and synapses [15,16] to invertebrate

[17,18] and vertebrate animals including humans [19–21], which

even generate variable output despite no variations in input at all,

leading to difficulties reproducing even tightly controlled experi-

ments [22]. This variability is often classified as random noise,

a by-product of a complex brain [23,24]. Documented sources of

noise range from genetic and historical variations [23] to neural

noise [24,25] or stochastic fluctuations in macromolecule number

[26]. This noise requires compensatory homeostatic mechanisms

to ensure stable neuronal and network function over extended

periods of time [27]. Because of the obvious analogy, we term the

hypothesis that brains are deterministic input/output systems with

added noise the ‘robot-hypothesis’ (Fig. 1a). A less prominent

alternative explanation contends that some of the variability is

adaptive and irreducible [19,20,28]. According to this latter view,

individual behavior is fundamentally indeterministic (not funda-

mentally deterministic but noisy) and precise prediction principally

(not only technically) impossible (Fig. 1b). It is critical to emphasize

at this point that the processes leading to behavioral indeterminacy

may very well be deterministic: indeterministic output of de-

terministic systems is a well-known phenomenon [29].

Analyzing the structure of behavioral variability may provide

evidence for understanding whether the variability is the result of

cumulated errors in an imperfectly wired brain (system noise) or

whether the variability is under neural control. In this study, we

take advantage of turning behavior in tethered Drosophila; this

system provides superb control over the perceived environment for

a true assessment of the spontaneity of the behavior, while at the

same time offering easily quantifiable behavioral dynamics (Fig. 2).

Most importantly, we eliminate any potential nonlinear effects

which could arise from a closed reafferent feedback loop between

the animal’s behavior and its environment by opening this loop to
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Received October 23, 2006; Accepted April 18, 2007; Published May 16, 2007

Copyright: � 2007 Maye et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: Supported by the DFG (BR 1893/3-2)

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: bjoern@brembs.net

PLoS ONE | www.plosone.org 1 May 2007 | Issue 5 | e443



study intrinsically generated behavior, without any environmental

feedback. Thus, the environment is kept so constant (both between

and within experiments), that any remaining minute variation in it

must be infinitely smaller than any of the stimuli known to trigger

turning behavior [30]. Moreover, the temporal distribution of any

such remaining environmental fluctuations can be assumed to be

Gaussian. We know of no other intact preparation affording such

minute control. We chose the temporal sequence of highly

stereotyped flight maneuvers producing short bursts of yaw-torque

(‘torque spikes’; corresponding to body-saccades in free flight [31])

for our analysis, because they have been repeatedly both classified

as single units of behavior and used for quantitative behavioral

analysis. Tethered Drosophila produce these spikes in a probabilistic

manner not only in response to visual stimulation [14], but also if

the stimulus situation is constant [30] (see also Figs. S1 and S2).

Freely flying flies do not offer this distinction, as one cannot

discern spontaneous body-saccades from elicited body-saccades

[32].

RESULTS

Spontaneous behavior is not simply random
Naively, if the production of torque spikes in our featureless or

uniform environment were due to random noise in the Drosophila

brain or from any uncontrollable input, the time intervals between

spikes (inter-spike interval, ISI) should reflect this stochasticity,

much like the hiss of static from a radio between stations. Given

a certain mean spike rate, the most straightforward assumption is

to expect a stochastic procedure to behave according to a Poisson

process [24,25,33]. In other words, this situation should represent

a natural system for generating random numbers. Therefore, we

adapted a recently developed computational method, Geometric

Random Inner Products (GRIP) [34], to quantify the randomness

of the ISI sequences of three groups of flies. The first group

(‘openloop’) flew in a completely featureless white panorama (i.e.,

without any feedback from the uniform environment–open loop).

The ISI sequence in these flies must be generated entirely

spontaneously. The second group (‘onestripe’) flew in an environ-

ment that contained a single black stripe as a visual landmark

(pattern) in a flight simulator situation that allowed for straight

flight in optomotor balance (i.e. the fly could use its yaw torque to

control the angular position of the stripe–closed loop). Flies from

this group not only received reafferent feedback from the effects

their maneuvers had on the angular position of the stripe, but it is

Figure 1. Alternative models conceptualizing the open-loop experiment. A–According to the robot-hypothesis, there is an unambiguous mapping
of sensory input to behavioral output. If the behavioral output is not constant in a constant environment, there are a number of possible sources of
noise, which would be responsible for the varying output. B–In a competing hypothesis, non-constant output is generated intrinsically by an initiator
of behavioral activity. Note that the sources of noise have been omitted in B merely because their contribution may be small, compared to that of the
initiator, not because they are thought to be non-existent.
doi:10.1371/journal.pone.0000443.g001

Figure 2. Flight simulator set-up. The fly is flying stationarily in
a cylindrical arena homogeneously illuminated from behind. The fly’s
tendency to perform left or right turns (yaw torque) is measured
continuously and fed into the computer. In closed-loop, the computer
controls arena rotation (single stripe or uniform texture as patterns on
the arena wall). An additional white screen (not shown) covered the
arena from above for all groups.
doi:10.1371/journal.pone.0000443.g002

Spontaneity in Drosophila

PLoS ONE | www.plosone.org 2 May 2007 | Issue 5 | e443



also known that such stripes elicit optomotor and fixation

responses [35] (see also Fig. S2), providing for an input/output

control group. The third group (‘uniform’) flew in a uniformly

textured environment that was otherwise free of any singularities

(i.e., closed loop, the fly could use its yaw torque to control the

angular position of the evenly dashed environment). This

arrangement also allows for straight flight in optomotor balance

but it does not elicit any fixation or directional preferences as the

onestripe situation. Therefore the uniform group constitutes an

intermediate case. A significant deviation from ideal randomness

in any of these groups would contradict the ‘robot-hypothesis’.

GRIP results show that fly behavior deviates from perfect

randomness (Fig. 3a). In all our groups, this deviation even

exceeds the values from a computer-generated Poisson process

(Kruskal-Wallis ANOVA: H(3, N = 52) = 17.2; p,0.0007. In post-

hoc tests, all fly values were significantly higher than the poisson

control values, p,0.03 in all cases). Plotting the number of ISIs as

a function of ISI duration reveals an overrepresentation of long

ISIs with respect to an exponential distribution (so-called heavy-

tailed distributions; see Fig. S3). Thus, the simplest hypothesis that

first-order noise underlies variable spike generation in a constant

environment has to be rejected.

One may argue that the assumption of a constant spike rate is

arbitrary, overly simplistic and that more complex stochastic

processes are likely to be at work, even in flies. A well-known

example of such stochastic processes is a doubly stochastic Poisson

process (or Cox Process) [36,37]. A Cox process is essentially

a Poisson process in which the rate is not constant, but fluctuates

randomly. In our example, a fly’s spike rate may change in

response to uncontrolled, random events in the fly’s environment

or to random events within the fly. Cox processes can generate

heavy-tailed distributions, sometimes also called power-law

distributions. Power laws are among the most frequent scaling

laws that describe the scale invariance found in many natural

phenomena and can be seen as a straight line on a log-log graph of

the data. Therefore, we plotted the number of ISIs as a function of

ISI duration on a double logarithmic scale. To simulate a Cox

process, we used the instantaneous spike rates from the flies in the

openloop group to drive the rate of a Poisson process (cox; see Methods

for details). A very similar process has previously been used to

successfully model the spike trains of neurons such as those in the

cat visual cortex [38]. We found inverse power-law distributions

both in the timing of fly ISIs and in the cox group (Fig. 3b). For the

two fly groups without a singularity in the environment (openloop

and uniform) and for the Cox process, the duration of ISIs decayed

according to a non-Gaussian Lévy distribution (with the Lévy

exponent 1,m,3). Conspicuously, the Cox process is also Lévy

distributed. Do such results provide any leads for investigating the

potential mechanisms underlying spontaneous turning behavior?

Lévy flights, a special class of Markov processes, are scale

invariant and often associated with power-laws described in many

other systems [39–41]. A Lévy flight can be conceptualized as

a process which first chooses a direction at random and then keeps

flying for a distance drawn at random from a Lévy distribution

[42]. The Cox process, although not working in this way, still

yields a Lévy distribution. It has also been proposed that systems

with a large number of nonlinearly coupled subsystems also may

exhibit Lévy distributions [43,44]. Clearly, ‘‘the presence of such

distributions tells us nothing about the mechanisms that give rise to

them’’ [45]. Notwithstanding, all the more common stochastic

processes which can give rise to Lévy distributions imply second-

order (or conditional) stochastics. These processes share the

property that the conditional probability distribution of the next

step depends only on their current state and not on the steps in the

past (i.e., no memory). The Cox process is a classic representative

of this class of conditional stochastic processes.

Spontaneous behavior reveals a fractal order
A standard method of testing for renewal processes without

memory (i.e., Markov, Lévy or Cox processes) is to compare the

original sequence to randomly shuffled (‘‘surrogate’’) sequences.

This surrogate data set maintains the same relative frequency of

ISI durations as the original data, but destroys the ordering of the

intervals. A significant difference between surrogate data and

original data indicates that conditional probabilities are not

involved in the generation of the series. For this comparison, we

first computed the correlation dimension [46] for the original ISI

series which yields a sequence-dependent measure for each fly.

The correlation dimension is a measure of the dimensionality of

the space occupied by a particular ISI sequence (similar to the less

reliable fractal dimension). If the correlation dimension converges on

a fractional value, the ISI sequence is termed ‘fractal’. This first

step of computing individual correlation dimensions already hints

Figure 3. Spontaneous behavior is not simply random. A–GRIP
analysis of ISIs. Plotted are the mean standard deviations from the
theoretically expected random value for fly ISI series and the random
series generated by a Poisson process. The fly deviations are all
significantly larger than the values for the computer-generated series.
B–Log-log plots of ISIs. The Lévy exponent m is calculated from the
inclination of the linear fit. A Lévy distribution is defined as 1,m,3.
Smaller values indicate a larger proportion of long ISIs. A Cox Process
(cox) reveals a similar power-law structure as the flies. Error bars are
S.E.M.s throughout. See Methods for details and statistics.
doi:10.1371/journal.pone.0000443.g003
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at a difference between the stochastic ISI series and the fly series:

all four traces appear very similar, but the fly data each converge

on a specific dimension while the cox series diverges with increasing

embedding dimensionality (Fig. 4a). The convergence of the

correlation dimensions for fly data suggests a fractal order in the fly

ISI series and not in the cox series. However, these differences are

rather subtle and somewhat subjective. In the decisive second step,

we calculated the probability that any randomly shuffled sequence

of ISIs could have produced the same outcome. The results show

that most likely the recorded sequence of ISIs–and not any

random shuffling thereof–is responsible for the computed

correlation dimensions, rejecting the hypothesis of second-order

stochastics dominating the generation of spontaneous turning

behavior in Drosophila (Fig. 4b). Similar to sequences of ISIs

recorded in the monkey basal ganglia [47], sequences of fly ISIs

are not entirely defined by their probability distribution. In

contrast, we can not reject the hypothesis that any sequence could

generate the computed correlation dimension for the cox series, at

the .05 criterion. A Kruskal-Wallis ANOVA was significant for the

shuffled correlation dimension probabilities: H(3, N = 52) = 24.7;

p,0.0001. All fly probabilities were significantly lower than the cox

probability (p,0.02 in all cases). This outcome rules out renewal

processes as the main mechanism generating spontaneous turns in

Drosophila. Specifically, this excludes Cox processes or other

superpositions of random processes, which one could assume if

several separate processes in the brain lead to torque spike

production or for the superposition of environmentally and

endogenously triggered torque spikes.

Long-range correlations in the behavior imply

nonlinearity
However, there are yet more complex composite stochastic models

which, like the fly data, can exhibit a fractal structure [15,48].

These models combine a multitude of stochastic processes by

deterministic rules. For instance, the so-called ‘‘branched Poisson

process’’ (BPP, see Fig. S4a) consists of a cascade of Poisson

processes each driving the rate of the next via a filter function [48].

The combined output of all these processes constitutes the output

of the entire BPP. Such processes can produce ISI series which do

show fractal characteristics and their probability of shuffled data to

yield the same correlation dimension comes to lie in-between

standard stochastics and fly data, such that they cannot easily be

distinguished from either of the two (data not shown). The results

from surrogate data imply a form of memory in both spontaneous

flight behavior and to a certain degree also in BPPs that lasts

beyond the current time point. Specific ISI durations are

determined in part by the timing of other spike(s), and ISI

durations fluctuate over time rather than relaxing to a homeostatic

steady state. Such a memory can lead to long-range correlations in

the data which may be the reason why the shuffled data fail to

reproduce the original correlation dimension. A sensitive method

to detect these correlations is to calculate the root mean square

(r.m.s.) fluctuations in the ISI series (see Methods). For uncorrelated

time series r.m.s. fluctuations decay according to a power-law with

an exponent a of K. If the exponent deviates from K, long-range

correlations exist in the time series [32,49]. This computation

shows significant deviations from K for all the fly series (Fig. 5; t-

test against single value: p,0.001 for all three groups). Besides the

fly data, we tested two forms of BPP, one with a linear filter

function and one with a nonlinear filter. We found that the

presence of long-range correlations was dependent on the

nonlinearity of the filter function (Fig. 5; t-test against single

value: p,0.3 for BPP with linear filter and p,0.04 for BPP with

nonlinear filter). However, the value for the BPP with the

nonlinear filter function is still significantly smaller than the value

for the openloop group, to which it was fitted (Mann-Whitney U-

Test, p,0.005), ruling out even BPPs with nonlinear filters as an

appropriate model for spontaneous flight behavior in Drosophila.

The dependence of the a-values on the nonlinearity contained

in the BPPs entices to hypothesize that what is needed to achieve

long-term correlations such as those observed in flies (this study

and [32]) and other animals such as albatrosses [49] are not

essentially random processes connected by nonlinear mechanisms,

but rather essentially nonlinear processes containing random

noise. We thus employed a recently developed method which

distinguishes essentially stochastic from essentially nonlinear time

series.

Nonlinearity in the behavior implies instability in

the brain
All the previous analyses showed that Drosophila turning behavior is

at least partially non-random. Information theory tells us that in

this case the ISI series contain some sort of information [50].

Figure 4. Correlation dimension. A–While the correlation dimension
converges on a group-specific value with increasing embedding
dimension for fly-generated ISIs (openloop, onestripe, uniform), a number
sequence generated randomly by a Cox Process (cox) diverges. B–
Probability to obtain the computed correlation dimensions in A by
random shuffling of the original data. While the cox group exceeds an
alpha value of .05, the three fly groups stay well below that threshold.
doi:10.1371/journal.pone.0000443.g004
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Forecasting analyses can use this information to predict parts of

the sequences. Similar to a weather forecast, forecasting analyses

use part of the time series to derive a mathematical model which

predicts the remainder of the series. The computed prediction is

then compared to the actual series to obtain a correlation

coefficient which is a measure for the accuracy of the prediction.

Specifically, nonlinear forecasting comprises a set of established

methods from nonlinear time series analysis that involve state

space reconstruction with lagged coordinate embeddings [51,52].

These methods take advantage of the loss of information in

nonlinear time series to distinguish them from essentially stochastic

(high-dimensional, linear) series. In a two-step procedure, we use

the Simplex-projection [52] to identify the best embedding

dimension and the S-map procedures [53] to assess the non-

linearity of the data (Fig. 6). The method of S-maps relies on fitting

a series of models (from linear to nonlinear) where the degree of

nonlinearity is controlled by a local weighting parameter H.

Improved out-of-sample forecast skill with increasingly nonlinear

models (larger H) indicates that the underlying dynamics were

themselves nonlinear [53]. The fly ISI time series show a weak but

consistent improved forecast skill with increasing H, exhibiting

a nonlinear signature (Fig. 6a). However, the overall nonlinear

forecast skill is rather low for fly ISI series. To exclude any loss of

information introduced by spike detection, we also evaluated the

raw yaw torque data series. Analyzing the raw data with the two-

step S-Map method also yields increased forecast skill for

increasingly nonlinear models, this time with a profoundly larger

overall forecast skill (Fig. 6a). This result excludes all essentially

stochastic models irrespective of their memory as the basis for fly

turning behavior and firmly establishes nonlinearity as the main

mechanism.

A popular concept of animal behaviour includes the transition

between motivational states. True state shifts are not random

features of a time series but instead formally associated with the

idea of nonlinearity [54]. Hallmarks of state shifts are e.g.

alternative basins of attraction, multiple stable states, hysteresis

and fold catastrophe, all of which require the underlying dynamics

to be nonlinear in origin [53]. Our analysis suggests that the brain

structures generating yaw-torque spikes also operate according to

nonlinear rules, similar to the ones discovered in many other

natural systems. Nonlinearity is ubiquitous in nervous systems,

from single neurons to circuits [29]. A critic may thus argue that

the nonlinear signature we find in the fly behavior is merely

a reflection of this already well-known property and not indicative

of fine-tuned neural control systems. To test this hypothesis, we

adapted a virtual agent (i.e., a computer model or automat) [55]

consisting of three coupled nonlinear generators for comparison

with our fly raw data. The agent is intuitively very appealing on

a number of levels. First, its structure resembles one which may be

expected for fly torque production: one of the generators (the

‘‘activator’’) activates the other two (‘‘left torque’’ and ‘‘right

torque’’), which resembles how a motor command from the brain

would activate motor patterns in the thoracic ganglion. The two

torque generators mutually inhibit each other, preventing the

simultaneous activation of right and left turns (Fig. S4b). Second,

the original agent’s search behavior is similar to a Lévy walk [55].

Third, the automat can be tuned so that its open-loop output shows

a similar nonlinear signature as fly turning behavior (Fig. 6a,

‘‘automat 1’’). Fourth, the automat can be adjusted such that its

output appears to be qualitatively similar to fly open-loop turning

behavior (Fig. 6b, ‘‘automat 2’’). Thus, it seems that indeed the

biologically plausible, nonlinear processes in the agent are

sufficient to model fly behavior. However, interestingly, if the

automat is tuned to resemble fly behavior, it does not reveal

a nonlinear signature in the S-Map procedure (Fig. 6a, ‘‘automat

2’’). Indeed, to reveal its nonlinear signature, the automat has to be

adjusted such that the nonlinear generators operate under unstable

conditions, at which point the output fails to resemble fly behavior

(Fig. 6b, ‘‘automat 1’’). This experiment falsifies the initial

hypothesis that the nonlinear signature we find in fly behavior is

merely a reflection of the well-known nonlinear properties of

brains. Nonlinearity is a necessary, but not a sufficient criterion:

only if the systems operate under unstable conditions does the

output reveal significant nonlinearity (see Fig. S5 for additional S-

Map results). The failure of this agent to adequately model fly

behavior is an example for the rarely appreciated property of

nonlinear systems to produce linear output under equilibrium

conditions.

DISCUSSION
Even small fly brains can control behavior with minute precision.

For instance, male house flies closely track the evading flight

maneuvers of female flies with only a lag of about 30ms [56].

Input/output models reproduce these chasing flights with high

fidelity [56–58]. Such input/output systems provide the flies with

exquisite control over their turning maneuvers. Nevertheless,

bereft of visual input flies produce turning maneuvers, the

variability of which would never allow them to stay clear of

obstacles, land on food, let alone catch the mate. Where does this

variability come from? How does the female fly produce seemingly

random turn maneuvers, making it so difficult for the male fly to

follow? Obviously, the amount of behavioral variability is in itself

variable and must be under the control of the brain. How does the

brain do this?

Behavioral variability is a well-known phenomenon. It is so

pervasive that the semi-serious Harvard Law of Animal Behavior

was coined: ‘‘Under carefully controlled experimental circum-

stances, an animal will behave as it damned well pleases.’’ It is the

source of this variability which is under scrutiny here. The current

neuroscientific consensus posits that the source of the variability is

Figure 5. Long-range correlations in fly ISIs. If the slope of the log-log
plots of the r.m.s. fluctuation (exponent a, see Methods) deviates
significantly from K, long-range correlations exist in the time series. All
three fly groups show a significant deviation from 0.5. The deviation of
branched Poisson processes (BPP), however, depends on the non-
linearity of the filter function used to drive the Poisson processes and is
significantly smaller than that of fly ISI series. *-significant difference
from 0.5.
doi:10.1371/journal.pone.0000443.g005
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noise, rendering the variability random or stochastic. We show

here that random noise cannot be the sole source of behavioral

variability. In addition to the inevitable noise component, we

detected a nonlinear signature suggesting deterministic endoge-

nous processes (i.e., an initiator) involved in generating behavioral

variability. It is this combination of chance and necessity that

renders individual behavior so notoriously unpredictable. The

consequences of this result are profound and may seem

contradictory at first: despite being largely deterministic, this

initiator falsifies the notion of behavioral determinism. By virtue of

its sensitivity to initial conditions, the initiator renders genuine

spontaneity (‘‘voluntariness’’ [30]) a biological trait even in flies.

Even fly brains are more than just input/output

systems
The variability in spontaneous fly turning behavior is not solely due to

nonlinearity; rather, the nonlinear processes controlling the behavior

also have to operate at just the right parameters to produce instability.

Moreover, the number of these nonlinear processes has to be small, as

nonlinear signatures disappear with increasing superposition of

multiple nonlinear processes [59,60]. Thus, flies are more than

simple input/output machines. Similar to flies, human brains also are

notorious for their variability and even devote most of their energy

budget to intrinsic processing [21]. Our study supports the hypothesis

that the nonlinear processes underlying spontaneous behavior

initiation have evolved to generate behavioral indeterminacy: The

choice of what behavior to produce in the next moment is rarely

determinable exactly, but only probabilistically [17,19,20]. Implicitly,

game theory, the biological study of choice behavior and neuroeco-

nomics have incorporated this feature on an empirical basis [61–65].

If our results from a small fly brain hold also for more complex brains,

they suggest that the biological basis of the widespread phenomenon

of behavioral indeterminacy can be investigated. For instance,

inhibiting neurons forming the ellipsoid body, a neuropil structure in

the fly central brain, shifts the temporal structure of Drosophila walking

behavior from non-Gaussian to Gaussian [41]. It will be interesting to

screen for the neurons involved in initiating spontaneous turning

behavior as well. Classes of behaviors may be controlled by separate

initiators. For instance, human eye saccades show a Gaussian

temporal structure [66], whereas communication and travel are

clearly non-Gaussian [33,67,68]. Also in humans, a ‘‘default

network’’ seems to be responsible for spontaneous, stimulus-

independent thought [69]. Our data may help explain the notorious

difficulty to exactly reproduce behavioral results even when they are

under extremely tight experimental control [22]. We hypothesize that

the degree to which an animal behaves deterministically is shaped by

evolution and thus depends on the ecological niche for which the

behavior evolved.

Optimal searching behavior
What, if any, ecological niche has spontaneous flight behavior in

Drosophila evolved for? Given the artificial circumstances of our

experiments, one would assume that the flies were highly

motivated to find an escape. Could the heavy-tailed distribution

of turning maneuvers constitute an evolved search behavior? A

number of publications have reported Lévy-like search strategies

in analyses of a variety of behaviors from plankton to humans

[32,33,49,68,70]. Lévy flights or walks cause the organism to hit

a fractal clustered set of points. Surprisingly, flies can in principle

produce such behavioral patterns even without any environmental

feedback at all (openloop, Fig. 3b). One would conclude that internal

timing rather than external cues is organizing this behavior.

Obviously, environmental feedback can alter the timing of the

torque spikes and can thus increase (uniform) or decrease (onestripe)

the distribution characteristics (Fig. 3b). In our setup, the flies can

only receive horizontal visual feedback. Nevertheless, the uniform

group already shows a Lévy exponent very close to the m<2 which

was observed in freely flying Drosophila [32]. Movement patterns

with such properties are known to constitute a mathematically

optimal search strategy for randomly and sparsely distributed

Figure 6. Nonlinearity implies instability. A–S-Map results. Depicted are the averaged results for fly ISIs and raw yaw torque series (for clarity, only
openloop data are shown here), together with two automat simulations. The fly ISI series shows a slightly improved forecast skill with increasingly
nonlinear S-map solutions (increasing H). Fly yaw torque series yield both a better overall forecast skill as well as increased nonlinear improvement.
The automat simulation can be tuned to produce both linear and nonlinear output. B–Sample raw yaw torque data traces from a real fly and the two
versions of the simulated agent depicted in A (automat 1, automat 2). S-Map results for the other two groups are depicted in Fig. S5.
doi:10.1371/journal.pone.0000443.g006
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resources [39]. Thus, it appears that all that is required to produce

such an optimal search strategy is a default network which

spontaneously generates behavior that is already close to optimal,

combined with very rudimentary environmental feedback to adjust

the default state to the environment at hand. It seems that one

component of such a default strategy in Drosophila are search

spirals, which arise when multiple body-saccades in the same

direction are generated with only short ISIs [32] (see also Fig. S2).

Conventional experiments with freely moving animals could never

have shown this simple relationship. Indeed, in free flight, changes

in environmental feedback did not significantly alter the search

characteristics [32]. The discovery of near-optimal built-in search

strategies enables us now to investigate the brain mechanisms

behind optimal foraging in a genetically tractable model organism.

Interestingly, these strategies are not random but nevertheless

indeterminate.

New models of brain function
Because theoretical work suggests a range of competitive

advantages for indeterminate behavior in virtually all animals

[19,61–65,71], the structure of the indeterminacy should be

incorporated explicitly into models of general brain function and

autonomous agents. What would such future models of brain (or

agent) function look like? Nonlinear models displaying probabi-

listic behavior patterns can in principle be fairly simple [55]. The

nonlinear mechanisms need still to be influenced by the

environment both in a feed-forward form (the sensorimotor link)

[7,13,14,72] and by reafferent feedback control (Fig. 7) [73,74].

Our data raise the suspicion that future models of the brain may

have to implement this or a related component for spontaneous

behavior initiation, if they strive to be biologically realistic, out-

competing other models/agents. Recently, a new class of agents

was introduced, which incorporated some of these ideas [75].

What is the advantage of nonlinear over random?
But what, if any, difference does it make when behavioral

variability–despite being largely unpredictable–is not entirely

stochastic, but nonlinear and unstable? The tedious distinction

between random noise and unstable nonlinearity is worthwhile,

because the former points to extrinsic origins of variability,

whereas the latter indicates intrinsic origins. Technical advances

frequently lead to a significant increase in signal to noise ratios.

Such advances would increase the predictability of a brain where

the main source of variability stems from noise. In contrast, noise

reductions will only marginally change the predictability of

a nonlinear brain whose output is fundamentally indeterministic,

despite the deterministic rules that govern it. Given that there is

a cost associated with producing indeterminate behavior [61], it is

a straightforward inference that these latter rules have evolved

specifically to generate varying degrees of behavioral indetermin-

ism [23], as exemplified above in the case of the chasing house

flies.

Brains are simultaneously indeterministic and

deterministic for a reason
This insight has implications for our understanding of the general

function of brains. The most fundamental brain function is to

produce adaptive behavior. Adaptive behavior is the ability to

orient toward specific goals in the environment and to control

actions flexibly in pursuit of those goals. By and large, the every-

day world we live in is Newtonian: predictable and deterministic.

If we lose balance, we fall, if we neglect obstacles in our path, we

collide with them and if we reach for an object, we can grasp it.

Hence, no ambulatory animal could survive without its set of

adaptive, hard-wired sensorimotor rules shaped by evolution and

tuned by experience. No male house fly would ever catch its mate.

At the same time, the world is full of surprises: the unexpected

pursuit by a male house fly, the rejection of your manuscript or the

next move by your chess opponent (or a predator). In such cases,

not even the most complex stimulus-response programs (learned or

innate) will help an animal in evading the undesired surprises and

obtaining the desired ones. If the evasive actions taken by the

female house fly were predictable, males could short cut and catch

them with much less effort. It is essential to not leave the

Figure 7. Suggested models for open-and closed-loop experiments. A–Open-loop model as proposed in Fig. 1b (for the openloop group). B–
Closed-loop model (for the onestripe and uniform groups). Performance in a situation with a closed reafferent feedback loop is commonly modeled
with a state estimator, cross-correlating sensory input with recent motor commands via an efference copy (EC). Such an evaluation is required for
efficient behavioral control of incoming sensory data.
doi:10.1371/journal.pone.0000443.g007
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generation of behavioral variability to chance (i.e., noise), but to

keep it under neural control (i.e., nonlinearity). As such, evolution

can fine-tune the balance between sensorimotor mapping and

superimposed indeterminacy, defining the required compromise

between spontaneous and reactive behavior. The variability of

systems under tight constraints will be explained mostly by noise

(because the variability under neural control is minimized, such as

escape and pursuit responses in flies) [76], whereas noise may play

a very small role in generating variability of less constrained

behaviors (such as the ones observed here or the evasive actions

taken by female house flies) [19,20,77]. This notion of brains

operating on the critical edge between determinism and chaos has

also been used to describe human magnetoencephalographic

recordings [78]. Analogous to Heisenberg’s uncertainty principle

[79,80], much behavioral variability arises not out of practical

constraints, but out of the principles of evolved brain function. In

‘‘What is Life?’’ Erwin Schrödinger claimed that fundamental

indeterminism would never arise in the living world [81]. Today

however, the picture emerges that as much as simple taxis, mate

pursuit or course control require deterministic sensorimotor

programs [7,13,14,56,57,76], more complex interactions require

behavioral indeterminism, as evidenced by recent studies in game

theory [61,63,65], exploration/foraging behavior [71], feeding

[82] and pursuit-evasion contests (‘‘Protean Strategy’’)

[19,23,77,83]. Clearly, deterministic behavior will be exploited

[23,84] and leaves us helpless in unpredictable situations [30,85].

Brains indeed do throw the dice–but by refuting the notion of

stochasticity our results imply that they have exquisite control over

when, where and how the dice are thrown [86].

Spontaneity is the basis for operant behavior
If unpredictability is so important, why is the ‘random number

generator’ in the fly brain not perfect? For one, perfect

unpredictability might not be required for survival. In addition,

variable behavior might serve a second function. Variable,

spontaneous behavior is the only way to find out which portions

of the incoming sensory stream are under operant control by the

animal’s behavior. If much of the variation in this stream is due to

random noise (i.e., Gaussian), behaving in a non-Gaussian way

may aid in the detection of those variations which can be brought

under behavioral control. Given these considerations and that our

data imply a memory for past events influencing behavior

initiation, it is tempting to perceive such mechanisms of

spontaneous behavior initiation as the basis for operant behavior,

operant conditioning and habit formation [74]. Following this

notion, the ecologically so advantageous heavy-tailed searching

strategy may be brought about by constantly engaging motor

outputs and monitoring their effects in a decision-based queuing

process. Such a process prioritizes certain items in a list over others

(for instance yaw turns over thrust control, roll or proboscis

extension) and has been shown to lead to heavy-tailed behavior

patterns [33,67]. These considerations lend credence to an early,

rarely cited cognitive hypothesis on the significance of behavioral

variability in vertebrates [28] and suggest that it is actually much

more profoundly valid throughout the taxa, with the prospect of

studying its biological basis in a genetically tractable model system.

Identifying the neural circuitry housing the initiator will be the

logical next step in this research.

METHODS

Drosophila at the torque compensator
Flies Flies are kept on standard cornmeal/molasses medium

[28] at 25uC and 60% humidity with a 14 hr light/10 hr dark

regime. Females aged 24–48 h are briefly immobilized by cold-

anaesthesia and glued (Loctite UV glass glue) with head and

thorax to a triangle-shaped copper hook (diameter 0.05 mm) the

day before the experiment. The animals are then kept individually

overnight in small moist chambers containing a few grains of

sucrose.

Experiments Fly yaw torque behavior was recorded using

a torque compensator [87] with each fly flying stationarily in

a vertical drum (arena) as described before [35,88] for 30 minutes.

The Drosophila flight simulator is a computer controlled feedback

system in which the fly uses its yaw torque to control the rotations

of a panorama surrounding it (Fig. 2, Video S1). The core device is

the torque meter [35,89–91], which measures a fly’s angular

momentum around its vertical body axis. The fly, glued to the

hook, is attached to the torque meter via a clamp to accomplish

stationary flight in the centre of a cylindrical panorama

(arena; diameter 58 mm), homogeneously illuminated from

behind (Fig. 2). The light source is a 100W, 12V tungsten-iodine

bulb.

In the case that the feedback loop between the fly’s behavior

and its environment is open (i.e., ’’open loop’’), the arena is empty,

stationary and thus supplying a visually constant environment

(white light). The fly is stationary, providing for a stable

environment in terms of volatiles (odours) and magnetic or

electrostatic fields. Any potential auditory stimuli are uncontrolled

and bear no correlation to the fly’s behavior. An analog to digital

converter card (PCL812; Advantech Co.) feeds the yaw torque

signal into a computer which stores the trace (sampling frequency

20Hz) for later analysis. 13 flies from this condition form the group

‘‘openloop’’.

In addition to the openloop group, we have analyzed data from

two control groups. These groups controlled arena positioning

with the operant feedback loop between behavior and arena

closed. In ‘‘closed-loop’’, the situation is similar, but differs in that

the arena carries either a single stripe (‘‘onestripe’’) or is uniformly

dashed (‘‘uniform’’). In these cases, a computer controlled electric

motor rotates the arena such that its angular velocity is

proportional to, but directed against the fly’s yaw torque (coupling

factor K = 211u/s?10210Nm). This enables the fly to stabilize the

panorama and to control its angular orientation. Each of the two

groups contains the data from 13 flies. Only 30 minute-long

uninterrupted flights in the respective situation are included in the

analyses.

Data series
Yaw torque traces Observing the stored yaw torque traces

after the experiment (Fig. S1), it becomes apparent that the

behavioral output does not reflect the constancy of the

environmental input at all. Instead, the yaw torque signal shows

large fluctuations over the entire yaw torque range. In the openloop

group, there are two sorts of fluctuations: baseline fluctuations and

torque spikes. Because of the lack of landmarks, the fly is unable to

acquire optomotor balance in order to fly straight, whereas in the

two other groups, the pattern(s) on the arena enable straight flight

and a constant baseline in optomotor balance (Fig. S1).

Torque spikes In free flight, fruit flies alter flight direction

using rapid stereotyped turns termed body saccades [35,88]. Such

saccades can alter flight direction by up to 90u in 50ms with

turning velocities exceeding 1000u/s [14,31,35,92–96]. The flight

path between saccades is comparatively straight [97]. At the

torque compensator, these saccades manifest themselves as short

bursts of torque (‘‘spikes’’). The dynamics of the spikes themselves

adjust to tethered flight conditions, but otherwise tethered flight is

in many ways very similar to free flight [14,35,96]. After low-pass
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filtering the raw data (6th order Butterworth IIR, passband 6 Hz,

stopband 9 Hz) to remove measurement noise, the zero-crossings

of the gradient are detected. The time of the zero-crossing is

qualified as a spike event if the peak amplitude falls above a given

threshold and outside of a given refractory period after the last

spike. The time between two successive spikes is stored as inter-

spike-interval (ISI). For each detected spike, the direction (left-

turning or right-turning) is stored as well (see Fig. S2). A lower cut-

off is made at 300 detected spikes to be able to perform meaningful

mathematical analysis, discarding all animals failing this criterion.

This, as well as all of the following algorithms was implemented in

Matlab (The Mathworks Inc., Natick MA, USA).

Computer-generated control series All our algorithms

were also applied to computer-generated random ISI series.

Standard stochastics predict the outcome of each algorithm for this

group of ISI series, which thus provides a valuable control group.

For each of the 13 animals from the openloop group, a Poisson

distribution was fitted to the ISI histogram. Random series with

identical length to the openloop series were generated by drawing

from these distributions, forming the ‘‘poisson’’ group.

Releasing the restriction of a constant spike rate, we generated

data using a doubly stochastic Poisson process (or Cox process)

[14,35,96]. For each fly from the openloop group, we estimated the

instantaneous spike rate for each ISIi by 1/(ISIi-ISIi-1 ). The

distribution of this top-level stochastic process was modeled non-

parametrically, i.e. by computing histograms (bin size 10). To

generate test data successive values were drawn at random from

this top-level distribution. Each randomly drawn value provided

the rate for the bottom-level Poisson process generating torque

spikes. This process was iterated until the number of ISIs matched

the corresponding fly sequence. Thus, both first and second-order

statistics were matched in he openloop and the cox series.

As a model for a more complex composite stochastic process we

used a branching Poisson process (BPP) [36,37]. There are many

variants of such composite processes and a number of them are

known to generate heavy-tailed probability distributions like the

ones we observed in the fly groups. Specifically, we implemented

a series cascade of Thomas processes (Fig. S4a): A top-level

Poisson process with a constant rate generates a series of events.

This series of singular events is filtered through a filter yielding

a continuously valued, time varying signal. This is used as the rate

for a (non-homogeneous) Poisson process on the next level, which

also generates a series of events. This scheme is iterated over all

levels. The output of all levels is combined to yield the output of

the BPP (hence branching PP). For our analyses we generated data

using a BPP comprising 10 levels and an initial rate of 0.05. The

transfer function of the filter is given by the coefficients [1] in the

nominator and [1–0.9] in the denominator, yielding an exponen-

tially decaying impulse response function. Alternatively we used

a 5-tap boxcar filter to investigate the effect of (non-)linearity on

the properties of the data generated by the BPP.

In addition to ISI time series, we also computer-generated four

categories of raw data traces for the nonlinear forecasting

procedures:

I. A noisy sine function was used for comparison to a linear

process. Data of the same length n as the yaw torque data were

generated by

yi~ sin
i

2p

� �
zsjiz2, 0ƒivn ð1Þ

with noise ji drawn from a uniform distribution in the interval

[21, 1]. We set s to 0.2.

II. For comparison to a process with known nonlinear properties

we used the logistic map:

yi~ mzsjið Þyi{1 1{yi{1ð Þ, 1ƒiƒn: ð2Þ

We chose m= 3.9, s = 0.1, and initialized y0 to a random value

in the interval [0, 1].

III. We adapted a model designed to simulate spontaneous

search behavior as an example for modern autonomous, nonlinear

agents. The original model [48] consisted of three coupled

nonlinear oscillators and a sensory organ. Two oscillators provided

output for left and right turns, respectively. The remaining

oscillator provided activating input for the other two oscillators.

To model open loop behavior where sensory input is constant, we

removed the sensory input from the model (automat; Fig. S4b).

The state si
o of oscillator o (oM{R, L, A} for left, right, and

activating) at time point i is given by

so
i ~lo

i so
i{1 1{so

i{1

� �
, 1ƒiƒn: ð3Þ

The initial state so
0 of an oscillator is randomly chosen in the

interval [0,1]. We re-set si
o to 1026 whenever it falls below this

value.

The parameters lo evolve according to

lA
i ~mzsgA

i

lL
i ~mzsgL

i zsA
i {asR

i

lR
i ~mzsgR

i zsA
i {asL

i :

ð4Þ

Here, go is Gaussian noise in the interval [21, 1]. The model

parameter m controls the behavior of the logistic maps. The term

sgi
o acts as a perturbation on m. The parameter a controls the

strength of the inhibition between the left and right turn

oscillators. The simulated torque signal y is computed by

yi~sL
i {sR

i : ð5Þ

The model parameters m, s, and a were adjusted in the

following ways to generate a number of different automat

simulations. At first, the parameters were chosen according to

the original publication (m= 1.1, s = 1.1, and a= 1; automat in Fig.

S5). From there, parameters were explored and adjusted manually

until the output appeared to be indistinguishable from fly yaw

torque data (m= 1.1, s = 0.75, and a= 1.15; automat 2 in Fig. 6).

For this simulation, the previous time-step was also added to the

current state (i.e., sA
i21+si

A), simulating a one-step memory. Next,

m was increased and s decreased to bring the agent beyond the

point of stability (m= 3.4, s = 0.3, and a= 3.4, automat 1 in Fig. 6).

Mathematical analyses
In a stepwise fashion we tested increasingly more sophisticated

models, eliminating the less complex models at each step.

Geometric Random Inner Products (GRIP) The GRIP

formalism has been developed to quantify the performance of

random number generators [55]. It is based on the observation

that the average inner product of randomly distributed vectors in

n-dimensional geometric objects (like hyper-spheres or hyper-

cubes) converges to object specific constants. The deviation from

this constant can be used as a measure for the randomness of
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a sequence. One application was studying the randomness of the

digits of p [34].

Here we apply GRIP to quantify the randomness of ISI

sequences. In a first step, the ISI sequence (l1, l2, … ln) is

embedded in an d-dimensional space such that

v1~

l1

l2

..

.

ld

0
BBBB@

1
CCCCA,v2~

ldz1

ldz2

..

.

l2d

0
BBBB@

1
CCCCA, . . . vm~

l(m{1)dz1

l(m{1)dz2

..

.

l(m{1)dzd

0
BBBB@

1
CCCCAm~t

n

d
sd ð6Þ

are vectors which are presumed to be random. For three

consecutive vectors vi, vi+1, vi+2 the differences v12 = vi+12vi and

v23 = vi+22vi+1 are computed. The average inner product of these

vectors has been shown to converge to a geometric constant cd, i.e.

Sv12
:v23Td~cd : ð7Þ

For an exponential probability density function p(l) = e2al of ISIs

of length l, this constant is

cd~{
d

a2
ð8Þ

(Tu, S.J.; personal communication). We set the embedding

dimension d = 3. Exponential functions were fitted to the ISI

histograms, and the geometric constants cd were determined for

each fly. To compare the randomness between groups, we

computed the absolute differences between the left and right side

of eq. (7) in terms of standard deviations of the left side. The results

were averaged for each group.

Exponential distributions We compared ISI series to

exponential distributions by first fitting an exponential

distribution to the ISI series and then plotting the ISI series on

a semi-logarithmic scale with the fitted exponential as a straight

line. Wherever the ISI series deviates from the straight line, it

deviates from an exponential distribution with the same rate.

Lévy exponent If the distribution of ISIs of duration l can be

characterized by a probability density function

p lð Þ*l{m ð9Þ

with 1,m#3, the distribution is called a Lévy distribution. In

contrast to Gaussian or Poisson distributions of step lengths, in

Lévy motion small steps are more often interspersed with longer

steps, causing the variance of the distribution to diverge.

Additionally, Lévy distributions are self-similar at all scales or, in

other words, the step lengths have no characteristic scale [98].

Lévy distributions are commonly found in animal behavioral

patterns [99]. For foraging behavior it can be shown that m<2

results in an optimal coverage of an area with randomly located

target sites if the global site concentration is low [39]. We

determined Lévy exponents by fitting straight lines to log-log plots

of ISI histograms:

m~{
d log N lð Þ

d log l
ð10Þ

Here, N(l) is the number of ISIs in the bin representing duration

l. All single fly series within one group were concatenated and m
computed as a single value for each group.

Correlation dimension To evaluate the possibility that the

apparently random ISI sequences are produced by a nonlinear

system causing chaotic dynamics we estimated the fractal

dimensions of the underlying attractor of the sequences.

Specifically, we computed the limit of the correlation dimension

n for an increasing dimensionality d of the embedding space [100],

lim
d??

nd~D, ð11Þ

where D is the fractal dimension of the chaotic attractor. The

correlation dimension is given by:

Cd eð Þ~end ð12Þ

Cd is the correlation integral and measures how frequently the

system state returns into a vicinity of size e,

Cd eð Þ~
vi,vj

� �
, vi{vj

�� ��ƒe
� ��� ��

m m{1ð Þ , ð13Þ

where vectors v1…m are the embedded ISI sequence of di-

mensionality d. Similarly, we computed the limit of the in-

formation dimension lim
d??

dd defined as[101]:

Hd eð Þ~edd : ð14Þ

Hd is the entropy of the system in phase space and can be

written as

Hd eð Þ~{
XN eð Þ

i~1

pi log pi: ð15Þ

Here, pi is the probability that the system is in state i represented

by cubes of size e in the state space. Numerically, correlation and

information dimension were determined by fitting lines into log-

log plots of the correlation integral and the entropy, respectively.

For random sequences the correlation dimension diverges.

Since we observe convergence for our ISI sequences, we use this as

another indicator that they are not trivially random. In order to

exclude more complex stochastic processes, we compared the

correlation dimension for each dataset with the values obtained

from surrogate data. Surrogate datasets were created by randomly

shuffling the ISIs of the measured sequence. This retains the first

order statistics but destroys any dynamic information depending

on the history of the system. If the correlation dimension of the

measured sequence and the surrogate data differ significantly, we

can conclude that the sequence contains dynamic information. To

evaluate the difference we computed a normalized histogram of

correlation dimensions of N = 1000 surrogate datasets. In this

histogram, the value at the position of the correlation dimension of

the measured sequence corresponds to the probability to obtain

this value by a random sequence with the same first order statistics.

These probabilities were averaged across individuals for each

group.

Root-mean-square fluctuation of displacement To detect

long-range correlations in our ISI series, we applied a method

based on the root mean square (r.m.s.) fluctuation of displacement

[102]. If (l1, l2, … ln) is a sequence of ISIs, the net displacement y(t)

is defined as the running sum y tð Þ~
Xt

i~1
li. The fluctuation of
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displacement is defined as Dy(t);y(t0+t)2y(t0), and the statistical

measure characterizing the series is the root of the mean squares

F tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S Dy tð Þð Þ2T{SDy tð ÞT2

q
: ð16Þ

The angular brackets denote expectation value over all possible

values t0. The r.m.s. fluctuation obeys a power law, i.e.

F tð Þ!ta: ð17Þ

Uncorrelated time series yield a = K, as do Markov processes for

sufficiently large t. Processes with long-range correlations yield a?K.

We plotted F(t) for each ISI series on a double logarithmic scale, fitted

straight lines and calculated the regression slope a to obtain one value

for each series which was then averaged for each group.

Simplex projection Simplex projection [49] is a nonlinear

method for making short-term forecasts of time series. The quality

of the forecast is measured by computing the correlation

coefficient between the forecast and the original series.

Depending on the nature of the data, the evolution of the

correlation coefficient shows different developments for increasing

forecasting intervals. For a linear, but noisy process the correlation

coefficient decreases only slowly with increasing prediction

intervals. In contrast, a chaotic process is characterized by a fast

decay of prediction accuracy. One of the great advantages of this

method is that it can be applied to short series, such as our data.

Raw yaw torque data were detrended by taking the first difference

of the series. ISI series were not detrended.

The method starts by embedding the ISI or data sequence in a d-

dimensional space. Unlike the embedding used for GRIP and

correlation dimension, where each ISI is used in only one vector, here

each ISI appears in d vectors. Specifically, the embedding is now

v1~

l1

l2

..

.

ld

0
BBBB@

1
CCCCA,v2~

l2

l3

..

.

ldz1

0
BBBB@

1
CCCCA, . . . vm~

ln{dz1

ln{dz2

..

.

ln

0
BBBB@

1
CCCCAm~n{dz1:ð18Þ

The resulting set of points in d-dimensional space is split in two

halves, the library set L and the prediction set P. We consider each

vector ptMP as composed of a consecutive sequence of d observed

ISI points. From this sequence a prediction about the following ISI

durations (Tp = 1, 2, …) is to be generated. From eq. (18) can be

seen, that if pt = pi is the i-th vector in the prediction set, the

observed ISI Tp steps ahead is ptzTp dð Þ~pizTp
dð Þ, e.g. the

prediction for the sequence in v1 one step ahead is v2(d).

To generate a prediction for a vector pt from the prediction set,

its d+1 nearest neighbors lt
1…lt

d+1ML are selected. Associated with

each neighbor is a weight

wi~
1

Pdz1

j~1

exp {
pt{l t

jk k
�ww

� � exp {
pt{l t

i

		 		
�ww

� �
,

�ww~
1

dz1

Xdz1

j~1

pt{l t
j

			 			:

A prediction p̂ tzTp for pt after Tp steps is then given by the

weighted superposition of the evolution of the neighbors after Tp

time steps, i.e.

p̂ tzTp~
Xdz1

j~1

wj l
tzTp

j :ð20Þ

Returning back from the embedding space to the temporal

domain of the sequence, we consider the predicted ISI,

p̂ptzTp~̂p tzTp (d), ð21Þ

i.e. the last component of vector p̂ptzTp , and compare it with the

observed ISI Tp steps ahead, which is given by

ptzTp~ptzTp dð Þ: ð22Þ

The coefficient of correlation between the sequence of predicted

ISIs and the true values is then used as a measure for the

prediction accuracy.

S-map procedure The S-map procedure (sequentially locally

weighted global linear map [52]) is in many respects similar to the

simplex projection. Here, instead of looking at the evolution of

only the nearest neighbors to generate a prediction, all vectors in

the library set are used. A single linearity parameter h controls if

the influence of the library vectors is linear (h= 0) or nonlinearly

weighted by their respective distance to the vector used for the

prediction. To apply the denotation used for the simplex

projection, the prediction p̂ tzTp from a vector ptMP is now given

by

p̂ tzTp~c:pt, ð23Þ

where c is a weight vector that is newly computed for every

prediction pt. It is the solution of

b~Ac, ð24Þ

where the rows of matrix A contain the library vectors l and vector

b the corresponding, observed ISI duration Tp time steps after the

sequence contained in l. Formally, A and b are given by

b ið Þ~w l i,p
tð Þl izTp dð Þ,Aij~w l i,p

tð Þl i jð Þ1ƒiƒ Lj j,1ƒjƒd: ð25Þ

As can be seen, the number of rows in A (and the length of b) is

equal to the size of the library set |L|, which in most cases will be

larger than the embedding dimension d. Therefore, eq. (24) will be

over-determined and singular value decomposition (SVD) is used

to obtain an optimal solution.

Function w is used to weight the library vectors by their distance

to the prediction vector:

w v1,v2ð Þ~ exp {h
v1{v2k k

�ww

� �
,�ww~

1

Lj j
XLj j

i~1

l i{ptk k: ð26Þ

For h= 0, a linear map is obtained. Increasing h puts more and

more emphasis on library vectors close to the prediction vector.
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As for the simplex projection, the accuracy of predictions is

evaluated by the correlation coefficient between the predicted and

the observed series.

Statistical evaluation
To test for significant differences between several groups, we first

used a Kruskal-Wallis ANOVA to test the hypothesis that all

groups were drawn from the same population. If this hypothesis

was rejected, 2-tailed post-hoc tests provided information as to the

source of the differences. These tests were conducted for GRIP

values (Fig. 3) and the probabilities to obtain the original

correlation dimension with shuffled data (Fig. 4). T-tests against

single values were used to test individual groups against an

expected value and Mann-Whitney U-Tests for pairwise compar-

isons (Fig. 5).

SUPPORTING INFORMATION

Figure S1 Example yaw torque traces. Left column-total traces.

Right column-magnified section from minutes 5-10 of the total

traces. Red lines delineate enlarged sections. Upper row is from an

animal flying in open loop in a featureless, white panorama

(openloop). The middle row is from an animal flying in closed loop

in a panorama with a single black stripe (onestripe). The lower row

is from an animal flying in closed loop in a uniformly dashed arena

(uniform).

Found at: doi:10.1371/journal.pone.0000443.s001 (0.68 MB TIF)

Figure S2 Descriptive statistics of spiking behavior. A-The

probability to perform consecutive spikes in the same direction.

Random spike directions show equal probability for left and right

turns, while fly data are dependent on the environmental situation

of the fly. Flies fixate a single stripe and hence produce alternating

spikes to keep the stripe in front of them. The onestripe group

therefore is more similar to the poisson group than the other fly

groups. Flies in uniform environments show persistent turning

direction over several consecutive spikes. These spike trains in the

same direction can be interpreted as search spirals. B-Total

number of spikes. Openloop and poisson show the same values,

because poisson was generated by drawing series with the same

length as those in openloop. The onsestripe group shows fewer

spikes, because of the long intervals flying straight towards the

stripe.

Found at: doi:10.1371/journal.pone.0000443.s002 (0.89 MB TIF)

Figure S3 Log-linear plots of fly and Poisson data. Corroborat-

ing the results from our GRIP analysis, exponential distributions

(straight black lines) cannot be fitted to fly ISI series, whereas the

poisson series shows the expected exponential distribution. Fly ISI

series all show an excess of long intervals, suggesting a heavy-tailed

distribution. See Methods for details.

Found at: doi:10.1371/journal.pone.0000443.s003 (0.38 MB TIF)

Figure S4 Schematic diagrams of complex stochastic and simple

nonlinear models. A-The branching Poisson process (BPP) as an

example for complex stochastic models. The BPP consists of

cascading units of filter functions and Poisson processes. Each

unit’s filter function receives the events from the Poisson process

upstream and drives the rate of the Poisson process associated with

it. The (unfiltered) output of all Poisson processes is combined to

yield the total output of the model. B-The nonlinear automat is an

example how simple nonlinear processes can generate complex

behavior. The activator sends excitatory input to both turn

generators. The turn oscillators inhibit each other. The output is

the difference signal between the left and right turn oscillator.

Each oscillator is described by a logistic map, and the coupling

modulates the individual parameters of each map. See Methods

for details.

Found at: doi:10.1371/journal.pone.0000443.s004 (1.44 MB TIF)

Figure S5 S-Map analysis of all fly data and additional control

series. A-S-Map analysis of ISI series. Depicted are the averaged

results for the three fly groups. Interestingly, the fly group with

a singularity in the environment (onestripe) can be clearly

distinguished from the two groups with uniform environment

(openloop and uniform). Note that the closed-loop groups

(onestripe and uniform) also exhibit the nonlinear signature,

excluding the possibility that the variability is an artefact of the

constant stimulus situation in the openloop group. B-S-Map

analysis of raw data series. At high parameter values, the logistic

map shows the typical increase in forecast skill with increasingly

nonlinear models, while the noisy sine function does not show any

such improvement. The nonlinear agent (automat) with the

originally published parameters behaves almost randomly, despite

the nonlinear mechanisms generating the output. The fly data

come to lie in-between the extreme control data, showing both an

increase in forecast skill with increasingly nonlinear models and

moderate overall correlation coefficients.

Found at: doi:10.1371/journal.pone.0000443.s005 (0.42 MB TIF)

Video S1 Tethered Drosophila. Tethered flying Drosophila can

beat its wings, move its abdomen, legs and proboscis, but cannot

rotate or otherwise move.

Found at: doi:10.1371/journal.pone.0000443.s006 (1.94 MB AVI)
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