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In its geometric form, the Maupertuis principle states that the movement of a classical particle in
an external potential V (x) can be understood as a free movement in a curved space with the metric
gµν(x) = 2M [V (x) − E]δµν . We extend this principle to the quantum regime by showing that the
wavefunction of the particle is governed by a Schrödinger equation of a free particle moving through
curved space. The kinetic operator is the Weyl–invariant Laplace-Beltrami operator. On the basis
of this observation we calculate the semiclassical expansion of the particle density.

PACS numbers: 98.80.Cq, 98.80. Hw, 04.20.Jb, 04.50+h

INTRODUCTION

The famous Maupertuis principle was discovered in 1741 by Pierre Louis Maupertuis, later refined by Hamilton
and Jacobi, who also gave a geometric interpretation of the situation [1]. It laid the foundation to the geometric
formulation of Newton’s laws, and was an important stimulus for Einstein’s general theory of relativity. In this note
we want to point out that this geometric view of classical physics remains also valid in the quantum regime, i.e., the
quantum mechanics of a particle in a potential V (x) may be described alternatively by a Schrödinger equation in a
general curved space with D dimensions with the Maupertuis metric

gµν(x) ≡ 2M [V (x)− E]δµν . (1)

The Hamiltonian of this Schrödinger equation contains the Weyl-invariant (conformally invariant) version

∆W = ∆− 1

4

D − 2

D − 1
R (2)

of the Laplace-Beltrami operator

∆ = g−1/2∂µg
1/2gµν∂ν . (3)

Our result supplies us with an answer to an old, very fundamental problem left open by Einstein’s classical equivalence
principle. That principle states that the classical laws of motion of a point particle can be derived from a coordinate
transformation in spacetime whose inertial forces simulate the gravitational forces at the position of the particle.

Since a quantum particle is always an extended object described by a wave packet, there could, in principle, be a
correction term ξ R proportional to the curvature scalar R, whose size ξ is undetermined by the classical equivalence
principle. The geometric method, which we shall call the Quantum Maupertuis Principle, fixes the size of the R-term.

The paper is structured as follows:

• The second section is devoted to the derivation of the Schrödinger equation of a particle in curved space, thereby
fixing the above-mentioned extra R-term.
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• In Sec. 3 we calculate the propagator in curved space.

• Sec. 4 contains the application of the Quantum Maupertuis Principle, where the particle density is calculated
explicitly.

• The fifth section treats two explicit examples in the Maupertuis metric.

• A summarizing section and an appendix with calculations conclude the present note.

FORMULATING QUANTUM MECHANICS IN CURVED SPACE

Consider the classical eikonal of an arbitrary trajectory of a point particle moving in Euclidean space with a
potential V (x). It is given by the integral

S(E) ≡
∫ √

gEµν(x)dxµdxν , (4)

with the Maupertuis metric (1). It is a functional of the trajectory which may be parametrized with the help of an
arbitrary variable λ as xµ(λ), and rewritten as

S(E) ≡
∫
dλ
√
gµν [x(λ)]ẋµ(λ)ẋν(λ) ≡ l. (5)

The integral coincides exactly with the invariant length of the trajectory.
According to Maupertuis, the eikonal S(E) is extremal for the classical trajectory, i.e., the classical orbit is a

geodesic trajectory. If λ is chosen to coincide with the invariant length l, the extremization produces the geodesic
differential equation

d2xδ

dl2
+ Γ δ

αβ

dxα

dl

dxβ

dl
= 0, (6)

where Γ λ
µν are the Christoffel symbols1

Γ λ
µν =

1

2
gλσ (∂µgσν + ∂νgµσ − ∂σgµν) . (7)

Inserting the metric (1) into this equation, we see that Eq. (6) is fulfilled if the trajectory follows the Newton equation
x′′µ = −∂µV . (Here, the time is chosen as the non-affine parametrization parameter and the prime denotes the
derivative with respect to it.)

The Maupertuis metric in Eq. (1) differs from the flat Euclidean metric ḡµν ≡ δµν only by a conformal factor

Ω2(x) ≡ 2M [V (x)− E]. (8)

It is therefore called conformally flat. Calculating the curvature quantities with this metric (cf. Appendix ) in D
dimensions one obtains the curvature scalar:

R =
1−D

4

[
2∂µ∂µV

M(E − V )2
+

(D − 6)∂µV ∂µV

2M(E − V )3

]
. (9)

Consider now the quantum mechanics of the point particle of energy E in the potential V (x). It is described by
the Schrödinger equation

(Ĥ − E)ψ(x) ≡
[
p̂2

2M
+ V (x)− E

]
ψ(x) = 0, (10)

1 We use the index conventions of the textbooks [2, 3].
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where p̂ ≡ −i~∇. Using the metric (1), this can be rewritten as[
Ω−2(x)p̂2 + 1

]
ψ(x) = 0, (11)

or as (
~2∆W − 1

)
ψ(x) = 0, (12)

where ∆W ≡ Ω−2(x)
∑
µ ∂

2
xµ . It is easy to verify that this is equal to the Weyl-invariant combination in Eq. (2) of

the Laplace-Beltrami operator [see Eq. (3)] and R. The equation linking ξ to the conformal coupling is also known
as the Penrose-Tagirov-Chernikov equation [4].

Equation (12) is a simple but very fundamental result. The Maupertuis metric (1) governs not only the classical, but
also the quantum mechanical dynamics, provided that the Laplace-Beltrami operator is extended to the Weyl-invariant
form (2).

PROPAGATORS IN CURVED SPACE

The advantage of the curved-space reformulation [i.e., the Schrödinger equation in the form of Eq. (12) rather
than Eq. (10)], is that, in curved space, the particle is without a potential. It is a free particle moving through the
Maupertuis metric (1). For such movements, there exist well-developed methods of calculating quantum properties
pioneered by Bryce DeWitt [5–7] who studied quantum field theoretical models in curved space. In particular, DeWitt
has given a semiclassical expansion of the matrix elements of the resolvent operator

〈x|R̂|x′〉 ≡ 〈x| i~
E − Ĥ

|x′〉, (13)

where Ĥ is a curved-space translation operator in some pseudotime parameter τ , and E is the associated pseudoenergy.
The pseudotime τ is commonly called Schwinger time or fifth time. Note that the physical time is eliminated in our
considerations by the geometrization method employed. The principle of least action in the classical case fixes the
trajectory of the particle and allows for different velocities along the path. In the quantum case the Schrödinger
equation contains this information via the extra term which extends the Laplace-Beltrami operator to the Weyl-
invariant form.

The Green function G(x, x′) = 〈x|R̂|x′〉 can be written as an integral

G(x, x′) =

∫ ∞
0

dτ〈x, τ |x′, 0〉 (14)

over the pseudotime displacement amplitude

〈x, τ |x′, 0〉 = 〈x|e−i(Ĥ−E)τ/~|x′〉. (15)

For arbitrary s = τ − τ ′, the result is given by the expansion

〈x, τ |x′, τ ′〉 =
D

1/2
MV(x, x′)

(2πi~s)D/2
eiσ(x,x

′)/s~
∞∑
n=0

an(is/2~)n, (16)

where

D
1/2
MV(x, x′) ≡ g1/4(x)∆

1/2
MV(x, x′)g1/4(x′) (17)

is the Morette-van Vleck determinant and ∆MV(x, x′) has the expansion

∆
1/2
MV =1+

1

12
Rµνσ

µσν− 1

24
Rµν;ρσ

µσνσρ+ (18)(
1

288
RµνRρτ+

1

360
Rαβµ νRαρβτ+

1

80
Rµν;ρτ

)
σµσνσρστ+. . . .
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Note that this expression is stated in the form of an endpoint expansion, which means, that the derivatives are
evaluated at the endpoint x2. Here, σ is the geodesic interval biscalar (cf. Appendix ). DeWitt allowed for the
presence of an extra term ξR in addition to the Laplace-Beltrami operator ∆ on the right-hand side of the Schrödinger
equation [cf. Eq. (45)]. Then he derived a recursion relation for the expansion coefficients [6]

σµ(a0) µ; =0, (19)

(n+1)an+1 +σµ(an+1)
µ
; =∆

−1/2
MV

(
∆

1/2
MVan

)
µ

;µ −ξRan, (20)

whose lowest terms are

a1 =

(
1

6
− ξ
)
R, (21)

a2 =
1

6

(
1

5
− ξ
)
R µ

;µ +
1

2

(
1

6
− ξ
)2

R2

− 1

180
RµνR

µν +
1

180
RµνρσR

µνρσ. (22)

With these coefficients at hand the expansion in Eq. (16) can be evaluated as a function of the curvature quantities.
It is interesting to note that the size of the factors found by DeWitt who allowed for a “quantum potential” in his

short-time expansions is not universal. While in his article on “Dynamical theory in curved space” he had found a
factor of 1/12 in order to identify the correct Hamiltonian in curved space [5], two-loop corrections to path integrals
in curved space required a factor of 1/8 [8]. Furthermore, there have been other proposals of Schrödinger equations
and the coefficients of the curvature scalar term in curved space (see Ref. [9–11] and references therein). This shows
that the problem of finding the “correct” quantum mechanical equations of motion in curved space is quite a difficult
task and brings many new questions with it.

APPLICATION OF THE QUANTUM MAUPERTUIS PRINCIPLE

We now come to the announced application of the quantum Maupertuis principle by calculating the particle density
of the Schrödinger equation (10)

ρ(x;E) ≡ 〈x|δ(E − Ĥ)|x〉

=
1

2π~
〈x|
∑
n

disc

(
i~

E − En

)
|x〉, (23)

where “disc” stands for the discontinuity across the cut in the energy plane. A simple algebra shows that

〈x|R̂|x′〉= 1

2
〈x|R̂|x′〉[V (x′)−E]−1. (24)

Now we insert the DeWitt expansion (16) which reduces for x = x′ to

〈x|R̂|x〉= g1/2(x)

(2πi~)D/2

∞∑
n=0

an (−∂m2)n
∫ ∞
0

ds e−im
2s/2~

sD/2
, (25)

where the integral is simply Γ(1−D/2)(m2)D/2−1, so that the sum on the right-hand side becomes

∞∑
n=0

an Γ(n+ 1−D/2)(m2)D/2−(n+1). (26)

2 See subsection 10.3.1 in the textbook [2]
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To be used in Eq. (24) we must take Eq. (25) for ξ = (D − 2)/4(D − 1) and m2 = 1 and evaluate an with curvature
terms of the Maupertuis metric (1):

〈x|R̂|x〉 =

(
M

2π~2

)D/2{
Γ(1−D/2)[V (x)− E]D/2

− ~2

12M
Γ(3−D/2)∂µ∂

µV (x)[V (x)− E]D/2−2

+
~2

24M
Γ(4−D/2)∂µV ∂

µV (x)[V (x)− E]D/2−3 + . . .

}
. (27)

The result is valid for V (x) > E where the metric is positive. For E > V (x) we use the property V −E = e∓iπ(E−V )
to find the discontinuity across the cuts. Remembering the extra factor (V − E)−1 in Eq. (24) we obtain from the
DeWitt expansion the particle density ρ

DW
(x;E) ≡ 〈x|δ(E − Ĥ)|x〉 as

ρ
DW

(x;E) =
1

π

(
M

2π~2

)D/2
sin

(
πD

2

)
×
[
Γ(1−D/2)(E − V )D/2−1

− ~2

12M
Γ(3−D/2)(E − V )D/2−3∂µ∂

µV (28)

− ~2

24M
Γ(4−D/2)(E − V )D/2−4∂µV ∂

µV + . . .

]
.

Now we employ the reflection formula for Gamma functions Γ(1− z)Γ(z) = π/sin(πz)

ρ
DW

(E;x) =

(
M

2π~2

)D/2 [
1

Γ(D/2)
(E − V )D/2−1

− ~2

12M

1

Γ(D/2− 2)
(E − V )D/2−3∂µ∂

µV (29)

+
~2

24M

1

Γ(D/2− 3)
(E − V )D/2−4∂µV ∂

µV + . . .

]
.

This agrees with the expansion in ~ obtained from the original Schrödinger equation (10) for E > V (x) [12].
By virtue of the bilocal character of the DeWitt techniques in curved space, the expansion of 〈x|R̂|x〉 exists also

for the off-diagonal matrix elements 〈x|R̂|x′〉 which serves to find also the off-diagonal particle density ρ(x, x′;E) ≡
〈x|δ(E − Ĥ)|x′〉 beyond the result stated in the literature [13].

TWO PHYSICAL SYSTEMS IN THE CURVED-SPACE FORMULATION

The case D = 1 and the harmonic oscillator

In one dimension, the expression (9) and the coefficient of the curvature term in Eq. (2) are invalid separately.
Although the curvature in one dimension vanishes we see in the latter equation that the conformally invariant Laplacian
is well defined and can be used to derive the semiclassical density of states as shown in Sec. . The expression for a
particle of mass M in a harmonic oscillator potential in one dimension reads

〈x | R̂ | x〉 =
1

π~

√
M

2

{
1

[E − V (x)]1/2
− ~2V ′′(x)

16M

1

[E − V (x)]5/2
(30)

−5~2[V ′(x)]2

64M
[E − V (x)]7/2 + . . .

}
, (31)

where the prime indicates the derivative with respect to x. This can be compared immediately to the expression of
the time evolution amplitude in the Eq. (4.255) in Ref. [2], where the semiclassical density of states

ρcl =
1

π~
M√

2M(E − V )
(32)
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[cf. Eq. (4.254) in [2]] has been factored out. Following the steps shown in the cited reference, we recover the time
dependence of the series expansion of the following diagonal time evolution amplitude

(x ta | x tb) =
1√

2πi~/M

√
ω

sin(ωt)
exp

{
i
Mω

~
[

tan(ωt/2)x2
]}

. (33)

In this way we confirm that for the harmonic oscillator the correct solution for the time evolution amplitude is
recovered by the Quantum Maupertuis Principle.

The next subsection raises an interesting question concerning the extra term that has to be added to the Schrödinger
equation by treating the hydrogen atom.

The hydrogen atom in the Maupertuis metric in momentum space

As mentioned before, the extra R-term found above is not universal. This can be seen by comparing the result
with the quantum mechanics of another system in curved space: the hydrogen atom in momentum space. It obeys a
Schrödinger equation (

p2 + p2E
)

Ψ(p) =
2

r
Ψ(p). (34)

Here, r is the radial coordinate and p2E = −2E (in natural units with ~ = aH = EH = 1, where aH ≡ α2~/mec is the
Bohr radius and EH = α2mec

2 is the Rydberg energy). By analogy with the previous approach we rewrite (34) as{
1

4

[
r̂(p2 + p2E)

]2 − 1

}
Ψ(p) = 0, (35)

and identify r̂2 with −
∑D
µ=1 ∂p2µ . By re-ordering the operators we can express (35) as a differential equation(

1

2
∆p − p2E + 1

)
Ψ = 0. (36)

where ∆p is now the Laplace-Beltrami operator in momentum space formed with the metric

gij =
2

(p2 + p2E)2
δij , (37)

which is again conformally flat. The associated curvature scalar is now R = 2D(D − 1)p2E , so that Eq. (36) can be
rewritten as (

1

2
∆p −

R

2D(D − 1)
+ 1

)
Ψ = 0. (38)

Remarkably, the coefficient of the R-term in this momentum space problem does not correspond to the Weyl-invariant
expression, where the subtracted R-term would have been (D − 2)R/8(D − 1) = R/16 for D = 3.

CONCLUSION

We have applied the classical Maupertuis principle to quantum mechanics by formulating the Schrödinger equation
of a particle in curved space via the Maupertuis metric. This procedure fixes the arbitrary extra term that has to be
added to the Schrödinger equation. The quantum version of the Maupertuis principle allows for the derivation of the
semiclassical particle density.

The result gives us the possibility of studying the quantum mechanics of an arbitrary potential problem using the
well-developed techniques of curved-space quantum mechanics. Conversely, it permits us to understand questions
about the quantum mechanics in curved space from the knowledge of Schrödinger theory in flat space.

However, our study shows that the extra term suggested by this principle is not universal, which raises further
questions about the nature of a Schödinger type of equation in curved space.
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Differential geometry in the Maupertuis metric

In this short appendix we derive the necessary curvature quantities in the Maupertuis metric. The geometric
properties of the space in the Maupertuis metric can be calculated directly as functions of Ω(x) = 2M [V (x) − E].
We observe that under the Weyl transformation ḡµν(x) → gµν = Ω2(x)ḡµν(x), the Christoffel symbols [cf. Eq. (7)]
change like

Γ λ
µν = Γ̄ λ

µν + Ω−1
(
δλν ∂µΩ + δλµ∂νΩ− ḡσλḡµν∂σΩ

)
. (39)

Because of this, the Riemann tensor defined by the covariant curl

R σ
µνλ = ∂µΓ σ

νλ − ∂νΓ σ
µλ − Γ τ

µλ Γ σ
ντ + Γ τ

νλ Γ σ
µτ (40)

is related to R̄µνλ
σ by

R σ
µνλ =R̄µνλ

σ

+
(

2ḡλ[νδµ]β ḡ
σα−2δσ[νδµ]αδλβ + δσ[ν ḡµ]λḡ

αβ
) (∂αΩ) (∂βΩ)

Ω2

+
(
δσ[νδµ]αδλβ + ḡσαḡλ[µδν]β

) ∇̄α∇̄βΩ

Ω
, (41)

where ∇̄µvν ≡ ∂µvν − Γ̄ λ
µν vλ stands for the covariant derivative, and ḡλ[νδµ]β ḡ

σα is defined as the antisymmetrized

expression ḡλ[νδµ]β ḡ
σα ≡ ḡλνδµβ ḡσα − ḡλµδνβ ḡσα. The Ricci scalar R ≡ gνλRµνλµ is obtained from Eq. (40) as

R =
R̄

Ω2
− 2(D − 1)ḡαβ

∇̄α∇̄βΩ

Ω3

− (D − 1)(D − 4)ḡαβ
(∂αΩ) (∂βΩ)

Ω4
. (42)

Inserting Ω(x) = 2M [V (x)− E] gives the curvature scalar in the form

R =
1−D

4

[
2∂µ∂µV

M(E − V )2
+

(D − 6)∂µV ∂µV

2M(E − V )3

]
, (43)

[cf. Eq. (9)].

Derivation of the propagator in curved space

In this appendix the time evolution amplitude is calculated in curved space. As mentioned in Sec. a pseudotime
is introduced with respect to which displacements are evaluated. The pseudotime displacement amplitude

〈x, τ |x′, 0〉 = 〈x|e−iĤτ/~|x′〉. (44)

satisfies the Schrödinger equation

i~∂τ 〈x, τ | x′, 0〉 = Ĥ 〈x, τ |x′, 0〉 (45)

with the boundary condition in D dimensions

〈x, 0 | x′, 0〉 = δ(D)(x− x′). (46)

The Lagrangian treated by DeWitt is

L =
1

2
gµν(x)ẋµẋν . (47)

This has the pseudotime Hamiltonian H = 1
2g
µν(x)pµpν ≡ 1

2p
µpµ, where gµν(x) is the inverse of the metric gµν(x),

and the action

A(x, x′; τ − τ ′) =

∫ x′,τ ′

x,τ

dτ L =
σ(x, x′)

τ − τ ′
, (48)
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where σ(x, x′) ≈ 1
2gµν(x)(x− x′)µ(x− x′)ν + . . . is the geodesic interval. The action depends on the pseudotime only

via this ratio. This is a consequence of the “free motion” in the metric gµν(x).
From the Hamilton-Jacobi equations it follows that

∂A
∂xµ

= pµ =
σµ

(τ − τ ′)
, (49)

−∂A
∂τ

=
σ(x, x′)

(τ − τ ′)2
= H =

1

2
pµp

µ. (50)

DeWitt gave the solution of the Schrödinger equation (45) as a power series in τ for the Hamiltonian

Ĥ = 1
2

(
−∆ + ξR+m2

)
, (51)

with an arbitrary parameter ξ. For small τ and x close to x′, the solution is simply

〈x, τ | x′, τ ′〉 ≈
D

1/2
MV(x, x′)

(2πi~s)D/2
eiσ(x,x

′)/s~, (52)

where s ≡ τ − τ ′ and DMV ≡ det[−∂µ∂′νσ(x, x′)] is the Morette-van Vleck determinant [14, 15].
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