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On-demand maximally entangled states with a parity meter and continuous feedback
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Generating on-demand maximally entangled states is one of the cornerstones for quantum information
processing. Parity measurements can serve to create Bell states and have been implemented via an electronic
Mach-Zehnder interferometer among others. However, the entanglement generation is necessarily harmed by
measurement-induced dephasing processes in one of the two parity subspaces. In this work, we propose
two different schemes of continuous feedback for a parity measurement. They enable us to avoid both the
measurement-induced dephasing process and the experimentally unavoidable dephasing, e.g., due to fluctuations
of the gate voltages controlling the initialization of the qubits. We show that we can generate maximally
entangled steady states in both parity subspaces. Importantly, the measurement scheme we propose is valid for
implementation of parity measurements with feedback loops in various solid-state environments.
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I. MOTIVATION

The generation, the control, and the readout of pairs
of entangled qubits serve as stepping stones towards the
implementation of quantum information protocols. While
the readout of individual qubits is typically associated with
the irreversible destruction of the given coherent state, it has
been shown that a joint measurement of two qubits can serve as
an effective mechanism to generate entanglement between two
measured qubits initially in a product state [1–12], and may be
used for error correction schemes [13,14]. This measurement-
based creation of entanglement is achieved by operating the
detector as a parity meter. The corresponding observable in the
computational basis of the qubits reads P̂ = σ̂ 1

z ⊗ σ̂ 2
z , where

σ i
z are the Pauli matrices for the qubits i = 1,2. The parity

operator P̂ has two eigenvalues, ±1, corresponding to the
even subspace spanned by the states {|↑↑〉 , |↓↓〉}, and to the
odd subspace spanned by {|↑↓〉 , |↓↑〉}. Measuring the parity
causes the two-qubit state to collapse onto a superposition
of even or odd states and, in particular onto the maximally
entangled states or Bell states in an ideal situation, |�±

e 〉 =
(|↑↑〉 ± |↓↓〉)/√2 and |�±

o 〉 = (|↑↓〉 ± |↓↑〉)/√2.
Parity measurements have been proposed in various solid-

state systems that serve as potential architectures for quan-
tum computing. In circuit quantum electrodynamics (QED),
generation of entanglement through a parity measurement
has been very recently achieved in three-dimensional (3D)
circuit QED [15,16] as well as in 2D circuit QED [17],
an architecture suitable for surface coding. Also quantum
transport-based measurements can equally well act as parity
measurements: both the quantum point contact (QPC) [4,6]
and the electronic Mach-Zehnder interferometer (MZI) [9]
have been investigated as parity meters for two double-
quantum dots (DDs) charge qubits as shown in Fig. 1(a).
By adjusting the coupling strengths between the qubits and
the detector, and by tuning either the microwave resonator
frequency or the magnetic flux threading the electronic MZI,
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only two values for the photon intensity or the electrical current
corresponding to the two parity subspaces are detected.

It has been shown theoretically [9–11,18], and confirmed in
the experiments of Refs. [15–17], that the two parity subspaces
are not on an equal footing with respect to dephasing processes.
While the two even states |↑↑〉 and |↓↓〉 give rise to the
same measurement outcome within the parity measurement
process, they differ by a phase factor, which depends on the
specific measurement outcome. Consequently, the different
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FIG. 1. (Color online) Parity measurement through a MZI and
induced dephasing. (a) Sketch of the MZI operated as a parity meter
for two charge qubits, Q1 and Q2, including the feedback circuit. The
feedback is implemented via a gate voltage, which controls the bias
energies of the qubits. Electrons are injected in lead |1〉 and the current
is measured in lead |3〉. The input |2〉 and output |4〉 are not used in
this proposal. (b) Signal at the detector’s output. The Aharonov-Bohm
flux � can be tuned to have indistinguishable signals for even and odd
states, Ie and Io respectively. (c) Probabilities for the two qubits to be
in each of the four maximally entangled states as a function of time
without feedback (f = 0, dashed lines) and with optimal feedback
(f = opt, solid lines).

1098-0121/2014/90(15)/155438(8) 155438-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.155438


MEYER ZU RHEDA, HAACK, AND ROMITO PHYSICAL REVIEW B 90, 155438 (2014)

measurement back-action leads to a loss of phase coherence
when averaging over an ensemble of realizations. This dephas-
ing in the even subspace, which we characterize as intrinsic
because it is induced by the unavoidable measurement back-
action, does not affect the odd states. Therefore, entangled
states made of a superposition of even states experience deco-
herence even in the absence of external noise. In this paper we
address the possibility of including a feedback loop in the par-
ity measurement scheme to overcome this intrinsic dephasing.

The majority of previous theoretical works investigating
the implementation of feedback loops focused on a Bayesian
formalism. It consists in updating the density matrix elements
according to a state estimation, which depends on the full
history of the state’s evolution and of the measurement
outcomes [19–22]. Experimentally, this feedback scheme has
been successfully implemented to stabilize Rabi oscillations of
a single-qubit subject to measurement-induced dephasing [23].
This Bayesian procedure has to be compared to a Markovian
or direct feedback, where the feedback is proportional to
the measurement outcome [24–26]. The Markovian feedback
presents the strong advantage to be much less challenging
numerically and experimentally, as it does not require real-time
resolution of nonlinear stochastic differential equations needed
for the state estimation in the Bayesian approach. While in
general the Bayesian approach to feedback leads to more
accurate results, it has been shown that, in the case of QND
measurements and in the absence of external noise sources,
Markovian and Bayesian approaches coincide [27]. In this
work, we show that the implementation of a Markovian
feedback is sufficient to tackle the intrinsic dephasing present
in the even subspace as discussed above.

To be concrete, we consider an architecture made of an
electronic MZI [28,29] coupled to two DDs charge qubits.
This choice is motivated by the very good coherence properties
of the MZI [30–34], which make it an ideal candidate as a
quantum detector [35,36]. In Ref. [9], one of the authors has
derived the conditions under which it can be operated as an
ideal parity meter. Measurement-induced entanglement has
been shown in principle, but is not stable due to intrinsic and
external sources of noise. The goal of this work is to go beyond
these results, and to show that a Markovian feedback efficiently
compensates the measurement-induced dephasing and that
external sources of noise, unavoidable in realistic setups, can
also be overcome by including a second feedback based on the
Bayesian approach. With this, we demonstrate how to generate
in a deterministic way target maximally entangled states that
do not decay in time.

The paper is organized as follows. In Sec. II, we present
the microscopic derivation of the state at the output of the
MZI after the transit of N electrons, imposing that the detector
acts as a parity meter. In Sec. III, we analyze the average
detector outcome and, based on the previous derivation of the
output state, derive the dephasing rates affecting the parity
measurement. In particular, we discuss the dephasing rate �eo

between the even and odd states, which sets the time scale at
which entanglement is generated, and we explain the origin of
the dephasing rate �ee present within the even subspace. We
introduce the concurrence conditioned on the parity outcome
as a measure of the amount of entanglement generated in each
parity class through the measurement process and advance

a Markovian feedback scheme that tackles this intrinsic
dephasing. To trigger future experiments, in Sec. IV, we
expand our feedback mechanism to take into account the effect
of additional sources of noise, especially when considering
fluctuating tunneling and bias energies in the DDs. To this end,
we introduce a second joint measurement, whose outcome is
used to implement a feedback based on the Bayesian approach.
By combining the two feedback schemes, we achieve the
deterministic generation of maximally entangled states via a
parity measurement, characterized by maximal concurrences
in both parity subspaces.

II. MICROSCOPIC MODEL

The electronic MZI is made of a Corbino disk, built in the
quantum Hall regime [28–34]. The transport of electrons takes
place along chiral edge states, which ensure a unidirectional
transport. Two quantum point contacts (QPCs) (left and right)
act as beam splitters for the incoming electronic wave packets.
They are characterized by their reflection and transmission
probabilities, RL,R and TR,L, respectively. The electrons are
injected in lead |1〉, biased by an energy eV compared to
the other leads, which are at the Fermi energy EF . The
DDs charge qubits are coupled capacitively to the arms of
the MZI, as depicted in Fig. 1. Depending on the charge
configuration of the DDs, each electron injected in the MZI
acquires different phases in the upper (u) and lower (d) arms of
the interferometer, ϕ(ss ′)

u ,ϕ(ss ′)
d . Their expressions are derived

from the interaction Hamiltonian between the charge in the
DDs and the charge in the arms of the MZI [9,18,37,38].
The indices s,s ′ ∈ {↑,↓} span the DDs’ computational basis.
Starting with the qubits in a product state and decoupled from
the detector described by the state |�det〉, the initial state
describing the whole system reads:

(α(↑↑) |↑↑〉 + α(↑↓) |↑↓〉 + α(↓↑) |↓↑〉 + α(↓↓) |↓↓〉) ⊗ |�det〉,
(1)

with |α(↑↑)|2 + |α(↑↓)|2 + |α(↓↑)|2 + |α(↓↓)|2 = 1. After the
passage of a single electron, the detector and the qubits become
entangled [1,6,9,22,39,40]:

|�1〉 =
∑
(ss ′)

α(ss ′)[C(ss ′)
3 |3〉 + C

(ss ′)
4 |4〉] ⊗ |ss ′〉, (2)

where the states |3〉 and |4〉 denote the two output leads of the
interferometer (see Fig. 1) and the coefficients C

(ss ′)
3 and C

(ss ′)
4

in terms of the system’s parameters are given by:

C
(ss ′)
3 =

√
RLRRei2π�/�0eiδϕ

(ss′ )
u +

√
TLTReiδϕ

(ss′ )
d

= ei2π�/�0eiδϕ
(ss′ )
u + eiδϕ

(ss′ )
d

2
, (3)

C
(ss ′)
4 = i

(√
RLTRei2π�/�0eiδϕ

(ss′ )
u −

√
TLRReiδϕ

(ss′ )
d

)

= i
ei2π�/�0eiδϕ

(ss′ )
u − eiδϕ

(ss′ )
d

2
. (4)

The Aharonov-Bohm flux 2π�/�0, where �0 = h/e is the
flux quantum, arises from the magnetic field threading the
sample. The second equality for both coefficients is obtained
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by assuming symmetric QPCs, RL = RR = 1/2 in order to
optimize the strength of the measured signal in agreement
with the original experiments [28,30,32].

Parity detection. To operate the electronic MZI as a parity
meter, we have to impose that:

|〈↑↓|�1〉|2 = |〈↓↑|�1〉|2 = Po. (5)

|〈↑↑|�1〉|2 = |〈↓↓|�1〉|2 = Pe, (6)

where Po (Pe) is the probability to find the qubits in an odd
(even) state. The two distinguishable currents at the output of
the parity meter are then given by:

Io = 2e2V

h
Po, Ie = 2e2V

h
Pe. (7)

Following Ref. [9], Eqs (5) and (6) are satisfied if the two parity
assumptions are verified: (P 1) : δϕu = δϕd ≡ δϕ, (P 2) :
2π�/�0 = 0 modπ . Experimentally, the first condition can
be fulfilled by controlling the capacitive coupling between
the arms of the MZI and the DDs and the second one is
directly implemented by tuning the magnetic field [28,30].
The coupling is assumed to be weak such that:


I = Io − Ie � Io,Ie. (8)

Consequently, the detector output noise SII is assumed to
be independent of the qubits’ state, SII = (So

II + Se
II)/2, with

S
o/e

II = 2e3V/h T
o/e

31 (1 − T
o/e

31 ) the detector shot noise associ-
ated with the transmission probability from lead |1〉 to lead |3〉
of the MZI for the qubits in the even and odd subspaces. The
detector shot noise SII defines the measurement rate of the
apparatus [41], �m = (
I )2

4SII
. A quantum-limited ideal parity

meter, i.e., a detector that detects the parity of the qubits as
fast as it dephases them, is characterized by �m = �eo, where
�eo describes the loss of phase coherence between the even
and odd states. To get an explicit expression of �eo, and of the
dephasing rates within each subspace, �ee and �oo, we expand
the microscopic single-electron formulation of the output state
|�1〉 to the case of a large number N of electrons and obtain
an expression for |�N 〉.

For this, we consider a time interval τ , much larger than the
time h/eV between two consecutive electrons passing through
the MZI, τ � h/eV (we recall that eV sets the energy bias of
the dc source). During this time window τ , N � 1 electrons
are sent into the interferometer, independently from each other.
Equation (1) then evolves to:

|�N 〉 =
∑
ss ′

N∑
n

(
N

n

)
C

(ss ′)n
3 C

(ss ′)(N−n)
4 |n,N − n〉 |ss ′〉 . (9)

Here, we have introduced the notation |n,N − n〉 to describe
the state where n electrons have reached the output lead |3〉 of
the MZI, whereas N − n have reached the output lead |4〉. The
chirality of the edge states along which the electrons travel in
the MZI ensures that the N electrons injected into lead |1〉 exit
either through lead |3〉 or lead |4〉.

Though it is possible to inject a controlled train of single
quasiparticles in a MZI [42], the most natural experimental
configuration is that of an applied dc bias. Indeed, a dc
source with a typical bias of ∼1 μeV will lead to the con-
tinuous emission of electrons with a typical coherence length

∼40 μeV (much longer than the coherence length of levitons
for instance, ∼1 μeV, see Ref. [36] for details). Because the
electronic MZI is of the order of few μeV, electrons sent
by a dc-source can therefore be considered as interacting
independently with the charges of the DQDs coupled to the
arms of the interferometer.

In the limit of N � 1 independent electrons, the central
limit theorem applies and the binomial distribution in Eq. (9)
tends to a Gaussian distribution. The output state |�out〉 in lead
|3〉 (where the current is actually measured) is obtained by
projecting the state |�N 〉 onto the state |n,N − n〉. Expressing
the numbers of electrons n and N in terms of the corresponding
currents, n = I3τ/e and N = I1τ/e (the subindexes refer to
the leads, e is the electrical charge and τ is the time interval at
which the detector signal is registered), we obtain the output
state (up to a normalization factor):

|�out〉 ∝ α(↑↑) e
−(I3−Ie)2/4D

√
4πD

eiI1τδϕeiπ(I3−I1)τ |↑↑〉

+α(↓↓) e
−(I3−Ie)2/4D

√
4πD

eiI1τδϕe−iπ(I3−I1)τ |↓↓〉

+ e−(I3−Io)2/4D

√
4πD

(
α(↑↓) |↑↓〉 + α(↓↑)ei2I1τδϕ |↓↑〉 )

.

(10)

The width D of the two Gaussian distributions centered around
the average values for the even and odd currents is set by
the detector shot noise, D = SII /τ . Equation (10) constitutes
one of the main results presented in this work and is in
full agreement with previous theoretical expressions derived
within a quantum Bayesian formalism [1,20,22]. Importantly,
the parity measurement provides faithful information about the
state of the system, as long as the width of the two Gaussian
distributions is smaller than the signal 
I = Io − Ie to be
resolved. The phase factor for the state |↓↑〉 corresponds to
a shift in energy of the qubits induced by the coupling to the
detector (equivalent to an ac-Stark shift in circuit QED [43]).

The free evolution of the qubits during the time interval τ

is generated by the Hamiltonian Ĥqb:

Ĥqb =
∑
i=1,2

εi

2
σ̂ i

z + 
iσ̂
i
x, (11)

where εi and 
i are the energy bias and the tunneling energy
of the qubits i = 1,2 and the operators σ̂ i

z and σ̂ i
x are the

Pauli matrices of the respective qubits. When the tunneling
energy 
 is set to 0 and εi ≡ ε, the effect of the free evolution
is merely adding a phase factor e∓iετ/� to the even states.
Different bias energies do not change the dynamics in the
even subspace and do not lead to additional dephasing in
the odd subspace. As 
 = 0, this corresponds to a quantum
nondemolition measurement (QND), [Ĥqb,P̂ ] = 0. In the
following, we derive the explicit expressions for the dephasing
rates �eo,�ee, and �oo in the QND case. This shows that the
parity measurement is of special interest as dephasing remains
present, even when considering a QND measurement. It is the
presence of dephasing in the even subspace that motivates the
implementation of a feedback scheme.
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III. INTRINSIC DEPHASING: MARKOVIAN FEEDBACK

A. Dephasing processes

The dephasing rates are obtained by averaging the ratios of the
phase factors in Eq. (10) over many realizations:

�oo = − 1

τ
log〈ei2I1δϕτ/e〉 = 0, (12)

�ee = − 1

τ
log〈ei2π(I3−I1)τ/e〉 = π

eV

�

(
δϕ2

4

)
, (13)

�eo = − 1

τ
log〈eiπ(I3−I1)τ/e〉 = �ee

4
. (14)

There is no dephasing present in the odd subspace as there are
no fluctuating quantities. In fact electrons traveling through the
interferometer acquire exactly the same phase on the upper
and lower arms if the qubits are in the state |↑↓〉 or |↓↑〉.
Contrarily, within the even subspace the dephasing rate �ee

is finite. When the qubits are in an even configuration, the
electrons acquire a different phase when traveling along the
upper or the lower arms of the interferometer. The fluctuations
in the phase factor of the states |↑↑〉 and |↓↓〉 is the hallmark of
the quantum uncertainty concerning the path of the electrons
when traveling through the MZI. The origin of �ee can also
be understood from the detector’s point of view: because the
phase acquired by the electrons depends on the states |↑↑〉 and
|↓↓〉 and is asymmetric between the upper and lower arms, the
qubits acquire path information, which leads to dephasing.

Note that �eo sets the time scale at which entanglement
is generated through the parity measurement process: it
corresponds to �eo ≡ �m = (
I )2/4SII . Because the rate �ee

is four times larger than �eo, the parity measurement will never
achieve the creation of significant entanglement in the even
subspace if the corresponding dephasing is not compensated
by a feedback loop.

B. Markovian feedback mechanism

As the effect of the fluctuating part of the intrinsic measure-
ment back-action is proportional to the qubits’ Hamiltonian
the feedback can be simply implemented by adjusting the bias
energy of the qubits as follows:

ε′ = ε + f

[
π (I3 − I1)

�

e

]
. (15)

We recall that I1 corresponds to the incoming current in
lead |1〉, whereas I3 is the measurement outcome. This
procedure corresponds to a Markovian feedback, without any
state estimation. Taking into account the last measurement
outcome is sufficient here to stabilize the probabilities of
generating the four maximally entangled states as seen in
Fig. 1. We have assumed the feedback parameter to be the
same for both qubits. This is justified as different f would
lead to extra dephasing in the odd subspace, which can be
taken care of by a more general feedback scheme discussed in
Sec. IV. In Fig. 2(a), we show the amplitude of the oscillations
that the even Bell states undergo. For the optimal value of
the feedback parameter, f = 1, this amplitude is maximal and
does not decay in time.

The optimal value of f can be derived from an analytical
model based on the Langevin equation for the phase difference
acquired by the qubits in the even subspace using Eqs. (10)
and (15):

φ̇(t) = lim
τ→0

φ(t + τ ) − φ(t)

τ
= − ε

�
+ π

√
D (1 − f ) ξ (t),

where ξ (t) = (I3 − I1)/
√

D is a fluctuating variable charac-
terized by a white noise: 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′). From the
above equation, one deduces the corresponding Fokker-Planck
equation for the probability distribution of the phase φ [44]:

d

dt
P (φ,t) = (1 − f )2 π2

e2
D

d2

dφ2
P (φ,t)

= (1 − f )2 4 �eo

τ

d2

dφ2
P (φ,t)

≡ �ee(f )

τ

d2

dφ2
P (φ,t). (16)

Here �ee(f )/τ corresponds to the diffusion coefficient of
the phase φ, given that the random variable depends on the
output current I3. From Eqs. (10) and (14), the expression
of D = 4e2�eo/π

2τ is derived. The optimization of our
feedback scheme corresponds to requiring that �ee(f )/�eo =
4(1 − f )2 ≡ 0. When the feedback parameter f = 0, one
recovers the dephasing rate �ee derived in Eq. (14) and for
f = 1, we reach the optimal situation where dephasing in the
even subspace vanishes.

Numerical implementation. To implement the continuous
nature of the measurement and the feedback numerically,
we consider two small consecutive time intervals 
t large
enough such that Eq. (10) holds, but still short compared
to the measurement time 1/�eo. At the end of the first
interval, the state has evolved due to its bias energy ε, and
a current measurement result I i

3 is drawn from the probability
distribution pertaining to I3. The state describing the system
qubits plus detector is then given by Eq. (10). Consequently,
the measurement result is used to adjust the bias energy ε to
εi+1 = ε + f [π (I i

3 − I1) �

e
]. During the second time interval,

the state evolves under the Eq. (11) with a bias energy εi+1.
Notice that for 
t → 0, measurement and evolution can be
treated consecutively, also in the general case of [Ĥ ,P̂ ] �= 0.

C. Deterministic generation of entanglement:
Conditional concurrences

To describe quantitatively the amount of measurement-
generated entanglement during the parity measurement with
feedback, we introduce the conditional concurrence Ce/o(ρ)
defined as the entanglement concurrence postselected on the
measurement outcome. The concurrence is defined as [45]:

C(ρ) = max(0,λ1 − λ2 − λ3 − λ4), (17)

where λi are eigenvalues of the matrix R = √√
ρρ̃

√
ρ,

ρ = ∑
s1,s

′
1,s2,s

′
2
α(s1s

′
1,s2s

′
2)|s1s

′
2〉〈s2s

′
1| denoting the two-qubits

density matrix and ρ̃ its spin-flipped counterpart. Since the
concurrence itself is a measure of entanglement for mixed
states, we introduce the conditional concurrence defined as
the concurrence postselected on the measurement outcome

155438-4
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FIG. 2. (Color online) Generation of entanglement through the parity measurement with feedback. (a) Amplitude of the oscillations between
the populations of the even Bell states |�±

e 〉 as a function of time for different values of the feedback parameter. For f = 1, the amplitude does
not decay as expected for the optimal feedback when considering a QND measurement. (b) Conditional concurrences plotted as a function
of time in units of the measurement time set by the dephasing rate �eo. The optimal value for the feedback parameter f = 1 leads to steady
maximally-entangled states in both parity subspaces: Ce = Co do not decay. For comparison, conditional concurrences are shown for different
values of non optimal feedback f : f = 0,0.5,0.75.

(either Ie or Io) [17]. This allows us to further distinguish
entanglement creation in the even and in the odd subspaces.
Figure 2 displays the conditional concurrences Ce and Co for
different values of the feedback parameter f . As expected,
changing the feedback parameter has no quantitative effect on
the generation of entanglement in the odd subspace: Co = 1
and the dashed curves corresponding to different values of
f are barely distinguishable. In contrast, it is only for the
optimal value of f derived from the Fokker-Planck equation,
Eq. (16), that deterministic entanglement is created in the
even subspace for long times compared to the measurement
time. While these results have been derived considering the
electronic MZI as parity meter for charge qubits, they remain
valid for considering alternative solid-state architectures, for
instance circuit QED setups.

For the sake of completeness, let us mention the case of
finite tunneling, 
 �= 0 in Eq. (11). The operators σ̂ 1,2

x tend to
mix the two parity subspaces, which would render the parity
measurement procedure ineffective to generate entanglement.
However, this undesired effect can be avoided by controlling
the strength of the parity measurement. Indeed, for sufficiently
strong measurements (�eo � 
/�), the projective nature of
the parity measurement prevents the two parity subspaces from
mixing. The concurrences Ce and Co are then similar to the
ones shown in Fig. 2.

We conclude this section by comparing our results with
Ref. [15], where a parity measurement in a 3D circuit
QED architecture was implemented along with a projective
feedback to deterministically obtain a target Bell state. The
projective feedback consists in flipping one qubit when the
measurement outcome indicates a state belonging to the even
subspace. This single-qubit rotation results in states consisting
of superposition of only odd states. However, dephasing leads
to a maximum of created entanglement at some finite time.
As this time is shorter than the measurement time (which sets
the time at which a clear separation of parity subspaces is
possible), the maximum fidelity obtained is 66%. We claim
that our feedback mechanism is of particular relevance for this
situation as for f → 1 the maximum entanglement is reached

after an arbitrary large time, allowing for a distinct separation
of parity subspaces and thus for a theoretical fidelity of 100%,
i.e., a deterministic creation of target Bell states. To trigger
future experiments in this direction, we consider in the next
section external sources of noise, which are unavoidable in a
realistic realization of our proposal.

IV. ADDITIONAL SOURCES OF NOISE:
BAYESIAN FEEDBACK

Deterministic generation of given Bell states requires an
initial initialization of the qubits. Experimentally, this requires
tuning of gate voltages, which induces fluctuations in the
energy and tunneling energies of the qubits, and therefore
leads to additional dephasing. To mimic this situation, we
assume that the noise sources of the qubits are statistically
uncorrelated, so that their Hamiltonian now reads:

Ĥqb =
∑
i=1,2

(
εi

2
+ ξi(t)

)
σ̂ i

z , (18)

where the fluctuating terms ξi,i = 1,2 are separately drawn
from a white noise distribution with a width Dξ . This leads to
an extra dephasing within each subspace, characterized by
the rate �ξ . Treating the additional dephasing along with
the intrinsic dephasing requires that the detector output is
a continuous variable on such time scale, i.e., 
t has to
remains the shortest time scale of the problem. In particular
�ξ 
t � 1. With a decoherence time 1/�ξ ∼ 10−8 seconds
for charge qubits [46] and a typical impinging rate eV/� ∼
1010 seconds−1 in MZI interferometers [29,30], the condition
can be met in current and future experiments. We assume the
general case of nonsymmetric bias energies εi , but we do not
consider noise in the tunneling. This is justified by realizing
that the consequence of a noisy tunneling can be split into
two distinct effects, which can be easily compensated. First, it
induces a dephasing between the parity subspaces that can
be suppressed by a sufficiently strong parity measurement
as discussed in the previous section. Second, it causes a
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fluctuating phase within the parity subspaces, which can be
reabsorbed in the fluctuating part of the Hamiltonian Eq. (18).

To the contrary, the presence of bias energy fluctuations
results in a dephasing within both subspaces so that, for any fi-
nite Dξ , the built-up entanglement reaches a maximum at some
finite time and decreases afterwards down to zero [1,15,20].
These dephasing processes can not be compensated by a
Markovian feedback based on the parity measurement result.
Indeed, because [Ĥqb,P̂ ] = 0, the parity measurement does
not infer any information about the loss of phase coherence
and its outcome is then of no use for a feedback procedure
aiming at compensating external sources of noise. We therefore
introduce a new measurement operator,

P̂x = σ̂ 1
x ⊗ σ̂ 2

x . (19)

This operator has the advantage to distinguish between
states within one parity subspace while commuting with
the parity operator P̂ . Thus its measurement allows us to
infer information about the relative phase between states in
the even or in the odd subspace. Experimentally, this joint
measurement can be implemented by pulsed measurements,
combining single-qubit operations (π/2 rotations) with a
parity measurement [17,47].

To obtain more accurate results with this feedback loop
based on P̂x , we consider here a Bayesian approach [1,16,23].
Because [P̂x,P̂ ] = 0, the measurement of P̂x does not mix the
parity subspaces. Therefore, the dynamics of the system, along
with the joint measurement of P̂ , and P̂x leads, at long times,
to a decay of the density matrix elements connecting states of
different parity. The evolution of the state at long time, and
the effect of feedback, can then be characterized by the two
phases expressed in terms of the real and imaginary parts of
the density matrix elements ρss ′,ss ′ written in the computational
basis of the two qubits spanned by the indices ss ′:

φe = arctan
Re{ρ↑↑,↓↓}
Im{ρ↑↑,↓↓} , φo = arctan

Re{ρ↑↓,↓↑}
Im{ρ↑↓,↓↑} . (20)

Compared to the free evolution of the two-qubit system, phase
differences of


φe = (ε1 + ε2)τ − φe, 
φo = (ε1 − ε2)τ − φo (21)

have to be accounted for by the feedback mechanism within
each subspace. Intrinsic dephasing is therefore compensated
by the Markovian feedback and external sources of noise by
the Bayesian one. Accounting for these two procedures, the
bias energies εi of the qubits are updated as follows:

ε1 → ε′
1 + fx


φe + 
φo

2
(22)

ε2 → ε′
2 + fx


φe − 
φo

2
, (23)

where the energies ε′
1 and ε′

2 are given by Eq. (15). Though
the experimental implementation of Bayesian feedback is
more challenging than the direct feedback, this procedure
remains realistic as the feedback is limited to one control
parameter [20,22,23].

Figure 3 shows the resulting conditional concurrences as a
function of the strength of the second measurement P̂x . Here
we model the detector noise by its variance Dx , the induced
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FIG. 3. (Color online) Deterministic generation of entangled
states in the presence of external sources of noise. Top: Conditional
concurrence Ce as a function of the measurement strength �x

normalized by �eo for different noise strengths �ξ/�eo. In the absence
of external noise, the Markovian feedback that compensates the
intrinsic dephasing is enough to produce Bell states, which do not
decohere in time: Ce = 1 (red crosses). For nonzero values of noise,
Ce reaches a saturated value, which decreases when the noise strength
becomes large. Bottom: Conditional concurrence Co follows the same
evolution as Ce: here the behavior of Co as a function of the noise
strength �ξ/�eo is plotted.

dephasing by �ξ [see Eq. (18) and below] and the interaction
between the qubits’ operators and the observable by a coupling
parameter λx . These parameters determine the measurement
strength of P̂x , �x ≡ λ2

x/Dx [48]. The concurrences are plotted
as a function of �x normalized by the measurement rate �eo,
for different normalized values of the noise �ξ/�eo.

For no external noise, �ξ/�eo = 0, the second feedback
loop through the measurement of P̂x is superfluous, the
conditional concurrence Ce remains maximal for all the values
of �x/�eo (red crosses). This corresponds to the results
presented in the precedent section on the Markovian feedback.
When noise in the bias energies is taken into account, the
second measurement P̂x is necessary to infer information about
the loss of phase coherence. The conditional concurrence
Ce saturates when increasing the measurement strength �x .
This is consistent with previous theoretical works on a
single two-level system [20]. The curves in Fig. 3 show that
entanglement is generated and stabilized, even in the presence
of external sources of noise, when we combine our Markovian
and Bayesian procedures. For completeness, the bottom panel
shows that conditional concurrences in the odd and even
subspaces behave uniformly.

V. CONCLUSIONS

In this work we have analyzed different feedback schemes
for parity measurement of two qubits and considered explicitly
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the parity measurement of two DDs by a properly tuned
MZI. We have first introduced a microscopic description
of the measurement process, which allowed us to quantify
the measurement back-action in the even-parity subspace,
where dephasing is dominant. This enabled us to implement
a Markovian feedback, numerically much less demanding
than the Bayesian one. Introducing the concurrence as an
appropriate measure of entanglement, we showed that one can
optimally tune the feedback strength to overcome the decay
of entanglement. However, this feedback cannot overcome
external sources of noise, unrelated to the measurement. To
tackle these extra dephasing processes, we have analyzed a
more elaborate feedback scheme requiring the measurement
of an additional joint operator. Its measurement outcomes are
then used for a state estimation of the qubits, allowing for
the implementation of a second feedback loop based on the

Bayesian approach. The combination of the two feedback
loops leads to stable entangled states, also in the presence
of external noise sources. Though the analysis in our work is
based on a Mach-Zehnder interferometer detection of double
quantum dots, our protocols, the general formalism, and the
results are generally valid for any implementation of a parity
measurement in various solid-state architectures.
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